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We use a general equilibrium model to study the impact of fully funding social security on
the distribution of consumption across cohorts and over time. In an initial stationary
equilibrium with an unfunded social security system, the capital/output ratio, debt/output
ratio, and rate of return to capital are 3.2, 0.6, and 6.8%, respectively. In our first
experiment, we suddenly terminate social security payments but compensate entitled
generations by a massive one-time increase in government debt. Eventually, the aggregate
physical capital stock rises by 40%, the return on capital falls to 4.4%, and the labor
income tax rate falls from 33.9 to 14%. We estimate the size of the entitlement debt to be
2.7 times real GDP, which is paid off by levying a 38% labor income tax rate during the
first 40 years of the transition. In our second experiment, we leave social security benefits
untouched but force the government temporarily to increase the tax on labor income so as
gradually to accumulate private physical capital, from the proceeds of which it eventually
finances social security payments. This particular government-run funding scheme
delivers larger efficiency gains (in both the exogenous and endogenous price cases) than
privatization, an outcome stemming from the scheme’s public provision of insurance both
against life-span risk and labor income volatility.
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1. INTRODUCTION

This paper evaluates two schemes for cushioning a transition from an unfunded
to a more fully funded social security system within an economy in which a
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sudden anduncompensatedinstallation of full funding would, on average, benefit
young and unborn cohorts, but harm older cohorts.1 We use a model in which
uninsurable uncertainties about lifetimes and labor incomes create forces for capital
overaccumulation, which have been overcorrected by an initial unfunded social
security system.2 We study transition policies designed to redistribute enough of
the permanent gains from future to current generations to induce a majority of
each cohort to assent to the transition.3

We employ the risk-sensitive, linear-quadratic framework of Hansen and Sargent
(1995), which permits us to extend the transition calculations pioneered by
Auerbach and Kotlikoff (1987) to environments in which social security is partly
a device for insuring risky incomes and lifetimes. Our model contains a theory of
the distribution of consumption within and across cohorts, makes contact with the
Deaton–Paxson (1994) observations, and lets us study the effects of a transition
on the distribution of welfare across and within cohorts.4

Our economy consists of overlapping generations of 65-period-lived consumers
who face life-span uncertainty, and whose incomes and preferences are subject to
shocks. Individuals work until a mandatory retirement age of 45 and pay labor and
capital income taxes. After retirement, they receive social security benefits in the
benchmark economy. To finance its exogenous purchases, the government taxes
labor and capital income, confiscates accidental bequests, and issues one-period
risk-free debt, which returns the same payoff as private physical capital. We start
in an initial stationary equilibrium in which the debt/GDP ratio is 0.59, the social
security replacement rate is 60%, the capital/GDP ratio is 3.2, the rate of return on
capital is 6.8%, and the equilibrium labor income tax rate is 33.9%.

We consider two alternative schemes to fund social security. In the first exper-
iment, the government surprises everybody by terminating social security, and a
transition begins to a new stationary equilibrium in which the labor income tax
rate drops to 14.2% in the case of endogenous factor prices. By issuing a huge
amount of government debt, the government buys out all cohorts who were alive
at the time of the policy change and were entitled to retirement benefits under the
old system. This entitlement debt is about 2.7 times the initial GDP. To retire this
entitlement debt, the government raises the labor income tax rate to 38.0% for
40 years. The capital stock rises by 40% and the rate of return on asset holdings
falls to 4.44% across the stationary equilibria. Our buy-out scheme, on average,
protects the consumption of the originally entitled people, which indicates how it
can contribute to making the transition to fully funded social security politically
feasible. In the second experiment, we instruct the government to acquire claims
on physical capital so that social security benefits can be financed by the returns
from publicly held private capital. This scheme for fully funding social security
creates similar effects on existing cohorts, but the benefits to later generations seem
to be larger, an outcome that is linked to the differing motives for precautionary
savings with which the two funding calculations confront households.

The paper is organized as follows. Section 2 describes the model economy. Sec-
tion 3 states the households’ information, preferences, and opportunities. Section 4
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summarizes the government’s role in the economy. Section 5 describes how we
compute equilibrium transition paths. Section 6 contains our numerical findings
from two alternative privatization schemes. Section 7 concludes.

2. MODEL ECONOMY

2.1. Preliminaries

The economy consists of overlapping generations of finitely lived individuals who
may live up toT0 + 1 years, and an infinitely lived government. Individuals and
the government can invest at a constant risk-free gross rate of return. During the
first T1 +1 periods of life, a consumer receives an exogenous labor income that he
divides between consumption, taxes, and accumulation of assets. During the final
T0 − T1 periods of life, a consumer receives social security retirement benefits
and also consumes his accumulated assets. The government taxes income from
capital and labor, issues debt, purchases goods, and pays retirement benefits. For
any variablez, we use a subscriptt to denote age, an arguments in parentheses
to denote calendar time, and a superscripts − t to denote date of birth. Thus,
zs−t (s) ≡ zt (s) ≡ zs−t

t (s). The output of our analysis is a mapping from parame-
ters summarizing government tax and benefit policies to cross-section probability
distributions over a time- and age-dependent vectorxt (s) of state variables de-
scribing the situation of people across cohorts over time.

2.2. Demographics

At dates, a cohort of measureN0(s) consumers is born who live during periods
s, s + 1, . . . , s + T0. As a given cohort ages, its members face random survival,
according to a life table of age-to-age survival probabilities{αt }T0

t=0, whereαt is
the probability of surviving from aget to t + 1, conditional on having survived to
t . Let Nt (s) be the number of aget people alive at times andn be the (constant)
gross rate of population growth. It follows thatNt (s) = λt N0(s − t), where
λt = ∏t−1

j =0 α j for t = 0, . . . , T0, andλ0 = 1. The law of motion for births is given
by N0(s) = nsN0(0). The population fraction of cohortt at each times is given
by

ft = λt n−t∑T0
τ=0 λτ n−τ

. (1)

Note that the age distribution{ ft } is assumed to be independent of calendar times.5

The total population alive at times is

N(s) = N0(0)ns
T0∑

t=0

n−tλt . (2)
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2.3. Distributions of People and Aggregate Quantities

Individuals face different sequences of random labor income shocks, in addition
to life-span risk, which they cannot fully insure.6 As a result, individuals within
each cohort self-insure by accumulating two risk-free assets—government bonds
and claims on physical capital—that bear the same rates of return, and combine
these with social security retirement benefits to provide for old-age consumption.
We letεt

0 denote the history of a vector of random shocksετ , τ = 0, . . . , t , that
an individual has received from the time of his birth to aget . For technical reasons
described below, we assume that the shocks are Gaussian.

