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COMPUTING MODELS O}T SOCIAL SECURITY
C -
Ayse imrohorogu, Selahattin‘l‘[mrv(;horoglu, and Douglas H. Joines!

10.1 Introduction

In the United States and most other developed countries, the public pension system and
associated benefit payments to the retired and their families (including disability, medical,
and survivor benefits) constitute the largest item in the government budget. Partly because
of their scale, these payments have during the last quarter century become the object of
intense study by economists.

Most of the issues concerning the effect of unfunded social security programmes on
the economy have been analysed qualitatively using standard models such as the two- or
three-period overlapping generations model, and some of the empirical predictions have
been tested. More recently, some of these questions as well as other issues in fiscal pol-
icy have been analysed quantitatively using larger overlapping generations models. The
starting point for this literature is Auerbach and Kotlikoff (1987) and a series of papers
that preceded that book. Auerbach and Kotlikoff use a non-stochastic, 55-period overlap-
ping generations model to arialyse the effects of unfunded social security on both labour
supply and the capital stock. Subsequent work modifies the Auerbach—Kotlikoff model
by adding borrowing constraints, various sources of uncertainty, and other features.
In particular, incorporating two sources of uncertainty into a model of social security
seems to be iifipoitant. First, aruncertain lifespan isessential for many interesting ques-
tions concerning Social SECitity, Which provides partial insurance agatnst this risk-in the
absence of private annuity markets. Second, introdiucing earfiings uncertainty is desirable
for at least two reasons: earnings s uncertainty interacts with Borrowing constraints and
yields within-cohort heterogeneity which can address questions about the distribution of
cons—_ii_‘rrji):tj_i}j_i_l__a§@§§lfﬁ';'"ii-erméﬁ'ﬁii'fiiﬁ&é& social security system withi Tittle 6r rio linkage
between benefits and contributions provides some insurance for earnings uncertainty.

10.2 A model of social security with heterogeneous agents

This section describes the imrohoroglu et al. (1995) set-up, which is related to several
recent large-scale general equilibrium, overlapping generations models.2

!The authors’ correspondence address is Department of Finance and Business Economics, Marshall
School of Business, University of Southern California, Los Angeles, CA 90089-1421, USA.

2Among others, important quantitative work using overlapping generations models includes
Hubbard and Judd (1987), Rios-Rull (1996), Huggett and Ventura (1998), Cooley and Soares (1996;

1998), imrohoroglu et al. (1998a), Rust and Phelan (1997), Storesletten et al. (1997), Imrohoroglu (1998)
and Conesa and Krueger (1998).
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10.2 A model of social security with heterogeneous agents

This section describes the imrohoroglu et al. (1995) set-up, which is related to several
recent large-scale general equilibrium, overlapping generations models.?

!'The authors’ correspondence address is Department of Finance and Business Economics, Marshall
School of Business, University of Southern California, Los Angeles, CA 90089-1421, USA.

2Among others, important quantitative work using overlapping generations models includes
Hubbard and Judd (1987), Rios-Rull (1996), Huggett and Ventura (1998), Cooley and Soares (1996;
1998), imrohoroglu et al. (1998a), Rust and Phelan (1997), Storesletten et al. (1997), imrohoroglu (1998)
and Conesa and Krueger (1998).
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10.2.1 Demographics

The economy is populated by overlapping generations of long but finite-lived individ-
uals with total measure one. Individuals face random survival from age j — 1to j, as
represented by the conditional survival probabilities ; i € (0, 1). Some consumers may
survive through the maximum possible lifespan, J. Each period the number of newborns
grows relative to the last cohort by a constant proportion n. To obtain a statlonary popu-
lation, cohort shares {u,} —pare calculated by pu; = Yinj-1/(1+n), Zl =1 M) = 1.3
Aggregate quantities in the economy are weighted averages of individual quantities
where individual measures as well as the cohort measures serve as weights.

10.2.2  Budget constraints J , v

Each period individuals who are below a mandatory retirement age jr face a stochastic
employment opportunity. Let s € S = {e, u} denote the employment opportunities state
and assume that it follows a first-order Markov process. The transition function for the
individual earnings state is given by the 2 x 2 matrix T1(s’, s) = [m; il i, j =eu,
where jj = Prob{s;4+; = j|s; = i}. If s = e, the individual is employed and earns
wej where w is the wage rate per efficiency unit of labour, the labour supply is unity, and
€ is an age-indexed efficiency of labour. If s = u, the agent is unemployed and receives
unemployment insurance benefits in the amount ¢gwe j, where ¢ is the replacement ratio.
During retirement the individual receives a pension b and decumulates assets. The social
sectmts are calculafed to be a fraction, 8, of some base i income, taken to be the
average lifetime employed income. That is

0 J=12,...,jr—1

bj = IR e (10.1)
J Zz—l i j:jR,jR+l,.,.,:’
jr—1
Note that an agent’s social security benefit is independent of the agent’s employment
hlstory The after-tax income of an individual is given by

(-t —n)we; jell,jr),s=e
qj = | pwe; Jell jrR),s=u (10.2)
b Jj€ljr, J]

where 1, and 1, are social security and unemployment insurance payroll tax rates,
respectively.

