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1 . Write down the Bellman equation to solve for the optimal selling strategy of a person trying

to sell a house and who must determine an optimal pricing policy to maximize the expected

discounted gains from selling it. You may assume that the problem is a finite or infinite

horizon decision problem, whichever is easier for you. Assume that the seller has a monetary

equivalent reservation value Vl from continuing to live in the house and not selling it, but if

the seller can get an offer O that is greater than Vl the seller will prefer to sell rather than

continue to live in the house.

A . Assume that the seller is not using a real estate agent but rather places an advertisement

in the newspaper. An advertisement can be either for one day only at a cost of a, or the

seller can place an advertisement that runs for an entire week at a daily cost of a < a,

reflecting a “quantity discount.”

B . Assume that each period at most one buyer can arrive to look at the house and this

prospective buyer may or may not decide to make an offer. Assume that the probability

that a buyer arrives to view the house is λ(P ) where P is the seller’s advertised price

for the house.

C . After viewing the house, the buyer may make an offer. Assume that an offer is

made with probability π(P ) and conditional on making an offer, the actual value of the

buyer’s offer O is given by a conditional density f(O|P ).

D . The seller experiences a monetary equivalent disutility of c for each period the house

is being considered for sale due to the need to keep the house clean and to vacate the

premises whenever a prospective buyer arrives. If the seller is risk neutral and has

discount factor β ∈ (0, 1), write down the Bellman equation for the optimal selling

strategy on the part of the seller.

E . From looking at the Bellman equation at this level of generality, how much can

you tell about the form of the optimal selling strategy? Is a reservation price strategy

generally optimal (i.e. will the sell accept an offer from a buy provided it is above a
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certain threshold value? If so, will this thresold equal Vl, or will it be higher or lower

than this value?)

F . What can you say about the optimal pricing strategy? Will the seller generally start

with a high advertised price and decrease it over time, or is it optimal to start with a

low price and increase it? How rapidly should the seller change prices: should they

be changed every period, or is it optimal to keep the same advertised price for several

periods?

G . Finally, generalize the problem to add the decision of whether or not to use a real-

estate agent. The cost of using a real-estate agent is that if the house is sold, the seller

must pay 6% of the sales proceeds to the real-estate agent. However real estate agents

offer a number of benefits to a seller. If the seller uses a real-estate agent, the seller no

longer has to pay to advertise the house – the real-estate agent does this as part of the

services the agent provides. Most importantly, due to the “connections” the real-estate

agent has, the seller can generally get a higher arrival rate of potential buyers. Assume

that with a real estate agent, there is a probability λr(P ) that a potential buyer arrives to

view the house each period, where λr(P ) > λ(P ) (i.e. it is higher than when the seller

tries to sell the house on his/her own). Furthermore, assume that the real estate agency

is able to target its advertisements to a more appropriate set of buyers who have a higher

probability of making an offer, πr(P ) > π(P ), and for whom the distribution of offered

prices fr(O|P ) stochastically dominates the distribution of offered prices f(O|P ) in

the absences of a real-estate agent. Write the Bellman equation that determines the

optimal selling strategy when a seller can either sell a house on his/her own, or use

a real estate agent. Under what conditions might it be optimal to start by selling the

house without a real estate agent, and then switch to a real estate agent later, if the seller

is unsuccessful in selling the house after a sufficiently long amount of time? Does the

possibility of switching from selling a house on your own to using a real estate agent

only occur in a finite horizon formulation of the selling problem, or could it happen in

the infinite horizon problem as well?

2 . Derive the McQueen-Porteus Error bounds on successive iterations of the Bellman equation.

3 . Prove that the fixed point to a contraction mapping on a Banach space exists and is unique.
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4 . Consider an infinite horizon dynamic programming problem with utility function given by

u(s, a) = λ2a
2 + λ1a + λ0 + s[ρ0 + ρ1a] + µs2

and transition probability

p(s′|s, a) =
1√
2πσ

exp
{

−(s′ − κ0 − κ1a − bs)2/(2σ2)
}

Assume the decision maker wants to maximize expected discounted utility over an infinite

horizon with discount factor β ∈ (0, 1).

A . Write the Bellman equation for this problem.

B . Show that the value function V (s) is a quadratic function of s and the optimal decision

rule α(s) is a linear function of s.

C . Does the Bellman equation have only 1 solution in this (unbounded utility) case, or

is it possible that it has multiple solutions?

5 . Consider the problem of integrating a function f(x) on the [0, 1] interval. We want to

characterize the optimal deterministic algorithm for integration.

A . Suppose that our algorithm consists of evaluating the function at a finite number of

points (x1, . . . , xn) in [0, 1] and then using the resulting values (f(x1), . . . , f(xn)) to

form an estimate of the integral. Provide an example of an integration rule that works

this way. How should the information I = (f(x1), . . . , f(xn)) on the function f be

used?

B . Suppose that all we knew about the function f (besides being able to evaluate it any

any finite number of points in [0, 1]) is that it is continuous. Show that in the worst case,

the error in trying to integrate the function f using only its values at a finite number of

points (f(x1), . . . , f(xn)) is ∞, i.e.

sup
f∈F

∣

∣

∣

∣

∣

∫ 1

0
f(x)dx − φ(f(x1), . . . , f(xn))

∣

∣

∣

∣

∣

= ∞

where φ is some algorithm for using the information on f I = (f(x1), . . . , f(xn)) to

compute an approximation to the integral of f .

C . Thus, we conclude that from a worst case error basis, it is impossible to integrate

functions if all that we know about them is that they are continuous. More prior
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information on the smoothness and boundedness of the class of functionsF is required.