The state vectorxt (s) = xt (s; εt
0, x0) measures the stock of assets and any

variables that a consumer of aget at times uses to forecast his future preferences
or opportunities. We specify the structure of our model so that it delivers the
consumption plan of a consumer as a time- and age-dependentlinear function of
his state vector

ct
(
s; εt

0, x0
) = ηct(s)xt

(
s; εt

0, x0
)
, (3)

where the state vector follows the linear law of motion

xt+1
(
s + 1; εt + 1

0 , x0
) = At (s)xt

(
s; εt

0, x0
) + Ct (s)εt+1, (4)

where εt+1 is a martingale difference sequence adapted toJt = (εt
0, x0), with

E(εt+1 | Jt ) = 0, E(εt+1ε
′
t+1 | Jt ) = I .

Oureconomicmodel imposes restrictions on the vectorsηct(s) and the matrices
At (s). We assume that consumers have rational expectations, making a consumer’s
choices, and therefore bothηct(s) andAt (s), depend on the sequence of prices
and government fiscal policies over the remainder of the consumer’s potential life
span, namely,s, s + 1, . . . , s + T0 − t .

Given our assumptions, we can analytically compute the probability distribu-
tions for the state vector and for linear functions of the state vector. Letµt (s) =
Ext (s),Σt (s) = E[xt (s)−µt (s)][xt (s)−µt (s)]

′. Given first and second moments
for the state vector of the newborns [µ0(s),Σ0(s)], the moments of the state vector
for consumers follow the law of motion

µt+1(s + 1) = At (s)µt (s), (5)

Σt+1(s + 1) = At (s)Σt (s)At (s)
′ + Ct (s)Ct (s)

′. (6)

Aggregate quantities of interest, such as aggregate per-capita consumption, ag-
gregate per-capita physical capital, can be computed easily by obtaining weighted
averages of features of the distributions of quantities across individuals.7 For ex-
ample, per-capita aggregate consumption is

c(s)/N(s) =
T0∑

t=0

µct(s) ft . (7)
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Also, the distribution of consumption with meanµct(s) and variance6ct(s) is
given by

µct(s) = ηct(s)µt (s), (8)

6ct(s) = ηct(s)Σt (s)ηct(s)
′. (9)

Our theory of the distribution of consumption across time and cohorts is sum-
marized by the formulas above, and is designed to accommodate fanning out and
fanning in of consumption distributions observed by Deaton and Paxson (1994),
given an appropriate initial distribution.8

2.4. Resource Constraint

The economywide physical resource constraint is given by

g(s)N(s) +
T0∑

t=0

ct (s)Ns−t
t + K (s) = R(s − 1)K (s − 1)

+ w(s)
T1∑

t=0

εt N
s−t
t + N0(s)k−1(s), (10)

whereR(s − 1) = 1 + r (s − 1) − δ is the rate of return on asset holding,K (s −
1) = ∑T0

t=0 kt (s − 1)Ns−1−t
t is physical capital in the economy, andN0(s)k−1(s)

is the amount of physical capital, if any, that newborns bring into the economy.
In equation (10),g(s) is per-capita government purchases of goods at times, εt

is an exogenous efficiency endowment of age-t people,δ is the rate of depreci-
ation of capital,r (s − 1) is the gross-of-depreciation rate of return on physical
capital from times − 1 to time s, and w(s) is the base wage rate at times.
We set the efficiency sequence{εt } roughly to match an average age–wage-rate
profile.

2.5. Two Assumptions About Factor Prices

We perform our computations under two alternative assumptions about the rate
of returnr (s − 1) on assets and the wage ratew(s) at dates. First, we make a
small, open-economy assumption by specifying thatr (s − 1) ≡ r andw(s) ≡ w

are independent of the aggregate capital stock and constant over time. Second, we
allowr (s−1) andw(s) to be determined from the marginal productivity conditions
for a constant returns to scale Cobb–Douglas aggregate production function:

r (s − 1) = r

[
K (s − 1)

Ñ(s)

]
= α̃A

[
K (s − 1)

Ñ(s)

]α̃−1

, (11)

w(s) = w

[
K (s − 1)

Ñ(s)

]
= (1 − α̃)A

[
K (s − 1)

Ñ(s)

]α̃

, (12)
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whereÑ(s) = ∑T1
t=0 εt Ns−t

t is aggregate labor input in efficiency units, and ˜α ∈
(0, 1) is the income share of capital.

These two alternative assumptions imply different lengths for the transition
between stationary equilibria. The endogeneity of factor prices allows us to in-
corporate the general equilibrium effects of fully funding social security at some
computational cost.

2.6. Government Policy and Its Transition

The government’s time-varying deterministic fiscal policy parameter vector se-
quence is given by{g(s), τa(s), τ`(s), St (s), b(s)}, whereg(s) is per-capita gov-
ernment expenditures net of social security payments;τa(s) andτ`(s) are flat tax
rates on asset income and labor income, respectively, levied on consumers at time
s; St (s) is the social security benefit for an age-t individual at times, andb(s) is
per-capita one-period interest-bearing government debt issued at times.

We use a four-tuple of dates 0≤ s1 < s2 < s3 to describe the government’s
policy transition. Before dates = 0, the economy is assumed to be in an initial
stationary equilibrium determined by a stationary demographic structure, fiscal
policy, and unfunded social security system with replacement rateθ(s) = θ1. At
dates = 0, the government announces that from dates1 ≥ 0 until dates2, fiscal
parameters and social security system will change. From dates2 on, government
policy parameters will remain constant through dates = s3 on forever. However,
the economy continues to adjust to the change in government policy from date
s= s2 tos= s3 as cohorts who started their lives betweens1 ands2 (policy transition
years) work their ways through the system and, in the case of endogenous factor
prices, as the price vector converges to its final stationary equilibrium value. The
system will converge to a final stationary equilibrium at times3.

2.7. Length of Transition Period: s3

Under the small-country assumption, we sets3 = T0 + s2, because it takes exactly
a full lifetime for the transition generations to work their way through the system.
Under the closed-economy assumption, the transition periods3, in principle, is
infinity because time variation in the wage rate and the return on asset holdings
induces time variation in households’ dynamic programming problems which last
long after government policy parameters cease to vary. The capital/labor ratio
and factor prices continue to move over time forever. We follow Auerbach and
Kotlikoff (1987) and assume that we are making only a small approximation error
by forcing convergence to a final stationary equilibrium after a long but finite
transition period.

2.8. Transition

We start the transition from a distribution of assets and information [µt (s),Σt (s)]
that would have been appropriate had the initial policy settings continued forever.
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FIGURE 1.Floor of some three-dimensional diagrams showing consumption or asset profiles
of generations alive during a transition for the open-economy case. Time is on thex axis,
date of birth is on they axis. A vertical line picks off cohorts of increasing age at a particular
date; a horizonal line describes the lifetime profile of a given cohort. Everyone born before
−T0 + s1 faces time-invariant tax and benefit rates associated with an initial stationary
equilibrium. Everyone born afters2 faces time-invariant tax and benefit rates associated with
a terminal stationary equilibrium. People born between−T0+s1 and 0 are “surprised” at date
s = 0 by being informed of the transition froms1 tos2. They resolve their problems with the
announced tax and benefit rates, starting from the asset levels determined by their old saving
programs. To analyze the transition with fixed factor prices requires that we compute distinct
optimal consumption-saving plans for cohorts born from−T0 + s1 to s2, because each of
these cohorts faces a different sequence of lifetime tax and benefit rates. The system settles
down to a new stationary equilibrium only after all of the people who have lived through
the transition have died off. With endogenous factor prices, the transition takes longer.