The infinitely-lived government administers the unemployment insurance and social
security schemes. Given unemployment insurance and social security benefits, the gov-
ernment chooses the unemployment insurance and the social security tax rates so that
each of these schemes is self-financing. -

In this economy, there are no private markets_for insurance agamst the risk of

unemployment or living longer than expected. Unfunded social se rovides partial
ey

3The cohort shares are assumed to be time-invariant in order to restrict the computations to steady
states. In this class of general equilibrium, heterogeneous-agent, large-scale overlapping generations
models, computing transitions is not a simple task.

S

JRRORE

M.

insurance against the latter risk,
private saving. We assume that ¢

the restriction on the amount of :

Since there is no altruistic beque
who survive to age J liquidate
uncertain survival until age J m

Consumption and asset accur
tively, follow

Cj+.

where 7 is the return on physical
of accidental bequests.*

10.2.3  Preferences
Each individual maximizes the e

Ey

where B is the subjective discou
the form

where y is the coefficient of rel:

10.2.4  Technology

The production technology of th:
Douglas function

where B > 0, a € (0, 1) is labo’

and labour inputs, respectively. "

the rate 6.
The profit-maximizing behar
determine the net real return to «

w

4The particular assumption for the
quantitative results. See Imrohoroglu «




"long but finite-lived individ-
vival from age j — 1 to j, as
(0, 1). Some consumers may
:riod the number of newborns
. To obtain a stationary popu-
j-1/(1+n), }:f=1 pj=13

ages of individual quantities
serve as weights.

ment age jg face a stochastic
aployment opportunities state
“he transition function for the
(",8) = [mij), i, j = e,u,
vidual is employed and earns
the labour supply is unity, and
1tis unemployed and receives
ere ¢ is the replacement ratio.
lecumulates s assets. The social

base 1ncome 1e, taken to be the

jr—1
10.1
1,...,J ( )

1t of the aggnfig@_ployment

), s =¢
2,8 =u (10.2)
/]

- insurance payroll tax rates,

’loyment insurance and social
:ial security benefits, the gov-
cial security tax rates so that

nsurance against the risk of

ocial security provides partial

restrict the computations to steady
arge-scale overlapping generations

Models of social security 223

insurance against the latter risk, but the former can only be partially insured against by

private saving We assume that agents may not have negative assets at any age. Hence,

i =0 - (10.3)

Since there is no altruistic bequest motive and death is certain after age J, individuals
who survive to age J liquidate all their assets at that age so that ay = 0. However,
uncertain survival until age J means that there \are accidental bequests.

Consumption and asset accumulduon.at__ggé J, denoted by cjandaj —aj-1, respec-
tively, follow

cjtaj=(1+r)aj-1+qj+§ (10.4)
where r is the return on physical capital net of deprec1atlon and £ is a lumpsum transfer
of accidental bequests.*

10.2.3  Preferences
Each individual maximizes the expected, discounted lifetime utility

J Jj
- Eoy BT [Tvr |uep (10.5)

where B is the subjective discount factor. The period utility function is assumed to take
the form

c}—y

u(cj) = -
where y is the coefficient of relative risk aversion.

(10.6)

10.2.4 Technology
The production technology of the economy is given by a constant returns to scale Cobb—
Douglas function

Q = BK!™*N® (10.7)
where B > 0, a € (0, 1) is labour’s share of output, and K and N are aggregate capital

and labour inputs, respectively. The aggregate capltal stock is assumed to depreciate at

the rate §.
The profit-maximizing behaviour of the firm gives rise to first-order conditions which

determine the net real return to capital and the real wage

r=(-oB [%]_ -3 (10.8)

K l—a
=aB|—
w o [N]

4The particular assumption for the redistribution of accidental bequests may have an impact on the
quantitative results. See Imrohoroglu et al. (1995) and Imrohoroglu (1998).
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10.2.5 Decision rules

Let D = {d,d,, ..., dp} denote the discrete grid of points on which asset holdings
will be required to fall. For any beginning-of-period asset holding and employment state
(a,s) € D x S, define the constraint set of an age-j agent Qj(a, s) € Ri as all pairs
(cj, a;) such that equations ( 10.3) and (10.4) hold. Let Vi(a, s) be the (maximized) value
of the objective function of an age-;j agent with beginning-of-period asset holdings and

e

employrient state (a, s). V;(a, 5) is given as the solution to the dynamic program

{u(e) + BYjr1Eg Vigi(d, sH},

Vi(a,s) = max
(c,.a")eQj(a,s)

)

j=12...,J

-

£ (10.9)

where a prime on a variable indicates its value for the next age and the notation E
means that the expectation is over the distribution of s’

The optimization problem faced by an individual in this economy is one of finite-
state, finite-horizon dynamic programming. The value functions and the decision rules
foreachage j=T1,2, .., J can be found by a single recursion working backwards from
the last period of life. Using the budget constraint (10.4) to substitute for c; in Bellman’s
equation (10.9), the problem reduces to choosing the decision variable a . We assume
thata; € D = {dy, d,, ..., d,,}. Forindividuals at age jg orolder, namely the retired, the
state space is anm x 1 vector X = {x = a: a € D). For individuals who are subject to
idiosyncratic employment risk, at age jr — 1 or younger, the state space is an m x 2 matrix
X ={X=1(a,5): ae D,s e S).Thecontrol space forindividuals of all ages is the m x 1
vector D. For J=Jjr, jr+1,..., J, the decision rules take the form of an m x 1 vector
of asset holdings that solves the above problem. For j = 1,2, ..., jgr — 1, the decision
rules are m x 2 matrices, one such matrix for each J, showing the utility maximizing asset
holding for each level of beginning-of-period assets and employment state realization.

