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Abstract

We introduce a dynamic model of rationally-inattentive bidding to explain early bidding in
online auctions we call Korean auctions invented in 2002 by an executive of a rental-car com-
pany in Korea to thwart suspected collusion. Bidders do not see each others’ bids or identities
or even the number of other bidders. The only information bidders receive is whether their
high bid is is the highest bid among all bidders at each instant in the auction. We argue that
perfect Bayesian equilibrium models cannot explain the early bidding behavior we observe at
these auctions. We introduce a new dynamic model of rationally-inattentive bidding subject
to bidding frictions under the concept of anonymous equilibrium. This model can predict early
bidding and final high bids, but underpredicts the magnitude of first bids—a phenomenon we
refer to as early overbidding. This is inconsistent with rational competitive bidding behavior as
well as the hypothesis of collusion because auction prices would be lower and bidder profits
would be significantly higher if they used algorithmic bidding strategies based on our struc-
tural model as their “agents”. However if all bidders in the auction used frictionless versions of
our optimal bidding algorithm as their agents, there would be no early bidding in anonymous
equilibrium, efficiency would be 100%, and auction prices would be 3% higher that what we
observe in actual auctions. We predict auction revenue would have been even higher, by 12%,
had the executive used static second-price sealed-bid auctions to sell cars.
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1 Introduction

We structurally estimate a dynamic model of bidding that we developed to explain early bidding

behavior in online auctions we refer to as Korean auctions, a new type of auction invented in 2002

by an executive of a rental-car company in Korea.1 A Korean auction is similar to a traditional

oral, ascending-bid auction (often referred to as an English auction), except that it is conducted

online, lasts for two minutes, and is informationally restricted: bidders are unable to observe each

other’s bids, the number of other bidders, or their identities. At each instant, bidders only know

whether they hold the current highest bid. At the end of the auction, the bidder who submitted the

highest bid wins and pays the highest bid they submitted at the auction. Time priority is enforced:

a bidder who matches the current high bid does not become the new current high bidder.

The rental-car company sells hundreds of it vehicles in wholesale auctions held each month.

Before the invention of the Korean auction, the company sold its vehicles at different rental-car lo-

cations using oral, ascending-bid (English) auctions, where bidders verbally cried out bids under

the oversight of an auctioneer.2 Over sixty professional bidders were registered to participate in

these auctions: most are used-car dealers seeking to buy vehicles at wholesale prices for resale to

their customers at a markup. Around 2000, an executive suspected collusion among some of the

bidders at these auctions. In response, in 2002 he invented the informationally-restricted Korean

auction that he claimed was successful in defeating this collusion. The new online auctions began

in January 2003 and continued until 2007, when the executive decided that the fixed costs of run-

ning them were too high, so he reverted to selling cars at oral, ascending-bid auctions again—this

time through an independent auction house in Seoul.

We refer to the oral, ascending-bid auctions held at the rental-car company as Regime 0, the on-

1Because of a confidentiality agreement we signed in order to obtain the data, we are prohibited from revealing the
company’s name or the identities of the bidders participating in these auctions.

2The oral, ascending-bid (English) auctions that have been studied theoretically are actually Japanese auctions (also
referred to as as thermometer or button auctions by Milgrom and Weber [1982]), where bidders observe an exogenous,
continuously-rising price and press buttons (or keep hands raised) to indicate their willingness to pay that price, with
irreversible exit once they release the button or lower their hands. The winner is the last remaining bidder and the win-
ning price is the value at which the penultimate bidder dropped out—within the independent private-values environ-
ment, an outcome that is strategically equivalent to the equilibrium of a second-price, sealed-bid auction, often referred
to by economists as the Vickrey auction in honor of Vickrey [1961]. English auctions differ from Japanese auctions in
that bid submission is endogenous and at the discretion of bidders. English auctions may have very different outcomes
from Japanese ones—including complex patterns of jump bidding and sniping; see, for example, Avery [1998] as well
as Isaac et al. [2007] who numerically computed equilibria in open-ended auctions with two bidders and showed that
“jump bidding occurs due to strategic concerns and impatience.” Little is known theoretically concerning bidding at
English auctions with more than two bidders under alternative formats (for example, a two-minute time limit) or with
informational restrictions. Cui and Lai [2013] analyzed heterogeneous bidding behavior in single-unit online ascend-
ing bid auctions that revealed similar types of bidding behavior that we find in our reduced-form analysis of Korean
auctions in section 2.
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line informationally-restricted Korean auctions as Regime 1, and the oral, ascending-bid auctions

conducted by the auction house as Regime 2. Cho et al. [2014] analyzed data from over 30, 000

auctions conducted under Regimes 1 and 2: after controlling for car make and model as well as

odometer reading, they concluded that prices under Regime 2 were nearly 10% higher than un-

der Regime 1. Thus, net of the auction house’s ten percent commission, the rental-car company

received the same revenue per car sold, but saved the fixed costs of running its own online auc-

tions. If collusion had resumed under Regime 2, then Cho et al. [2014] should have observed lower

prices compared to Regime 1. Bidders can observe each other as well as each others’ bids at oral,

ascending-bid auctions. In the absence of collusion and assuming car valuations are affiliated, the

linkage principle of Milgrom and Weber [1982] predicts that prices in Regime 2 should be higher

than in the informationally-restricted auctions in Regime 1. Cho et al. [2014] noted, however, that

the higher prices could be explained by a larger number of bidders participating in auctions con-

ducted under Regime 2 than under Regime 1.

In this paper, we focus on understanding bidding at the Korean auctions (Regime 1) under the

assumption that the informational restrictions were successful in defeating collusion, which the

rental-car executive strongly believes was the case. In section 2, we compare limited data con-

cerning auctions at the end of Regime 0 with auction prices of specific makes and models of

cars just after the transition to Regime 1. We find mixed evidence of higher prices under Regime

1—in contrast to the executive’s claims. Previous researchers have found that restricting infor-

mation in dynamic auctions can hinder collusion; Cramton and Schwartz [2000] recommended

informational restrictions in FCC spectrum auctions to reduce suspected collusion. These include

anonymizing bidder identities to reduce the possibility of retaliation for deviating from collusive

agreements and coarsening bids to three significant digits because bids in the billions “allowed

for all kinds of signaling” in the less significant digits of the bids. Marshall and Marx [2009] also

showed that suppressing bidder identities during and after an auction may successfully inhibit

certain types of collusion. Bajari and Yeo [2009] studied FCC auction-design changes in response

to these recommendations—including “click box bidding” that reduces jump bidding and “code

bidding” and anonymization of bidder identities. They concluded that “these rule changes have

limited firms’ ability to tacitly collude” (p. 90) although “detecting collusion based solely on auc-

tion data can be difficult” (p. 100).

Few previous structural empirical analyses of bidding at dynamic, ascending-bid auctions

exist—with or without the sort of informational restrictions employed at the Korean auctions.
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Also, as we noted, very little theory exists characterizing equilibrium bidding behavior in online

or oral ascending-bid auctions. The closest previous analysis to our’s is by Barkley et al. [2021],

who analyzed data from Texas auctions of certificates of deposit (CD) at thirty-minute online auc-

tions that are informationally restricted in the same way as the Korean rental-car auctions: bidders

cannot see each others’ bids or identities, but each bidder is continually informed whether his bid

is the highest (“in the money”). Barkley et al. [2021] found that the informational restrictions as

well as bidding frictions resulted in significant inefficiencies and money left on the table due to

“submitting winning bids at rates well above the lowest bid needed to win” (p. 380) that “are

costly both for revenue and allocative efficiency” (p. 376). They concluded:

The choice of auction mechanism is puzzling given the estimated losses due to bidding
frictions. Why should the auctioneer not run a sealed-bid uniform price auction to
allocate funds? We suggest two reasons why the current mechanism may be preferred
to such an alternative mechanism despite the losses due to frictions: collusion and
corruption.

Static first-price, sealed-bid or second-price, sealed-bid auctions reveal even less information

than the informationally-restricted, online, ascending-bid auctions so the question remains: why

would a dynamic auction be preferred to a static one in terms of its ability to defeat collusion? It is

well known that repeated static auctions can also support collusion via bidding rings that employ

self-enforcing, side-payment mechanisms to reduce the bids at auctions and lower winning prices;

see, for example, the research of Asker [2010]; Graham and Marshall [1987]; Mailath and Zemsky

[1991]; and McAfee and McMillan [1992]. In any event, we agree that it is difficult to detect col-

lusion from bid data alone: if there were collusion that lowers bids, then our structural analysis

would reflect this via estimated valuations that are lower than they would be absent collusion, but

the auctions might otherwise appear competitive at the lower inferred valuations.

Our analysis proceeds under the assumption that no collusion exists. However our empirical

analysis does not uncover any obvious evidence of collusion—such as artificially-low fake bids

designed to create the impression of active, competitive bidding by members of a bidding ring.

Instead, we find that bidders are overbidding at these auctions, or at least they are bidding more

than our model of rationally inattentive bidding with bidding frictions predicts they should be

bidding. The fact that auction prices increased by 10% when the company abandoned its Korean

auctions (Regime 1) and moved to the auction house (Regime 2) is not evidence of collusion in the

Korean auction. Instead, we believe the lower prices were caused by the inefficiency of the Korean

auction, a conclusion that is consistent with the findings of Barkley et al. [2021]. Auction outcomes
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might have been more efficient under Regime 2. In fact, our results predict that the rental car

company could raise revenues even more, by 12%, by adopting a static second-price sealed-bid

auction format which results fully ex post efficient outcomes.

Our main goal, and the key contribution of this paper, is to improve our understanding of

bidding behavior at dynamic auctions, and to conduct a limited type of empirical mechanism de-

sign designed to assess whether, in the absence of collusion, the rental-car company could have

increased revenues had it removed the informational restrictions or adopted simpler static auction

formats—such as first-price, sealed-bid or Vickrey auctions.

A natural starting point for analyzing bidding behavior in Korean auctions is to posit that

in the absence of bidding frictions, the informational restrictions at the Korean auctions do not

constitute a binding restriction on bidders compared to traditional oral, ascending-bid auctions.

By a process we refer to as bid creeping, which we illustrate in section 2, bidders can learn the

high bid at any moment of the auction and, thus, avoid the early overbidding that Barkley et al.

[2021] found to be so prevalent at the Texas CD auctions. This would imply that bidding in Korean

auctions should be strategically equivalent to the Japanese auction. In other words, bidders should

keep bidding until the high bid exceeds their valuation, and then drop out, a strategy known as

straightforward bidding, see Milgrom and Weber [1982]. Thus the bidder with the highest valuation

wins with a winning bid equal to the valuation of the second-highest bidder, an outcome that is

strategically equivalent to the outcome of a static second-price sealed-bid auction.

However as we noted above, the mechanics of how straigthforward bidding is actually im-

plemented have never been described in detail, such as how often bidders should bid and how

much to raise each successive bid. Well known lags in human perception and the speed at which

they can call out or type in new bids limits how frequently bidders can revise their bids during the

auction, and this puts inherent limits on the ability to carry out a straightforward bidding strategy.

We reflect these limits by adopting a discrete time model of bidding, where bidders can only react

and update their bids at one second intervals in the two minute auction. We prove that with in-

formational restrictions on the identities of bidders but no restrictions on the values of their bids,

a rational and frictionless bidder (which we will define in section 3) will find it optimal engage in

informational free-riding and not bid until the last possible second in the auction. That is, all such

bidders will snipe and there will be no early bidding as imagined under the usual story of straight-

forward bidding. Further bidders will shade their bids (i.e. bid less than their valuations) and not

be willing to continue bidding up to their valuation for the object. This implies that anonymized
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English auctions conducted in discrete time reduce to anonymized static sealed-bid auctions that

are not strategically equivalent to second-price auctions.

However the informational restriction in Korean auctions does create an inherent incentive for

early bidding, namely, to acquire valuable information about what the high bid currently is to

avoid overpaying to win the auction. We show this incentive exists even for frictionless, perfectly

attentive bidders under certain conditions. Thus, an optimal dynamic bidding strategy will typically

entail early bidding, although in Korean auction with or without bidding frictions, straightfor-

ward bidding is generally not an equilibrium strategy. However if all bidders are perfectly atten-

tive and use rational, frictionless bidding strategies, we show there is a bidding paradox — there

will be no early bidding in equilibrium. Thus, early bidding in Korean auctions can only happen

if some bidders are irrational, or are subject to various bidding frictions such as restrictions on

how fast or often they can bid or the amount of attention they can devote to the auction.

The “gold standard” approach to explaining bidding behavior in dynamic auctions with in-

complete information is perfect Bayesian equilibrium (PBE), where all bidders employ dynamic

Nash-equilibrium strategies and Bayesian updating to determine when and how much to bid

during the auction. We demonstrate that when bidding occurs in discrete time and the auction

has a hard close (so all bidders can submit bids in the last instant of the auction and be guaranteed

their bids will be accepted), an uninformative PBE exists that is strategically equivalent to the out-

come of a first-price, sealed-bid auction (although it is a Bayesian version of this equilibrium since

bidders only have a prior distribution concerning the number of bidders who might participate in

any given auction; see McAfee and McMillan [1987a]). In other words, in the uninformative PBE,

all bidders snipe: they make no early bids and only bid at the last possible instant.

Our auction data strongly reject the hypothesis that bidding behavior is consistent with an

uninformative PBE of the Korean auction game, and so is the bidding behavior at the Texas CD

auctions reported by Barkley et al. [2021]. Could other informative PBEs exist that are consistent

with the early bidding we observe? In section 3, we construct a simple two-bidder, two-period ex-

ample of the Korean auction, in which the only PBE is the uninformative PBE that is strategically

equivalent to a first-price, sealed-bid auction. Whether informative PBEs exist in richer environ-

ments than our example remains an open question, but we agree with Barkley et al. [2021] that it

is currently infeasible to compute or even to characterize such equilibria.

In section 4, we introduce our new, computationally-feasible approach to modeling bidding be-

havior at the Korean auction. We assume that bidders have rational, but non-Bayesian beliefs and
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face bidding frictions that include a form of rational inattention inspired by the research of Sims

[2003] and Matějka and McKay [2015].3 Bidders rationally account for their periodic lack of atten-

tion to the auction and, thus, bid earlier and higher than they otherwise would if they were able

to pay attention at every instant and type in updated bids in under 1 second. Furthermore, their

beliefs concerning the conditional probability distribution of the high bid at any point during the

auction constitutes a “sufficient statistic” for calculating their optimal bidding strategy. We assume

that rational, experienced bidders know this family of conditional probability distributions and,

thus, bypass the intractable and extremely high-dimensional Bayesian updating problem involved

in calculating a PBE. This approach allows us to recast the problem from one of computing a PBE

into the much simpler problem of computing a Nash equilibrium to an anonymous game, where we

can solve for each bidder’s equilibrium strategy as a single-agent, dynamic-programming (DP)

problem. An anonymous equilibrium of this game is a set of DP bidding strategies that satisfy the

constraint that all bidders have rational beliefs concerning the stochastic process governing the

high bid at the auction, thereby making their strategies mutual best-responses.4

We solve for optimal bidding strategies by discretizing the two-minute auction into 121 one

second bidding intervals t during the auction running from t = 0 to the final possible bid at

t = 120. We apply numerical DP to compute bidding strategies that maximize bidders’ expected

payoffs from participating in the auction. Our model involves a vector of unknown parameters

(v, c, p, σ) where v is the bidder’s valuation of the car being auctioned, c is the psychological cost

(or benefit if negative) of submitting a bid at any instant, p is the probability that a bidder is

distracted and unable to bid at any instant t, and σ is a scale parameter of an extreme-value distri-

bution representing idiosyncratic costs/benefits of bidding at any instant t.

We used a fixed-effects, quasi-maximum likelihood (QML) approach to estimate these four pa-

rameters for 4, 029 auction-bidder pairs who participated in 533 auctions for a specific make/model

of passenger car, the Hyundai Avante XD. 5 Our approach differs from that of Barkley et al. [2021]

in that we employ numerical DP to solve for the the bidding strategies of each bidder at each auc-

tion under the assumption that each bidder has rational beliefs, so the outcomes are realizations of

anonymous equilibria of the Korean auction. The QML estimator of the four parameters for each

3See also Bhattacharya and Howard [2022] who used rational inattention to explain violations of mixed strategy
Nash behavior for pitchers in professional baseball.

4Computing the Nash equilibria of anonymous games is tractable and, in some cases, can be completed in polyno-
mial time; see the research of Daskalakis and Papadimitriou [2015] as well as Cheng et al. [2017].

5The Hyundai Avante (Korean:현대아반떼) is a compact car produced by the South Korean manufacturer Hyundai
since 1990, but is marketed as the Hyundai Elantra outside of South Korea and Singapore.
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auction (so some 16, 000 parameters in total for the 4, 029 auction-bidder pairs) is chosen to fit the

observed sequences of bids for all bidders at each auction. Our approach allows us to conduct de-

tailed simulations of bidding behavior under various counterfactuals—including predicting the

effect of eliminating the informational restriction on bidding behavior.

Our key empirical findings are summarized in section 5. Specifically, our model can explain

the early bidding behavior observed at these auctions, but the model substantially underpredicts

the initial bids tendered at these auctions—even though it does a better job of predicting final high

bids. In section 6 we present counterfactual simulations involving frictionless bidders (i.e. bidders

whose type is of the form τ = (v, 0, 0, 0) so they have perfect attention and no costs associated with

submitting/updating bids). We show that the frictionless bidders constitute “bidding algorithms”

that earn higher expected profits than their human counterparts by submitting lower bids than

human bidders typically submit. This finding is inconsistent with the hypothesis of sophisticated

rational bidders who are colluding to lower bids in these auctions. We refer to the proclivity of

the human bidders to submit first bids that are systematically higher than the model predicts is

optimal as early overbidding. We interpret this behavior as a rejection of the assumption of bidder

rationality, and hypothesize some sort of bounded rationality or animal spirits among the bidders

causes them to bid up prices faster and earlier at the auction compared to what rational frictionless

bidders would do.

We compute the anonymous equilibrium outcome in markets with only frictionless bidders

and show that it involves no early bidding, and hence is equivalent to the anonymous equilibrium

of a static first-price sealed-bid auction. We show the latter equilibrium is 100% ex post efficient,

and as a result, rental car revenues increase by 3% and bidder profits increase by 283% relative to

the actual Korean auction outcomes, which we show is only 84% efficient. We conduct a further

counterfactual experiment to predict the impact of switching to a second-price sealed-bid auction

format where truthful bidding is a dominant strategy. We show that the first and second-price

auctions are not revenue equivalent, and switching to a second-price format increases auction

revenues by 12% and average bidder profits by 283%.

The non-Bayesian learning by the bidders during the dynamic online auction enables them to

acquire more information, which allows the winner to pay less for the item than in a compara-

ble first-price or second-price, sealed-bid auction. However this logic depends on the existence of

other “irrational” bidders who engage in early overbidding. If all bidders are rational and friction-

less, the auction converges to an anonymous equilibrium with no early bidding since all bidders
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learn that there is nothing to be gained by bidding early.

We also find that when frictionless bidders believe that there are other irrational early bidders

and hence can profit from bidding early, their optimal bidding strategies are not straightforward.

That is, these bidders do not continue to bid up to their valuation before stopping. Instead the

optimal bidding strategy involves final high bids that involve shading, i.e. bidding less than their

valuation for the car.

Finally, we predict the effect of dropping the informational restriction in the Korean auction

by allowing all participants to see the current high bid even if they haven’t bid in the auction.

This modification makes this an electronic version of an oral, ascending-bid auction. Doing so

eliminates the incentive of bidders to bid early at the auction to learn what the current high bid

is, and leads to informational free-riding. We prove that in this anonymized version of an English

auction, if there are bidding frictions and bidders are attentive, it is never optimal to bid until

the last possible instant of the auction. Thus, explaining early bidding at these auctions requires

at least a) informational restrictions and b) bidding frictions and/or bidder inattention, and c)

some amount of irrationality or bounded rationality on the part of the bidders. Otherwise the

early overbidding we observe could be an indication of risk aversion or a sign that bidders are

maximizing something other than expected profits.

2 Auction Data

A large rental-car company in Korea provided us with detailed data from 11, 259 auctions of all ve-

hicles sold under its new informationally-restricted online auction system between 2003 and 2007

(Regime 1), before it switched back to oral, ascending-bid auctions that were conducted through

an auction house in Seoul (Regime 2). Bidders were given notice in advance of auctions, so they

could physically inspect the cars prior to the auction. Typically, however, bidders did not under-

take detailed mechanical inspections, but rather just brief walk-arounds to inspect the exterior and

interior condition of the vehicle. Bidders could request copies of a vehicle’s maintenance history—

including the total amount spent on maintenance, dates of maintenance, records of accidents, and

so forth. We have the same accident and maintenance records that were available to the bidders,

but we do not have the information gained from the physical inspection of the vehicles.

Our data include time stamps and each bid as well as the identities of all bidders at each auc-

tion. Some time stamps are a few milliseconds past the two-minute closing time; we excluded
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auctions that took longer than 121 seconds because many of these auctions reflected special cir-

cumstances (such as communication delays with the auction server) that required extra time to

complete the auction.6 In all instances, these slightly-late bids were admitted as valid bids at the

auction. No reserve price existed at any of the auctions, so at virtually every auction, the rental-car

company sold the vehicle to the highest bidder regardless of the value of the winning bid. There

were a few auctions that were redone, such as where a bidder made a data-entry error that re-

sulted in bid far in excess of any reasonable value for the car. In such exceptions, the company

invalidated the auction outcome and re-auctioned the car at a later date.