At the date of the announcements= 0, anyone born after dates1−T0—anyone with
a chance of being alive at dates1 or after—will recompute his optimal consumption-
saving plan for the remainder of his life in light of the altered tax rates and social
security benefit rates that he faces. Cohorts born betweens1 − T0 ands2 will face a
time-varying sequence of tax rates and benefit rates. Those born ats2 and after face
constant benefit and tax rates. However, in the case of endogenous factor prices,
these cohorts still face changing factor prices and, therefore, their dynamic pro-
grams will differ relative to those of cohorts who are born into the final stationary
equilibrium.

Figure 1, a version of a standard textbook image of the demography of an
overlapping-generations model, will occur as the “floor” of some three-dimensional
graphs in which we record consumption distributions during a transition. Figure 1
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records time along the horizontal axis, and birth date along the vertical axis. A
cohort survives from its birthdate toT0 plus its birthdate, depicted as ahorizon-
tal line. At a given date, a vertical line traces out those cohorts alive. There is a
distribution across individuals, say of consumption or asset holdings, above each
(birthdate, time) pair in this figure; in a third dimension above this floor, we plot
means and standard deviations of some of these distributions (for example, see
Figures 3A and 4A). Times budget constraints involve sums of distributions at a
given point in time, i.e., along vertical lines in Figure 1.

Under an assumption thatr (s − 1) ≡ r and w(s) ≡ w, we have to com-
pute fewer dynamic programs than with time-varyingr andw, because there are
fewer constellations of rates of return, wage rates, tax rates, and benefit rates
encountered by different cohorts. In particular, it is enough for us to compute
µs−t (s),Σs−t (s),ηs−t (s) for s − t = −T0 + s1 − 1, . . . , s2 and t = 0, . . . , T0.
We can use the decision rules for those born ats = −T0 + s1 − 1 to determine
the initial stationary distribution of consumers’ state vector. We use the relevant
“tails” of the decision rules to predict the behavior of anyone who lives through
any part of the transition.

Figure 2 shows four mean consumption profiles for an experiment in which so-
cial security is eliminated at times = 0 but those entitled are given a compensation,

FIGURE 2. Mean consumption profilesµct for four cohorts born before, during, and after a
transition. Profiles for cohorts born at: (solid line)s= −66, in the initial stationary equilib-
rium; (dotted line) one period after the transition starts; (dashed line) born ats= −45—who
are 20 when the transition starts; and (circles) in the new stationary state. The transition is
a compensated removal of social security, which explains why the two profiles for the fully
compensated generations lie on top of one another.
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A)

B)

FIGURE 3. Mean consumption profiles for all cohorts during the transition for experiment
1, a bond-compensated, tax-financed removal of social security.

an experiment described in detail below. We setT0 = 65, s1 = 0, s2 = 40. The
figure plots{µct(s − t)}T0

t=0 for four distinct birthdayss = −66, s = −45, s =
1, s = 39, corresponding to one cohort unaffected because it dies out before the
transition ats = 0, a cohort that is 20 years old when the transition begins, one
that is born the period after the transition begins, and one that is born after the
transition has been completed.
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A)

B)

FIGURE 4. Standard deviations of consumption for all cohorts during the transition for
experiment 1.
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Figure 3A shows mean consumption profiles forall cohorts affected by the
transition. Figure 2 just records four slices of Figure 3A. Notice how a version of
Figure 1 is laid out on the floor of Figure 3A. Aggregate per-capita consumption
at a point in times is a weighted-by-ft average ofµct(s), which corresponds to
summing elements corresponding to those associated with a fixed date in Figure
3 (a line parallel to the date-born axis in Figure 3A, and a line on the diagonal
of the floor of Figure 3B). Figure 4A shows how the (cross-sectional) standard
deviations of consumption are affected by the transition.

Figures 3B and 4B represent the same information in Figures 3A and 4A, respec-
tively, in a more compact but harder-to-read way, by plotting a mean or standard
deviation againstdate bornon thex axis andageon they axis. With these axes,
a given calendar date is a diagonal along the floor of the graph, and economywide
averages must be calculated by computing weighted sums along this diagonal.

From the decision rules for the transition cohorts, we build up the first two
moments of the distributions of consumption and asset-holding profiles for each
cohort, and use them to define and compute an equilibrium. In Section 3, we
say more about the economic model that generates the distributions of aggregate
quantities across cohorts and over time.

3. HOUSEHOLDS

To exploit linear optimal control theory and obtain linear decision rules, we adopt
the linear Gaussian quadratic formulation of Hansen and Sargent (1995). This
incorporates a specification of preferences that modifies standard quadratic prefer-
ences with a single parameter designed to induce risk sensitivity to permit a devia-
tion from state-separable preferences over uncertainty. When this parameter is less
than zero, it inspires an additional source of precautionary savings in our model,
stemming from preferences, over and above the precautionary savings emanating
from the incompleteness of markets. See Hansen et al. (1994) for analysis of the
precautionary savings induced by these preferences in an infinite-horizon setting.

3.1. Information

The consumer’s preference shockγt and the idiosyncratic portion of his income
dt are driven by a vector information processzt , which follows

zt+1 = A22zt + C2εt+1, (13)

wherezt is an(nz × 1) vector andεt+1 is a Gaussian vector martingale difference
sequence that satisfiesEtεt+1ε

′
t+1 = I , whereEt is the conditional expectations

operator. We assume thatγt = Uγ zt anddt = Udtzt , whereUγ , Udt are nonstochas-
tic selector matrices, and(γt , dt ) are preference and endowment shock processes
to be described further, below. To capture the ending of labor income shocks after
retirement, we allowUdt to be an age-varying sequence of selector matrices.
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3.2. Opportunities

Following the tradition of permanent-income models of consumption, we restrict
the set of assets with which individuals can smooth consumption over time and
states of nature. At aget ≤ T1, the consumer receives labor income ofw(s)εt +dt ,
wheredt is an endowment shock process,T1 is the exogenous retirement age,w(s)
is a real wage at times, and{εt }T1

t=0 is a sequence of exogenous mean labor incomes
that we design to mimic a typical age-earnings profile. In the computations below,
we make the endowment shockdt a first-order autoregression:

dt = ρddt−1 + εt ,

where we makeεt a homoskedastic Gaussian white noise with varianceσ 2
d .