Since death is certain beyond age J (Y41 = 0) the value function at J + 1 is

identically Zero. Hence, the solution to™~

Vi(xy) = max u(cy)
{cs.ay)

subject to

cg=0+nra;_1+q;+¢&

is an m x 1 vector decision rule for age-J individuals, A ;. Note that this is a vector of
zeros since there is no bequest motive and death is certain after J. The value function
at age J, Vy, is an m x 1 vector whose entries correspond to the value of the utility
function at (1 + r)ay_; + b + & with a;_; taking on the values dj, dy, . .., dy,. This
value function V; is passed on to the next step where the age-(J — 1) decision rule and

value function are calculated. The age-(J — 1) decision rule is found by obtaining

Vi—1(xy-1) =  max ](u(CJ—l)’l'ﬂ‘/fJVJ(xJ)}

fes-1.a51

5See Sargent (1987) and Stokey et al. (1989) for a description of dynamic programming as a tool for

solving a large class of general equilibrium models.
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subject to

Ci-tt+ajr=04+nra24b+& ¢;_1>0, aj_ ;>0

The decision rule is found as follows.® For g J—2 = di, the value of a;_| € D that solves
the Bbove probley is obiained by evaluatifig the Objechive TuncloR AT eact point on the
grid D. This value is reported as the first element of the m X 1 décision tule A7 7. By
repeating this procedure for all possible initfal asset levels a;_, € D the entire vector
A1 isfilled. Simultaneously, the age-(J — 1) value function V,;_; is found as an m x 1
vector with entries corresponding to.theright-hand side of the above objective function
evaluated at the decision rule A J—1- '

Working the backward recursion, we come to age jg — 1, the age immediately before
the mandatory retirement age of jr. The problem to solve is

VjR—x(ij—1)={ max l}{M(C,'R—l)+/310,'RV],¢(J?;R)}

CjR_l,ajR_

subject to
Cir=t T jp-1 = (1+7)ajp2+ qjg-1 +£  Cjro1 20, ajp_y >0

When the individual is at age jgr — 1 or younger, disposable income is no longer indepen-
dent of the idiosyncrafic employment rsk. Tn'fact, for j7="1,2, 777 jzr =1, disposable
income can take 6tie 6f two values, (1 -1 —7)we; or pwe, depending on the realiza-
tion of 5. The decision rule for age jr — 1 (and also for younger individuals) is an m x 2
matrix describing the utility maximizing levels of asset holdings for each point in the
state space X = D x S. Consequently, the value function Vjg—11s also an m x 2 matrix.

Forj=1,2,..., jr —2, the optimality equation is given by

Vi(%) = lzr;i)jg} [u(c,-) + BYjt1 Z (", $)Vjt1(Fj41)

s/

subject to
c,~+aj=(1+r)a,-_1+vq,‘+€, cj=0, a;j >0

Fora;_; = djands = e, wesearch overa ;i € D thatsolves the above problem and report
that value as the 1 x 1 element of the m x 2 decision rule A j- Then we search overa; € D
forgivena;_| = djands = u, and report the optimal value as the 1 x 2 element of the de-
cision rule for age ;. This process is repeated until all elements of the decision rule A jare
computed. This completes the computation of the decision rules A j and value functions
V; for all ages; two (jg — 1) matrices each m x 2 and two (J—jr+1).vectorseachm x 1.

6Because of the concavity of the value function, it is not necessary to evaluate the second term on the
right-hand side of equation (10.9) at every grid point. One useful approach is to start with a coarse grid
over the entire decision space and then use successively finer grids in the neighbourhood of the optimum.
An alternative approach is to compute the value function using a coarse grid on the state space and use
linear interpolations to evaluate the value function for in-between grid points.
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10.2.6  Age-dependent distributions of agents

To obtain the distribution of age- j agents, A (a, 5), into beginning-of-period asset hold-
ing levels and employment categories, we start from a given initial wealth distribution
A1. We assume that newborns have zero asset holdings, so A is taken to be an m x 2 ma-
trix with zeros everywhere except the first row, which is equal to (u1, u3), the expected
employment and unemployment rates, respectively. The distribution of agents at the end
of age 1, or equivalently, at the beginning of age 2, is found by ¢
a@,sh=Y" 3 T, )M, s) )

S a:a’eAi(a,s) w Y

Starting from the initial wealth distribution A;, some individuals will be employed
and some of them will be unemployed at age 1. Depending on the realization of the
employment status, individuals will make asset holding decisions which are already cal-
culated. Therefore, at the beginning of age 2, they will g0 to (possibly) different points
in the state-space matrix (a, 5). Each entry in the m x 2 matrix A, gives the fraction of
2-year-old agents at that particular combination of asset holdings (chosen at the end of
the age-1 optimization problem) and period-2 employment status. Note that, for each Js
each element of A ; is non-negative, and the sum of all entries equals 1. :

In general, given J- decision rules A j and an initial wealth distribution A1, the age-
dependent distributions are computed from the forward recursion

rid,sh=3" % n(s',s)x,-_l(a,s) ~(10.10)

S aad'eAj(a,s)

Note that for j = jg, jr +1,...,J, Aj is m x 1 since theé retired individuals are
not subject to idiosyncratic employment risk.