2.1 Effect of informational restrictions on potential collusion

We compare auction prices for specific makes and models under Regime 0 (the oral, ascending-

bid auctions held onsite that the rental-car executive suspected were affected by collusion) and

Regime 1 (the informationally-restricted online auctions that the executive is convinced defeated

collusion). Our data concern only 568 auctions under Regime 0 in the last three months of 2002. In

Regime 1, we have 580 auctions conducted using the company’s new informationally-restricted

online platform from January through March 2003, and an additional 633 auctions run from April

through June, 2003. The rental-car company owns a diverse inventory of different makes and

models of vehicles; to assess the causal effect of the auction format on possible collusion, we use

a matching estimator that conditions on individual makes and models of vehicles. Unfortunately,

not enough observations exist to control for such other differences in age or odometer reading; in

most cases, even limiting the comparison to specific makes and models yields too few observa-

tions to conduct a two-sample t-test of differences in mean sale prices before and after the regime

change that could corroborate the manager’s claim that the Korean auction defeated collusion. In

Table 1, we report the means, standard deviations, and numbers of observations N for the most

popular makes and models auctioned by the rental-car company, for three periods: 1) Regime 0

from October through December, 2002; 2) Regime 1 from January through March 2003 (period 1);

and 3) Regime 1, from April though June 2003 (period 2). We divided the first six months of auc-

tions under Regime 1 to assess the natural variability in auction prices over time under Regime 1

and to assess any potential transition effects after the new auction format was adopted.

The final column reports the p-values of a two-sample t-test for equality of the means, against

6We excluded 198 auctions whose durations exceeded 121 seconds; most of the excluded auctions lasted ten minutes
or longer.
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Table 1: Two-sample t-tests for the effect of auction format on collusion

Model Regime 0 Regime 1 Regime 1 p-values for

2002-10-01 to 2003-01-01 to 2003-04-01 to two-sample t-tests

2002-12-31 2003-03-31 2003-06-30 for equal means

EF Sonata 1.8 5279 5148 4919 0.815, 0.995

(1048),N=81 (746),N=72 (700),N=89 0.975, 0.976

EF Sonata 2.0 5867 6043 7161 0.235, 0.001

(1594),N=137 (1359),N=46 (1432),N=17 0.019, 0.005

Dynasty 3.0 11633 13043 12934 0.027, 0.035

(2496),N=25 (2458),N=23 (1757),N=13 0.016, 0.560

Grandeur XG 2.0 11295 11081 11123 0.687, 0.659

(1399),N=18 (1055),N=14 (978),N=15 0.692, 0.456

Grandeur XG 2.5 12626 11504 11827 0.998, 0.995

(2150),N=67 (1974),N=50 (1356),N=78 0.999, 0.157

Galloper 7 7109 7477 7776 0.103, 0.010

(1480),N=45 (1473),N=61 (1263),N=53 .025, 0.123

Magnus 2.0 7614 6665 6503 0.957, 0.992

(1170),N=11 (1576),N=16 (506),N=6 0.980, 0.640

the alternative hypothesis that mean prices under Regime 1 are higher than under Regime 0. The

final column reports p-values for the hypothesis of equal means: 1) Regime 0 versus Regime 1

(period 1), 2) Regime 0 versus Regime 1 (period 2), 3) Regime 0 versus pooled data for Regime 1

periods 1 and 2, and 4) Regime 1 period 1 versus Regime 1 period 2. The p-values for tests 1 and 2

are on the top line and those for tests 3 and 4 are on the bottom line of the last column of Table 1.

Because of limited numbers of observations and large standard deviations of the auction prices,

we do not find strong evidence supporting the executive’s claim that the auction he invented had

successfully defeated collusion. Prices are not typically statistically significantly higher in either

period of Regime 1 when compared to Regime 0. Only for three particular models—highlighted in

the gray rows of the table, so EF Sonata 2.0, Dynasty 3.0, and Galloper 7—is there even moderate

evidence of significantly higher prices under Regime 1. Mean prices for Magnus 2.0 and Grandeur

XG 2.5 and EF. Sonata 1.8 models are actually lower under Regime 1, but the difference is not

statistically significant.

In the remainder of this paper we analyze the bidding behavior under the maintained hy-

pothesis that bidders did not collude in the Korean auction. Our structural estimation results in

section 5 provide independent evidence supporting the executive’s strong belief that this auction

format successfully defeated collusion, though we suggest that switching to a static second-price

sealed-bid auction format would have increased revenues by 12%
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2.2 Detailed analysis of bidding strategies in individual auctions

The left-hand panel of Figure 1 depicts bids at an auction held on January 26, 2005, which we

refer to as Auction 1 because it was the first auction conducted on that day: a four-door, mid-sized

sedan was sold at this auction. We have more precise data concerning the exact make and model,

but for purposes of explaining how the auction works it suffices here to mention that the car was

about two years old with approximately 40, 000 miles on its odometer at the time of the sale. As

we can see from the figure, six bidders participated in this auction. We also see that the bids are

generally monotonically increasing, although not all bidders were active at every possible instant.

The winning bidder at this auction, B41, delayed submitting their bid until approximately fifty

seconds remained in this two-minute auction; they made only one further revision to their first

bid, raising it from $5,000 to approximately $5,400 at the very last instant of the auction.

We observe a variety of bidding behaviors by the other bidders: some posted bids much earlier

in the auction and made frequent changes to their bids. These bidders appeared to be attempting

to probe or to test the market to find the smallest bid they could submit that would make them the

highest bidder. They did this by making small and frequent increases in their bids as in the case of

B5. We refer to such bidding behavior as bid creeping. B5 never succeeded in placing a highest bid,

and only learned at most that the high bid was higher than each of their sucessive bids, with the

last bid reaching just over $4,500 with less than thirty seconds remaining at the auction, after which

this bidder appeared to have given up and declined to submit any further bids. In all likelihood,

this bidder had a reservation price for the vehicle and was unwilling to bid above this reservation

price, so their final bid could reveal their reservation value.7

The right-hand panel of Figure 1 depicts bids at another auction, where seven bidders par-

ticipated and a different bidder won the auction, B36. B36 behaved differently from the winning

bidder of auction 1, B41: first, by virtue of being the first bidder to place a bid at the auction—with

a bid of $4,000 just seconds after the start of the auction—and then by consistently increasing their

bid in a series of small steps over nearly the entire duration of the auction until B36 tendered the

winning bid of approximately $7,100 in the final second of the auction. B36 and B41 appeared to

be dueling with one another to maintain the highest bid, even though neither used the strategy of

jump bidding to try to win, nor was either aware of the other’s bids. B41 delayed their first bid

7Note that the reservation price is not the same as the bidder’s valuation of the car. As we will show, bid creeping is
not equivalent to straightforward bidding, and the reservation price at which a bidder stops bidding is lower than the
bidder’s valuation of the car.
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Figure 1: Bid creeping
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until approximately the last thirty seconds of the auction, and their first bid was higher, $6,000.

But at this auction, unlike at auction 1, B41 did increase their subsequent bids in small increments

and appeared to be dueling with B36 to maintain the high bid. Both B41 and B36 placed bids in the

very last instant of the auction, even though B36 succeeded in bidding just slightly higher—thus

winning the auction.

In addition to bid creeping, we also see bidders who engaged in jump bidding and bid sniping

strategies. The latter are bidders who place a single large bid at the very end of the auction. The

left-hand panel of Figure 2 depicts the bids placed at auction 394. This auction was won by B3—by

just a hair—with a bid of $9,960 at 118.125 seconds, which exceeded the final bid by B41 of $9,950

at 119.953 seconds. B3 won by placing a single bid 1.875 seconds before the end of the auction,

while B41 opened their bidding with an initial bid of $9,000 at 68 seconds into the auction and

steadily increased their bid in five subsequent revisions until placing its final bid of $9,950 less

than one tenth of a second before the end of the auction. As we show shortly, bid sniping is a

relatively infrequently-used strategy at these auctions.

The right-hand panel of Figure 2 illustrates an extreme form of early overbidding at auction 29,

where B28 placed their first and only bid of $14,690 at the 1.265-second mark of the auction. This

bid is far higher than all of the other bids. Consequently, we see all of the other bidders fruitlessly

trying to increase their bids to become the highest bidder. The highest of all of these other bids was

$7,210—tendered by B16—is less than half of B28’s bid. Thus, it appears, at least from a simple ex

post analysis of this auction, that B28 could have purchased this vehicle much more cheaply by

starting with a lower bid and gradually increasing it over the course of the auction, instead of

12



Figure 2: Bid sniping and high early bidding
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pre-committing to a very high bid at the beginning of the auction. Even though it is easy to make

these judgements in hindsight with access to data that no single bidder possesses individually,

it appears difficult to rationalize B28’s high initial bid on purely a priori grounds. Bidding a high

amount early in these auctions comes with the risk of overpaying, whereas making a low bid

early in the auction, entails a risk of being outbid later in the auction and of revealing potentially

valuable information to other bidders. But this risk can be controlled by delaying the bid.

Data from auction 32, depicted in Figure 3 below, illustrate non-monotonic bidding behavior

that we observed by some bidders at some auctions. We see that the winning bidder at this auc-

tion B11 frequently reduced their bid, including reducing their bid to very low values, $3,000 and

below, lower than any other bids, including their own bids, earlier in the auction, but then dramat-

ically increased their bid to win in the final milliseconds of the auction. It does not seem reasonable

to attribute the frequent reductions in bids to keyboard errors or “trembles” on the part of B11.

Instead, the bids seem to be intentional—perhaps out of boredom or to learn about some feature

of the auction software, in an effort to exploit some unintended bug. The auction rules guarantee

that other bidders did not observe this behavior and, thus, were completely unaware of the bid

reductions by B11. In short, reducing a bid serves no informational or strategic purpose, so it is

difficult to rationalize such behavior. Most of the other bidders placed monotonically increasing

bids, although one other bidder B8 also reduced their bid to just below $4,500 from a previous bid

of $6,000 before raising their bid again to about $6,200 in the final seconds of the auction.

What can we conclude from our initial, simplistic, descriptive view of the data? First, we are

interested in understanding the learning that derives from early bidding—how bidders use the
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Figure 3: Non-monotonic bidding
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option to place early bids affects their subsequent bidding decisions. From a single bidder’s stand-

point, it appears that having the option to bid early has value because it enables a bidder to test

the waters safely: placing low bids and gradually increasing them sometimes yields good deals.

On the other hand, given the coarse nature of information revealed over the course of the auction

(since each bidder cannot see competing bids) it is not immediately clear that bidders will do any

better under this auction format than they would in a standard one-shot, first-price, sealed-bid

auction—a selling method that precludes any early bidding and within-auction learning. Given

the large number of auctions we observe and the large numbers of bids tendered by the bidders

at each auction, we believe these data present an interesting challenge both theoretically and em-

pirically. We observe a variety of bidding behaviors in these auctions, with a combination of early

bidders and late bidders, bid creepers, jump bidders, and in the extreme, the snipers who come

in with high bids in the very last instants of auctions. The number of bids submitted per second

increases dramatically in the final second of the auction as bidders jockey frenetically to submit

the winning bid.

Overall, even though we do observe pre-emptive early bidding as well as bid sniping, and a

high incidence of uninformative bidding in these auctions, by far the most commonly-observed

bidding behavior is bid creeping, where a bidder makes a succession of increasing bids closely

spaced in time, in an attempt to find out what the current high bid is. Examples of bid creeping

are the bids by B5, B11, B28 and B36 in auction 1 depicted in Figure 1. Bid creeping seems to be a

reasonable strategy for learning what the current high bid at the auction is because it avoids the

risk of overbidding that might be implied by a bid-jumping strategy, which is similar to bid creep-
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ing, but involves bids that are spaced farther apart and jumps of higher increments compared to

bid creeping. Examples of bid-jumping strategies include the sequences of bids by B41 in auction

1 depicted in Figure 1, and B1 in auction 394 depicted in Figure 2. Of course, the dividing line be-

tween bid creeping and bid jumping is a fuzzy one: the two behaviors are both consistent with a

desire to learn what the current high bid in the auction is, but in bid creeping the bidder is willing

to make a much larger number of bids in rapid succession, each one only slightly higher than the

previous one, whereas in bid jumping the bidder seems to have a higher psychic cost of placing

bids and tends to make fewer bids at more widely spaced intervals of time in the auction, and the

increments over the previous bids are larger. Thus, bid jumpers seem to behave as if they have a

higher cost of submitting bids and/or are more willing to take the risk of overbidding to become

the current higher bidder relative to what we observe for bid creepers.

In summary, we have identified a number of different bidding behaviors at these auctions:

1) pre-emptive early bidding; 2) bid sniping; 3) non-monotonic bidding; 4) bid jumping; and 5) bid

creeping. We have analyzed the 11, 259 auctions in our database with regard to the type of strate-

gies employed by the winning bidder and found that bid creeping was the predominant strategy

employed by the winning bidders—in over one-half of all auctions. We found that bid jumping

and behaviors that involve a mix of creeping and sniping were the next most common behavior,

used by the winning bidder in twenty percent of the auctions. We observed bid sniping in nearly

five percent of all auctions, where the winner submitted a single bid in the final two seconds of the

auction, and pre-emptive early bidding in nearly three percent of all auctions, where the winner

submitted a single bid in the first two seconds of the auction.

When we analyzed the types of bidding behaviors on a bidder-by-bidder basis, we found a

distribution of behaviors for each of the bidders; that is, no bidder exclusively followed one type

of strategy (for instance, bid sniping) at all of the auctions in which they participated. We tabulated

the distribution of various types of bidding behaviors for the 67 bidders at the auctions: the most

common behavior for virtually all of the bidders was bid creeping, while the next most common

behavior was bid jumping—or a mix of creeping and jumping behaviors.

3 Can Game-Theoretic Models Explain Early Bidding?

In this section, we investigate models of dynamic, equilibrium bidding at the rental-car auctions—

specifically, whether the behavior we observe is consistent with a perfect Bayesian equilibrium
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(PBE) of the Korean auction formulated as a dynamic game of incomplete information. Due to

the severe restrictions concerning information provided to bidders, the amount a bidder can learn

about his opponents during the course of the auction is limited. Indeed, at 22 auctions only a

single bidder participated. Yet the average number of bids submitted at these 22 auctions was es-

sentially the same as at auctions when several bidders participated. Apparently, the informational

restrictions make it difficult for bidders to learn even the most basic fact: whether opponents are

present!

In the introduction, we considered an alternative model of bidding in the Korean auction,

namely straightforward bidding where all bidders bid frequently enough to learn the high bid at

each point during the auction. If bidders could bid fast enough and in small enough increments,

this reasoning suggests that the outcome of straightforward bidding should approximate the out-

come at a Japanese auction: namely, using bid-creeping strategies, a bidder can learn the current

high bid and, thus, remain in the auction until he exceeds his valuation. Except in the case of only

one bidder, it implies that a Korean auction should be strategically equivalent to a Japanese auc-

tion, which in turn is strategically equivalent to a static second-price, sealed-bid auction, at least

within the independent private-values model.

This casual intuition is not a substitute for developing a rigorous game-theoretic model of

bidding—as has been recognized by Isaac et al. [2007, p. 145], who showed that at oral, ascending-

bid auctions “straightforward bidding is not even typically part of a Nash equilibrium in the non-

clock ascending auction, much less a dominant strategy.” Things are even more complicated at a

Korean auction, where the informational restrictions suggest that the natural equilibrium concept

is the perfect Bayesian equilibrium (PBE). Further, in the previous section we presented empirical

evidence inconsistent with straightforward bidding.

In this section, we sketch the elements of a PBE model of bidding at the Korean auction. We

show that when the auction has a hard close — where all bidders who wait to submit their bids

in the last second (T = 120) of the two-minute auction are guaranteed that their bids will be

recorded — there is always an uninformative PBE that is strategically equivalent to a first-price,

sealed-bid auction, but modified as in McAfee and McMillan [1987a] to account for a common

knowledge prior over the distribution of unknown numbers of bidders participating in the auc-

tion. As we noted in the introduction, this equilibrium implies that all bidders use bid sniping

strategies, which is manifestly inconsistent with the actual bidding behavior we observe at these

auctions as we showed in the previous section. We summarize this more formally as

16



Lemma 1: Suppose the Korean auction has a hard close: that is, any bidder can wait until the final instant
T and be guaranteed that the bid he submits at that last instant will be recorded. Let bT = γ(v) be the
symmetric Bayesian equilibrium bidding strategy to a first-price, sealed-bid auction when the number of
bidders is unknown but all bidders have common knowledge of the distribution of the number of bidders
participating in the auction and of the density for valuations of other competing bidders that is described in
McAfee and McMillan [1987a]. Then γ constitutes a symmetric, uninformative PBE of the Korean auction
in which all bidders wait until the final instant T and submit their bids bT = γ(v).

The proof of Lemma 1 is quite elementary. First, by construction, there is no deviation bid by any

of the bidders at time T that can improve his expected payoff under this candidate uninformative

equilibrium. So we only need to check if there is any profitable unilateral deviation by any of the

bidders prior to T. It is easy, however, to see that there isn’t because if it is common knowledge that

all competing bidders will submit their bids at the last instant T, then there is nothing a deviating

bidder can learn by submitting his bid prior to T. This early bid also cannot have any impact on

the bids that will be submitted by opponents, so we conclude there is no profitable deviation from

this candidate PBE. Given that no bids are submitted prior to T, the only relevant information

for submitting a bid at time T is just the bidder’s valuation v, so each bidder uses the symmetric

Bayes—Nash equilibrium bidding strategy bT = γ(v) calculated by McAfee and McMillan [1987a]

and all the criteria for a PBE given in our definition are satisfied.

Do other informative PBEs exist—ones involving the type of early bidding consistent with

what we observed in our data, as well as the other features, such as jump bidding, bid creeping,

and the occasional bid sniping that we documented in the previous section? Using a simple two-

period, two-bidder example, we show that informative PBE do not generally exist. Furthermore,

as we noted in the introduction, even if an informative PBE do exist in more complex settings

than the simple two-by-two case we have examined in this section, computing that informative

PBE is an intractable computational problem. In short, the main message of this section is that we

need to consider an alternative theoretical approach to explain the early bidding observed at the

Korean auctions. Because of the computational and theoretical difficulties in characterizing (let

alone computing) PBEs, below we only sketch the elements of a symmetric PBE bidding model—

without attempting to formulate a version with maximum generality.

We consider the simplest possible case, where time is discrete and only two bidding opportu-

nities exist: at t = 1 and at t = 2. We also assume that only two bidders participate in the auction,

and this is common knowledge. Consider now a candidate informative symmetric equilibrium:

This means that in period t = 1 the two bidders use the same bidding strategy γ1(v) to place bids

given their valuation v at time t = 1, and then at time t = 2 they place updated bids from two

17



bid functions {γ2(v, b, ρ0, 0), γ2(v, b, ρ1, 1)} that condition on their bid b at t = 1 and whether they

were revealed as the high bidder or not at t = 1, including their posterior belief ρ0, and ρ1, respec-

tively. If h1 = 1, then the bidder is informed he had the high bid in period t = 1, so he updates

his posterior belief concerning his opponent’s valuation from F(v|µ) to the conditional probability

distribution ρ1 given below, and he uses the bid function b2 = γ2(v, b, ρ1, 1) to compute his bid

in period 2. On the other hand, if he is not revealed to be the high bidder at t = 1, then his bid

function is given by γ2(v, b, ρ0, 0) where ρ0 is the bidder’s posterior belief about his opponent’s

valuation if he learns that he is not the high bidder at t = 1, which we also derive below.

Since both bidders are using the same bid function in period t = 1, if this bid function is strictly

monotonic (as seems natural given we are considering an informative PBE), then the information

concerning whether he submitted the high bid is equivalent to learning whether his opponent’s

valuation of the car being sold is higher or lower than his own known valuation. Applying Bayes’

rule to update beliefs based on the information learned at t = 1, if bidder 1 has valuation v1 and

learns he submitted the high bid at t = 1, his posterior belief concerning the valuation of his

opponent, bidder 2, at the start of period t = 2 is given by the conditional distribution (CDF)

ρ1(v|µ, v1) ≡ F(v|µ, v ≤ v1) =
F(v|µ)
F(v1|µ)

, v ≤ v1, 0 otherwise (1)

where F(v|µ) is his prior belief of the CDF of his opponents’ valuation which can potentially

depend on the public signal µ both bidders received concerning the quality of the car being sold

prior to the start of the auction. Similarly, if bidder 2 learns he is the low bidder in stage t = 1 his

posterior belief concerning his opponent’s valuation is given by

ρ0(v|µ, v2) = F(v|µ, v ≥ v2) =
F(v|µ)− F(v2|µ)

1 − F(v2|µ)
v ≥ v2, 0 otherwise. (2)

Consider now the equations determining the equilibrium bidding strategies, where we assume a

symmetric Bayes–Nash equilibrium of the two-period game. The strategies are ex ante symmetric

in the sense that both bidders use the same bidding strategy {γ1(v), γ2(v, b, ρ1, 1), γ2(v, b, ρ0, 0)} to

determine their bids in both periods of the auction, even though this symmetric equilibrium does

reflect an endogenous information asymmetry that arises in period t = 2 when the bidders submit

their stage t = 2 bids. Of course, this asymmetry results from the information the bidders receive

concerning whether they submitted the high bid in period t = 1.

We solve the bidding game by backward induction starting in stage t = 2. The bidding strate-

gies γ2(v, b, ρ1, 1) and γ2(v, b, ρ0, 0) must be mutual best responses, so they must satisfy the fol-
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lowing equations:

γ2(v, b, ρ1, 1) = argmax
b′≥b

(v − b′)
∫ v

0
1[γ2(v′, γ1(v′), ρ0, 0) ≤ b′] f (v′|µ) dv′/F(v|µ)

γ2(v, b, ρ0, 0) = argmax
b′≥b

(v − b′)
∫ ∞

v
1[γ2(v′, γ1(v′), ρ1, 1) ≤ b′] f (v′|µ) dv′/[1 − F(v|µ)],

where

γ1(v) = argmax
b≥0

W1(v, b), (3)

Here, W1(v, b) is the bidder’s expected payoff from bidding b at period t = 1 given by

W1(v, b) = [v − γ2(v, b, ρ1, 1)]
(∫ v

0
1[γ2(v′, γ1(v′), ρ0, 0) ≤ γ2(v, b, ρ1, 1)] f (v′|µ) dv′

)
+

[v − γ2(v, b, ρ0, 0)]
(∫ ∞

v
1[γ2(v′, γ1(v′), ρ1, 1) ≤ γ2(v, b, ρ0, 0)] f (v′|µ) dv′

)
.

This is a system of functional equations whose solution gives the symmetric PBE of the Korean

auction, assuming a solution exists. Notice that the period t = 1 bid function γ1(v) affects the

period t = 2 bid functions {γ2(v, b, ρ1, 1), γ2(v, b, ρ0, 0)}, and conversely the period t = 2 bid

functions determine the period t = 1 bid function γ1. Note, too from equation (4) that γ1 must

also be a best response to itself.