We allow for a single market in claims on physical capital and one-period
government bonds that yield a common risk-free rate of returnR(s − 1) − 1. We
let at−1(s − 1) denote the consumer’s holdings of assets at the beginning of age
t at times. Because physical capital and government bonds yield the same risk-
free return and because they are taxed equally, the consumer’s optimal portfolio
weights are indeterminate. The household’s budget constraint at aget and time
s is

ct (s) + at (s) = R(s − 1)at−1(s − 1) + w(s)εt + St (s) − ϒt (s) + dt , (14)

whereSt (s) denotes social security payments, whereεt = 0 for t > T1, and tax
payments are given by9

ϒt (s) = τ0(s) + τ`(s)[w(s)εt + dt ] + τa(s)[R(s − 1) − 1]at−1(s − 1). (15)

We assume that

St (s) =
{

0, if t ≤ T1 (while working);
S(s), if t > T1 (when retired).

(16)

In (15), τ0(s) denotes lump-sum taxes, which ordinarily are set to zero, the sole
exception being the one-time lump-sum transfers that we use to buy-out cohorts
who are alive and entitled to social security under the initial tax and benefit
settings.

3.3. Inheritance

Total assets per capita owned by people who die between times ands + 1 are10

D(s) =
T0∑

t=0

(1 − αt ) ftηat(s)µt (s). (17)
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3.4. Preferences

Following Hansen and Sargent (1995), we adopt a preference specification that de-
livers linear decision rules but, at the same time, allows for a form of risk sensitivity.
Preferences over stochastic processes for consumption are defined recursively via

Ut = [−(πct − γt )
2
/

2 + βtRt (Ut+1)
]
, (18)

where

Rt (Ut+1) = (2/σ) log E[exp(σUt+1/2) | Jt ], (19)

and whereJt is the information available to the consumer at aget . Here,π is a
preference parameter, andβt is a survival-corrected discount factor given by

βt = β̃ · αt , 0 ≤ t < T0, (20)

= βT ∈ (0, 1), t = T0, (21)

whereβ̃ ≥ 0.
The parameterσ is the risk-sensitivity parameter of Hansen and Sargent (1995).

Whenσ = 0,Rt (Ut+1) ≡ EtUt+1; so, in this case, preferences are quadratic. When
σ < 0(σ > 0), the consumer prefers early (late) resolution of uncertainty, and
decision rules depend partly on noise statistics of transition laws.11,12

This preference specification leaves us with linear decision rules, but the stan-
dard version of certainty equivalence fails to hold. In our application, the decision
rules are influenced by an interaction ofσ and the innovation variance of house-
holds’ random labor income process. These parameters influence both the average
level of savings over the life cycle, and the Deaton–Paxson fanning-out patterns.
Whenσ < 0, this preference specification induces a precautionary motive for
saving, in a sense distinct from that stemming from the incomplete insurance
motive.13

3.4.1. Specialization. We assume thatγt = γ̄ , so that preference shocks are
absent. The parametersπ , γ̄ , andσ govern the household’s taste for consumption
smoothing. Elementary calculations show that, ceteris paribus, the household’s
desired consumption path isflatter: (a) the lower is γ̄ /π , (b) the larger is its
noncapital permanent income as determined by the labor income process, and (c)
the larger is −σ .

3.5. Optimal Rules

The solution of the consumer’s problem is a law of motion for the state and a set
of age- and time-dependent decision rules

yt
(
s; εt

0, x0
) = ηyt(s)xt

(
s; εt

0, x0
)
, (22)
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whereyt (s) is the consumer’s optimum choice for some aget , times, variabley.
We apply standard formulas to obtain the decision rules.14

4. THE GOVERNMENT

Each period, the government purchases goods in the amountg(s) per capita and
paysS(s) in per-capita social security retirement benefits. It finances these expen-
ditures in part by taxing capital and labor income at flat rates and putting a 100%
tax on accidental bequests. Any gross-of-interest deficit is covered by issues of
one-period risk-free bonds.

4.1. Government’s Budget Constraint

Private asset holdingsat (s) of an age-t individual at times are divided between
government bonds and private capital:at (s) = bt (s) + kt (s), wherebt (s) is the time
s holding of government debt by an age-t individual. Consumers are indifferent
between physical capital and government bonds because the two assets have a
common return and tax treatment. The government’s budget constraint ats is

g(s)N(s) +
T0∑

t=T1+1

St (s)Ns−t
t + R(s − 1)

T0∑
t=1

bt−1(s − 1)Ns−t
t

=
T0∑

t=0

Ns−t
t {τa(s)[R(s − 1) − 1]at−1(s − 1) + τ`(s)w(s)εt } + τ0N(s)

+
T0∑

t=0

bt (s)Ns−t
t + R(s − 1)

T0∑
t=0

(1 − αt )kt (s − 1)Ns−t−1
t . (23)

The second term on the left-hand side of (23) is the total social security payment
in periods. The last term on the right-hand side of (23) is the bequest tax collected
by the government.15

For an individual, asset holdings at the end of times − 1 equal those at the
beginning of times (if the agent survives), but deaths make things different for
the aggregate of assets held by a cohort. It is useful to write (23) using population
shares of cohorts and end-of-period asset holdings:

g(s) +
T0∑

t=T1+1

St (s) ft + R(s − 1)

n

T0∑
t=1

bt (s − 1) ft

= τa(s)[R(s − 1) − 1]
T0∑

t=0

at−1(s − 1) ft + τ`(s)
T1∑

t=0

w(s)εt ft

+ τ0 +
T0∑

t=0

bt (s) ft + R(s − 1)

n

T0∑
t=0

(1 − αt )at (s − 1) ft . (24)
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4.2. Stationary Budget Constraint

In a stationary equilibrium, all variables are independent of calendar times, giving
us the following version of the government budget:

g +
T0∑

t=T1+1

St ft +
[

R

n
− 1

]
b̄

= τa(R − 1)

T0∑
t=0

at−1 ft + τ`

T1∑
t=1

wεt ft + R

n

T0∑
t=0

(1 − αt )at ft , (25)

whereb̄ represents the outstanding stock of per-capita government bonds in steady
state.

5. EQUILIBRIUM

5.1. Definition of Equilibrium

An allocation is a stochastic process for{ct (s), at (s)}s3
s=0 for t = 0, . . . , T0, and a

sequence{K (s)}s3
s=0. A government policyis a sequence{b(s), g(s), τ`(s), S(s),

τa(s)}s3
s=0. A price systemis a sequence{w(s), r (s − 1)}s3

s=0. An equilibrium is an
allocation, a price system, and a government policy such that

(i) given the price sequence and the government policy, the allocation solves the optimum
problem for each household;

(ii) the allocation and government policy satisfy the government budget constraint at each
dates.

5.2. Stationary Equilibria

To compute a stationary equilibrium, we guess a set of government expenditures,
social security benefit levels, government debt levels, and tax rates, solve the
household’s optimum problem, and check whether it implies that the stationary
government budget constraint is satisfied. If not, we alter a subset of the govern-
ment’s policy parameters in a direction designed to bring the budget more closely
into balance. We iterate to convergence.