Using these age-dependent distributions we can compute age profiles for consump-
tion, assets, and income. We also compute aggregate values for these variables.

Alternatively, one could simulate the histories of a large number of agents using
Monte Carlo methods and calculate the summary statistics from these simulations. This

- approach starts with an initial distribution of asset holdings and randomly draws the sur-

vival probabilities and the realization of the employment state for a single agent. Given
these realizations, and the optimal decision rules, the next period’s asset holdings are
computed, which become the following period’s state variables. This procedure is recur-
sively followed forward until the agent dies, which is no later than age J. This procedure

is repeated for a large number of agents, and averages are computed, until convergence

of the calibrated cohort shares and the unemployment rate.”

10.2.7 Stationary equilibrium

A stationary equilibrium for a given set of policy arrangements {6, ¢, 75, 7,,} is a
collection of value functions V;(a, s), individual policy rules A j:DxS8S — Ry,
Aj:Dx 8§ — D, age-dependent (but time-invariant) measures of agent types A (a, s)

7imrohoro§lu et al. (1998b) replicate 220 000 agent histories to match the cohort shares to within
0.00001. )
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foreachage j = 1,2, ..., J, relative prices of labour and capital {w, r}, and a lump-sum
transfer £ such that the following hold:

1. Individual and aggregate behaviour are consistent:

Jjr—1

K:;;;Mjlj(a,s\)aj—l and N = 1}; Xazujxj(a,s=e)ej (10.11)

J

2. Relative prices {w, r} solve thed'ir;il’sj profit maximization problem by satisfying
equation (10.8). '

3. Given relative prices {w, r}, government policy {0, ¢, 1, 7,}, a‘nd a !ump—fum Uan§-
fer &, the individual policy rules Cj(a, s), A j(a, s) solve the individuals dynamic
program (10.9).

4. The commodity market clears:

D020 Do irj(@, (C;(@,5) +[4j(a, ) — (1 - A1 (@, )]} = 0 (10.12)
j a s

where the initial wealth distribution of agents, Ao, is taken as given. ‘ ;
5. Thecollection of age-dependent, time-invariant measures A jla,s)forj =23, ..., J,
satisfies

A sh=3" > T, 9)rji(a,s)

S awd'=Aj(a,s)

where the initial measure of agents at birth, A1, is taken as given.
6. The social security system is self-financing:

J .
Lt Tanjri(a,s = eywe;

5

7. The unemployment insurance benefits scheme is self-financing:

T Tanihja s = uypwe;
X T uiras = ewe,

Tu

uz
uy

8. The lump-sum distribution of accidental bequests is determined by

§= ZZZMM(G.S)(I —¥i+Aj(a,s)
j a 5
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10.2.8  Measures of utility and welfare benefits

In ordg{_ic)__gqr_np_qgg_glggmqt»ive__§ocial security arrangements, we need a measure of

“average steady-state utility”. Given a policy arrangement ' = (6, ¢, t,, 7,,}, we calcu-
late ) '

J J ,
WO =3 33 B[] vaki(a, 9u(Cita, ) (10.13)
=1y s k=1 (\"

. N
as our measure of utility, W(I") is the expected discounted utility a newbomn indivié’u”al
derives from the consumption policy functions {C j(a, 5)} under a given social security .
arrangement.

Second, we need a measure to quantify the welfare benefits (or costs) of alterna-
tive social security arrangements. As our reference economy, we take the benchmark
equilibrium under a zero social security replacement rate. Our measure of welfare
benefit (or cost) is calculated as the consumption supplement in each period of life
required to make a newborn individual indifferent between being born into an economy
with a given social security replacement rate and an economy with no social security.
Let Wo = W(I'g) and W; = W(T'1) denote the utility under policy arrangements
Fo= {6 =0,¢, 10 =0, wyand Ty = {6, > 0,¢,1q > 0, 1.}, respectively. Our
measure of welfare benefits is k = £/ Qo where £ is a lump-sum compensation required
to make a newbori indifferent between po licy arrangements Ty with compensation £ in
ach period of lfe, and an alterative policy arrangement T'y without cormpersation, and
Qo is real gross national product under arrangement Lo, T e