Assume that f (v|µ) is a uniform distribution, so that both of the bidders’ valuations are inde-

pendent and identically-distributed (IID) uniform random variables on the unit interval. U(0, 1).

We conjecture further, and subsequently verify, that the period t = 2 bid functions do not depend

on the bids submitted in period t = 1, so we can write them as γ2(v, ρ0, 0) and γ2(v, ρ1, 1), re-

spectively. The only additional restriction we need to verify is that the stage t = 1 equilibrium bid

function γ1(v) is strictly monontonic and positive for v > 0.

Now, assume there is a unique asymmetric Bayesian equilibrium to the period t = 2 bidding

game defined by the solution to the system of ordinary differential equations (ODEs) for the in-

verse bid functions {γ−1
2 (b, ρ1, 1), γ−1

2 (b, ρ0, 0)} (where the inverse is in the first argument; that

is, γ−1
2 (b, ρi, i) is the valuation that results in a bid equal to b for i ∈ {0, 1}), with the bound-

ary conditions γ−1
2 (0, ρ1, 1) = 0 and γ−1

2 (0, ρ0, 0) = 0 and γ−1
2 (b, ρ1, 1) = γ−1

2 (b, ρ0, 0) where

b = γ2(1, ρ1, 1) = γ2(1, ρ0, 0) is the maximum bid that either bidder would submit in the second

stage of the auction for any possible bid b in the first stage of the auction. The system of ODEs

for {γ−1
2 (b, ρ0, 0), γ−1

2 (b, ρ1, 1)} can be derived from first-order conditions to each of the bidder’s

optimal bidding strategies in the second stage of the game, from equation (3) above. This system
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Figure 4: Equilibrium bids and deviation payoffs in a candidate informative PBE
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Deviating from the informative equilibrium

is given by

∂γ−1
2

∂b
(b, ρ0, 0) =

γ−1
2 (b, ρ0, 0)

γ−1
2 (b, ρ1, 1)− b

∂γ−1
2

∂b
(b, ρ1, 1) =

γ−1
2 (b, ρ1, 1)− γ−1

2 (b, ρ0, 0)
γ−1

2 (b, ρ0, 0)− b
.

(4)

We solved system (4) as a free boundary-value problem because the end-point boundary condition

γ−1
2 (b, ρ0, 0) = γ−1

2 (b, ρ1, 1) = 1 involves the unknown maximum bid b.

For comparison, the left-hand panel of Figure 4 depicts the equilibrium bid functions for the

uninformative PBE in period t = 2 where γ1(v) = 0 and the period t = 2 bid function is the unique

symmetric equilibrium to a first-price, sealed-bid auction, γ2(v) = v/2. There is no endogenous

asymmetry in the stage-two bid functions in this case, of course, because there are no bids placed

in period t = 1 by either bidder and, thus, neither bidder learns anything from period t = 1 of

the game. It follows that stage t = 2 is equivalent to the BNE of a single stage first-price, sealed-

bid auction with uniform valuations. By Lemma 1, this is also a PBE of the overall second-period

Korean auction.

Now suppose an informative PBE exists. Then, γ1 is strictly monotonic and strictly positive

for v > 0 and the players observe I{γ1(v1) > γ1(v2)}, and this allows each of them to deduce

whether they have the high valuation for the item, which creates the endogenous asymmetry in

period t = 2. The red and blue bid functions in the left-hand panel of Figure 4 depict the unique

equilibrium for the period t = 2 bid functions γ2(v, ρ0, 0) and γ2(v, ρ1, 1) and several things are

immediately apparent: First, we see that γ2(v, ρ0, 0) ≥ γ2(v, ρ1, 1) ≥ v/2, with strict inequality

for sufficiently large values of v ∈ (0, 1]. This implies that the bidder who learns he is the low-
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valuation bidder will bid more aggressively to win the auction in stage t = 2 than the bidder who

learns he has the high valuation for the item. In fact, both types of bidders bid strictly more than

the bidders would bid in period t = 2 under the uninformative equilibrium. Hence, it is not in

the interest of either bidder to reveal his hand by submitting an informative bids in period t = 1

of the auction. The right-hand panel of Figure 4 verifies this to be the case—demonstrating that a

symmetric informative PBE cannot exist in this case.

The blue line in the right-hand panel of Figure 4 depicts the conditional expected payoff to a

bidder at the start of the game, as a function of his valuation v. This bidder reasons that if he placed

an informative bid at this stage, with probability v he will turn out to be the high valuation bidder

and so in stage t = 2 he will receive an expected payoff of (v−γ2(v, ρ1, 1))γ−1
2 (γ2(v, ρ1, 1), ρ1, 1)/v.

With probability (1− v), he will learn he has the low valuation and will receive an expected payoff

of (v − γ2(v, ρ0, 0))(γ−1
2 (v, ρ0, 0)− v)/(1 − v). The red line in the right-hand panel of Figure 4 is

simply the weighted average of these two expected payoffs at period t = 2 using weights v and

(1 − v), respectively.

Consider next the red line in the right-hand panel of Figure 4, which depicts the deviation

payoff as a function of the bidder’s valuation v from submitting a stage t = 1 bid of 0 rather

than the equilibrium bid γ1(v). Assume that the other bidder is playing the informative PBE, then

if the conjectured informative PBE is indeed an equilibrium, it should not pay for the bidder to

deviate and submit a bid of 0 in the first stage. In fact, we see that it does pay to deviate. The

deviation payoff is given by maxb(v − b)γ−1
2 (b, ρ1, 1)/v, which is the payoff a bidder expects from

submitting a bid of 0, which leads the other bidder to conclude with probability one that he is the

high-valuation bidder and, thus, uses the less aggressive bidding stategy γ2(v, ρ1, 1) in stage t = 2.

It is better for a bidder to be certain of bidding against the less aggressive bidder than have some

probability of facing a more aggressive bidder in period t = 2 and, thus, the bidder concludes

that there is no advantage to him to submitting a serious bid in stage t = 1 and, thereby, revealing

information concerning his valuation.

Lemma 2: In the two-period, two-bidder example of the Korean auction, if bidders have independent
uniformly-distributed valuations, then no symmetric informative PBE exists.

Proof: Even though the solutions above were calculated numerically, we can solve for the bidding

strategies analytically using the results of Kaplan and Zamir [2012], so the conclusion of Lemma 2

does not rest on numerical calculations.
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We do not know whether informative PBEs exist in other examples of the Korean auction with

more time periods and bidders, or whether informative asymmetric PBEs may exist—even in the

2 × 2 case above. We do, however, believe it is quite challenging to demonstrate the existence of a

non-trivial informative PBE to this bidding game. To the extent that our result on the non-existence

of informative PBE extends to other versions of the Korean auction, it casts doubt on the relevance

of the PBE solution concept—if we think that human bidders are incapable of behaving according

to the extremely demanding standard of rationality implicit in this definition of equilibrium.

4 A Dynamic Model of Rationally-Inattentive Bidding

In this section, we develop an alternative model of dynamic bidding behavior at the Korean

auction—one that is computationally tractable and capable of explaining the early bidding we

observe, including the heterogeneous bidding strategies we documented in section 2. In many re-

spects, our new approach is similar to the game-theoretic approach underlying the definition of

a PBE presented in the previous section. Specifically, we assume bidders are rational optimizers

who adopt bidding strategies that maximize their expected payoffs from bidding at the auction.

Instead of the PBE concept, however, we use an alternative equilibrium concept of Nash equilib-

rium that has been recently developed for anonymous games—one similar to the notion of a ra-

tional expectations equilibrium (or self-confirming equilibrium) in market games, but extended to

environments where agents playing these games are nonatomic and can, therefore, have measur-

able influence on the outcome; see Cerreia-Vioglio et al. [2022]. Two key differences exist between

our notion of anonymous equilibrium applied to the Korean auction model and a PBE:

1. Instead of continually updating beliefs concerning the number of other bidders and their
valuations using Bayes’ rule, as in a PBE, our equilibrium only requires bidders to have
beliefs concerning the stochastic process of the high bid at the auction and these beliefs are
fixed and, thus, not carried as state variables in bidders’ DP problems.

2. As in Barkley et al. [2021], we admit several bidding frictions, including time-varying psy-
chological costs/benefits to submitting and updating bids, as well allowing for rationally
inattentive bidding.

The anonymous equilibrium concept requires bidders to use dynamically optimal strategies,

but maintains that after their experience in bidding in hundreds or thousands of individual rental-

car auctions, learning by bidders leads them to converge to fixed, rational beliefs concerning the

stochastic process of the high bid at the auction, which we shall demonstrate constitutes the rel-
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evant “sufficient statistic” for successful bidding. Unlike in a PBE, where Bayes’ rule provides

an operational procedure for belief formation and updating, our equilibrium concept is agnostic

concerning how bidders learn and converge to rational beliefs concerning the stochastic process

of the high bid in the auction. Indeed, it may seem to be an unrealistic requirement given that

the informational restrictions at these auction only admit endogenous sampling of the high bid over

the course of each auction. Research by George A. Hall and Rust [2021] has demonstrated that

the endogenous sampling problem can be overcome, so it may not be unrealistic to assume that

experienced bidders converge to accurate beliefs concerning the stochastic process of the high bid

at these auctions. Furthermore, the computational savings from this assumption are enormous

because it implies that we no longer have to carry around high-dimensional posterior beliefs ρt

as a state variable and perform the subtle updating of beliefs using knowledge of the equilibrium

bidding strategies {γt} in order to solve a bidder’s DP problem.8

We are able to generate early informative bidding in an anonymous equilibrium because of the

exogeneity of bidders’ beliefs. Even though bidders realize that their own bidding behavior en-

ables them to affect the winning price when they are the high bidder, in an anonymous equilibrium

their beliefs concerning the stochastic process of the high bid is fixed and, therefore, unaffected by

their bidding strategies. This structure allows us to convert the problem of finding an equilibrium

bidding strategy into a single-agent DP problem, where bidders’ beliefs concerning the law of

motion for the high bid constitutes the law of motion of “nature.” In contrast, the PBE solution

concept involves much more complicated reasoning on the part of bidders—one that causes them

to realize that their strategies affect their beliefs concerning the stochastic process for the high bid

at the auction. The example we provided in the previous section illustrates how this more subtle

reasoning leads bidders to conclude that their attempts to gain information early in the auction

work to their collective disadvantage later, ruling out existence of an informative PBE. In contrast,

we demonstrate that in an anonymous equilibrium, early bidding helps bidders to learn what the

high bid at the auction is—thus enabling them to win the auction by paying less, on average, than

they would pay compared to adopting a bid sniping strategy and submitting their bid at the last

instant of the auction.

8Our equilibrium concept can extended to allow for ϵ-equilibrium versions of anonymous equilibrium, including the
ϵ-estimated equilibrium concept of Cerreia-Vioglio et al. [2022] that involves two key requirements: “1) Every player
best-responds to their beliefs (optimality). 2) The belief of every player is consistent with what they can observe (ϵ-
discrepancy)” (p. 111). Daskalakis and Papadimitriou [2015] and Cheng et al. [2017] show that anonymous equilibria
are easier to compute compared than standard (nonanonymous) Nash equilibrium or PBE.
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4.1 Definition of anonymous equilibrium in the Korean auction

Before going into the details of our model of rationally-inattentive bidding, we follow Cerreia-

Vioglio et al. [2022] and provide a high-level description of a successive-approximations algorithm

we use to compute an ϵ-anonymous equilibrium in the Korean auction. Here, ϵ is a tolerance

defining how closely we require bidders’ beliefs to be in order to be correct—self-confirming. Let

B0 be any initial guess for bidders’ beliefs concerning the stochastic process governing the high

bid in a set of Korean auctions of a homogenous type of used rental car. We shall describe precisely

what the notation B0 means in more detail below, but at this point assume that given B0 we can

solve bidders’ DP problems to determine their optimal bidding strategies which we can write as

functions γ(B0, τ) that depend on the bidder’s type τ and their (common) belief B0 concerning the

stochastic process of the high bid at the auction. Via repeated IID stochastic simulations of a given

set of n bidders with types [τ1, . . . , τn] using the calculated strategies [γ(B0, τ1), . . . , γ(B0, τn)],

we can construct updated beliefs B1 that constitute the stochastic process for the high bid track

implied by the initial guess for bidders’ beliefs, B0. We can write the composition of these two

operations (for example, solving for the optimal strategies followed by simulating auctions using

them to generate and realized high bid tracks), as the mapping B1 = Λ(B0), which can be viewed

as the updated beliefs implied from the initial guess B0. We can repeat this sequence of solution

and simulations repeatedly, so that at the generic iteration t of this updating process we have the

following successive-approximations iteration or best-response belief mapping:

Bt+1 = Λ(Bt). (5)

Definition 1 (Anonymous Equilibrium): If the best-response belief mapping (5) has a fixed point B∞,
then the corresponding collection of optimal bidding strategies {γ(B∞, τ)} for an appropriately-defined
collection of bidder types τ constitutes an anonymous equilibrium of the Korean auction.

In practice, we do not find an exact fixed point via the successive-approximations procedure,

but only an approximate fixed point after t iterations where a convergence critierion ∥Bt+1 −

Λ(Bt)∥ ≤ ϵ is satisfied, where ∥ · ∥ is an appropriate distance function over beliefs that we define

below.

Definition 2 (ϵ-Anonymous Equilibrium): An ϵ-anonymous equilibrium is any belief B for the stochas-
tic process of the high bid at the Korean auction and the corresponding collection of optimal bidding strate-
gies {γ(B, τ)} for an appropriately-defined collection of bidder types τ satisfying ∥B − Λ(B)∥ ≤ ϵ.
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With this overview of our concept of equilibrium, we now provide additional details con-

cerning the underlying assumptions on which these definitions are based; we then introduce the

specifics of our model of rationally-inattentive bidding at Korean auctions.

First, our analysis conditions on auctions of a specific make and model of commonly-auctioned

rental cars: the Avante XD. This is a fairly generic passenger car in Korea and one of the most

frequently-purchased car used by rental companies. We assume that not only are these cars generic,

but the stochastic properties of the auctions in which they are sold are also generic as well and,

hence, the data from these auctions can be aggregated for purposes of statistical analysis and esti-

mating bidders’ beliefs. In particular, we rule out the possibility of unique items being auctioned

that would invalidate our assumption that the stochastic process of the high bid is made up of IID

realizations from an underlying anonymous equilibrium for Korean auctions of generic Avante XD

rental cars. We make this operational via the following assumptions:

Assumption 1 (Conditionally-independent private values): If there are n bidders at an auction, their
valuations of the rental car on sale are IID draws from a conditional density f (v|µ) where we refer to µ as
public value of the car. It is a random variable that is a function of a vector of characteristics x of a specific
car being auctioned and additional information ϵ that bidders can observe from a physical inspection of the
car prior to the auction but which we as the econometrician cannot observe. The public variable µ is common
knowledge to the bidders, as is the distribution f (v|µ). If there are K cars being auctioned, we also assume
that their public values {µ1, . . . , µK} are IID draws from some distribution H(µ), which is also common
knowledge among the bidders.

Assumption 2 (Random arrival of bidders): The number of bidders n arriving to participate in a auc-
tion of a car with public value µ is a realization from a discrete probability distribution g(n|µ) which is
common knowledge among the bidders.

Assumption 3 (Time discretization): Bidding at the Korean auction occurs during T = 121 discrete
bidding seconds t = 0, 1, . . . , 120 during the auction. Any bid that is recorded in the continuous-time
interval [t, t + 1) is treated as having been submitted at bidding instant t. All bidders are informed whether
any bid they submitted at second t (or high bid submitted at some previous bidding second) which we denote
by bt is the high bid at the start of second t + 1. The final auction outcome (the winning bidder and bid)
are determined after the last bidding second T − 1 = 120 so each bidder is informed if they won or not at
second T = 121.

Assumption 4 (Bidder types): Consider an auction of car with public value µ. The type of a bidder is
a vector τ = (v, c, p, σ) where v is the bidder’s valuation for the car being auctioned, c and σ are loca-
tion/scale parameters of an extreme-value distribution governing the bidder’s psychological cost of updating
bids during the auction, and p is the probability that the bidder is distracted and unable to bid at a given
bidding instant during the auction. he psychological bidding costs are IID extreme-value draws, and bidder
distraction are IID Bernoulli draws at each of the T = 121 bidding seconds during the auction. Condi-
tional on a bidder’s valuation v, the remaining components of the bidder’s type (c, p, σ) IID draws from a
conditional distribution Q(c, p, σ|v) which is common knowledge among the bidders.
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Assumption 5 (Bidder beliefs): Bidders individually regard auctions as having generic IID outcomes
and share a common belief B about the probability measure governing the stochastic process for the high bid
in each auction, which we denote by {bt}, where bt is the highest submitted bid up to bidding instant t in
the auction.

Assumption 6 (Bidder optimality): Bidders adopt bidding strategies that maximize their expected payoff
from participating in the auction, formulated as a single agent game against nature where “nature” is the
combination of the rules of the Korean auction and the bidder’s beliefs B about the probability law of {bt}, the
stochastic process for the high bid in the auction. Bidders are rationally-inattentive: they take into account
the possibility that they will be inattentive in later seconds of the auction when calculating their optimal bids
in earlier seconds, and the also account for the impact of their psychological bidding costs that constitute
additional bidding frictions’ when determining their optimal bidding strategies.

Assumptions 1 to 6 imply that individual auctions are “generic” and have generic realized

“high bid tracks” {bt} where bt denotes the high bid at time t in the auction. If there are n bidders

partcipating in the auction with types (τ1, . . . , τn), then the assumptions imply that the bidders

use optimal bidding strategies in response to a common belief B concerning the stochastic process

of {bt} that take the form [γ(B, τ1), . . . , γ(B, τn)]. By Assumption 3 the IID structure of psycho-

logical bidding costs and bidder attention, implies these strategies will appear stochastic from the

standpoint of outsiders who do not observe these costs or whether the bidder is inattentive at any

given instant. Together with the rules of the Korean auction, this implies that the high bid track

{bt} is a well defined stochastic process, and the high bid tracks for different auctions will IID

stochastic processes.

Lemma 3: Assumptions 1 to 6 imply that the high bids at each instant of the Korean auctions {bt} are well
defined stochastic processes that are IID across different auctions.

4.2 DP solution for the optimal bidding strategy

In this section, we demonstrate that a bidder’s belief B concerning the stochastic process of the

high bid at the Korean auction constitutes a “sufficient statistic” that enables the bidder to calcu-

late their optimal bidding strategy γ(B, τ) using DP. As we noted in the introduction, we discretize

time into 121 bidding seconds, t = 0, 1, . . . , 120 and assume that bids are only submitted at those

seconds. The auction software informs each bidder at t = 1, . . . , 121 whether they have the high

bid based on the history of all bids submitted in the auction through second t − 1. When consid-

ering whether to bid at second t each bidder has the information (bt, ht) where bt is the high bid

submitted by the bidder up to and including second t − 1 and ht is the high bid indicator: ht = 1 if

the bidder’s high bid bt is also the high bid in the auction at the start of second t, and 0 otherwise.
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The bidder’s beliefs about the stochastic process for the high bid at the auction {b̃t} can be

encoded by a family of conditional CDFS {λt}, where λt+1(b|bt, ht) denotes the conditional prob-

ability that the high bid in the auction at second t + 1 is less than or equal to b given the bidder’s

information at time t, (bt, ht). At t = 0, none of the bidders have submitted a bid. Therefore, by

definition, b0 = 0 and h0 = 0 and λ1(b|b0, h0) is the CDF of the high bid submitted at t = 0. If

the bidder did not bid at t = 0, then we set b1 = 0. In this case, h1 = 0, even if no other bidders

submitted a bid at t = 0. So ht will only equal to one in the first period t when a positive bid has

been tendered and the bidder in question has submitted the highest bid thus far at the auction.

Assumption 7: Bidders have rational beliefs about the stochastic process {b̃t} for the high bid at the auction,
and they are encoded by the family of conditional CDFs given by

B ≡ {λt+1(b|bt, ht)|t = 0, 1, . . . , 120}. (6)

We can now to write the Bellman equation recursions needed when solving for the bidder’s

optimal bidding strategy at the Korean auction. The solution will depend on the bidder’s type

τ = (v, c, p, σ), his beliefs B, and their state (bt, ht), for t = 0, . . . , 121. For notational, we shal drop

the non-time-varying variables τ and B from expressions for the bidder’s value functions, which

we denote by Wt and their optimal bidding decision rule, which we denote by γt.

Backward induction begins at the termination of the auction at T + 1 = 121 seconds, where

the bidder has potentially submitted a final bid at second T = 120, which is denoted by b121 in our

notation. The auction software then transmits the information h121, which equals one if the bidder

had submitted the highest bid at the last period (and, thus, won the auction), or zero otherwise.

The terminal value function is WT+1(bT+1, hT+1) given by

WT+1(bT+1, hT+1) = (v − bT+1)I{1 = hT+1}. (7)

WT+1 is a post-decision value function, since it specifies the ex post payoff at the end of the auction.

Let wT(b, bT, hT) denote the bid-specific value function. This is the ex ante expected value to the

bidder at T = 120 from submitting a bid of b given their state at T is (bT, hT). The bid-specific

value function is given by

wT(b, bT, hT) = E[WT(bT+1, hT+1)|b, bT, hT] = (v − b)λT+1(b|bT, hT). (8)

Note that this is the same expected payoff function as a first-price, seald-bid auction when all

bidders choose to snipe In this sense, our model includes a theory of bidding at a static first-price,
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sealed-bid auction as a special case.9 Assuming the bidder is not distracted and decides to submits

a bid at time T, the optimal bid is given by

γT(bT, hT) = argmax
b≥bT

[wT(b, bT, hT)] . (9)

Generally, it is optimal to improve the current bid, so γT(bT, hT) > bT. As we saw in section 2, how-

ever, bidders frequently choose not to improve their bids, perhaps because they are distracted at

certain seconds in the auction, but we also want to allow the possibility that a bidding friction—

a psychological cost a bidder incurs from calculating an improved bid—might deter the bidder

from submitting a strictly improved bid even if the bidder was not distracted. We admit this using

another state variable ϵT = [ϵT(0), ϵT(1)], where ϵT(0) is the monetary equivalent of a psycholog-

ical cost (if negative) or benefit (if positive) associated with not improving the current bid bT and

ϵT(1) is the corresponding benefit or cost associated with submitting the optimal bid γT(bT, hT).