5.3. Transition Dynamics

5.3.1. Case 1: Small, open economy.Tax rates and social security benefit
rates are constant befores = s1 and afters = s2, and so, households bornbefore
s = s1−T0 orafter s= s2, respectively, face identical parameters in their dynamic
programming problems. However, people born in the intervals ∈ (s1 − T0, s2)

face cohort-specific tax and benefit rates over at least parts of their lifetimes.
Thus, to compute equilibria for transitions requires that we formulate the dynamic
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programming problems for households born in periods−T0 + s1 + 1, −T0 + s1 +
2, . . . , s2.16 For given policy settings, these dynamic programming problems imply
decision rules for variablesvs−t (s) for t = 0, . . . , T0, s− t = s1 − T0 + 1, . . . , s2.
We can compile the means of each variable in a matrix, witht in columns ands− t
in rows. Equilibrium conditions restrict sums across diagonals of this matrix.17

During a transition, tax and benefit rates are constant fors< s1 and s> s2.
However, aggregate capital and government debt vary over the entire time interval
s∈ [0, s3 = T0 + s2]; they can vary in the announcement periods∈ [0, s1] because
people alive ats = 0 who might survive ats1 and beyond alter their savings
behavior befores1; they vary in the post-policy-change periods ∈ [s2, s3] because
at those dates there are still people alive who spent the early parts of their lives
during the policy transition periods ∈ [s1, s2 − 1].

We compute equilibrium transitions by specifying the ratios of government debt
to GDP for the initial and final stationary equilibria. We use a secant algorithm and
iterate onτ`1 andτ`2 to obtain the initial and final stationary equilibria, respectively.
To find an equilibrium transition path for the economy, we first specify a transition
path for social security benefit levels and tax rates. For each set of fixed tax rates,
from periodss = 0 tos = s3, we determine government debt per capita recursively
from equation (24). We use a secant algorithm and iterate on the (scalar) labor
income tax rate for the policy transition period [s1, s2 −1] to make debt/GDP ratio
ats3 equal to the prescribed level.

5.3.2. Case 2: Closed economy.Computing an equilibrium transition under
endogenous factor prices involves three separate modules.

1. Initial stationary equilibrium:As an inner loop, for fixedr andw, we use a secant
algorithm and iterate onτ`1 so that the stationary government budget equation is
satisfied with the prespecified government debt/GNP ratio. This inner loop resides
within an outer loop in which we use a secant algorithm to search for the equilibrium
r that satisfiesr = r (K/Ñ).18

2. Final stationary equilibrium:The two nested loops to compute an initial stationary
equilibrium are embedded within a bigger outer loop to search for a debt/GDP ratio
equal to a prescribed level.

3. Transition period:As an inner loop, for a fixed sequence{r (s−1)}s3
s=0, using a secant

algorithm, we search for a tax rate on laborτ` over the time interval [s1, s2] that sets
government debt equal to the value prescribed in the terminal steady state, starting
from conditions determined by the initial steady state. In the outer loop, we use a
relaxation algorithm on the sequence{r (s − 1)}s3

s=0 during the transition to impose
r (s − 1) = r {[K (s − 1)]/[N(s)]}.

6. TWO COMPUTATIONS

We report the results of two computations that describe how the economy moves to
a fully funded social security system. The first experiment eliminates social security
but buys out affected generations by a one-time increase in government debt. The



                      

SOCIAL SECURITY FUNDING 23

second experiment forces the government to acquire claims on private physical
capital to finance its social security benefit payments. These two computations
share a common set of parameters and an initial stationary equilibrium, which are
described below.

6.1. Parameter Values

We calibrated the parameters of preferences, technology, and information to make
various simulated ratios of aggregate variables resemble corresponding ones for
the U.S. economy. These values are shown in Tables 1 and 2.

Note that we setσ = −0.05, so these computations assume risk-sensitive pref-
erences. Our choice of the risk-sensitivity parameterσ , the innovation variance
of the endowment shock processdt , and the other preference parametersπ, γ̄ , β̃,
and the initial endowmentk−1 (in Table 2), was guided by our desire to have our
economic model match two objects in the U.S. economy: (1) a realistic mean
age-consumption profile such as that depicted in Figure 5, and (2) an empir-
ically plausible capital/output ratio. The variance of the innovation of the en-
dowment process also is set with an eye to generate realistic fanning out of
the within-cohort distribution of consumption as a cohort ages [see Deaton and
Paxson (1994)].

TABLE 1. Preference parameters

{αt }T0
t=0 π σ γ̄ β̃ T0 T1 n

Faber (1982) 1.0 −0.05 7.0 0.986 65 45 1.012

TABLE 2.Technology parameters

Parameter Value

k−1 4.0
σd 0.85
ρd 0.8
δ 0.06

{εt }T1
t=0 Hansen (1991)

Exogenous factor prices
w 5.0147

r − δ 0.0675

Endogenous factor prices
A 2.2625
α̃ 0.40
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FIGURE 5. Simulated and actual consumption profiles.

We calibrated ¯γ , π and the initial stock of capital to make the household con-
sumption profile resemble an empirical profile from the Consumer Expenditure
Survey data. Figure 5 displays the mean consumption profile generated by our
calibrated economy and an actual consumption profile obtained using the Con-
sumer Expenditure Survey data.19 For both computations, we specify levels of
per-capita government purchases and debt so that their ratios to output are 21
and 59%, respectively. Our choice of preference parameters, especially the risk-
sensitivity parameterσ , is guided mainly by our wish to generate an empirically
plausible capital/output ratio and age–consumption profile.20 The capital income
tax rateτa is set at 30% for both computations. The equilibrium labor income tax
rate is 33.9% in the initial stationary equilibrium.21 For both computations, we set
(s1, s2) = (0, 40), so that a transition in tax and benefit rates isannouncedats = 0
to occur betweens= 0 ands= 40. Under the small, open-economy assumption,
the economy’s transition is completed exactly at dates3 = s2 + T0 = 105. When
factor prices are allowed to depend on aggregate physical capital, we require the
economy’s transition to takes3 = s2 + 2T0 = 170 years.22

6.2. A Buyout

The first experiment suddenly terminatesall social security retirement benefits,
but simultaneously compensates all cohorts who had been expecting to receive
retirement benefits. The compensation is tailored cohort-by-cohort to leave unal-
tered the value of the value function of the mean person in that cohort. At time
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s= s1 = 0, people of aget = 1, . . . , T0 are surprised by losing the discounted
present value of their social security retirement benefits. A person of aget loses
benefits valued at

bent = S
T0−t∑

j =max(T1−t,0)

j∏
i =0

R̃
−1

(i ),

where R̃(s) ≡ R(s)[1 − τa(s)] + τa(s) is the after-tax rate of return on assets.
To insulate the expected utility of the mean person in each cohort, we make a
lump-sum transfer to each person of this present valueplus a sum (necessitated
by risk aversion and the change in after-tax earnings other than social security).
Thus, this experiment has the following features:

1. The government compensates each person of aget ≥ 1 in the amount compt , where
compt = bent + another term to account for risk aversion, and pays for it by issuing
government bonds. These payments add to the government budget a one-time per-
capita expenditure of

∑
ft compt at times = s1.