Note that steady-state equilibtia calciilated in this class of models do not, in general,
result in allocations that are Pareto optimal for a variety of reasons such as the presence
of liquidity constraints and dynamic inefficiency associated with overlapping genera-
tions models. In order to quantify the extent to which these equilibria suffer from these
problems, it might be desirable to characterize the following first-best solution. Consider
the problem faced by a social planner whose task is to allocate the economy’s output
among investments in physical capital and consumption of the 65 generations alive in
any period. The planner is restricted to choose among steady states, and the objective
is to maximize the expected lifetime utility of an individual born into the chosen steady
state. In a steady state, investment is equal to (8 +n)K. The planner’s problem is thus to
choose a capital stock K and a consumption profile {c j)jj.=1 to maximize the objective
function (10.13) subject to the constraint

J
FEN)=@+mK+Y_ ujc;
j=1

The first-order condition associated with K is that the marginal product of capital
equals §+n. This condition requires that the planner choose the golden rule capital stock,
thus maximizing aggregate consumption. The remaining optimality conditions concern
the allocation of aggregate consumption among the J living generations, or alternatively
(because the planner is restricted to choose among steady states), over the J periods

?
J
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of an individual’s life. Given the form of the utility function in equation (10.5), these
conditions give rise to expressions of the form

. 4
(Efﬂ> = B(1+n)

¢j

Jote that the general shape of the consumption profile implied by these expressions
does not depend on the level of aggregate consumption. If individuals were not subject
to liquidity cén's'f'r'ziiﬁt‘é’,"théj’r"iiyﬁuld allocate Gonsuription over the life cycie according to

B\ Y
Eo (w) = B+ )Y
¢j
The consumption path implied by this condition differs from that chosen by the social
planner Tor two Teasons. First, the planner pooIs the mortality risks represented by v s,
whereas individuals in 6ur model are unable to do so due to the absence of annuity
markets. As a"r'éé'ii‘l"t',"fﬁé"‘é“gv&ii?ﬁéGﬁﬁﬁ&”‘ﬁ?&‘ﬁfé‘éﬁ&éﬁ"BV"'ih”di\”/i'a‘{iE'l's"'“EéﬁEls to be
lesggfgep than that chosen by the planner. Second, the planner’s optimality conditions
involv@ﬁﬂé%ﬁi@@ rate (which equals the ecotiomy’s growth tate 1 the ab-
sence of productivity growth), whereas the individual’s involve the market interest rate.
These rates will differ unless the economy is at the golden rule capital stock. In addition,
an individual subject to binding liquidity constraints would not allocate consumption
according to the above Euler equations, possibly causing a further divergence between
the individual’s consumption profile and that chosen by the planner. Social security can
affect welfare by altering the steady-state capital stock, and thus aggregate consumption,

and by influencing the shape of the age-consumption profile.

10.2.9 Calibration

In order to obtain numerical solutions to the model, it is necessary to choose particular
values Tor the parameters. The general strategy 1s to choose parameter values so that the
model economy reproduces certain long-run empirical characteristics of the economy
being studied. This entails matching model quantities with empirical counterparts that
should be constant along a balanced growth path. Examples of such quantities are the
growth rates of population and total factor productivity and ratios such as the capital-
output and investment—capital ratios. Although these empirical quantitics a7e not fiterally
constant, they generally appear to be mean stationary time series, and the means of these
time series generally can be estimated fairly precisely. Cooley and Prescott (1995) pro-
vide a general discussion of this strategy for choosing modeT parameters. The specifics
of calibration differ from model t6 model; and the reader is feferrad to individual papers
for details. See, for example, imrohoroglu et al. (1998a; 1998c) for a detailed discussion
of the calibration of a particular overlapping generations model as it is applied to social
security.

10.2.10  Computing a stationary equilibrium

Let €1 and €; denote the convergence criteria for the aggregate capital stock and unin-
tended bequests, respectively. These criteria are usually obtained through experimen-
tation. A smaller € increases the number of iterations whereas a larger € may change
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the results significantly. Also choose the step sizes &; and &; governin the adjustment

to capital and bequests between iterations. Computing an equilibrium requires finding

a fixed point in the capital stock, K, and the transfer of unintended bequests, &, and
consists of the following steps:

1. Guess K¢ and &. Compute the aggregate labour input N = u, Zj’; _11 wjej. Use
the first-order conditions from the firm’s profit maximization problem to obtain the
implied values for the relative factor prices w and r, and substitute these in the indi-
vidual’s budget constraint. ‘

2. Compute the decision rules for each cohort by completing a backward recursion, and

the distribution of agent types for each cohort by completing a forward recursion.

3. Compute the new aggregate capital stock K; = 2 X a2 jkj(a,5)Aj(a, 5) and
the new lump-sum transfer £ = }:j 20 Lsjkj(a,s)(1 — V¥i+1)Aj(a, s), and
check if 15‘7}0&1-' < €] and jﬂgﬂ < €. If not, compute K; = &Ko + (1 — &)X,
and & = @80 + (1 — &)£). Set K = K3 and & = &; and go to step 1. For each of
the jg — 1 working ages, computing the decision rules involves d,, x d,, x 2 function
evaluations, and for each of J — j + 1 retired ages, obtaining decision rules requires
dm X dp function evaluations.8

4. Compute aggregate consumption, investment, and output using the decision rules, dis-
tribution of agent types, and the population shares of cohorts, and check whether the
commodity market clearing condition given by equation (10.12§ is approximately sat-
isﬁ__e_d.9 If the problem is correctly specified and the code is accurate, excess demand is
typically less than 0.01% of output when the capital stock converges. If excess demand
is sufficiently small when the aggregate capital stock converges, then stop. If not, check
the code for accuracy or the economic model for internal consistency and start again.