Thus, we define the value function WT(bT, hT, ϵT) by

WT(bT, hT, ϵT) = max
[

wT(bT, bT, hT) + ϵT(0), max
b≥bT

[−c + wT(b, bT, hT) + ϵT(1)]
]

. (10)

By Assumption 4, the shocks follow a Type-1 extreme-value distribution, having mean zero and

scale parameter σ. This implies that the probability of submitting a bid γT(bT, hT) at the last instant

T = 120 is PT(γT(bT, hT)|bT, hT) given by a bivariate logit formula

PT(γT(bT, hT)|bT, hT) =
exp{[wT(γT(bT, hT), bT, hT)− c]/σ}

exp{wT(bT, bT, hT)/σ}+ exp{[wT(γT(bT, hT), bT, hT)− c]/σ} . (11)

Define the expected value function EWT(bT, hT) as the expectation of WT(bT, hT, ϵT) with respect

to ϵT but conditioning on (bT, hT). By the well-known property of Type-1 extreme-value distribu-

tions, we have the following closed-form solution for this expectation:

EWT(bT, hT) =
∫

ϵT

WT(bT, hT)q(ϵT)dϵT

= σ log
(

exp{wT(bT, bT, hT)/σ}+ exp{wT(γT(bT, hT), bT, hT)/σ}
)

,
(12)

where q(ϵT) is the probabilty density function of a bivariate Type-1 extreme-value random vari-

able having mean zero and scale parameter σ. EWT(bT, hT) is relevant only if the bidder was not

distracted at instant T and so observed ϵT and made a choice of whether to improve their bid. If

the bidder was distracted, then no improved bid would be submitted and the value in this case

9It will, however, only be an anonymous equilibrium of the larger dynamic Korean auction if all bidders’ beliefs
assign zero probability to early bidding in the auction, that is, only if λt+1(0|0, 0) = 1 for t < T = 120.

28



is just wT(bT, bT, hT), the same value as a conscious decision not to bid. Therefore, the bid-specific

value function at bidding instant T − 1 is wT−1(b, bT−1, hT−1) given by

wT−1(b, bT−1, hT−1) = [pwT(b, b, 1) + (1 − p)EWT(b, 1)] λT(b|bT−1, hT−1)+

[pwT(b, b, 0) + (1 − p)EWT(b, 0)] [1 − λT(b|bT−1, hT−1)] .
(13)

Equation (13) shows the rational-inattention aspect of our model: at second T − 1 the bidder is

not distracted and is considering the value of making alternative bids b ≥ bT−1. Yet the bidder is

self-aware that at second T there is a probability p that they will be distracted and, thus, unable to

make any further adjustments to their bid in that event. If the bidder tenders b at T − 1, then they

will be the high bidder at instant T with probability λT(b|bT−1, hT−1) so hT = 1. In equation (13),

the first line shows the expected payoff of this outcome. The second line covers the case when b is

not the high bid, so hT = 0. In both cases, if the bidder is distracted, then no further bid is made

and this has value wT(b, b, 1) or wT(b, b, 0) depending on whether b is the high bid. If the bidder is

not distracted, their expected values are EWT(b, 1) and EWT(b, 0), respectively.

Using wT−1(b, bT−1, hT−1) we can define the optimal bid function γT−1(bT−1, hT−1) in the same

way as we did for period T in equation (9). The probability of bidding and the expected value

functions are defined defined with equations similar to their time T counterparts in equations (11)

and (12), respectively. Backward induction then proceeds using the same formulae for all other

bidding seconds for t = T − 2, . . . , 1, 0. We shall denote by γ(B, τ) the full sequence of optimal

bid functions

γ(B, τ) = (γ0, γ1, . . . , γT), (14)

where we have suppressed the dependence on the arguments B = {λt+1(b|bt, ht)|t = 0, . . . , T}

and τ = (v, c, p, σ) to simplify notation.

Note that the actual bidding strategy γ(B, τ) is stochastic due the effect of the IID bidding cost

state variables {ϵt} and the Bernoulli process for bidder attention. Let at be a Bernoulli random

variable that equals one if the bidder is paying attention at bidding instant t and zero otherwise.

Also, let δt(bt, ht, ϵt) be another Bernoulli random variable that equals one if it is optimal to bid in

state (bt, ht, ϵt) when at = 1, that is,

δt(bt, ht, ϵt) =

 1 if wt(bt, bt, ht) + ϵt(0) ≥ wt(γt(bt, ht), bt, ht)− c + ϵt(1)

0 if wt(bt, bt, ht) + ϵt(0) < wt(γt(bt, ht), bt, ht)− c + ϵt(1).
(15)
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We can then write the full bidding strategy as the function γt(bt, ht, ϵt, at) given by the following:

γt(bt, ht, ϵt, at) =


bt if at = 0

bt if at = 1 and δt(bt, ht, ϵt) = 0

γt(bt, ht) if at = 1 and δt(bt, ht, ϵt) = 1.

(16)

The extended bidding strategy given in equation (16) above is what we will use both to simulate

outcomes in the Korean auction and as a basis for inference. Intuitively, the bidder will not im-

prove their current bid bt at bidding instant t + 1 if either 1) they are inattentive at = 0 or 2) they

are attentive, but due to the realized psychological bidding shocks [ϵt(0), ϵt(1)] they conclude it

is suboptimal for him to improve their bid. A key restriction of this model is that in the third case

where the bidder is paying attention and the shocks [ϵt(0), ϵt(1)] are such that it is optimal for

him to place a bid, where the amount of the bid, γt(bt, ht), is a deterministic function of (bt, ht).

This implies that our model of bidding in the Korean auction is statistically degenerate. That is, the

probability of observing any other bid b , γt(bt, ht) is zero under our rationally-inattentive model

of bidding behavior and this rules out the direct use of maximum likelihood for inference. For

this reason, the next section introduces a quasi-maximum likelihood estimator (QMLE) estima-

tion strategy for conducting inference in this model that is tolerant of observed bids b that are not

equal to the predicted optimal bid γt(bt, ht) and finds values for the bidder’s type τ = (v, c, p, σ)

that best fits their behavior at individual auctions. Using the QMLE estimates of bidder types, we

will show in section 5 that the estimated model is capable of explaining the observed early bidding

behavior and heterogeneous bidding strategies that we documented in section 2.

4.3 Properties of the optimal bidding strategy and the value of learning the high bid

The DP solution for the optimal dynamic bidding strategy is rather complex and not easy to sum-

marize concisely, but in this section we attempt to provide some insight by focusing on the case of

a frictionless bidder, τ = (v, p, c, σ) = (v, 0, 0, 0), and illustrating the ‘value of learning” via early

bidding in the auction.

Figure 5 plots the bid-specific value functions, w120(b, b120, h120), over possible bids b at t = 120

for a frictionless bidder with valuation v = 5562 with beliefs about the high bid estimated from

data on the human bidders in the Avante auctions (see section 5.1). There are three different value

functions for three different states (b120, h120). The red curve plots w120(b, b120, h120) for an “un-

informed sniper” who has not yet bid in the auction, (b120, h120) = (0, 0). The black line plots
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Figure 5: Value functions for a frictionless bidder with v = 5562 at second t = 120
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w120(b, b120, h120) for a bidder whose highest bid so far, b120 = 4093, is not the high bid in the

auction, so (b120, h120) = (4093, 0). The blue line plots w120(b, b120, h120) for a bidder whose high-

est bid so far is also 4093, but now we assume it is the high bid in the auction at t = 120, so

(b120, h120) = (4093, 1). Note that the latter two value functions are only defined over a restricted

domain, [b120, v] = [4093, 5562], whereas the set of possible bids b for a bidder who has not yet bid

is the full interval [0, v] = [0, 5562].

It is clear that the bidder obtains valuable information from having placed a previous bid of

b120 = 4093 compared to not bidding and remaining uninformed, b120 = 0, and this is true even if

the bidder is not the high bidder at t = 120, so h120 = 0. But clearly, it is of highest value for the

bidder to know their bid is the highest at t = 120.

Table 2: Expected high bids, optimal bids and expected profits for a frictionless bidder at t = 120

State (v = 5562) E{b121|b120, h120} γ120(b120, h120) W120(b120, h120)

b120 = 0, h120 = 0 5825 4970 99

b120 = 4093, h120 = 0 5173 4839 278

b120 = 4093, h120 = 1 4113 4093 1329

Table 2 plots the expectations of the bidder in each of the three cases, along with their opti-

mal bids and expected profits. The uninformed sniper expects the winning price in the auction

to be E{b121|0, 0} = 5825 but bids less than this amount, γ120(0, 0) = 4970, resulting in an ex-

pected profit of W120(0, 0) = 99. However if the bidder had bid earlier in the auction but was
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not the highest bidder, the knowledge that the winning bid in the auction will have to exceed

their bid of b120 = 4093 actually reduces their expectation of the winning price in the auction to

E{b121|4093, 0} = 5173. The optimal bid is also lowered relative to what a sniper would opti-

mally bid to γ120(4093, 0) = 4839, which nearly triples their expected profit, W120(4093, 0) = 278,

relative to the uninformed sniper. However, the best case is where the bidder knows they are

the high bidder so far when they make their last bid. This knowledge reduces their expecta-

tion of being significantly outbid in the last second, and their expectation of the winning price

is E{b121|4093, 1} = 4113, only slightly higher than their current bid b120 = 4093. As a result, this

bidder decides to “hold firm” and not raise their bid in the last second, so γ120(4093, 1) = 4093,

and their expected profit is more than 13 times higher compared to the case of the informed sniper.

4.4 Effect of informational restrictions on early bidding

Before we describe the QMLE estimator, we consider how the bidder’s DP problem can be modi-

fied to solve for the optimal bidding strategy when a key informational restriction of the Korean

auction is dropped. Specifically, suppose that the auction software is modified to display the high-

est submitted bid at each instant during the auction, although the identity of the bidder holding

the highest bid is still suppressed. The high bid indicator ht still shows each bidder whether they

are currently the high bidder, but now every bidder observes the high bid at the auction even if

ht = 0. We refer to this auction as an anonymous open-outcry auction. This change in rules makes the

anonymous open-outcry auction a slightly informationally-restricted version of a standard open-

outcry auction—the difference being that at most open-outcry auctions all bidders can see the

identities of competing bidders, not just the high bid at any given moment. As the name suggests,

the anonymous open-outcry auction can be formulated as an anonymous game, and an anony-

mous equilibrium can be computed using the same approach we outlined above for the Korean

auction.

How are bidding strategies affected by dropping the informational restriction that each bidder

only knows the high bid when they are the high bidder? It is easy to see that their beliefs about the

CDF of the high bid at the auction no longer depends on the binary indicator ht. Instead, we rein-

terpret the state variable bt in the DP problem to be the current high bid at the auction, as opposed

to the bidder’s own high bid, our intrerpretation of bt under the Korean auction’s informational

restrictions. Without this restriction, bidders’ beliefs can be fully described by a family of condi-

tional CDFs {λt+1(b|bt)|t = 0, 1, . . . , T}, where λt+1(b|bt) is the conditional probability that the
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high bid submitted at bidding instant t is less than or equal to b given that the high bid submitted

up through time t − 1 is bt. The Bellman equations and optimal bidding strategies do not depend

on the high bid indicator ht. The intuitive implication of relaxing the informational restriction at

the Korean auction is that bidders in an anonymous open-outcry auction have no incentive to bid

early in the auction to learn the high bid since they are provided this information for free. This

implies that relaxing the informational resriction leads to informational free-riding.

We nnow show that frictionless bidders will prefer to remain in the background and only sub-

mit a single bid at the last instant, T. That is, bid-sniping is the only anonymous equilibrium of

this game, so it is strategically equivalent to the equilibrium of an anonymous, static, first-price,

sealed-bid auction. In order to establish this result, we need to introduce a mild assumption about

bidders’ beliefs concerning the distribution of the high bid—namely, that λt+1(b|bt) is stochasti-

cally increasing in the current high bid bt, an assumption that seems reasonable in an ascending

bid auction. When this holds, in the absence of bidding frictions, we can show that no strategic

reason exists for early bidding. However in the presence of rational-inattention there can be a mo-

tive for early bidding since it plays a role similar to a “soft close” in online auctions on Amazon

discussed by Alvin E. Roth and Axel Ockenfels [2002].

Definition 3: We say the family {λt+1(b|bt)|t = 0, 1, . . . , T} is stochastically increasing in bt if for any
b′t ≥ bt we have:

λt+1(b|b′t) ≤ λt+1(b|bt), (17)

for all b ≥ bt and all t ∈ {0, 1, . . . , T}.

Assumption 8: The family of beliefs concerning the high bid {λt+1(b|bt)|t = 0, 1, . . . , T} is stochastically
increasing in bt and satisfies the derivative condition

∇bt λt+1(b|bt) ≤ 0, (18)

where ∇bt denotes the derivative of λt+1(b|bt) with respect to its conditioning argument, bt, for all b ≥ bt
and t ∈ {0, 1, . . . , T}. Furthermore, λ′

t+1(b|bt) > 0 for b > bt where λ′
t+1(b|bt) is the derivative of the

CDF λt+1(b|bt) with respect to b, which we assume is a continuous function of b for any b > bt and all
t ∈ {0, 1, . . . , T}.
Theorem 1: Suppose the auction rules are changed to be an anonymous version of a Japanese auction, i.e. the
current high bid is made public to all bidders at every instant t during the auction, but bidders do not observe
the identities of other bidders or even how many other bidders are present. Then anonymous equilibrium
bidding strategies in the anonymous Japanese auction do not depend on ht, the indicator for whether a
bidder holds the high bid at each instant t. Furthermore, under Assumptions 1 to 8, if p = c = σ = 0
(that is, no bidding frictions), the anonymous equilibrium bidding strategies entail bidding zero until the
final instant T of the auction. Thus all bidders adopt optimal bid-sniping strategies and the anonymous
equilibrium of the anonymous open outcry auction is strategically equivalent to the anonymous equilibrium
of an anonymous static first-price, sealed-bid auction.
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The proof of Theorem 1 is by induction, see Appendix A. The theorem encapsulates the idea of

informational free-riding that rules out early bidding in ascending bid auctions without informa-

tional restrictions preventing bidders from seeing the amount of the high bid at each second in the

auction, at least for rational, frictionless bidders.

We now consider the question of whether the key informational restriction at the Korean auc-

tion — only revealing the current high bid if a bidder submits a bid and their bid is the highest

bid so far — is sufficient to generate early bidding. In fact, the example we discussed in section 4.3

shows that it is: in that case we showed that frictionless bidders will engage in early bidding in

the auction due to the substantial “value of information” from learning what the high bid in the

auction is. By bidding early, bidders can learn the learn the high bid and increase their chance of

winning the auction without “overpaying”.

However this intuition depends on the beliefs of the bidders: they need to believe there is

valuable information to be obtained from bidding early in the auction. In the example in section 4.3

we endowed the frictionless bidder with beliefs based on the actual bidding behavior of human

bidders in the Avante auctions, and for these beliefs we showed there can be substantial gains from

early bidding. We now prove a result similar to Lemma 1 in section 3, namely that there always

exists an anonymous equilibrium with no early bidding in auctions with frictionless bidders.

Theorem 2: In the Korean auction with frictionless bidders, there is an anonymous equilibrium with no
early bidding. This equilibrium is equivalent to the anonymous equilibrium of a static, sealed-bid first-price
auction.

Theorem 2 can be proved by induction using a similar argument as the proof of Lemma 1 in

section 3. Essentially, if a bidder believes there will be no early bidding in the auction by other

bidders, then there is nothing to be learned and hence no incentive for this bidder to bid early in

the auction as well. As a result, no early bidding is a best response for any frictionless bidder in

the auction when each bidder also believes none of the other bidders is engaging in early bidding.

This paradoxical outcome shows that the informational restrictions underlying the Korean

auction are not sufficient in themselves to generate the early bidding behavior we observe. We

need bidding frictions or beliefs that other bidders engage in early bidding to generate this behav-

ior. Rational-inattention can generate early bidding in the Korean auction, though it also produces

early bidding in Japanese auctions that do not involve the informational restriction of the Korean

auctions due to the“soft-close” uncertainty that rational inattention creates among bidders about

whether they can submit a bid in the last second of the auction.
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Theorem 1 implies that early bidding will not occur in an anonymous Japanese auction with

frictionless bidders (and no rational-inattention) yet the example of section 4.3 shows that we can

obtain early bidding in the Korean auctions with frictionless, perfectly attentive bidders. However

this early bidding depends on beliefs that they are other bidders who, for whatever reason, engage

in early bidding. We do not know if there exist anonymous equilibria involving early bidding in

the Korean auction where all bidders are perfectly attentive and frictionless, but we do show in our

counterfactual analysis of the Korean auction in section 6 that a successive approximations algo-

rithm for computing an anonymous equilibrium to the Korean auction with frictionless, perfectly

attentive bidders converges to an equilibrium involving no early bidding.

4.5 Two-step, quasi maximum-likelihood, fixed-effects estimator

We employ a two-step estimation approach, where the first step involves estimating bidders’ be-

liefs B = {λt+1(b|bt, ht)|t = 0, . . . , 120}, and the second step involves estimating bidder/auction-

specific types τ = (v, p, c, σ) for each bidder at each auction in our auction dataset. The latter

is done using a structural nested DP quasi-maximum likelihood estimator (QMLE) where we re-

peatedly solve for a bidder’s optimal bidding strategy for different candidate values of τ using the

first stage estimates of beliefs about the high bid, B̂. Since we estimate the conditional distribution

of the high bid λt+1(b|bt, ht) in the first stage using actual bidding data for the Avante car auctions,

our estimation approach imposes rational expectations on the part of all bidders.10 We recognize,

however, that estimation noise exists in our first-stage estimates of beliefs, so we subsequently

check whether the weaker condition of ϵ-anonymous equilibrium holds by resimulating data us-

ing the estimated bidding strategies for all bidders at all auctions and calculating the difference

ϵ ≡ ∥B̂ − Λ(B̂)∥. If this difference is sufficiently small, then we can conclude that our estimated

structural model of rationally-inattentive bidding constitutes an ϵ-anonymous equilibrium of the

Korean auction.

We adopt a fixed-effects approach to estimation of the unknown parameters of our model

of rationally-inattentive bidding in Korean auctions. The values v are clearly both bidder and

auction-specific by Assumption 1. To allow for maximum heterogeneity, we estimate the other

three parameters (p, c, σ) separately for each bidder/auction pair in our dataset as well. It is easiest

to begin by explaining how to estimate τ via full maximum-likelihood, and after deriving the full

10We group all bids arriving in the time interval [t, t + 1) as having been submitted at bidding instant t to match our
continuous time data to our discrete time DP model of the Korean auction.
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likelihood it will help motivate why we chose to estimate τ using a QMLE instead.

To derive the likelihood, we consider an extension of the model developed in the previous

section that is statistically nondegenerate; that is, it assigns positive probability to any possible

observed sequence of bids by a given bidder at the auction. The data we have for an individual

bidder at a specific auction are {(bt, ht)|t = 1, . . . , T} where T = 121, where we cleaned the data

to remove non-monotonic bids submitted by any bidder. Recall our timing convention: b1 denotes

the bid the bidder submitted at t = 0 (or zero if no bid was submitted) and h1 = 1 if that was

the highest bid among all bids submitted in the interval [0, 1). Continuing, bt is the bid submitted

at second t − 1; that is, in the time interval [t − 1, t) and ht = 1, if that bid were the highest bid

submitted at the auction up to time t, and 0 otherwise. Finally, b121 denotes the final bid submitted

at the last second of the auction T = 120; that is, in the time interval [120, 121) where as noted in

section 2 the auction software accepts bids that arrive slightly after the two-minute mark.

Suppose our extended, nonstatistically degenerate model results in a bid-transition probability

of the form P(bt+1|bt, ht, τ). Then the likelihood for a bidder in a particular auction is given by

L(τ) =
120

∏
t=0

f (bt+1|bt, ht, τ) (19)

where f is a conditional probability given by

f (bt+1|bt, ht, τ) =

 p + (1 − p)[1 − P(bt+1|bt, ht, τ)] if bt+1 = bt

(1 − p)P(bt+1|bt, ht, τ) if bt+1 > bt

(20)

and subject to the initial condition (b0, h0) = (0, 0). The conditional probability f (bt+1|bt, ht, τ)

in equation (20) reflects two possibilities: 1) a bidder may fail to improve their bid at instant t,

(bt+1 = bt), or 2) the bidder can submit an improved bid, bt+1 > bt. The probability that there is

no improvement in the bid equals the sum of the probability p that the bidder was not paying

attention at t plus the probability the bidder was paying attention but chose not to improve the

bid. This is reflected by the second term in the first line of equation (20) where P(bt+1|bt, ht, τ) is a

multinomial logit formula for the probability of submitting a bid of bt+1 at instant t that we derive

below. If the bidder does improve their bid (bt+1 > bt), then the probability of this occurring is in

the second line of equation (20) and it requires that the bidder not be inattentive and also actively

chooses a bid higher than their best previous bid bt.

The MLE uses a nested solution approach where an outer hill climbing algorithm searches for

a 1× 4 vector τ̂ that maximizes L(τ), and an inner DP algorithm is called to solve the bidder’s DP
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problem each time the likelihood is evaluated for a given value of τ. Note that bidder beliefs are

fixed at the estimates B̂ from the first step throughout all second step structural estimations for all

bidder/auction pairs.

We can modify the DP model in the previous section to be statistically nondegenerate by 1)

assuming bids are discrete, say, restricted to the positive integer values (which is the case in our

data), and 2) introducing a separate Type-1 extreme bidding shock for every possible integer bid b.