2. The government sets a tax rate on labor ofτ`1 from s = s1 to s = s2 − 1, after which
it stabilizes the tax rate toτ`2.

3. We chooseτ`1, τ`2 to set the debt/GDP ratio in the terminal stationary equilibrium
equal to its value in the initial stationary equilibrium.

6.2.1. Small, open economy.We calibrated the initial stationary equilibrium
under fixed factor prices so that the income share of capital matched that under
endogenous factor prices. This procedure guarantees that the initial stationary equi-
libria under fixed and endogenous factor prices are identical. Table 3 summarizes
our numerical findings under the small, open-economy assumption.

We start in an equilibrium in which the debt/GDP ratio is 0.59, the social se-
curity replacement rateθ is 60%, and the equilibrium labor income tax rate is
33.9%. Ats = 0, a transition begins to a new stationary equilibrium in which
the government supplies zero social security benefits and the labor income tax
rate eventually drops to 8.3%. The government buys out all who were entitled to
retirement benefits under the old system by issuing a huge amount of government
debt ats = 0. Figure 6 shows the time path of government debt. The debt issued in
the buyout equals about 2.67 times the GDP in the initial stationary equilibrium.23

The government raises the labor income tax rate to 36% during the following

TABLE 3. Experiment 1 with fixed factor prices

Time τ` θ r (s − 1) − δ Capital/GDP Debt/GDP

s < 0 0.3385 0.60 0.0675 3.1615 0.5899
s ∈ [s1, s2) 0.3597 0.00 0.0675 (see Figures 10 and 6)
s ∈ [s2, s3) 0.0831 0.00 0.0675 (see Figures 10 and 6)

s ≥ s3 0.0831 0.00 0.0675 4.1567 0.5899
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FIGURE 6. Government debt path.

40-year policy-transition period to retire most of this entitlement debt. It brings
the debt/GDP ratio back to its initial stationary equilibrium value. Figures 7 and 8
show the time path of aggregate consumption and aggregate asset holdings. Ag-
gregate physical capital rises monotonically to its new stationary value, whereas
aggregate consumption dips before it begins a long rise to its higher eventual sta-
tionary value. The capital stock rises 66% across the stationary equilibria, with
three-quarters of this rise taking place in only 46 years. Figure 3 shows that the
buyout protects the consumption of the originally entitled people, on average. At
the same time, however, fully funding social security leads to a small increase
in the dispersionof consumption as indicated by Figure 4. This increase occurs
because those of the previously entitled who are still working are exposed to labor
income risk during the remaining periods of their working lives, which they must
self-insure by saving.

6.2.2. Closed economy.Table 4 shows our numerical results under the closed-
economy assumption. Starting from the same initial stationary equilibrium, the
economy eventually converges to a final stationary equilibrium where social secu-
rity is privatized. Under the closed-economy assumption, however, the equilibrium
rate of return on capital falls from 6.75 to 4.44% in response to the increase in
aggregate physical capital. As a consequence, the increase in the aggregate cap-
ital stock across stationary equilibria is limited to 40% compared to the 66%
increase with fixed factor prices. This implies that, with an unchanged tax on
capital income and with our requirement that debt/output ratio return to its initial
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TABLE 4. Experiment 1 with endogenous factor prices

Time τ` θ r (s − 1) − δ Capital/GDP Debt/GDP

s < 0 0.3385 0.60 0.0675 3.1593 0.5903
s ∈ [s1, s2) 0.3797 0.00 (see Figures 9 and 11)
s ∈ [s2, s3) 0.1419 0.00 (see Figures 9 and 11)

s ≥ s3 0.1419 0.00 0.0444 3.8651 0.5900

FIGURE 7. Aggregate consumption over time, experiment 1 (exogenous factor prices).

level, the government must use a higher labor income tax rate in the final steady
state to satisfy its steady-state budget constraint. The labor income tax rate in
the final steady state is 14.2% compared with 8.3% under the small-economy
assumption.

However, the entitlement debt is not affected at all: The government has to
issue an additional debt in the amount 2.67 times the (initial) GDP to buy out
those cohorts that are alive ats= 0. Figures 9–12 show the time path of aggre-
gate asset holdings, consumption, government debt, and return on asset holdings,
respectively.

6.3. Fully Funding Via Fiscal Policies

The second experiment leaves social security benefits unaltered but changes how
they are financed. At times= 0, the government switches to a fiscal policy designed
to lower its debt per capita from 4.03 in the initial stationary equilibrium to−10.16
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FIGURE 8. Aggregate asset holdings over time, experiment 1 (exogenous factor prices).

FIGURE 9. Aggregate asset holdings over time, experiment 1 (endogenous factor prices).
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FIGURE 10.Aggregate consumption path over time, experiment 1 (endogenous factor prices).

FIGURE 11.Government debt over time, experiment 1 (endogenous factor prices).
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TABLE 5. Experiment 2 with fixed factor prices

Time τ` θ r (s − 1) − δ Capital/GDP Debt/GDP

s < 0 0.3382 0.60 0.0675 3.1615 0.5899
s ∈ [s1, s2) 0.3723 0.60 0.0675 (see Figures 15 and 14)
s ∈ [s2, s3) 0.1390 0.60 0.0675 (see Figures 15 and 14)

s ≥ s3 0.1390 0.60 0.0675 4.1492 −1.1785

FIGURE 12. Rate of return on asset holdings over time, experiment 1 (endogenous factor
prices).

in the terminal stationary equilibrium, which implies a reduction in the debt/GDP
ratio from 0.59 to−1.1785. We chose−10.16 for the debt in the terminal steady
state to induce our agents to produce outcomes in terms of their behavior similar to
that under no social security and a government debt of 4.03. The idea behind this
massive debt retirement is to allow the government to build up a stock of private
physical capital sufficiently large to make the income from publicly held private
capital be enough to pay for social security retirement benefits. To finance this
debt reduction–private asset purchase policy, the tax rate on labor income between
s1 = 0 ands2 is raised just enough to hit the target level. The tax rate on labor
income in the terminal stationary equilibrium is set to satisfy the government’s
final steady-state budget equation.

6.3.1. Small, open economy.Figures 13–17 and Table 5 display the results of
our second experiment under exogenous factor prices.
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FIGURE 13.Aggregate consumption path.