Now consider what the worst case error would be if the class we are integrating over is

the class FL of Lipschitz continuous functions on [0, 1] with uniform Lipschitz bound

L. This is the class of functions FL satisfying

|f(x) − f(x)| ≤ L|x − y|, x, y ∈ [0, 1], f ∈ FL.

D . An algorithm for computing the integral of a function f ∈ F can be written

as a composition of two functions, φn : Rn → R and In : [0, 1]n → Rn where

In = (f(s1), . . . , f(sn)) is the information (or sample) on the unknown function f we

wish to integrate and φn is an algorithm that combines this information into an estimate

of the integral:
∫ 1

0
f(x)dx ≈ φn(f(s1), . . . , f(sn)).

Thus, we are seeking a rule for choosing the sample points (s1, . . . , sn) and the function

φn that minimize the worst case integration error:

r(n) = inf
s1,...,sn

inf
φn

sup
g∈F(f(s1),...,f(sn))

∣

∣

∣

∣

∣

φn(f(s1), . . . , f(sn)) −
∫ 1

0
g(x)dx

∣

∣

∣

∣

∣

,

where

F(f(s1), . . . , f(sn)) = {g ∈ F|g(s1) = f(s1), . . . , g(sn) = f(sn)} .

Thus, F(f(s1), . . . , f(sn)) is the equivalence class of functions in F that have the

same information (i.e. have the same values over the n sample points (s1, . . . , sn)) as

the true function f that we are trying to integrate. Since we assume that we don’t know

the true f at all points but only at the n points (s1, . . . , sn), we consider the worst case

error by computing the function g ∈ F(f(s1), . . . , f(sn)) whose actual integral is as

far away as possible from the approximate integral φn(f(s1), . . . , f(sn)).

E . Show that F(f(s1), . . . , f(sn)) is a set of functions in F bounded above by an upper

envelope f and and a lower envelope f , and that f and f are piecewise-linear functions

with slopes everywhere equal to ±L that satisfy

f(si) = f(si) = f(si), i = 1, . . . , n.
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F . Show that the optimal algorithm φ∗n is given by

φ∗n(f(s1), . . . , f(sn)) =
∫ 1

0
fmid(x)dx,

where fmid = (f + f)/2.

G . Let fpwl be the piecewise linear interpolant of the points (0, f(s1)), (s1, f(s1)),

. . . , (sn, f(sn)), (1, f(sn)). Show that
∫ 1

0
fmid(x)dx =

∫ 1

0
fpwl(x)dx.

H . Show that

∫ 1

0
fpwl(x)dx = f(s1)s1 +

n−1
∑

i=1

1

2
(f(si) + f(si+1)(si+1 − si) + f(sn)(1 − sn).

Thus, the optimal integration algorithm for the class F is the modified trapezoidal rule.

I . Show that there is no loss of generality in restricting attention to the special case of

zero information, i.e. where f(s1) = f(s2) = · · · = f(sn) = 0, i.e. show that

sup
g∈F(f(s1),...,f(sn))

∣

∣

∣

∣

∣

φ∗n(f(s1), . . . , f(sn)) −
∫ 1

0
g(x)dx

∣

∣

∣

∣

∣

=

sup
g∈F(0,...,0)

∣

∣

∣

∣

∣

φ∗n(0, . . . , 0) −
∫ 1

0
g(x)dx

∣

∣

∣

∣

∣

=

sup
g∈F(0,...,0)

∣

∣

∣

∣

∣

∫ 1

0
g(x)dx

∣

∣

∣

∣

∣

.

J . Show that

sup
g∈F(0,...,0)

∣

∣

∣

∣

∣

∫ 1

0
g(x)dx

∣

∣

∣

∣

∣

= L





1

2
s2
1 +

1

4

n−1
∑

i=1

(si+1 − si)
2 +

1

2
(1 − sn)2



 .

K . Using calculus, derive the optimal placement of the sample points. Show that the

optimal points satisfy

s∗i =
2i − 1

2n

show that the worst case error bound using the optimal integration algorithm and the

optimally placed points satisfies

r(n) =
L

4n
.
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L . Show that for the optimally chosen points, the optimal integration algorithm takes

the form of a quasi monte carlo algorithm:

φ∗n(f(s∗1), . . . , f(s∗n)) =
1

n

n
∑

i=1

f(s∗i ).

How does this result compare with the quasi monte carlo algorithm for the minimum

discrepancy points (t∗1, . . . , t
∗
n) that you derive in problem 6 below?

6 . The discrepancy of a set of n points (t1, . . . , tn) in [0, 1]d (the d-dimensional hypercube)

is given by

D∗
n(t1, . . . , tn) = sup

B∈B
|λn(B) − λ(B)|,

where B is the set of all normalized subrectangles of [0, 1]d,

B =







B ⊂ [0, 1]d|B =
d

∏

i=1

[0, bi], bi ∈ [0, 1]







,

and λ(B) is the Lebesgue measure of B,

λ(B) =
d

∏

i=1

bi,

and λn(B) is the empirical measure of B,

λn(B) =
1

n

n
∑

i=1

I {si ∈ B} .

where I {s ∈ B} is the indicator function,

I {s ∈ B} =

{

1 if s ∈ B

0 otherwise.

A . Consider the one dimensional case, d = 1. Find a formula for the discrepancy,

D∗
n(t1, . . . , tn).

B . Find a formula for the minimal discrepancy points (t∗1, . . . , t
∗
n), i.e. the points that

solve

(t∗1, . . . , t
∗
n) = argmin

(t1,...,tn)
D∗

n(t1, . . . , tn).