When we do the latter, we need to modify the formula for the value function in equation (10), and

then generic time t step of the backward induction the value function is Wt(bt, ht, ϵt) given by

Wt(bt, ht, ϵt) = max
[

wt(bt, bt, ht) + ϵt(0), max
b>bt

[−c + wt(b, bt, ht) + ϵt(b)]
]

. (21)

This version of the model has enough bid-specific shocks to generate a positive probability of

observing any possible bid b, since it implies the following multinomial logit conditional choice

probability for P(b|bt, ht)

Pt(b|bt, ht) =


exp{[wt(b,bt,ht)−c]/σ}

exp{wt(bT ,bT ,hT)/σ}+∑b>bt exp{[wT(b,bt,ht)−c]/σ} if b > bt

exp{wt(b,bt,ht)/σ}
exp{wt(bT ,bT ,hT)/σ}+∑b>bt exp{[wT(b,bt,ht)−c]/σ} if b = bt

(22)

Unfortunately, the full likelihood approach involves a substantial computational burden because

it requires exhaustive evaluation of the value functions at all possible integer bids b greater than or

equal to bt. The model we presented in the previous section only involves two shocks, [ϵt(0), ϵt(1)],

where ϵt(0) represents unobserved costs/benefits of not improving the current bid, and ϵt(1) are

the unobserved costs/benefits corresponding to submitting the optimal bid γt(bt, ht). We use a

more efficient continuous maximization algorithm to compute γt(bt, ht) that requires relatively

few evaluations of an interpolated version of the bid-specific value functions wt(b, bt, ht). This is

far faster than the brute-force exhaustive evaluation required by the full-likelihood approach.

Another attractive feature of the model we presented in the previous section is that its tight pre-

diction of the optimal bid γt(bt, ht) is useful in assessing how well our model actually fits the data.

We can think of γt(bt, ht) as akin to a nonlinear regression function that constitutes the model’s

predicted optimal bid, so we can directly evaluate the “residuals” et(τ̂) = bt+1 − γt(bt, ht, τ̂) at

the estimated value of each bidder’s type τ̂. In the next section, we compare actual bids to those

predicted by our model. This is not only extremely informative not only about model fit, but also

about the behavior of the bidders. The logit model in equation (22) has such a rich specification

of unobservables that it can “rationalize” any observed bidding behavior, even though the fully
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saturated specification still imposes testable restrictions that can be assessed by a variety of speci-

fication tests. That said, we chose to begin with the QMLE estimator.

To implement the QMLE estimator, we need to define a “quasi-likelihood” of observing a bid of

b that differs from the optimal bid γt(bt, ht, τ) predicted by the model when the current parameter

is τ. For this purpose, we use the following binary logit probability:

Π(b|bt, ht, τ) =
exp{wt(b, bt, ht)/ω}

exp{wt(b, bt, ht)/ω}+ exp{[wt(γt(bt, ht), bt, ht)− c]/ω} , (23)

where ω ≥ 0 is a penalty parameter that controls how hard the QMLE tries to fit observed

bids bt+1 via the predicted optimal bids from the model γt(bt, ht, τ). Note that for any bid b, we

have wt(b, bt, ht) ≤ wt(γt(bt, ht), bt, ht), so it follows that Π(b|bt, ht, τ) ≤ 1/(1 + exp{−c/ω})

and Π(b|bt, ht, τ) is maximized at b = γt(bt, ht). When ω is small, there is high penalization and

Π(bt+1|bt, ht, τ) will be close to zero for observed bids that are far fom the optimal bid predicted

by the model.

The QMLE is defined in a similar way to the MLE using the following formula for the quasi-

likelihood function of the observed bidding data:

QL(τ) =
120

∏
t=0

f (bt+1|bt, ht, τ), (24)

where f is a conditional probability given by

f (bt+1|bt, ht, τ) =

 p + (1 − p)[1 − P(γt(bt, ht)|bt, ht, τ)] if bt+1 = bt

(1 − p)P(γt(bt, ht)|bt, ht, τ)Π(bt+1|bt, ht, τ) if bt+1 > bt

(25)

Comparing equations (20) and (25), we see that the key difference between the likelihood func-

tion L(τ) and the quasi-likelihood function QL(τ) is the presence of the binary logit probability

Π(bt+1|bt, ht, τ) that constitutes a penalty term for observed bids bt+1 that differ too much from

the predicted optimal bid γt(bt, ht, τ).11

5 Results

In this section, we report the results of our analysis of bidding data from 533 auctions of Hyundai

Avante Elanta XD vehicles with 1.6L engines. These are generic passenger sedans without any

11The likelihood L(τ) and quasi-likelihood QL(τ) are smooth functions of τ, but calculating their gradients requires
recursive evaluation of the gradients of the bid-specific value functions {∇τwt(b, bt, ht, τ)}. This is done in tandem
with the recursive calculation of {wt(b, bt, ht, τ)} itself, using piecewise polynomial interpolation over a grid of bid
values. MATLAB code to solve for optimal bidding strategies and estimate this model via the structural two-step QMLE
is available on request.
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Figure 6: Unconditional CDFs for high bids for Avante cars by elapsed time at auction

unique features that would suggest we should treat different units as unique items—in violation

of Assumption 1 of section 4. Our dataset contains a total of 4, 029 bidder-auction histories from

the 533 auctions, which we used to estimate an equivalent number of (4 × 1) type vectors τ using

the QMLE estimator defined in section 5. The data are {btba, htba|t = 1, . . . , T}, the history of bids

and signals for a given bidder b in auction a. The first step of our two-step estimation procedure

involved pooling the bid data from all 4, 029 bidding histories to estimate the beliefs of bidders

concerning the high bid B̂ using a truncated normal specification. We found these parametric

estimates matched closely the nonparametric estimates, but are substantially smoother and less

noisy. Therefore, in our actual estimation results, we opted to use a parametric truncated normal

family of beliefs.

5.1 Estimated beliefs

The bid data from the 4, 029 bidder-auction observations provide 121 individual bid-second level

observations of the high bid at each second of the auction. Figure 6 displays our estimates of

the family of unconditional beliefs {λ̂t+1(bt+1|0, 0)} at bid instants t = 0, 1, . . . , 120. This family

constitutes the ex ante beliefs concerning the distribution of high bids at each second of the auc-

tion for bidders who have not yet tendered bids at the auction. As would be expected at these

ascending-bid auctions, strict stochastic dominance exists in the CDFs at successive seconds of the

auction. The probability that the high bid equals zero (that is, no bids has been submitted) starts at

over ninety percent in the first second of these auctions and rapidly drops to zero as t approaches

T = 120.
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Figure 7: Expected high bids for specific examples

We also estimated separate families of conditional CDFs {λ̂t+1(bt+1|bt, 1)} that condition on

the previous high bid bt in the preceding second of the auction (and, hence, the second condition-

ing argument is ht = 1), and a third family of CDFs {λ̂t+1(bt+1|bt, 0)} that conditions on bids bt

that are lower than the current high bid bt in the preceding second of the auction. We estimated

these families via truncated regression methods—essentially Tobit models.

Figure 7 illustrates how bidder beliefs evolved during an auction by plotting two example

paths for expected high bids, E(bt+1|bt, ht) =
∫ ∞

bt
bλt+1(db|bt, ht) of bidder ID 23 (B23) at two

different auctions. The left-hand panel of the figure illustrates the evolution of the expected high

bid at auction 9810: B23 did not submit a bid until approximately 70 seconds into the auction,

and the first bid submitted did not turn out to be the high bid. This is reflected in the concave

shaped black line in the figure that roughly parallels the red high bid track until the instant B23

submits their bid, at which point B23’s expectation of the high bid jumps to a value above the

high bid track. B23 continued to bid-creep, but did not succeed in capturing the high bid until

around t = 90, when B23’s expectation of the high bid decreases to a value virtually equal to

b90. Thus, when a bidder becomes the high bidder at some point in the auction, they have high

confidence that they will remain the high bider for the next few seconds. A few seconds later,

however, B23’s high bid is eclipsed by a higher bid and then B23’s belief concerning the expected

high bid jumps back up above the high-bid track and remains there until the end of the auction

because B23’s subsequent bid creeping did not succeed in enabling B23 to regain the high bid and

win the auction.

The right-hand panel of Figure 7 illustrates the evolution of B23’s mean beliefs concerning the
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high bid at auction 10007. As in the previous case, the ex ante expectation of the high bid (ex ante

in the sense that B23 has not submitted any bids yet) follows a concave shape, but in this case

it lies substantially above the red realized high-bid track. At t = 78, B23 submits a bid equal to

the current high bid b78, but because of the time-priority rules of the Korean auction, B23 is not

informed that their bid equals the high bid, so B23’s information is h78 = 0; that is, they are not

told that they are the high bidder at that point. Nevertheless, B23’s expectation of the high bid

falls in response to this information, so E(b79|b28, 0) < E(b79|0, 0). At t = 80, B23 submits a higher

bid that does become the high bid at that point, so B23 is informed that h80 = 1. This information

decreases B23’s expectation of the high bid to a value only slightly higher than b80. A few seconds

later, some other bidder tenders a substantially higher bid that increases the high bid to around

$5,500, which causes B23’s beliefs concerning the expected high bid to jump up to approximately

$5,400 in value.

In the remaining thirty seconds of auction 10007, B23 executed a sequence of bid creeps that

are initially unsuccessful in capturing the high bid status until t = 108, when B23 becomes the

high bidder with a bid of b108 = 5, 550. B23 opted to make no further improvements in bid for the

remainder of the auction, retaining their high bid status for the rest of the auction and winning

it with a bid of b108 = 5, 550. Thus, we can see how even with fixed beliefs the model captures

learning in these auctions.

Note that bidders are not learning in a Bayesian sense: instead, they are learning about the

high bid at the auction through the process of bidding during the auction. We now show how

bidders’ rational beliefs concerning the evolution of the high bid at the auction is reflected in the

magnitudes of the bids; that is, we try to assess how close their actual bids {bt} are to the optimal

bids {γt(bt|bt−1, ht−1)} predicted by the structural estimates of our model of rationally-inattentive

bidding.

5.2 Estimated types

We estimated 4, 029 (4 × 1) type vectors τ̂ using our structural nested DP QMLE estimator by

repeatedly solving for optimal bidding strategies at the Korean auction to find ones that best fit

the actual bidding behavior of the 4, 029 bidder-auction observations in our dataset. In all of these

solutions, we keep the beliefs of all bidders fixed at the values we estimated in the first stage,

B̂ described above. Even though at most 121 bidding instants exist at a single auction, we have

sufficient information to point-identify the 4, 029 type vectors for all bidder-auction pairs in our
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dataset. We acknowledge potential econometric issues with our QMLE estimation approach, in-

cluding the standard incidental parameters problem that can affect the consistency of fixed-effect

estimators, as well as the issue of how to think about asymptotics when the data we use to esti-

mate the type of each bidder are limited to the observed bids submitted during each 120-second

auction. For now, we do not worry about these econometric issues and treat our QMLE estima-

tion approach as a calibration exercise that provides substantial flexibility to fit observed bidding

behavior best, as well as to capture the heterogeneity in bidding strategies that we documented in

section 2.

With estimates of over 16, 000 parameters, it is obviously impractical to display them in a table

(although we can provide a dataset containing the estimated parameters on request). Instead, we

display the results graphically via univariate kernel-density plots of each of the four components

of bidders’ types, τ = (v, c, p, σ) in Figures 8 and 9. The left-hand panel of Figure 8 shows the

distribution of estimated valuations, v. The mean valuation for the 4, 029 bidders participating in

the 533 Avante XD 1.6L auctions was $5,992, not much above the mean winning bid of $5,824. The

distribution seems to be approximately normally distributed, although an interesting hump exists

in the upper tail of valuations. Further analysis is required to see whether something unique ex-

ists concerning these valuations—such as the potential that we mis-identified a subset of Avante

XD 1.6L cars that have additional features (for example, luxury interiors) that make them more

valuable to bidders than the generic Avante XD 1.6L cars that we identified. Since unique features

for a subset of vehicles would violate our Assumption 1, it would be appropriate to remove these

cases from our estimation results. The right-hand panel of Figure 8 shows the distribution of the

location term c for the distribution of idiosyncratic psychological costs or benefits a bidder per-

ceives from updating the current bid. The mean value of c is −1.2, indicating that the average

bidder perceives a small “curiousity benefit” to updating their bid, above and beyond the benefit

inherent from learning more about the current high bid. The mode of the distribution is, however,

positive, so about 40 percent of all bidders perceive a psychological cost that constitutes a slight

deterrent to frequently updating their bid—to wit, a bidding friction.

The left-hand panel of Figure 9 plots the distribution of inattention probabilities, p. Surpris-

ingly, the mean probability of being inattentive at any point during the auction is nearly 98 per-

cent. The reader may reasonably wonder: if bidders are inattentive 98 percent of the time, then

how can they ever find an opportunity to place even a single bid at the auction? Recall that our

implicit assumption is that inattention is an IID Bernoulli process with parameter p and there are
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Figure 8: Estimated valuations v and costs of bidding c
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Figure 9: Estimated inattention probabilities p and scale parameters σ

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Estimated inattention probability, p

0

5

10

15

20

25

30

D
e

n
s
it
y

Distribution of estimated probability of inattention, p

Mean    0.980334
Median  0.990576
Minimum 0.00762355
Maximum 0.999999
Std dev 0.0368903
N       4029

1 2 3 4 5 6 7 8

Estimated extreme value  parameter

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

D
e

n
s
it
y

Distribution of estimated extreme value  parameter

Mean    1.33859
Median  0.385919
Minimum 2.569e-05
Maximum 328.063
Std dev 10.9126
N       4029

121 bidding instants during the auction. The probability is 1− (0.98)121 = 0.91 that the bidder will

be paying attention at one or more instants and, therefore, able to submit one or more bids during

an auction. Nevertheless, this does highlight a shortcoming of our specification: with such a large

value of p, it is difficult for the model to replicate bid creeping when inattention is an IID Bernoulli

process: this makes it unlikely to observe a sequence of several bids occuring only seconds apart

from each other.12

The final, right-hand panel of Figure 9 depict the distribution of σ scale parameters for the

12Of course, bidders who bid creep have smaller estimated values of p, since the QMLE estimator reduces p to
increase the likelihood of observing sequences of such sequences of bids. We can also, however, estimate a two-state
Markov model of rational inattention in future work. In a Markovian model, if a bidder is attentive at instant t they
may be more likely to be attentive at t + 1, and conversely for bidders who are inattentive. A Markov model requires
estimation of two probabilities for bidders who are currently attentive and inattentive, respectively.
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Figure 10: Actual versus predicted optimal bids by B23 at auctions 9810 and 10007
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extreme-value distributed idiosyncratic component of psychological bidding costs. On average,

the values of σ are large— indicative of a fair degree of idiosyncratic variation in the costs that

determine whether a bidder will update their bid, conditional on not being inattentive at a given

instant in the auction. The overall message is: the estimated model predicts a fair degree of ran-

domness in the times at which different bidders submit their bids at Korean auctions. We shall

explore this further below, but to foreshadow, our model of rationally-inattentive bidding is much

better at predicting how much bidders bid, but it is much harder to predict the total number of

bids and the specific times at which bidders submit their bids.

5.3 Evaluation of model fit at level of individual bidders

We now present evidence on the ability of the model to fit bidder behavior, particularly to assess

how closely the model predicts a bidder’s actual sequence of bids at an auction, conditioning on

the times when the bidder submitted those bids. Figure 10 compares the actual bids of B23 with

the bids that the estimated model of rationally-inattentive bidding predicts are optimal in the two

auctions we used previously to illustrate the evolution of B23’s beliefs about the high bid; see

Figure 7. In each panel, the blue stars depict the actual bids submitted by B23 at auctions 9810

and 10007, respectively. The red line is the high bid track and the dotted lines are counterfactual

optimal bids predicted by the estimated model under three scenarios:

1. The blue dotted line is the optimal bid for a bidder who has not submitted a bid up to this
instant at the auction; that is, it graphs {γt(0, 0)|t = 0, . . . , 120}.

2. The black dotted line is the optimal bid for a bidder conditioning on the times and bids
the bidder actually submitted at the auction. This line is the path of bids {γt(bt, hc

t)|t =
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0, . . . , 120} where {(bt, hc
t)} is the actual sequence of realized bids and hc

t is a counterfactual
high bid indicator that may differ from the actual high bid indicator ht to the extent that the
predicted optimal bid from the model may be above or below the high bid track (which is
treated as fixed except in cases where the counterfactual optimal bid becomes the high bid
in the auction).

3. The green dotted line is the optimal bid for a bidder that condition on the times at the auction
that the bidder submitted their bids but not the values of their actual bids. This line is the
recursively calculated path of bids {γt(b∗t , h∗t )|t = 0, . . . , 120} where (b∗t , h∗t ) is the model’s
counterfactual prediction of the bidder’s highest optimal bid up to second t and high bid
indicator treating the bids of all other bidders as fixed.

To understand the difference in these three counterfactual optimal bid paths, consider the left-

hand panel of figure 10. B23 did not submit a first bid at auction 9810 until t = 68. The model’s

prediction of the first bid is about $3,256, but the actual first bid submitted by B23 was $5,500,

an overbid of nearly $2300. If we constrain the model to bid only at the times B23 actually bid

at this auction, the predicted counterfactual bid path for B23 is the green dotted line. The black

dotted line can be viewed as an off-the-equilibrium bid path. That is, the model takes the initial

overbid as a given, and then calculates what bids would be subsequently optimal given that initial

deviation. The model’s prediction of the optimal second bid taking the initial overbid as given is

actually slightly higher than the actual second bid by B23. B23’s second bid is another deviation

off the equilibrium path, and the optimal third bid is also higher than B23’s actual third bid.

Thus, except for the initial overbid at t = 68, the model predicts the subsequent path of actual

bids well. Note, too, how the unrestricted optimal bid path (green dotted line) rapidly increases

and catches up to nearly equal the actual bids after the first bid t = 68. Consequently, the model

almost perfectly predicts the actual final bid of $6,510 by B23 at t = 116. The blue dotted line

can be used to see what bid B23 should have optimally submitted had B23 followed a bid sniping

strategy and waited until T = 120 to submit a single bid. The model predicts that the optimal snipe

bid is the last point on the blue dotted line at T = 120, a bid of $5,596. The bidder would have

lost if they had followed the model’s advice, but B23’s actual bids lost this auction, so we might

wonder if the initial “overbid” has any real consequence. Notice that B23’s final bid of $6510 is

just $1 short of B23’s estimated valuation of the car of $6,511. Thus, it appears as if B23 is using a

straightforward bidding strategy — bidding up to $1 below their valuation before dropping out.

Consider now the right-hand panel of Figure 10, which compares actual and counterfactual

bids for auction 10007. Once again we observe a substantial overbid in the first bid B23 submits

t = 76, but the optimal bid path (green dotted line) rapidly catches up to the actual bid path, so

the model perfectly predicts B23’s final bid of $5,550 at t = 108. In this case, B23 won the auction,
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Figure 11: Actual versus predicted optimal bids by B10 and B14 at auction 9248
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but B23 would have lost this auction had they followed the predicted optimal bidding strategy

because B23’s final predicted optimal final bid of $5,475 is less than a bid of $5,500 by B16 at

t = 81. One other feature of Figure 10 is worth noting: B23’s final bid in this auction was again just

$1 less than their estiated valuation for this car, consistent with straightforward bidding.

B23’s actual bidding behavior (involving both frequent early bidding and initial overbidding)

led to B23’s leaving these auctions with very little surplus. B23 lost auction 9810, so they received

zero profit. B23 won auction 10007, but thier final bid of $5,550 was only $1 less than B23’s es-

timated valuation of v = 5551. This raises the question: can it be optimal for the winner of an

auction to bid so aggressively that they end up earning zero profits from winning?

Figure 11 shows that not all bidders appear to be using straightforward bidding strategies

and continuing to raise bids up to $1 below their valuation. The figure compares the actual and

predicted optimal bids for B10 (a losing bidder) and B14 (the winner) of auction 9248. In both

cases, the final bids of both bidders are well below their estimated valuations. For this auction, we

estimated the valuation of B10 to be v = 10454, while the valuation of the winner B14 is estimated

to be v = 10192. Another bidder (not shown) is B1, whose estimated valuation is v = 10624. If

the Korean auction were strategically equivalent to a Japanese auction, then B1 should have won

the auction and paid a price of $1 more than B10’s valuation, namely, $10,455. However B10’s and

B14’s actual final bids were $9,770 and $9,890, respectively, well below their estimated valuations.

Comparing Figures 10 and 11, we see that the final optimal bids predicted by the DP model

conditioning on the times the bidders actual bid in these auctions (green dotted line) are closer to

the actual high bids of the lower valuation bidders in figure 10 than they are for the high valuation
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bidders in figure 11. The DP model predicts that bidders with low valuations are weak bidders,

who tend to bid more aggressively and in some cases nearly up to their valuations for the car

before stopping (as we illustrated for B23 above), but bidders with relatively high valuations take

advantage of being strong bidders and bid less aggressively.

Another key point to note from Figure 11 is that we continue to find a pattern of early over-

bidding on the part of both B10 and B14: in both cases, their first bids are significantly higher than

what the DP model predicts is optimal. But in these cases, the early overbidding is not innocuous:

it pushes up the path of subsequent bids so that the final high bids are significantly higher than

the optimal bids predicted by the DP model. We will show below that this is a general pattern

for most bidders, and results in collective overbidding in these auctions to their detriment, but of

course to the benefit of the rental company.

5.4 Evaluation of model fit at the level of individual auctions

Now we compare actual bidding behavior to simulated bidding in individual auctions, where

we allow all bids to be the optimal ones computed by the DP model to demonstrate that the

early overbidding at the individual bidder level does indeed push up the final winning bid to a

higher value than would occur in our model of rationally inattentive bidders. To see this, consider

Figure 12 that compares the actual outcome of auction 9248 (left panel) with the predicted outcome

if all bidders would have bid at exactly the same times that they actually did, but at the values that

are optimal according to the estimated models for each of the eight participating bidders.13

In particular, even though the actual winning bid at auction 9248 was $9,890 by B14 at t = 92,

in the counterfactual simulation of auction 9248 the winning bid is $800 lower: $8,441 by B23 at

t = 119. From the left panel of figure 12 we see the high actual initial bid of B11 did push up the

high bid track and all 14 actual bids of B23 were below the high bid. However in the simulated

auction, the first bid of B11 is much lower, $3,500, and along with lower optimal bids of the other

simulated bidders, the simulated high bid track (red line) follows a lower trajectory compared to

the actual one. In particular, B23’s lower optimal bids eventually become the high bid and B23 is

able to win the simulated auction at a lower bid of $8,441 than B23’s actual high but losing bid of

$8,900 in the actual auction.