FIGURE 14.Government debt over time, experiment 2 (exogenous factor prices).
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TABLE 6. Experiment 2 with endogenous factor prices

Time τ` θ r (s − 1) − δ Capital/GDP Debt/GDP

s < 0 0.3385 0.60 0.0675 3.1593 0.5903
s ∈ [s1, s2) 0.3897 0.60 (see Figures 18 and 20)
s ∈ [s2, s3) 0.2497 0.60 (see Figures 18 and 20)

s ≥ s3 0.2497 0.60 0.0471 3.7638 −1.9250

FIGURE 15.Aggregate asset holdings over time, experiment 2 (exogenous factor prices).

Qualitatively, the time path of the tax on labor income resembles that for experi-
ment 1. The higher labor tax rate during the policy-transition period (37.2%) is used
to acquire claims on private physical capital for the purpose of funding the social
security system. Also, the debt reduction in this experiment induces quantitatively
similar effects on the consumption profile to those found in experiment 1. In both
computations, the transition eventually supports higher mean consumption profiles
by inducing society to accumulate more physical capital.

6.3.2. Closed economy.Table 6 shows the results of our experiment 2 under
the closed-economy assumption.

Starting from the same initial stationary equilibrium, the economy eventually
converges to a final stationary equilibrium where social security is funded by
the income flow from the public acquisition of private physical capital. Under
the closed-economy assumption, the equilibrium rate of return on capital falls
from 6.75 to 4.71% in response to the increase in aggregate physical capital. The
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A)

B)

FIGURE 16.Evolution of consumption profiles, experiment 2 (endogenous factor prices).

increase in the aggregate capital stock across stationary equilibria is limited to
33.8% compared to the 65.5% increase under fixed factor prices. This is, in part,
due to the (general equilibrium) reduction in the rate of return on asset holdings.
A quantitatively more important reason for a smaller rise in the aggregate physical
capital stock appears to be the relatively high labor income tax rate in the final
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A)

B)

FIGURE 17.Evolution of consumption spreads, experiment 2 (endogenous factor prices).

steady state. This tax rate falls from 33.85 to only 24.97%. This is related to the
revenue-raising requirements that the government is facing, given an unchanged
tax rate on capital income.

Figures 18–21 display the time paths of key aggregate variables in the second
experiment.
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FIGURE 18.Aggregate asset holdings over time, experiment 2 (endogenous factor prices).

FIGURE 19.Aggregate consumption over time, experiment 2 (endogenous factor prices).
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FIGURE 20.Government debt over time, experiment 2 (endogenous factor prices).

FIGURE 21. Rate of return on asset holdings over time, experiment 2 (endogenous factor
prices).
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TABLE 7. Overall efficiency gains

Buy out Government Scheme

Exogenous Endogenous Exogenous Endogenous
prices prices prices prices

1.28% 2.00% 2.12% 2.84%

6.4. Interpretations

Table 7 presents the overall efficiency gains from our two computations. Each entry
in Table 7 represents an annuity computed as follows. First, we compute the present
value of additional wealth required to make the individuals along a transition path
indifferent to remaining under the initial unfunded system.24 Second, we compute
the annuity implied by this stock measure by multiplying it with the interest rate
in the initial stationary equilibrium. Finally, we express this as a fraction of real
GDP at the initial stationary equilibrium.25

Table 7 indicates that (1) efficiency gains are larger with endogenous prices for
a given experiment; and (2) efficiency gains are larger under the second experi-
ment for given factor prices. The former is due largely to the implicit insurance
that higher labor income tax rates provide against earnings risk with endoge-
nous factor prices. The labor income tax rate that balances the government bud-
get under endogenous factor prices is higher than that under exogenous prices
because the increase in aggregate capital is lower and the interest rate falls, re-
quiring the government to keep labor income tax rates higher to make up for the
smaller increase in capital income revenues compared to that under exogenous
factor prices. The latter result is mostly due to the government scheme provid-
ing insurance against two risks: higher labor income taxes providing insurance
against earnings risk and unchanged social security providing insurance against
life-span risk. However, the efficacy of the government-run scheme depends very
much on the return that the government makes on its stock of private physical
capital.

7. CONCLUDING REMARKS

We have extended the machinery of Auerbach and Kotlikoff to handle a model
economy with a largerstatethan theirs, namely, the moments [µt (s),Σt (s)] de-
scribing the distribution of wealth and information of aget people at dates. Our
model is designed rapidly to compute how these moments would respond to various
policy reforms. We used our model to study how alternative transitions between
fiscal policies and social retirement arrangements affect the distribution of income
and wealth within and across cohorts of people. In particular, we demonstrate the
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effects of two alternative schemes to fully fund social security. The first is a com-
pensated buy-out which brings about a 40% rise in the capital stock and lowers
the labor income tax rate to 14% in the final stationary equilibrium. The second
is a funding scheme in which the government acquires claims on private physical
capital to finance social security benefit payments. Although this scheme yields
similar benefits to the immediate generations, later generations get larger benefits
than under the first scheme.

It is feasible and worthwhile to extend this work in several directions. First, we
are undertaking a systematic analysis of how the risk-sensitive feature of our pref-
erence specification and the resulting precautionary saving affects our numerical
findings. Second, because we use linear state-space methods, it is easy to extend
our calculations to more complicated investment technologies, in particular, to
amend our specification of the production technology to incorporate human capi-
tal while retaining the mathematical structure of the model. Incorporating human
capital promises to be an important innovation, because the basic overlapping-
generations structure leads us to expect important interactions between social re-
tirement arrangements and the accumulation ofall types of capital. Third, the basic
calculations can be extended to incorporate settings in which the mortality tables
{αt } and the birth rate of population both vary over time. In development contexts,
this extension is very important because the interactions between mortality tables,
birth rates, and the productivity of capital are keys to how a social security arrange-
ment impinges on capital accumulation. This will enable us to capture the influence
of an aging population on the desirability of privatizing social security. Finally, we
are planning to examine other aspects of fiscal reform, including the elimination
of capital income taxation and the introduction of consumption taxation.

NOTES

1. The Chilean economy switched toward a fully funded social security system in 1981 and raised
its national savings rate from 2.8% of GDP in 1980 to 14.3% in 1991. See Diamond and Valdes-Prieto
(1996) for a detailed description of the Chilean social security reform.

2. Social security provides insurance against being born into a larger-than-expected cohort [Green
(1988)], partial insurance against mortality risk in the absence of private annuity markets [İmrohoroğlu
et al. (1995) and especially Hubbard and Judd (1987)], or operates as a device to leave negative bequests
in the presence of growing human capital [Abel (1988)]. These forces impinge on the dynamic efficiency
[in the sense of Diamond (1965)] of the economy. Abel et al. (1989) argue that the current U.S. economy
is dynamically efficient.

3. Our alternative transition policies manipulate the generational accounts of different cohorts. See
Kotlikoff (1992).

4. Among others, see Aiyagari (1993), Huggett (1996), andİmrohoroğlu andİmrohoroğlu (1995)
on the impact of fiscal policies on wealth distribution.