10.3 A linear quadratic model of social security

De Nardi ez al. (1998) demonstrate how a demographic transition can be incorporated
in a general equilibrium model with long-lived overlapping generations of individuals
facing several sources of uncertainty. The emphasis is on the computation of an equilib-
rium transition path between steady states which is induced by a demographic transition
and the government’s fiscal response to it.

8The number of grid points varies from one paper to the next. For example, imrohoroélu et al. (1995)
use 601 grid points, whereas imrohoroélu et al. (1998c) use 4097 grid points. In all cases, the computer
code is written in FORTRAN. In the model with 4097 grid points, each iteration takes about 90 seconds
on a 200 MHz Pentium Pro. Finding an equilibrium generally requires between five and eight iterations
and rarely takes more than ten iterations.

9Note that this is merely a check on the internal consistency of the model and the accuracy of the
code that performs the computations. When the model is well specified and the decision rules and the
distribution of the agent types and the aggregate variables are calculated correctly, the market clearing
condition should hold in equilibrium since it is a weighted average of the individuals’ budget constraints.
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10.3.1 Demographics

For any variable z, the subscript ¢ denotes age and the index s in parentheses denotes
calendar time. For example, N, (s) denotes the number of age-t people at time s.

Time is discrete and indexed by s. At each date s, a cohort of individuals of measure
No(s) arrives. These are “age 0” individuals who face random survival. The lucky ones
live through s, s + 1, s + 2,...,5+ T, /foratotal of T + 1 years. Let o, (s) denote the
conditional probability of surviving from age ¢ to age ¢ + 1 at time 5. The number age

_ ¢ people alive at time s moves according to

Nev1(s + 1) = a () Ny (s) (10.14)

Iterating on (10.14) gives N (s) = o1 (s — 1) or-2(s —2) - ag(s — t) No(s — t). We
compute the probability that a person born at 5 — ¢ survives to age ¢ as

t
Ai(s) = ['[ o _p(s — h) (10.15)
h=1

De Nardi ef al. assume that at time 5, the number of new individuals grows at the rate
n(s) — 1, so that No(s) = n(s)No(s — 1), which implies No(s) = [The; n(A) N (0). Let
v(s) = HZ:] n(h). Then the fraction ft(s) of age- people at time s is given by

A (s)v(s)
o hi(s)u(s — i)

which will be used as cohort weights to compute aggregate quantities. The entire pop-
ulation at time s is given by N(s) = Ztho Ni(s). The paths n(s) and a,(s) for s =
1970, ...,2060 + 3T are taken as given and calibrated using the projections of the
Social Security Administration for the United States. Note that the people who enter
the model at “age” 0 (¢t = 0) are 21 years old. The mandatory retirement age.is 65
(t =tp +2) and old agents may live up to 90 years old (¢ = T).

During the first tg + 1 periods of life, a consumer supplies labour in exchange for
wages that he allocates among consumption, taxes, and asset accumulation. During the
final T — ¢ periods of life, the consumer receives social security benefits. In addition

fi(s) =

(10.16)

to lifespan risk, agents face different income shocks that they cannot insure. They can

smooth consumption by accumulating two risk-free assets: physical capital and govern-
ment bonds. The government taxes consumption and income from capital and labour,
issues and services debt, purchases goods, and pays retirement benefits, THere is a con-
stant refurns-to-scale Cobb=Daiiglas aggregate production function and no aggregate
uncertainty. Asa conisequénce, Tactor prices will 56 time-varying but deterministic.

R —— A v

T it e s

10.3.2  Technology

The aggregate technology is described by a constant returns to scale Cobb-Douglas
production function. Prices of capital and labour at time s, denoted by r(s — 1) ‘and
w(s), respectively, are determined from the firm’s profit maximization problem in a
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competitive equilibrium:

-, K =17t
rs—1)=aA
( )=a [ LG) ] (10.17)
L [K6=-DT
wis)=(1-a)A| ——=
)=(0-a) [ 0] ] © (10.18)
where L(s) = :’; 0 € £ (s) N;(s) is the aggregate labour input in efficiency units, ¢,

is a time-invariant and exogenous age-efficiency index, and ¢,(s) is the labour supply

of r?en agent of age ¢ at time 5. The aggregate capital input is given by K(s — 1) =
1=0 ky (s~— 1) N, (s?, where k, (s) is the physical capital holdings of an agent of age ¢

attime s, @ € (0, 1) is the income share of capital, and A is total factor productivity.