13The right-hand panel of Figure 12 illustrates the 54 bids placed in the conditional simulation of action 9248, whereas
the actual number of bids submitted in this auction was 56. This is because in two instances the optimal bidding strategy
chose not to improve the bid whereas the actual bidders did improve their bids at the two corresponding bid times.
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Figure 12: Actual versus simulated bids at auction 9248 (conditioning on actual bid times)
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B11 v=  9890, p=0.999 c=-1.2, =0.31 FPA bid: 6728.59 high bid: 7021.55

B14 v= 10192, p=0.998 c=-1.6, =0.04 FPA bid: 6779.79 high bid: 8090.35
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Figure 13: Actual versus simulated bids at auction 9248 (simulated bid times)
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B9 v=  9940, p=0.999 c=0.1, =0.36 FPA bid: 6737.25 high bid: 7907.9

B10 v= 10454, p=0.999 c=0.7, =0.95 FPA bid: 6820.83 high bid: 8479.99

B11 v=  9890, p=0.999 c=-1.2, =0.31 FPA bid: 6728.59 high bid: 8524.7

B14 v= 10192, p=0.998 c=-1.6, =0.04 FPA bid: 6779.79 high bid: 8290.98

B23 v=  8953, p=0.996 c=-0.0, =0.21 FPA bid: 6535.83 high bid: 8160.6

B27 v= 10270, p=0.999 c=-0.4, =0.06 FPA bid: 6792.4 high bid: 7568.42

Our comparison of the high bid tracks in the two panels of Figure 12 suggests that the early

overbidding we observe in the actual auctions pushes up bids over the entire course of the auc-

tion and causes the winning bidder to end up paying significantly more than the counterfactual

winning bid predicted by the model. Note also that in this case the simulated winner, B23, is the

lowest valuation bidder, so the simulated outcome is highly inefficient. This unfortunate outcome

may be an artifact of conditioning on the actual bid times of the human bidders, which can arti-

ficially reward more aggressive and frequent human bidders. In the actual auction, B23’s 14 bids

were a result of unsuccessful attempt at bid creeping to learn the high bid in the auction.

Figure 13 shows a full stochastic simulation were we allow all simulated bidders to choose both

the times and values of their bids according to the estimated DP bidding strategy. We find that
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when we use the estimated inattention probabilities to simulate bids for each bidder, there is too

little bidding during the auction and simulated winning prices are significantly lower than actual

prices. Therefore in the simulation shown in the right hand panel of figure 13 we used empirical

inattention probabilities to simulate each bidder. These probabilities are defined as the fraction of

discretized bidding seconds t ∈ {0, 1, . . . , 120} that each bidder does not bid during the auction.

The empirical inattention probabilities are lower than the structural estimates of p. For example

for B23 in auction 9248, the structural estimate of p is .996 whereas the empirical probability that

B23 does not bid in any given second during the auction is .884. The reason why the structural

model over-estimates p is that inattention is a powerful force motivating earlier higher bidding

in the auction. To maximize the quasi-likelihood function, there is a tradeoff between choosing

a lower value of p to match the empirical probabilities of bidding in any given second versus

choosing a higher value of p so the model can better match the high early bids we observe.

We use the empirical inattention probabilities to simulate times that bidders are paying at-

tention and submit updated bids, resulting in more participation and active bidding and higher

simulated prices. However even when we do this, the model typically underpredicts the winning

bid in the auction even though it is able to qualitatively match several features of the actual auc-

tions, including the total number of bids and the early bidding we observe in the actual auction.

We can see this in figure 13, where there is early bidding but at significantly lower values: the

first bid in the simulation is $3,342 at t = 5 versus nearly $7,890 at t = 6 in the actual auction.

Even though bids steadily rise through the remainder of the simulation, the winning bid in the

simulation is $8,525, which is $1,365 lower than the winning bid of $9,890 in the actual auction.14

We conclude that our model of rationally inattentive bidding underpredicts bidding actvity in

simulated auctions due to the high estimated probabilities of being inattentive and not bidding.

Our solution is to use the empirical bid probabilities to simulate the times at which bids are made

during the auctions. Our interpretation of this seemingly inconsistent approach to simulation is

that it reflects bidders’ over-estimation of the probability of being distracted at any given second

during the auction when determining their bidding strategies. This causes them to bid higher and

earlier out of an excessive concern that they will be distracted and unable to bid earlier in the auc-

tion. However their actual probability of inattention in the auction is lower than what they believe,

14Note that the simulated final high bids of all 8 bidders are significantly lower than their estimated valuations. This
is further evidence that the bidding behavior predicted by our anonymous equilibrium model of the Korean auction
is not “straightforward bidding” so the auction is not strategically equivalent to bidding at a Japanese auction, where
losing bidders exit the auction when the current high bid exceeds their valuations.
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Figure 14: Actual versus simulated bids for B18 at auction 10222
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so our model might be described as irrational inattention. In the next section we evaluate whether

this model of irrationally inattentive bidding is capable of predicting the observed distribution of

outcomes in all 533 Avante car auctions.

5.5 Comparing actual and simulated auctions of all Avante cars

Our model of (ir)rationally-inattentive bidding can qualitatively explain the early bidding behav-

ior observed by individual bidders, but quantitatively it underpredicts bothh the number of bids

in an auction and the magnitude of the first bids at these auctions — the phenomenon we have

referred to as early overbidding. These high early bids affect subsequent bidding in the auction, so

the predicted auction prices from the model tend to be significantly lower than what we observe

in the actual auctions.

Of course, we can show many examples where the model does provide accurate predictions

of all bids submitted during the auction. This is particularly true for bid snipers, since the model

only needs to adjust its estimate of the valuation to match the single bid submitted by the bidder

in the final few seconds of the auction. We show this in Figure 14: The left-hand panel plots the

predicted optimal bid trajectory and illustrates that it correctly predicts the actual bid submitted

by B18 at t = 119. The right-hand panel plots the expected value of submitting an optimal bid

(red line) versus the value of not bidding (blue line). The two lines are close to each other for the

first 80 seconds of the auction, indicating that no huge gain exist to B18’s submitting a bid early

in the auction. The value of submitting a bid starts to rise rapidly in the remaining forty seconds

of the auction, whereas the value of not bidding converges to zero at t approaches T = 120. Note
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Figure 15: Actual versus predicted final bids 125 bid snipers and all 533 winning bidders
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that, once B18 submits their optimal bid of 6520 at t = 119, the gain from further bidding falls

to zero. In this case, B18 won the auction, and it is another example where the optimal bidding

strategy implies a final high bid that is significantly below B18’s estimated valuation of v = 8971.

This case is not atypical: the model accurately predicts the bids by bid snipers, whereas it tends to

underpredict the final high bids of non-snipers.

5.6 Evaluation of model over all Avante auctions

Thus far we have evaluated model fit at the level of individual bidders and auctions and showed

that our estimated model of rationally-inattentive bidding captures the early bidding behavior

we observed in the data, as well as the heterogeneity in bidding strategies that we identified in

section 2 including bid creeping and bid sniping. We have also shown examples of bids that the

model cannot predict well, particularly the phenomenon of early overbidding—the tendency for

the model to underpredict the magnitude of the first bid submitted during the auction.

However the model is able to predict the bids submitted by snipers very well. We illustrated

that using a single example in Figure 14, but the left-hand panel of Figure 15 shows this is true in

general by plotting predicted vs actual bids for 125 bid-snipers that we identified among the 4, 029

bidder-auction pairs in our dataset. We classified a bid to be a sniped bid if the bidder submitted

only a single bid at the auction and this bid was submitted after second t = 118, that is, within the

last two seconds of the auction. Except for a few cases, the model perfectly predicts their bids.

The right-hand panel of Figure 15 plots predicted versus actual final bids for all winning bid-

ders in the 533 Avante auctions. These dots are also highly concentrated along the 45◦-line, indicat-
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Figure 16: Actual versus predicted final and first bids for all 4029 bidder-auction pairs
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ing that the model also does a very good job of predicting the final bids of non-bid-snipers. Notice

that the red dots lie mostly above the 45◦-line, indicating that the model generally underpredicts

the final high bids submitted by winning bidders. The pattern of underprediction emerges even

more clearly in Figure 16: The left-hand panel plots the predicted optimal final bid against the

actual final bid for all 4, 029 bidder-auction pairs in our dataset, while the right-hand panel plots

predicted versus optimal first bids for these same pairs. There is substantially greater unprediction

of first bids than final bids, reflects the pattern we have already seen in our analysis of individ-

ual bidder data, thus documenting the phenomenon of early overbidding. We now consider the

model’s ability to fit other features of the data by comparing actual versus simulated distributions

of other outcomes in the 533 Avante auctions.

By construction, our simulation strategy guarantees that the distribution of the number of bid-

ders participating in individual auctions in our simulations is identical to the actual distribution.

The model captures the general pattern that bidders wait until the last seconds of the auction to

submit their final high bids, but the simulated bidders wait longer on average before submitting

the winning bid, at t = 111 seconds into the auction compared to t = 103 in the data. But the

right-hand panel of figure 16 shows that our model is generally unable to predict the high first

bids in these aucctions.

We see this also in figure 17 which compares simulated versus actual distributions of first bids

and final bids at the 533 Avante auctions. We see that our model underpredicts both quantities,

but the problem is much more severely for first bids than for final bids. The average underpre-

diction in final bids is $5, 550 − $5, 091 = $459, whereas the average underprediction in first bids
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Figure 17: Actual versus simulated winning bids and first bids
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Figure 18: Actual versus simulated bid trajectories and distributions of efficiency losses
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is $3, 990 − $2, 708 = $1, 282, almost three times larger. This confirms the early overbidding phe-

nomenon that we have already illustrated above is one of the problematic aspects of our model.

The term overbidding suggests that the problem is with the bidders: but is this evidence of bidder

irrationality or a symptom of a specification error in the model? We return to this question below.

We conclude our analysis of model fit with Figure 18 which compares the simulated versus

the actual distributions of high bid trajectories and ex post efficiency losses at the 533 Avante auc-

tions. The right-hand panel illustrates that the model captures the distribution of ex post efficiency

at these auctions, where we define the ex post efficiency as the ratio of the valuation of the win-

ning bidder to the highest valuation for all bidders in the auction. Auctions (such as the Japanese

auction or the second-price, sealed-bid) are predicted to be fully efficient, so the distribution of
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efficiency for those auctions would be a unit mass at 100% efficiency. By contrast, at the Korean

auctions, the average efficiency is 85%, which implies large ex post efficiency losses averaging over

$1,000 per auction. Considering that the average actual winning bid at these auctions is $5,824, the

predicted efficiency losses are indeed substantial.

The left-hand panel of figure 18 compares the mean value of the high bid trajectories as well

as the median trajectory and the five percent and ninety-five percent quantiles of the coordinate

distributions of high bid paths {bt}, that is, the marginal distributions of bt for t = 0, 1, . . . , 120).

Recall our definition of ϵ-anonymous equilibrium, definition 4.1 in section 4. For the model to be

in an ϵ-equilibrium, bidders’ beliefs about the distribution of the high bid must be sufficiently

close to the actual distribution of high bids resulting from those beliefs and the implied optimal

bidding behavior. That is, beliefs should be approximately self-confirming in the sense that the

difference ∥B − Λ(B)∥ should be small, where Λ is the operator that maps bidders’ beliefs into

actual auction outcomes, namely, the composition of the DP solution operator to compute optimal

bidding strategies given beliefs, and a simulation operator that generates the implied distribution

of high bid paths implied by bidders’ optimal bidding strategies.

Looking at the left-hand panel of Figure 18, we conclude that regardless of how we might de-

fine the distance metric ∥ · ∥ to measure the difference between rational beliefs—namely, the ones

implied by our data B̂ and Λ(B̂), the difference is too large to argue that our two-step estimation

approach has indeed been able to explain observed bidding behavior as an ϵ-anonymous equi-

librium of our model of rationally-inattentive bidding. We treat the discrepancy depicted in the

left-hand panel of Figure 18 as further evidence that our model is unable to accurately predict

observed bidding behavior at the Korean auctions.

6 Counterfactual experiments

Thus far we have shown that our dynamic model of rationally-inattentive bidding is capable of

providing a qualitative explanation of the early bidding behavior we observe in the Korean auc-

tions, but it fails to provide a sufficiently accurate quantitative predictions of this behavior. In

particular, the key feature of the data that our model fails to capture is early overbidding. In this

section, we run several counterfactual simulations of our model to obtain insight into the nature of

the nature of early overbidding and whether it is symptomatic of bidders’ lack of rationality and

inability to collude, causing them to bid more than necessary to win cars in the Korean auctions.
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Figure 19: Counterfactual effect of replacing B16 by a frictionless robot in auction 10007
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B23 v=  5551, p=0.977 c=-0.6, =0.05 FPA bid: 4961.9 high bid: 5550

To convince the reader that early overbidding is problematic for bidders, we conducted a first

counterfactual experiment where we calculate counterfactual profits for each of the bidders in

the auction under the assumption that instead of using the bidding strategies they actually em-

ployed, their bids are those predicted by a frictionless robot “agent” using the estimated values

for each car. In this counterfactual, we assume that all the bids of the other human bidders in the

auction are unaffected by the bids of the counterfactual robot bidder, except to the extent that the

counterfactual bids of the robot bidder changes the high bid track.

We illustrate this counterfactual in figure 19 where we replaced B16 in auction 10007 by a

frictionless robot. The left panel of the figure shows the actual auction outcome, where B23 wins

the auction with a high bid of $5,550 at second t = 108. Notice that the human bidder B16 placed a

single bid of $5,500 at t = 81. The right panel shows the counterfactual outcome when we replace

B16 by a frictionless robot, which starts bidding earlier at t = 71 but with a much lower opening

bid of $423, then raising it in 12 subsequent bids toward the end of the auction and winning it with

a final bid of $6,348 in the final second, t = 120. Thus, B16’s bidding robot earned a counterfactual

profit of v − b = 8449 − 6348 = 2101, whereas the human bidder B16 earned $0 in auction 10007,

either due to inattention or complacency about remaining the high bidder from t = 109 to t = 120.

In the counterfactual simulation right panel, we kept all other human bidders’ bids fixed at

their actual values, but adjusted the high bid track (red line) to account for the counterfactual

bids by the frictionless agent for B16. In particular, the agent did not place a high bid of $5,500 at

t = 81, so B23 becomes the new high bidder with their bid of $4750 at t = 79. Note that B23 made a

succession of “bid creeps” to learn the high bid of $5500 in the actual auction, and we assume that
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B23 would have continued to do this in the counerfactual simulation even though B23 becomes

the new high bidder at t = 79. One could argue that B23 might have stopped increasing their

bid at t = 79 until t = 97 when B11 made a bid of $4790. Note that B23 also submitted a bid of

$5,050 at t = 97 but B23 might have waited until t = 98 to learn that they had been outbid, and

submitted the $5,050 bid at t = 98 rather than t = 97. In the actual auction B23 submitted their

winning bid of $5,550 at t = 108, ending its series of bid creeps to become the new high bidder

and B23 remained the high bidder for the remainder of the auction. In the counterfactual auction

this is also the case, except that the frictionless agent for B16 sneaks in at the last second t = 120

and submits the winning bid of $6,348. Thus, it seems plausible that the bids of the other human

bidders would not have changed very much in this auction if B16’s bids had been made by the

frictionless robot bidder.

Tables 3 and 4 summarize the results of the first counterfactual, where we simulated all 4, 029

bidder-auction pairs and for each bidder calculated the profit that bidder would have earned had

they used the frictionless bidding strategy as their agent, while all other bids in each auction

are those given by the actual bids submitted by the human bidders, adjusting the high bid track

appropriately as described above. We see that the adoption of bidding agents results in a win-win

situation for both bidders and the car rental company: mean auction prices increase by $99 and

mean profits earned by bidders more than doubles.

Table 3: Counterfactual simulation 1: mean values, profits, prices and efficiency

Mean valuations Mean profits Mean winning bid Efficiency

Actual 6843 (64) 659 (45) 5824 (38) 85.0%

Counterfactual 7423 (90) 1500 (67) 5923 (39) 85.8%

Table 4: Counterfactual simulation 1: outcomes

Counterfactual Actual Bidder

Bidder Wins Loses

Wins 128, 3.1% 265, 6.6%

Loses 405, 10.0% 3231, 80.2%

How is this possible? The first column of table 3 shows that the mean valuation of the winning

bidder increases by $580. Notice also that the sum of winning price plus bidder profits equals

the valuation of the winning bidder. So by bidding higher at the last second of the auction the

56



frictionless bidding agents improved efficiency from 85% to 85.8% (see last column). The higher

efficiency is reflected in the higher average valuation of the winning bidder in the auctions. The

result is that the frictionless bidders improve both bidder profits and auction revenues by reducing

the inefficiency of human bidders in the Korean auctions.

Table 4 provides additional evidence that the human bidders were bidding too high. Obvi-

ously, a human bidder was the winner in all actual Avante auctions. But the frictionless bidder

won only 128+265=393 auctions. This is because the frictionless bidding agents were generally

bidding less than their human counterparts, so this implies that the bidding agents won fewer

auctions in total. This means that the bidding agents were earning sufficiently higher profits con-

ditional on winning to make up for the lower chance of winning any particular auction.

We illustrate this point in more detail in table 5 where we compare the actual and counter-

factual outcomes for selected bidders. To aid comparison of statistically significant differences we

report the standard errors of the mean value in each cell of the table. From the first column we see

that not all human bidders participated in all 533 auctions, though some of the such as B8 and B9

bid in over 300 auctions.15 There appears to be differential patterns of entry into bidding, since we

can see from the third to last column, with the average valuations of all cars in the auctions each

bidder participated in shows wide variation. For example the mean valuation of cars in the 315

auctions that B8 bid in was $5255 whereas for B9, the average valuation was $7043.16

The main take-aways from table 5 are listed below:

1. Bidding agents generally wins fewer auctions, as you can see by comparing actual and coun-
terfactual win probabilities in column 2 of the table.

2. Bidding agents win less frequently due to bidding less on average in auctions compared to
their human counterpart, as can be seen in the column High bids, all auctions.

3. However in the auctions the bidding agent wins, the mean winning bid is often as high or
higher than their human counterparts.

4. Conditional on winning, the bidding agents earn far higher profit compared to their human
counterparts as you can see from the column Mean profits, auctions won in the table.

5. Despite winning less frequently compared to their human counterparts, the bidding agents
earn sufficiently more conditional on winning to raise their average (and thus total) profits
over all auctions as shown in the columns average Profits, All auctions.

15In a separate analysis not shown here in the interest of space, we do not find any relationship between bidder
experience (as proxied by the number of auctions in which a bidder participated) and expected profits.

16Of course differences in valuation may also reflect differential opportunities to resell cars that vary over bidders and
are reflected in their valuations in addition to differences in car values resulting from additional information bidders
observe but we do not observe as the econometrician.
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Table 5: Counterfactual 1: actual versus simulated outcomes for selected bidders

Bidder Win Mean profits High bids Values
Auction Prob All Won All Won All Won
Count Act/CF Act CF Act CF Act CF Act CF Act CF
1 20.2 237 470 1169 2128 5671 5440 5821 5841 6631 6990 7969
163 22.1 (58) (87) (223) (237) (77) (66) (164) (146) (132) (306) (341)
3 37.1 325 355 874 2483 6182 5705 6330 5988 7128 7204 8471
35 14.3 (118) (167) (257) (583) (125) (125) (181) (500) (291) (393) (1020)
5 5.5 16 144 298 2637 5146 4869 5955 6246 5571 6208 8883
146 5.5 (7) (54) (88) (409) (87) (76) (182) (179) (120) (196) (531)
6 13.5 33 22 244 3540 5708 5230 5925 6685 6049 6169 10225
163 0.6 (9) (22) (52) (0) (66) (52) (143) (0) (96) (153) (0)
8 10.8 35 138 324 1810 4935 4648 5168 5393 5255 5492 7204
315 7.6 (16) (35) (137) (301) (52) (47) (186) (229) (77) (238) (490)
9 9.9 159 1008 1609 2987 5448 5459 5527 6241 7043 7137 9228
323 33.7 (43) (88) (343) (116) (47) (54) (142) (65) (128) (412) (163)
10 12.3 84 259 682 2264 4879 4713 5566 5507 5459 6249 7771
227 11.5 (31) (57) (223) (280) (72) (66) (159) (192) (111) (265) (438)
11 9.7 29 125 303 1960 5344 5003 5707 5712 5778 6010 7672
361 6.3 (7) (31) (47) (283) (52) (44) (118) (156) (75) (135) (392)
14 15.6 54 107 349 1376 4690 4468 5270 5312 5004 5619 6687
167 7.8 (16) (35) (82) (272) (84) (76) (235) (266) (108) (252) (500)
15 6.8 5 37 79 1624 4664 4353 6370 4947 4784 6449 6561
44 2.3 (3) (37) (28) (0) (140) (110) (896) (0) (145) (871) (0)
16 15.2 95 175 629 1536 5428 5107 5368 5399 5910 5997 6935
158 11.4 (28) (50) (142) (285) (75) (62) (191) (246) (106) (288) (494)
17 14.9 61 174 406 2623 5528 5304 5781 5967 6316 6186 8591
181 6.6 (14) (54) (67) (379) (65) (59) (138) (245) (118) (144) (565)
23 21.6 109 86 505 1276 5383 5044 5504 5470 5711 6010 6745
148 6.8 (40) (35) (167) (347) (65) (52) (134) (326) (84) (231) (639)
28 15.6 129 257 830 2223 5641 5418 6158 6105 6478 6988 8328
225 11.6 (29) (54) (140) (225) (57) (50) (129) (125) (101) (230) (334)
32 33.7 61 23 181 1001 5828 5271 5982 5495 6023 6163 6496
86 2.3 (24) (18) (67) (477) (80) (57) (142) (593) (92) (162) (1070)
36 6.1 16 306 261 3112 5675 5368 6506 6477 6410 6767 9589
132 9.8 (7) (86) (85) (86) (73) (63) (393) (97) (138) (350) (354)
47 5.4 11 37 209 2512 5661 5175 5955 5754 5935 6164 8266
203 1.4 (5) (24) (79) (931) (54) (43) (315) (932) (81) (265) (1852)
49 2.9 5 130 190 3007 4916 4758 5352 6247 5495 5543 9254
139 4.3 (3) (57) (53) (566) (84) (84) (697) (451) (146) (697) (1012)
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6. The bidding agents almost always submit their winning bid in the last second of the auction,
whereas human bidders submit their final bid at approximately t = 106 well before t = 120.