5. We are currently working on a version of our model in which time variation in cohort shares
induces an economic transition to a new stationary equilibrium under a pay-as-you-go social security
system. In such a setup, we can address the impact of the aging of the population and the feasibility
and desirability of fully funding social security under demographic dynamics.

6. We formulate the model to permit preference shocks, though we don’t “turn them on” in the
computations reported here.



      

SOCIAL SECURITY FUNDING 39

FIGURE 22.Generational distribution of welfare gains from social security reform. Birthdate
is on the horizonal axis, wealth-equivalent measure of welfare gain (loss if negative) is on
the vertical axis; experiment 1, exogenous prices.

FIGURE 23.Generational distribution of welfare gains from social security reform. Birthdate
is on the horizonal axis, wealth-equivalent measure of welfare gain (loss if negative) is on
the vertical axis; experiment 1, endogenous prices.
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FIGURE 24.Generational distribution of welfare gains from social security reform. Birthdate
is on the horizonal axis, wealth-equivalent measure of welfare gain (loss if negative) is on
the vertical axis; experiment 2, exogenous prices.

FIGURE 25.Generational distribution of welfare gains from social security reform. Birthdate
is on the horizonal axis, wealth-equivalent measure of welfare gain (loss if negative) is on
the vertical axis; experiment 2, endogenous prices.
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7. Aggregate quantities are deterministic functions of time because all randomness averages out
across a large number of individuals.

8. So far, we have restricted ourselves to single-consumer, Gaussian economies. Allowing for
different types of consumers would help us obtain more leptokurtic distributions of income and wealth,
which are empirically more plausible.

9. Because capital income taxes are paid on the net return to capital, we are assuming that depre-
ciation is deducted from taxable income.

10. We assume that people who die hold capital and government bonds in proportions equal to the
economywide average.

11. Whenσ 6= 0, the assumption thatεt+1 is a Gaussian process is needed for us to invoke the
risk-sensitive recursive control formulation of Hansen and Sargent (1995).

12. In the computations reported in this paper, we have set the preference shock processγt ≡ 0,
but it would be cheap for us to activate preference shocks within our model.

13. It can be interpreted in terms of a pessimistic type of behavior. See Hansen, Sargent, and
Tallarini (1994).

14. In using dynamic programming to obtain decision rules, we are following Rust (1992),
İmrohoroğlu (1992),̇Imrohoroğlu et al. (1995), and Rios-Rull (1994a, b). See the Appendix for details
about the backward recursions used in the dynamic program.

15. The bequest tax at calendar times is collected at the end ofs − 1, and carried over into the
beginning ofs. The government collects all of the assets of people who die at the end ofs − 1. The
government debt component of the bequest tax is cancelled, whereas the physical capital stock collected
is carried over intos and earns a gross return ofR(s − 1) during the process. The bequest tax term in
(23) is what the government has at its disposal in periods.

16. Allowing for endogenous factor prices requires us to solve dynamic programming problems
for households born in periods−T0 + s1 + 1, . . . , s3.

17. See Figure 1 for a visualization of how aggregate consumption for dates is a weighted average
of µs−t

c (s) along an appropriate diagonal in the(s − t, t) plane.
18. Because the technology is Cobb–Douglas in the case of endogenous factor prices, the equilib-

rium wage ratew is easily computed from the equilibrium rate of return on capital.
19. The actual consumption profile in Figure 5 is obtained from the Consumption Expenditure

Survey data from 1987. Seeİmrohoroğlu et al. (1995) for a description of how this profile was estimated.
20. Kydland and Prescott (1994) argue that the wealth/output ratio for the United States is about

3.2 and that the real interest rate is 6.9%.
21. A recent paper by Mendoza et al. (1994) uses national income accounts and government revenue

statistics to construct time series of tax rates for several industrialized countries. Our choice of 30%
for the capital income tax rate is motivated in part by their estimates and in part by the current capital
gains tax rate of 28%. Our equilibrium labor income tax rate is very close to the 31% figure that Lucas
(1990) uses.

22. We experimented with longer transitions to see how the assumed length of the transition affects
the numerical findings. Taking the transition to be 235 years(s3 = s2 + 3T0) or more had almost no
effect.

23. This is roughly 4.5 times the current government debt.
24. This is simply computing the present value of the wealth-equivalent welfare gains for all cohorts,

some of which are negative, as Figures 22–25 show.
25. Note that this overall efficiency-gain measure subtracts the welfare losses to certain cohorts,

typically those born during the early years of the transition to the final stationary equilibrium.
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APPENDIX

1. DYNAMIC PROGRAMMING

We formulate the household’s lifetime optimum problem as a discounted risk-sensitive
linear control problem. Let

xt =
(

at−1

zt

)
.

The linear quadratic Gaussian preference specification implies that the utility indexes take
the form

Ut = x′
tPt xt + ξt . (A.1)

At aget , the household faces the problem

max
ct ,at

[−(πct − γt )
2/2 + βtRt (Ut+1)] (A.2)

subject to equations (13)–(16), (20), and (21).
This problem can be represented as a time-varying linear quadratic exponential Gaussian

control problem:

Ut = max
ut ,xt+1

{
u′

tQtut + x′
tRtxt + (2βt/σ) log Et [exp(σUt+1/2)]

}
(A.3)

subject to

xt+1 = Atxt + Btut + Ctwt+1. (A.4)

This sequence of problems is to be solved by working backward fromt = T0, beginning
with terminal value function

UT0+1 = x′
T0+1PT0+1xT0+1 + ξT0+1. (A.5)

1.1. Terminal Conditions

If we setPT0+1 = 0, the solution of the consumer’s problem is trivial and is to setct so
that ct ≡ γt each period, and to borrow whatever is required to support this pattern of
consumption. To rule out this solution, we penalize the act of dying atT0 + 1 with asset
holdings that are large in absolute value, the intent being to penalize plans that imply holding
negativeassets at timeT0 + 1. We accomplish this by setting the (1,1) element ofPT0+1,
i.e., the element corresponding to asset holdings, equal to a negative number.
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1.2. Riccati Equations

Associated with the household’s dynamic programming problem are the operators

Tt (P) = P + σPCt

(
I − σC′

tPCt

)−1
C′

tP,

Dt (W) = Rt + A′
t

[
βW − β2WBt

(
Qt + βB′

tWBt

)−1
B′

tW
]
At , (A.6)

St (k, P) = βt k − (βt/σ) log det
(

I − σC′
tPCt

)
.

Hansen and Sargent (1995) show that the optimal value function is

Ut = x′
tPt xt + ξt , (A.7)

where
Pt = (Dt ◦ Tt )Pt+1,

ξt = St (ξt+1, Pt+1).
(A.8)

The optimal control is

ut = −F t xt ,

F t = β
[
Qt + βB′

t Tt (Pt+1)Bt

]−1
B′

t Tt (Pt+1)At .
(A.9)