10.3.3  Government

An age-t person divides his time-s asset holdings g, (s) between government bonds and

private capital: a;(s) = b,(s) + k,(s), where b (s) is government debt.1% The govern-

ment’s budget constraint at s is:

T ' T
EONE) + ) SN+ Ris = 1)Y bi(s = DN, (s)
t=tp+1 t=0
T T ) .
= %R(s — DBeq(s) + Y _bi(sINi() + Y Ny(s){za()[R(s — 1) = Tlar_y(s — 1)
t=0 t=0
+ te(S)w(s)e L (s) + T (s)ci (5)} - (10.19)
where
. ,
Beg(s) =) [1—or(s)]ay(s = DNy (s — 1) (10.20)
t=0
and

_ Beg(s)(1 — )

10.2
No(s) (1020

a_i(s —1)

In equation (10.19), g(s) is the amount of government purchases at time s, S, (s) is the so-
cial security benefits received by an age-¢ individual attime s, R(s —1) = 14r(s—1)—§
is the rate of return on asset holdings net of depreciation, 7 is the tax on inheritances,
T4 (s), T¢(s) and 7.(s) are taxes on asset income, labour income, and consumption, re-
spectively. The amount of assets inherited at time s by each new worker is denoted by

10We assume that these two assets pay the same return, which implies that individual portfolios are
indeterminate. We can compute the aggregate holdings of each asset since the economy’s resource con- "
straint yields the amount of aggregate physical capital, and government bond holdings are then computed
as a residual after the total asset holdings are computed.

.
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a-1(s — 1), which is assumed to be divided between physical capital and government
bonds in the same proportions that these are held in the aggregate portfolio:

T
koi(s—1) = 2imoll - :;o(;s))] ki (s) Ny (s5)

b_i(s—1) = Z:fT=0 (1 = ot ()] b (s)N, (5)
No(s)
In the benefit formula, fixben, for people living in a steady state, is given by

(10.22)

fixben = fixrate . AV

where AV records the average earnings of a worker who has survived to retirement age.
For people living during the transition, fixben is a linear combination of the contribu-
tions in the initial and final steady states.!!

10.3.4  Household’s problem

10.3.4.1  Budget constraints Individuals face the following budget constraints:

ce(s) +a,(s) = R(s — Dai—1(s — 1) + w(s)el (s) + S (s) — Y, (s) + d; (10.23a)
T = 10(5) + 1(s) [w(s)erly (s) + dy]

F 1) [R(s = 1) = 1]ar_1(s — 1) + e (s)ce (s) (10.23b)
er(s) =e—1(s — 1)+ w(s)erl, (s) (10.23¢)
_Jo fort <tp+1 ‘
S(s) = [fixben,(s) t+rrate(s)ei—1(s —1) fort > tg + 1 (1023d)
Z41 = Anz + Cowryy (10.23e)
dt - Ud,r
4] %] _ oz

In equation ( 10.23a), 1p(s) is a lump-sum tax, and ¢, (s) the cumulated earnings of an
individual. The benefit formula 10.23d) allows for either a  lump-sum retirement benefit
or benefits that are related to past cumulated earnings. Equation (10.23¢) describes the
evolution of the information variable Zt, where wy 4| is a martingale difference process.
Uqd.r and U,, are selector vectors that specify the income shock d; and the stochastic bliss
point y;. De Nardi et al. set the preference shock to a constant but specify d, to be random
process with mean zero: d; = pyd,—; + w1:. The martingale difference sequence wy 4|
is adapted to J, = (wf), x0), with E(w;41|J;) = 0, E(w,+1w:+l|1,) = [. We assume
that the individual income shocks are independent across individuals. The law of large
numbers then implies that all uncertainty at the individual level averages out and that the
aggregate economy is deterministic.

* 'We distribute bequests as follows. Each agent born at time s begins life with assets a_; (s — 1), which
we set equal to a per-capita share of total bequests from people who died at the end of period s — 1. This
distribution scheme implies that within a steady state, per-capita initial assets equal per-capita bequests
adjusted for population growth. However, during either policy or demographic transitions between steady
states, this distribution scheme implies that what a generation receives in bequests no longer equals what
it leaves behind.
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10.3.4.2  Preferences The one-period utility function for an age;t person is given by

(e (5), () = =3 [(c:(s) = yi(5))2 + (m28:(5))?] (10.24)

where 7 is a parameter and y (s) is a stochastic bliss point. There is a subjective discount
factor B which is common across individuals and cohorts. The effective discount fac-
tor from age ¢ to ¢ + 1 at time s is the product Ba,(s). Let x,(s) = [a—1(s = 1),
e—1(s — 1), z;]' denote the state vector of an age ¢ individual at the beginning of
period s. If an individual dies at the end of age £ — 1, his value function is given by
Vi(xi(s) |dead at 1) = V) (x, (8)) = x:(5) Pr41x,(s), where Pr4 is a negative semi-
definite matrix with parameters that determine the strength of the bequest motive. This
formulation of bequest motive is termed “the joy of giving” in the literature. 12

Our formulation gradually activates the bequest motive, intensifying it with age as
the mortality table makes the household itk ore about the hereafter.