7. Via the combination of bidding at the last second and bidding slightly higher at that time,
the bidding agents are able to win without substantially overpaying in order to win.

8. The bidding agents do not engage in “straightforward bidding” by bidding up to their val-
uation for the car. Thus, bidding agents with lower valuations submit final bids at t = 120
well below their valuation v.

9. As a result of this, the bidding agent that does win an auction is more likely to have a higher
valuation for the car, and this is reflected in the significantly higher mean valuation of cars
conditional on winning compared to their human counterparts, as shown in the last two
columns of the table.

10. There are three human bidders, B6, B23 and B32, whose average profits exceed the average
profits earned by their bidding agent. The bidding agents bid significantly less but as a result,
they win far fewer auctions compared to these 3 bidders for the subset of auctions these
bidders participated in.17

We take the results of Counterfactual 1 as strong evidence in favor of the hypothesis that the

reason our model fails to explain the early overbidding by the bidders at these auctions is that

most of the bidders are bidding suboptimally. It demonstrates that most bidders in our sample

are not using best-response bidding strategies: we have constructed alternative bidding strategies

that enables them to earn significantly higher expected profits. This should be impossible if the

bidders were using equilibrium best-response bidding strategies, and seems inconsistent with the

hypothesis of bidder collusion.

Of course, the reader may be uneasy about the first counterfactual simulation because we have

treated the bids of all other human bidders other than the deviation bidder as fixed (subject only to

the minor caveats discussed above). To allay these concerns, we conducted a second counterfactual

experiment in which all human bidders at each of the 533 auctions were replaced by frictionless

bidding agents. In this counterfactual both the amount and the timing of the bids of all bidders

are those chosen by the frictionless bidding agents so outcomes are fully endogenous.

Figure 20 compares the actual outcome of auction 10007 with the counterfactual outcome if all

the bidders were frictionless agents using the estimated valuations of the cars from our analysis of

human bidders. The left-hand panel repeats the actual data on bids at auction 10007 whereas the

17Even though the counterfactual prediction is supposed to be optimal, the optimality is relative to our Assumption 1
that all bidders have common beliefs B and participate in generic auctions for Avante. If, however, certain bidders self-
select into participation for certain types of Avante cars (for example, screening on the µ parameter in our conditional
independent private-values Assumption 1 where bidder valuations are drawn according to the conditional density
f (v|µ)), it is possible that such bidders have superior beliefs for the subset of auctions in which they actually participate,
relative to the average beliefs B̂ for all 533 Avante auctions we have estimated. If so, these bidders would have an
informational advantage that enables them to earn higher profits than optimal bidding strategies solved with average
beliefs B̂.
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Figure 20: Actual versus counterfactual outcomes with all frictionless bidders in auction 10007
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B23 v=  5551, p=0.000 c=0.0, =0.00 FPA bid: 4961.9 high bid: 4984.89

right panel depicts the counterfactual simulation outcome where all of four human bidders are

replaced by their frictionless bidding agents. Paradoxically, there is no early bidding in the fric-

tionless bidder simulation. We can also see that the bidder with the highest valuation, B16 with

v = 8449, wins the auction when all bidders are frictionless bid, but loses the actual auction in fa-

vor of B23 who has the second lowest valuation. Notice also that while in this case, the counterfac-

tual auction outcome is ex post efficient, the winning bid of $5136 is lower than the second-highest

valuation, $5562. This is another reminder that frictionless bidding is not straightforward bidding,

and the outcome of the Korean auction with frictionless bidders is not strategically equivalent to

a static second price sealed bid auction as it is in a Japanese or “thermometer” auction.

The right panel of figure 20 shows the bids and high-bid trajectory that emerges under fric-

tionless bidding in the Korean auction. Paradoxically, we see no early bidding in the frictionless

bidding scenario: first bids only arrive after second t = 70 and they start out much lower com-

pared to human bidders. Although the frictionless bidders submit a much larger number of bids

their bids are concentrated in the last half of the auction and rise most rapidly in the final five sec-

onds of the auction, producing the convex shape of the mean high bid trajectory in the frictionless

case, in contrast to the concave-shaped mean high-bid trajectory in the actual auctions.

Table 6 summarizes the results of counterfactual simulation 2 (or CF2 for short). The results

are similar to those from CF1 in table 3 except: 1) efficiency is significantly higher, 93%, when

all bidders are frictionless, 2) winning prices are significantly lower ($5426 vs $5923), 3) bidder

profits are significantly higher ($1895 vs $1500), and 4) mean valuations of winners is slightly

lower ($7321 vs $7423). Table 7 provides detailed results for the same set of bidders that we showed
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Table 6: Counterfactual simulation 2: mean values, profits, prices and efficiency

Mean valuations Mean profits Mean winning bid Efficiency

Actual 6843 (64) 659 (45) 5824 (38) 85.0%

Counterfactual 7321 (89) 1895 (62) 5426 (33) 93.4%

for the first counterfactual in table 5 with the following differences

1. Since all bidders are frictionless, the counterfactual win rates are not significantly lower com-
pared to actual win rates in CF2.

2. Winning bids are significantly lower: collectively the frictionless bidders are able to signifi-
cantly reduce winning prices compared to both CF1 and human bidding outcomes.

3. Though counterfactual profits are now always higher than actual profits for all bidders in
CF2 as you can see in table ??, they are not always higher than the profits under CF1. This
is due to the fact that in CF1 the frictionless bidders were able to exploit the human bidders
and take some of their surplus, whereas in the all frictionless bidder CF2, all of the bidders
are equally “able” bidders: the more successful bidders have higher valuations.

4. However due to the lower winning prices in CF2, bidders are better off in aggregate.

The results for CF2 shown above suggest the potential for algorithmic collusion using the fric-

tionless bidding strategies we have developed. If all bidders were to switch to the frictionless

bidding strategies acting as their agents, average winning bids in the auctions would be nearly

$400 lower, and average bidder profits would be over $1200 higher. This is why we conclude that

it seems unlikely that bidders are colluding in the Korean auctions. Instead, we think the more

likely explanation is that the human bidders are engaging in early overbidding that is resulting in

their paying higher prices and earning lower prices than we would expect to observe if all bidders

were frictionless and rational.

However we note a flaw in CF2: we computed the frictionless bidding strategies using human

beliefs — i.e. we used the data on human bidders to construct the beliefs about the stochastic pro-

cess governing the high bid in the auction. This might be appropriate for predicting the immediate

aftermath if all bidders switched to frictionless bidders as their agents. However since frictionless

bidders are bidding later in the auction and more aggressively this alters the stochastic process for

the high bid trajectory in the auction, implying different beliefs. Recall section 4.1 where we de-

scribed a successive approximations algorithm for updating beliefs over time based on experience

in the auction: Bt+1 = Λ(Bt) from equation (5).
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Table 7: Counterfactual 2: actual versus simulated outcomes with all frictionless bidders

Bidder Win Mean profits High bids Values
Auction Prob All Won All Won All Won
Count Act/CF Act CF Act CF Act CF Act CF Act CF
1 20.2 237 393 1169 2066 5671 5196 5821 5418 6631 6990 7484
163 19.0 (58) (83) (223) (285) (77) (60) (164) (145) (132) (306) (375)
3 37.1 325 415 874 2076 6182 5405 6330 5692 7128 7204 7768
35 20.0 (118) (176) (257) (555) (125) (112) (181) (293) (291) (393) (808)
5 5.5 16 170 298 2702 5146 4783 5955 5682 5571 6208 7755
146 8.2 (7) (57) (88) (396) (87) (72) (182) (161) (120) (196) (549)
6 13.5 33 132 244 1651 5708 5113 5925 5543 6049 6169 7194
163 8.0 (9) (45) (52) (378) (66) (48) (143) (222) (96) (153) (568)
8 10.8 35 117 324 1186 4935 4546 5168 4774 5255 5492 5959
315 9.8 (16) (28) (137) (210) (52) (42) (186) (147) (77) (238) (335)
9 9.9 159 884 1609 2976 5448 5120 5527 5705 7043 7137 8679
323 29.7 (43) (90) (343) (161) (47) (45) (142) (76) (128) (412) (219)
10 12.3 84 159 682 1241 4879 4570 5566 5080 5459 6249 6322
227 12.7 (31) (37) (223) (199) (72) (59) (159) (136) (111) (265) (310)
11 9.7 29 196 303 1866 5344 4897 5707 5336 5778 6010 7202
361 10.5 (7) (39) (47) (233) (52) (41) (118) (111) (75) (135) (311)
14 15.6 54 187 349 1007 4690 4337 5270 4852 5004 5619 5859
167 18.6 (16) (42) (82) (155) (84) (70) (235) (130) (108) (252) (265)
15 6.8 5 57 79 1251 4664 4288 6370 5981 4784 6449 7232
44 4.5 (3) (41) (28) (329) (140) (116) (896) (332) (145) (871) (661)
16 15.2 95 154 629 1156 5428 4941 5368 4923 5910 5997 6079
158 13.3 (28) (40) (142) (190) (75) (58) (191) (168) (106) (288) (308)
17 14.9 61 244 406 1768 5528 5092 5781 5651 6316 6186 7418
181 13.8 (14) (56) (67) (244) (65) (52) (138) (120) (118) (144) (345)
23 21.6 109 129 505 1064 5383 4854 5504 5262 5711 6010 6326
148 12.2 (40) (34) (167) (158) (65) (51) (134) (115) (84) (231) (262)
28 15.6 129 305 830 1808 5641 5203 6158 5634 6478 6988 7442
225 16.9 (29) (54) (140) (176) (57) (45) (129) (80) (101) (230) (249)
32 33.7 61 103 181 986 5828 5182 5982 5316 6023 6163 6301
86 10.4 (24) (37) (67) (180) (80) (59) (142) (155) (92) (162) (326)
36 6.1 16 316 261 2610 5675 5226 6506 5842 6410 6767 8452
132 12.1 (7) (87) (85) (386) (73) (53) (393) (143) (138) (350) (490)
47 5.4 11 135 209 1707 5661 5085 5955 5490 5935 6164 7196
203 9.9 (5) (43) (79) (375) (54) (41) (315) (179) (81) (265) (541)
49 2.9 5 165 190 2292 4916 4679 5352 5827 5495 5543 8119
139 7.2 (3) (60) (53) (473) (84) (76) (697) (251) (146) (697) (685)
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Figure 21 illustrates the result of this successive approximations algorithm for computing an

anonymous equilibrium to the Korean auction with all frictionless bidders. The red line in the

figure is the empirical mean high bid trajectory for human bidders from our data on the 533 Avante

car auctions. Call this initial “guess” for the beliefs B0. We then solved the DP problems for 4029

bidder/auction pairs with these initial beliefs and then simulated 533 new auction outcomes un-

der the initial beliefs B0 and the implied mean high bid trajectory is illustrated by the blue line in

figure 21. We then re-estimated the beliefs using this simulated data resulting in updated beliefs,

B1 = Λ(B0) and resolved the 4029 DPs under these updated beliefs for all frictionless bidders.

It turns out that after a single iteration of this successive approximations procedure, all fric-

tionless bidders find it optimal to snipe, i.e. to wait until the final second of the auction t = 120

to place their bids. This implies a high bid trajectory given by the black link in figure 21. All

subsquent iterations of the algorithm involve bidding behavior by the frictionless bidders that is

strategically equivalent to bidding in a first price sealed-bid auction. The algorithm converged

to an approximate fixed point that constitutes the anonymous equilibrium of a static first-price

sealed-bid auction.

Figure 21: Convergence of beliefs to anonymous equilibrium with frictionless bidders
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So our final counterfactual was computed using the optimal bid strategies for frictionless bid-

ders from the anonymous equilibrium of the first-price sealed-bid auction, which, by Theorem 2 of

section 4.4, is also an anonymous equilibrium of the Korean auction with frictionless bidders. We

illustate the anonymous equilibrium bid function, expected profit function and win probability as
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a function of the bidder’s valuation v in figure 22. Notice that win probabilities and expected prof-

its are nearly 0 for valuations under $5000. We also observe that since all frictionless bidders use

the same monotonic bid function in an anonymous equilibrium, we conclude that this equilibium

will be ex post efficient.

Figure 22: Anonymous equilibrium bids, expected profits and win probabilities in Korean auction
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Summary results from CF3 are presented in table 8. We see that since auction outcomes are

now 100% efficient (i.e. the highest valuation bidder always wins each auction), both the car rental

company and the bidders can share in the “bounty” provided by this recaptured surplus. In par-

ticular, the mean winning bid in these auctions is $6019, or approximately $200 higher than the

winning bid in the Korean auctions with human bidders. Further, the mean profits per auction

is nearly 3 times higher. So both the rental car company and the average bidder are substantially

better off if bidding were conducted using a first-price sealed-bid auction format, which again is

the anonynmous equilibrium to the dynamic Korean auction when all bidders are rational and

frictionless.

More detailed bidder-specific results from CF3 are presented in Table 9 for the same selected

set of bidders as we displayed in the corresponding tables for counterfactuals 1 and 2. In this case,

expected profits (over all auctions each bidder participated in) are strictly higher for all bidders

except B23 and B32 under a first-price sealed-bid auction format. The expected winning bids are

uniformly higher too, as are expected profits conditional on winning the auction. Win probabilities

are approximately the same as in the human Korean auctions, except for B23 and B32 where the

CF3 win probabilities are less than half as large as the actual win probabilities, and this may

explain why expected profits over all auctions are lower for these two bidders.
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Table 8: Counterfactual simulation 3: mean values, profits, prices and efficiency

Mean valuations Mean profits Mean winning bid Efficiency

Actual 6843 (64) 659 (45) 5824 (38) 85.0%

Counterfactual 7888 (93) 1869 (53) 6019 (42) 100.0%

We conclude that the complex dynamics of bidding in the informationally restricted Korean

auctions seems to create severe challenges for human bidders. The combination of inattention and

other bidding frictions and perhaps additional elements of irrationality and “animal spirits” con-

tribute to the early overbidding phenomenon that we have documented in the previous section.

While early overbidding does contribute to higher prices for the car rental company, our counter-

factuals suggest that the complexity of the Korean auction format and the presence of irrational-

ity/bidding frictions contributes to the low efficiency of human bidders, 85%. By switching to a

simpler static first-price sealed-bid auction format, which is arguably far less taxing and easier to

bid in compared to the Korean auction, we have shown that a 100% efficient outcome can obtain

and both the car rental company the the bidders in the auction are significantly better off than un-

der the Korean auction. Thus it seems like a win-win situation for the car rental company to switch

to an anonymized version of a static first-price sealed-bid auction for sales of its rental cars. We see

no compelling a priori reason why the Korean auction format should be less susceptible to bidder

collusion than a static first-price sealed-bid auction.

6.1 First-price vs Second-price auctions

But can the car rental company do even better? Our final counterfactual is to predict the effect of

switching from a static first-price sealed-bid auction format to a second-price or Vickrey [1961] for-

mat. Recall that in a second-price auction the bidder who submits the highest bid is only required

to pay the amount of the next highest bid. As is well known, it is a dominant strategy for rational

bidders to bid truthfully, i.e. the optimal bid function is γ(v) = v. Further, under the assumption

of independent private values, Myerson [1981] proved that the revenue-optimal auction design

from the standpoint of the seller is second-price auction with an appropriately specified reserva-

tion price.

We assume that human bidders would bid truthfully under the second-price auction format,

though we note that studies by Dyer et al. [1989] and Isaac et al. [2012] reported evidence from
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Table 9: Counterfactual 3: actual versus anonymous equilibrium of first-price auction

Bidder Win Mean profits High bids Values
Auction Prob All Won All Won All Won
Count Act/CF Act CF Act CF Act CF Act CF Act CF
1 20.2 237 373 1169 1962 5671 5489 5821 6017 6631 6990 7980
163 22.1 (58) (75) (223) (236) (77) (74) (164) (194) (132) (306) (420)
3 37.1 325 544 874 2115 6182 5769 6330 6189 7128 7204 8304
35 25.7 (118) (197) (257) (473) (125) (136) (181) (304) (291) (393) (769)
5 5.5 16 135 298 1790 5146 4836 5955 6106 5574 6253 7896
146 7.5 (7) (46) (88) (336) (87) (82) (182) (246) (120) (185) (570)
6 13.5 33 84 244 1522 5708 5206 5925 6037 6049 6169 7559
163 5.5 (9) (31) (52) (300) (66) (57) (143) (205) (96) (153) (499)
8 10.8 35 120 324 1220 4935 4603 5168 5190 5255 5492 6410
315 9.8 (16) (29) (137) (205) (52) (51) (186) (222) (77) (238) (417)
9 9.9 159 999 1609 2540 5448 5562 5527 6472 7043 7137 9013
323 39.3 (43) (81) (343) (107) (47) (63) (142) (73) (128) (412) (176)
10 12.3 84 210 682 1540 4879 4710 5566 5794 5459 6249 7334
227 13.7 (31) (44) (223) (199) (72) (72) (159) (175) (111) (265) (365)
11 9.7 29 125 303 1960 5344 5003 5707 5859 5778 6010 7479
361 9.1 (7) (31) (47) (283) (52) (44) (118) (169) (75) (135) (360)
14 15.6 54 136 349 1080 4690 4418 5270 5251 5004 5619 6859
167 12.6 (16) (38) (82) (207) (84) (79) (235) (233) (108) (252) (376)
15 6.8 5 57 79 1251 4664 4288 6370 5981 4784 6449 7232
44 4.5 (3) (41) (28) (329) (140) (116) (896) (332) (145) (871) (661)
16 15.2 95 193 629 1271 5428 5091 5368 5588 5910 5997 6859
158 15.2 (28) (46) (142) (189) (75) (68) (191) (199) (106) (288) (376)
17 14.9 61 277 406 1618 5528 5316 5781 5898 6316 6186 7517
181 17.1 (14) (57) (67) (207) (65) (66) (138) (159) (118) (144) (358)
23 21.6 109 107 505 992 5383 4998 5504 5342 5711 6010 6334
148 10.8 (40) (33) (167) (200) (65) (56) (134) (195) (84) (231) (384)
28 15.6 129 288 830 1659 5641 5432 6158 6030 6478 6988 7689
225 17.3 (29) (50) (140) (162) (57) (56) (129) (126) (101) (230) (281)
32 33.7 61 52 181 890 5828 5238 5982 5345 6023 6163 6235
86 5.8 (24) (24) (67) (171) (80) (62) (142) (388) (92) (162) (557)
36 6.1 16 284 261 2504 5675 5375 6506 6568 6410 6767 9072
132 11.4 (7) (76) (85) (276) (73) (72) (393) (159) (138) (350) (428)
47 5.4 11 86 209 1750 5661 5139 5955 5799 5935 6164 7550
203 4.9 (5) (34) (79) (449) (54) (47) (315) (349) (81) (265) (789)
49 2.9 5 94 190 2186 4916 4721 5352 6210 5495 5543 8396
139 4.3 (3) (43) (53) (502) (84) (91) (697) (485) (146) (697) (961)
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experimental studies of first-price and second-price static sealed-bid auctions where the number of

bidders participating in the auctions were unknown to the bidders that are not always consistent

with the predictions of these models. In particular, Kagel et al. [1987] found that subjects bid an

average of 11% more than their dominant strategy bids in second-price auctions. Isaac et al. [2012]

concluded: “We observe systematic deviations from risk neutral bidding in FP auctions and show

theoretically that these deviations are consistent with risk averse preferences.” (p. 516).18

Our simulations reveal that while the first-price and second-price auctions are both 100% effi-

cient, they are not revenue equivalent: the second-price auction results in average revenue of $6532

per car auctioned compared to $6019 for a first-price auction. Is this finding a violation of the Rev-

enue Equivalence Principle of auction theory? We argue that Revenue Equivalence (i.e. that the

expected revenue from first-price and second-price auction formats are the same) depends on a

game-theoretic analysis that presumes common knowledge of the distribution of valuations and

the distribution of the number of bidders participating as bidders in any particular auction. Our

use of the anonymous equilibrium solution concept does not require common knowledge of those

objects, and hence our finding that the revenue from a second-price auction significantly exceeds

the revenue from a first-price auction does not contradict the Revenue Equivalence Principle.

Figure 23 graphs the distribution of the winning bid and profits for the winning bidder in

the 533 Avante auctions. Three curves are plotted: 1) the red line is the distribution of winning

bids and profits under the actual Korean auction format, 2) the blue line plots the counterfactual

predictions of these quantities under a static first-price auction format, and 3) the green line plots

the distribution of these quantities under the second-price auction format. Due to the concavity of

the optimal bid function in v (blue line in the left panel of figure 22), there are very few bids above

$7000 in the first-price auction, and this is reflected by a density of bids that is near zero in the blue

line in the left panel of figure 23. However there is no “shading of bids” in a second-price auction,

and we see this reflected in a significant density of bids in excess of $7000 in the green line of the

left panel of figure 23.

The fact that few bids are above $7000 in the first-price auction means that the high valuation

bidder in these auctions can gain a substantial profit when the bidder’s valuation for the car is

18Isaac et al. [2012] argued that the predictions of the Nash equilibrium theory provide a better approximation to
actual bidding behavior in their laboratory experiments if subjects are modeled as risk-averse, expected-utility maxi-
mizers instead of risk-neutral expected-payoff maximizers. Other theories including loss aversion theories of decision
making under ambiguity such as theories involving probability weighting have also been invoked to try to explain the
discrepancy between the predictions of Nash equilibrium models of bidding in auctions and laboratory evidence.
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Figure 23: Distribution of winning bids and profits in first-price and second-price auctions
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over $10,000. We see this in the second mode in the distribution of profits between $3000 and

$4000 (blue line in right panel of figure 23 which is not present in the distribution of profits under

the second-price auction (green line). Thus, bidders are better off on average under the first-price

auction than under the second-price auction, whereas the car rental company strictly prefers a

second-price auction because it results in higher expected (and therefore total) revenues.

We conclude this section with Table 10 which summarizes revenues and bidder profits under

the first-price and second-price auction formats and compares them to actual revenues under the

dynamic, informationally restricted Korean auction. Mean auction revenues would be 3.3% higher

under a static first-price format, and 12.2% under the second-price format. Average bidder profits

are 205% and 283% higher, respectively, under the first-price and second-price auction formats

compared to those earned under the dynamic Korean auction. As we noted above, the high gains

to bidders is “financed” by the significant improvement in auction efficiency, which increases from

84% under the Korean auctions to 100% under the first-price and second-price auction formats.

Thus, our empirical findings are in line with Myerson’s theoretical predictions, even though

we have relaxed the notion of “equilibrium” in these auctions so that the Revenue Equivalence

Principle does not necessarily apply in our case. It is beyond the scope of this paper to analyze

other auction formats to see if they result in even higher expected revenues to the seller, and we

have not attempted to calculate an optimal reserve price or predict how that would affect the

expected winning bid.19

19Note that the optimal reserve price depends on the distribution of valuations f (v|µ), which in turn depends on the
individual characteristics of each car being sold µ, which in turn depends on variables we do not observe.
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Table 10: Expected winning bids under different scenario and auction mechanisms

Mean valuations Mean profits Mean winning bid Efficiency

Actual 6843 (64) 659 (45) 5824 (38) 85.0%

First-price 7888 (93) 1869 (53) 6019 (42) 100.0%

Second-price 7888 (93) 1355 (53) 6532 (72) 100.0%

Of course, our conclusions in Table 10 depend on the assumption of no collusion occuring.

Were collusion present, it is unclear whether the information restrictions at the Korean auction are

more effective in curbing it than the stronger informational restrictions inherent in anonymized

versions of a static first-price or second-price sealed-bid auctions—especially with an appropri-

ately calculated reserve price. Sealed-bid auctions (either first- or second-price) are much simpler

to implement and to bid at, and convey even less information to bidders than the Korean auction

does. The main argument for adopting the more complex Korean auction mechanism seems to

be to exploit the irrational exuberance of the bidders. Extensive laboratory evidence exists docu-

menting irrational bidding at second-price auctions, which leads to overbidding in that format as

well.20 Thus, it is unclear whether the Korean auction is the best choice of auction, even consider-

ing the possibility of collusion and irrationality on the part of bidders.

7 Conclusion

We have analyzed detailed bid-level data from a new type of auction we call the Korean auction —

an informationally-restricted, online ascending-bid auction designed by an executive of a rental-

car company in Korea. The executive suspected collusion by professional bidders participating in

the company’s previous selling method — English “open outcry” auctions — conducted on-site at

each rental location. In the new online auction mechanism, bidders observed neither the values of

other bids nor the identities of other bidders: the only information available to a bidder is whether

they hold the current highest bid at any point during the 2 minute auction.

As we discussed in the introduction, informational restrictions such as anonymization of bid-

ders and “coarsening” of bids have been used to deal with potential collusion in other contexts.

20See, for example, Kagel et al. [1987], who found that laboratory subjects overbid by eleven percent relative to their
valuations at second-price, sealed-bid auctions. They concluded that “Although we observe persistent overbidding in
second-price auctions, clear economic forces are at work limiting the size of the overbid.” (p. 1302).
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However it is less clear why a complex dynamic ascending bid auction mechanism instead of a

simpler static sealed bid format provides additional protection against collusion. The standard

reason dynamic ascending bid auctions are preferred is the linkage principle — more information is

released in dynamic auctions and this promotes bidder learning that can result in higher auction

prices compared to static sealed-bid auctions that reveal far less information.

Dynamic ascending bid auctions such as FCC Spectrum auctions or Ebay auctions also invoke

activity rules or soft closures that discourage bidders from “hiding in the background” and observ-

ing but not bidding in auctions until very near the end of the auction, resulting in too little early

bidding and information disclosure. That is, dynamic auctions often have rules to discourage in-

formational free-riding. The Korean auction has a “hard close” at 2 minutes but solves the problem of

informational free-riding in an elegant and novel fashion. Namely, by further restricting informa-

tion so that no bidder can see the bids of other bidders during the auction. The only information

bidders receive is whether their bid is the highest at any instant during the auction. Intuitively,

this latter restriction should create significant incentives for early bidding in the auctions in order

to gather information to win the auction without substantially overpaying. However it is less clear

whether this informational restriction benefits the seller unless the informational gains from the

linkage principle outweigh the effect of learning what the high bid will be, since the latter type of

learning should operate to reduce prices bidders pay.

Given the structure of the Korean auto auctions, where all bidders were allowed inspect cars

before bidding, we would not expect a high degree of affiliation or “common values” in bidders’

valuations for cars beyond the essentially public information obtained from inspections. For this

reason we believe that a conditional independent private values model is more appropriate, i.e.

one where bidders’ values are independently distributed conditional on the public information

on each car (which we as the econometrician do not observe). When values are conditionally

independent, the linkage principle does not hold since even if bids during the auction are public,

this information does not affect the bidders’ values for the cars. In any event, other bids are not

public in the Korean auction, so its design does not allow it to benefit from the linkage principle

even if it were present.

In a previous study, Cho et al. [2014] found that average prices of cars auctioned increased

by 10% when the executive abandoned his Korean auction mechanism in favor of English open-

outcry auctions held at a large auction house in Seoul. What explains this increase? Is it evidence

that collusion was still happening under the Korean auction, or was the linkage principle is oper-
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ative, or was it due to the larger number of bidders participating in auctions held at the auction

house? The reduced-form analysis of Cho et al. [2014] was inconclusive on this question.

Our more detailed structural analysis of the Korean auction data suggests a new explana-

tion: the complexity of the dynamic Korean auction format interacts in a negative way with the

bounded rationality of the bidders in these auctions, producing relatively inefficient outcomes. We

have suggested that by switching to simpler static sealed-bid auction formats, this inefficiency can

be eliminated resulting in both higher aggregate profits for bidders and higher average prices for

the rental car company. Our counterfactual calculations suggest that if the executive had adopted

a static second-price sealed-bid auction format, average auction prices would have increased by

12%, which is more than the 10% increase that the company obtained by switching to open-outcry

auctions at the auction house in Seoul (which net of the auction house’s 10% commission, involved

no actual net improvement relative to the Korean auction).

This paper has focused on solving a key puzzle we call the bidding paradox — namely, we ob-

serve early high bidding by the professional human bidders in the Korean auctions but it has

proved quite challenging to provide rational explanations of this behavior that are consistent with

optimality and equilibrium. The standard way of studying dynamic auctions, formulated as dy-

namic games of incomplete information, is to view bidding behavior as perfect Bayesian equilib-

rium (PBE) outcomes. However we have argued that it is unclear whether early bidding can occur

in a PBE. On the other hand we proved that there is always a trivial uninformative PBE involving

no bidding until the last possible second in the auction. This uninformative PBE is strategically

equivalent to the PBE of a static first-price sealed-bid auction where the number of bidders par-

ticipating in the auction is unknown (though there is common knowledge of the distribution of

bidders and the distribution of their valuations).

Instead of abbandoning a structural analysis of our rich dataset on bidding at these auctions

due to our inability to find or solve for an informative PBE, we have introduced a computationally-

tractable model of rationally-inattentive bidding under a relaxed definition of equilibrium known

as an ϵ-anonymous equilibrium. We have shown that this model can explain the early bidding

behavior we observe, at least in a qualitative sense. We assume that in any given instant during the

auction there is a probability p that the bidder is distracted and not paying attention to the auction.

Inattention is rational in the sense that bidders are aware of their inattention and compensate by

bidding earlier and higher in the instants where they are not distracted. Thus, rational inattention

has effects akin to introducing a soft close at the Korean auction, which is known to create an
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incentive for earlier bidding compared to bid sniping as Roth and Ockenfels [2002] have shown.

We introduced a new, fixed-effects, QMLE estimation algorithm to estimate the four type pa-

rameters τ = (v, p, c, σ) of our structural model of bidding behavior using a nested numerical

solution approach where we explicitly calculate optimal bidding strategies for each bidder using

numerical DP. In all, we estimated 4, 029 bidder/auction-specific types for the set of all bidders

who participated in 533 auctions of a generic type of rental car, Avante XD 1.6L. The key compo-

nent of the type for each bidder is v, his private valuation of the car being auctioned. The other

three components (c, p, σ) are parameters governing bidding frictions that include the probability

of being inattentive p, the psychological cost or benefit of submitting a bid c, and a scale parameter

σ of an extreme-value distribution governing idiosyncratic variations in bidding costs.

Even in the presence of frictions, our model is fundamentally a rational model of bidding be-

havior: we use rational inattention and modest bidding frictions to explain the bidding behavior

we observe. We have found that introducing these modest frictions takes us a great distance to-

ward explaining observed bidding behavior, but we conclude that not even our model is capable

of providing a sufficiently accurate prediction of the magnitude of early overbidding prevalent in

the data. That is, even though our econometric model does a reasonable job of predicting the final

bids tendered at these auctions, it systematically underpredicts the size of the initial bid submitted

by most bidders at these auctions.

Another aspect of the bidding paradox is that we would expect that frictionless bidders (i.e.

those whose types are of the form τ = (v, 0, 0, 0)) should be the most likely to engage in early

bidding in the Korean auction. However we have shown that there is plenty of time in the last

half of the auction for the frictionless bidders to do all the bidding they need to do, so there is no

bidding in the first half of the auction. In fact, if it is common knowledge that all bidders in the

Korean auction are frictionless bidders, we have shown that similar to the case of an uninformative

PBE, there is no bidding prior to the last second of the auction. That is, the anonymous equilibrium of

the Korean auction collapses and is strategically equivalent to the anonymous equilibrium of static

first-price sealed bid auction.

Via a series of counterfactual simulations, we have demonstrated that frictionless bidding algo-

rithms that are endowed with the same estimated beliefs and valuations of their human counter-

parts end up bidding later, lower, and earn higher profits. This finding suggests that bidders in the

Korean auction were not colluding, because our frictionless bidding algorithms constitute a set of

feasible (though competitive) bidding strategies that significantly raise bidders’ collective profits
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from participating in these auctions. We conclude that the early overbidding we observe is symp-

tomatic of boundedly-rational behavior on the part of the professional bidders at this auction,

reflecting bidding mistakes that result in higher winning prices and lower efficiency compared to

bidding by frictionless bidding robots.

In the anonymous equilibrium of the Korean auction with only frictionless, rational bidders,

outcomes are 100% ex post efficient, since the auction is then strategically equivalent to a static

first-price sealed-bid auction and all bidders use a common optimal bid function. Paradoxically

auction prices are higher in the anonymous equilibrium with all frictionless bidders than they are

with human bidders, despite the prevalent early overbidding by human bidders.. We showed that

both the bidders and the car rental company benefit from the increase in efficiency under the static

first-price, sealed-bid format, raising auction revenues by 3% and bidder profits by 205%.

We are not the first to use rational inattention to explain discrepancies between the actual

behavior of professionals in high stakes settings and the predictions of game theory. We already

noted the work of Bhattacharya and Howard [2022] in the introduction, who found that major

league baseball pitchers “are rationally inattentive to the state in a high-stakes setting” and as a

result “Nash equilibrium play state by state does not explain the data” (p. 388).

However the reader may wonder if the inability of our model of bidding with rational inatten-

tion to fully explain early overbidding is evidence of a deeper form of irrationality on the part of

bidders at these auctions or a symptom of some type of specification error in our model. We be-

lieve it may be possible to “rationalize” observed bidding behavior by allowing for some degree of

“irrationality.” One way to do this is via a bidding model that allows for irrational subjective beliefs.

This is one of the avenues we plan to explore in future work following the approach of Anderson

et al. [2024] who analyzed serves of elite tennis professionals and showed that irrational subjective

beliefs can rationalize disequilibrium play while these players are otherwise behaving optimally.

However our results suggest that early overbidding may not be optimal, even with irrational

subjective beliefs. There may be a deeper form of irrationality in dynamic bidding due to “animal

spirits” or “auction fever”. For example Offerman et al. [2022] conducted a laboratory study of

the effect of different auction mechanisms in a common-values framework, including the “open

outcry” ascending bid auction. “During an Oral Outcry auction, a standing bidder is identified,

who is the highest bidder at that moment. The previous literature has established that this can in-

duce a so-called auction fever (Heyman, Orhun, and Ariely (2004), Ehrhart, Ott, and Abele (2015)).

A standing bidder may get used to the feeling of winning the good and become prepared to bid
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higher than she originally intended. If that happens, auction fever triggers a quasi-endowment ef-

fect.” (p. 814). In their study, they find that due to the endogenous jump bidding in the oral outcry

auction “the available information is least well processed, and the price paid by the winner is the

worst approximation of the common value among all three formats.” We think that similar issues

may be causing the early overbidding and low efficiency we find in the Korean auctions.21

Another interesting agenda for future research would be to explore the use of machine and

reinforcement learning algorithms to see if these algorithms could be trained to engage in sponta-

neous collusion without explicit central oversight or control. One of the questions that we did not

solve in this paper is whether the stochastic process for high bids is “learnable” given the limited

information on bids that each individual bidder receives in each auction. Similar to other Nash

equilibrium concepts, our paper assumed that somehow bidders can learn and bid according to

an anonymous equilibrium bidding strategy, but we have not offered a constructive algorithm and

demonstrated that bidders will eventually learn the correct stochastic process for the high bid in

auctions via repeated play, in a way similar to the study of learning in games, i.e. whether bound-

edly rational agents can eventually learn Nash equilibrium strategies in other types of games.

Appendix A: Proof of Theorem 1

In this appendix, we provide a proof of the Theorem in section 4.4. Our proof is by induction: start-

ing in the final period T, we show inductively that a) the value functions and optimal bid functions

are independent of the high bid indicator, ht, t = 0, 1, . . . , T; and b) for all t < T, the optimal bid

function γt(bt) = 0, whereas in the last period, the optimal bid function γT(bT) is the anonymous

equilibrium bid function for an anonymous static first-price, sealed-bid auction, where beliefs are

given by λT+1(b|0). To wit, bidders’ ex ante anonymous equilibrium beliefs concerning the high

bid in an anonymous version of a static sealed-bid auction.

Consider the optimal bid function γT(bT) in the last period T, where we assume the bidder is

paying attention and observes the high bid so far in the auction, bT, and must decide what final

21We do not take a stand as to whether early overbidding is a result of an inability to calculate optimal bids perfectly
consistent with the bounded-rationality notion of Herbert A. Simon [1957] or due to the effect of emotions or animal
spirits as emphasized by George A. Akerlof and Robert J. Shiller [2009] or other reasons (such as risk aversion or desire
to win an auction for the sake of winning), even though exploring these different possible explanations is an interesting
direction for future research.
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bid γT(bT) to submit. If bT > v, the optimal bid is zero, otherwise, it is given by

γT(bT) = argmax
b≥bT

(v − b)λT+1(b|bT). (26)

In general, the optimal bid function will involve a strict improvement over the current high bid,

that is, γT(bT) > bT and involves shading, namely, bidding below the bidder’s true valuation v

γT(bT) = v − λT+1(γT(bT)|bT)

λ′
T+1(γT(bT)|bT)

, (27)

where λ′
T+1(b|bT) is the derivative of the CDF λT+1(b|bT) with respect to its first argument, b. It

is possible, however, that the constraint b ≥ bT is binding, so the optimal bid is equal to bT. Since

time priority is binding at the auction, matching the current high bid will result in zero probability

of winning the auction. A necessary condition for γT(bT) = bT is that wT(b, bT) is non-increasing

in its first argument b, where wT(b, bT) = (v − b)λT+1(b|bT) is the terminal period bid-specific

value function. Therefore, γT(bT) is given by

γT(bT) =


0 if bT > v

bT if bT ≤ v and wT(b, bT) is non-increasing in b

γT(bT) otherwise, for γT(bT) given in (27).

(28)

Substituting the optimal decision rule γT(bT) into the decision-specific value function wT(b, bT)

we obtain the ex ante value function WT(bT) given by

WT(bT) =


0 if v < bT

0 if bT ≤ v and wT(b, bT) is non-increasing in b

wT(γT(bT), bT) otherwise, for γT(bT) given in (27).

(29)

Note that wT(bT, bT) = 0 due to time priority rules: just matching an existing high bid of bT will

not succeed in winning the auction.

The next step is to show that W ′
T(bT) ≤ 0 for any bT, where W ′

T(bT) is the derivative of WT at

bT. Using formula (27), it is easy to see that the result holds when v < bT since WT(bT) = 0 in this

region. If bT ≤ v and γT(bT) = bT (the binding constraint case), then W ′
T(bT) = 0 for the same

reason. Consider now the final case in the last equation of (29), where γT(bT) > bT and, hence, we

have an interior optimum. In this region, we have

W ′
T(bT) =

∂

∂b
wT(γT(bT), bT) +

∂

∂bT
wT(γT(bT), bT)

= 0 + (v − bT)∇bT λT+1(bT|bT). (30)
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In the last equation of (30), we appealed to the envelope theorem, so the first term equals zero

when b = γT(bT) > bT. By Assumption 8, λT+1(b|bT) is stochastically increasing in bT, so we have

∇bT λT+1(bT|bT) ≤ 0. It follows that W ′
T(bT) ≤ 0 in this region as well.

Now we define the bid-specific value function at period T − 1, wT−1(b, bT−1), which is the

expected payoff at time t = T − 1 from submitting a bid of b given that the current high bid at the

start of T − 1 is bT−1. Let γT−1(bT−1) be the optimal bid function at period T − 1. We want to show

that either γT−1(bT−1) = 0 or γT−1(bT−1) = bT−1, so in either case either the bidder does not bid at

T − 1 or does not submit an improved bid at T − 1, and with time priority for the high bid, either

case can be viewed as equivalent to not bidding. Clearly, if v < bT−1 we have γT−1(bT−1) = 0.

Suppose now that v ≥ bT−1, so there is a potential for profiting by submitting an improved bid,

b > bT−1. When v ≥ bT−1, the bid-specific value function wT−1(b, bT−1) is

wT−1(b, bT−1) = WT(b)λT(b|bT−1) +
∫ ∞

b
WT(b′)λ′

T(b
′|bT−1)db′ (31)

The term in the first line of equation (31) is the expected utility in the case where the bid the bidder

submitted, b, is the high bid submitted at T − 1. Taking the partial derivative of wT−1(b, bT−1) with

respect to b, we obtain

∂

∂b
wT−1(b, bT−1) = W ′

T(b)λT(b|bT−1) + WT(b)λ′
T(b|bT−1)− WT(b)λ′

T(b|bT−1)

= W ′
T(b)λT(b|bT−1).

It is, however, clear that the last line of the expression for ∂
∂b wT−1(b, bT−1) is non-positive since

we have shown above that W ′
T(b) ≤ 0. It follows that wT−1(b, bT−1) is maximized at b = bT−1, so

γT−1(bT−1) = bT−1. We summarize this as

γT−1(bT−1) =

 0 if v < bT−1

bT−1 if v ≥ bT−1,
(32)

and the corresponding value function WT−1(bT−1) is given by

WT−1(bT−1) ≡ wT−1(γT−1(bT−1), bT−1) =

 0 if v < bT−1

wT−1(bT−1, bT−1) if v ≥ bT−1.
(33)

We now calculate W ′
T−1(bT−1) and show that W ′

T−1(bT−1) ≤ 0. This obviously holds when v <

bT−1, where WT−1(bT−1) = 0. Consider now the case where v ≥ vT−1. In this case, W ′
T−1(bT−1) =

∇bT−1 wT−1(bT−1, bT−1), where ∇bT−1 wT−1(bT−1, bT−1) is the total derivative of wT−1(bT−1, bT−1) de-
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fined in equation (31). Calculating this, we have

∇bT−1 wT−1(bT−1, bT−1)

= ∇bT−1

(
WT(bT−1)λT(bT−1|bT−1) +

∫ ∞

bT−1

WT(b′)λ′
T(b

′|bT−1)db′
)

= W ′
T(bT−1)λT(bT−1|bT−1) + WT(bT−1)λ

′
T(bT−1|bT−1)

+WT(bT−1)∇bT−1 λT(bT−1|bT−1)

−WT(bT−1)λ
′
T(bT−1|bT−1)

+∇bT−1

[∫ ∞

bT−1

WT(b′)λ′
T(b

′|bT−1)db′
]

.

= W ′
T(bT−1)λT(bT−1|bT−1)

+WT(bT−1)∇bT−1 λT(bT−1|bT−1)

+∇bT−1

∫ ∞

bT−1

WT(b′)λ′
T(b

′|bT−1)db′

≤ 0. (34)

The final inequality in (34) follows from the third equation for ∇bT−1 wT−1(bT−1, bT−1); noting the

first term of that third equation is non-positive since we have already shown that W ′
T(bT−1) ≤ 0.

The second term of the last equation in (34) follows from Assumption 8 and the property that

λT−1(bT−1|bT−1) is stochastically monotone in the conditioning argument of the CDF λT−1(b|bT−1)

for any b ≥ bT−1. The final term in the third equation for ∇bT−1 wT−1(bT−1, bT−1) in (34) also follows

from Assumption 8, since the stochastic monotonicity of λT−1(b|bT−1) in bT−1 implies that the

expectation of any non-increasing function of b will be non-increasing.

We have now completed a full induction step. We proved that if wT(b, b) and WT(b) are non-

increasing functions of b, then γT−1(bT−1) equals 0 or bT−1 depending on whether v < bT−1 or

b ≥ bT−1. We then showed that wT−1(b, b) and WT−1(b) are also non-increasing functions of b. A

similar argument as used above to derive γT−1(bT−1) implies that γT−2(bT−2) either equals 0 or

bT−2, depending on whether v < bT−2 or v ≥ bT−2. By induction it follows that these properties

hold for all time periods t = 0, 1, . . . , T − 1. At the start of the auction, however, the high bid is

by definition equal to zero, that is, b0 = 0. This implies that γt(bt) = 0 for t = 0, 1, . . . , T − 1. The

only positive bid that is made is at the last period T where bidders, using the same inductive logic,

will realize no other bidder will place a positive bid before T, so the distribution of the high bid

will be λT+1(b|0). Thus, all bidders will bid-snipe and the anonymous equilibrium of the anony-

mous dynamic ascending bid Japanese auction will be strategically equivalent to the anonymous

equilibrium of an anonymous static first-price, sealed-bid auction as claimed in Theorem 1.
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