For =0, 77 T, Tet V;(%,(s)) be the optimal value Tufiction for an age-t person at
time s. The household’s Bellman equations are

Vi(a—1(s = 1), g1 (s — 1), z,) = €
t (ar—1(s ), e—1(s ), 2t) ;(c,(s),g,lg))(,l,‘(s)} {ulci(s) 1 (5))

+ B ()E; Viy1 (ar(s), er(s), z41)
+B8[(1 — a; (DIE V41 (ar(5), € (), 241))

where the maximization is subject to the constraints (10.23).

Using standard linear quadratic control theory, the solution to the above finite-state,
finite-horizon dynamic program is obtained as follows. Suppressing the time subscript
for ease of exposition, we can express Bellman equations as

Vilx) = ‘mfl‘l {uy Qru, + x/Rx; + BE:Vi11(xi41)) (10.25)
Uy, Xy
where
EtVig1(xi41) = ar () E[Vig1 (x041) | alive]
» +[1 = ot ($)Ei [Vi1(xs11) | dead]
Vi(x | alive) = x, Pyx, + & (10.26)

Vi(x; |dead) = x; Pry1x,
X Pry1xe = —JG (1 - t)a_y — J B)?

The last equation describes the bequest motive. J G is a parameter governing the intensity
of the bequest motive and J B is an inheritance bliss point. Since the individual’s sur-
vival probability declines over the life cycle, equation (10.26) reveals the higher weight
attached to death and hence bequests as the individual ages.

12 An altruistic bequest motive helps the model to produce an empirically plausible capital-output ratio.
Also, the presence of a bequest motive makes private saving and hence the aggregate capital stock more
resilient to changes in the environment. Fuster (1997) emphasizes the importance of this feature of her
model in yielding results that are different from those in Auerbach and Kotlikoff (1987).
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The matrix Riccati equations for P, F; and & are:

Fi = (Q: + Bt (s)B{ Prr1 B + BIL — ()18} Pry B,) ™"
X (Bai(s) B Pry1 Ar + BI1 —  (s)1B; Pry14,)
Py =R+ F/Q,F, + Bai(s)[Ar — B F;) Py [Ar — B F;]
+ B[1 - o ($)I[A; — BtFr]/PT+l[Al - B F]
§ = Par () [tr(Pr41CC) 4 £111] + BI1 — a(5)] [tr(Pry Cc'0)]

Reintroducing the time subscript, the above recursions produce the time- and age-
dependent decision rules

ur(s) = —Fr(s)x,(s)
and the law of motion
Xeg1(s + 1) = Ai(s)x, + Cr(8)wr 41

Note that the certainty equivalence specification of preferences makes the decision rules
independent of the noise statistics, {Ci(5)).13

Given a mean and covariance matrix for the initial state vector, (o(s), Zo(s)), the
first two moments of the state vector follow the law of motion

M1 (s + 1) = A (s)pae (5)
Let(s + 1) = A(9)Ti(5) A (5) + Cr(s)Ci (5)

The mean and standard deviation of aggregate quantities such as aggregate consumption,

~ investment, output, and physical capital stock can then be easily computed as weighted

averages of the above moments of the distribution of the state vector.

10.3.5 Resource constraint

The national income identity at time s in this economy is given by

IR

T
BENE) + 3 el INi(s) + K (5) = R(s = DK (s = 1) +w(s) 3 er8a(5) Nos)
t=0 t=0

10.3.6  Time variation in demographics

De Nardi et al. (1998) incorporate the ageing of the population in their model as a tran-
sition in the demographic structure of the model. An initial steady state, associated with
constant pre-1975 values of the demographic parameters {o;, n}, is specified. Then, the

l3Huang et al. (1997) depart from certainty equivalence by employing nonexpected utility. Follo'wi.ng
Hansen and Sargent (1995), the linearity of decision rules is preserved although the noise statistics
influence the decision rules. :
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projected mortality tables from the Social Security Administration (SSA) are used for
the years between 1975 and 2060, so that

af’ fors <1974
ar(s) = {a(s) for 1975 < 5 < 2060
af for s > 2060

where o = ¢, ( 1970) from the mortality table, o) = /(2060 + 1), and the SSA num-
bers for the cohort to be born in 2060 the & (s) are taken from the SSA 14 The path for
the growth rate of newborns is calibrated in orderto match the SSA’s forecasts of the
dependency ratio, which is projected to increase from 18% in 1974 to 50% in 2060.
De Nardi et al. assume that individuals in the economy suddenly realize in 1975 that
the mortality tables have changed and that they start using the new tables. The mortality
tables are assumed to reach a steady state in 2060 in line with the SSA projections. The de-
mographic structure changes for another T +1 years, until it reaches a new steady state in
2060+ (7 +1). The demographic transition requires the government to make fiscal adjust-
ments and causes the individuals to recompute their decision rules in light of all the sur-
prise changes in their environment, In steps, the government increases one tax rate (either
T¢ or 7¢) during a policy transition period, leaving all other tax rates constant, These tax
changes are scheduled and announced as follows. In 1975 the government announces that,
starting in year 2000, it will increase the tax on labour income (in experiments 1, 3, 5, and
6) or on consumption (in experiments 2 and 4) every 10 years in order to reach the termi-
nal steady state with the desired ratio of debt to gross domestic product (GDP). Starting in
2060, that tax rate is held constant at its new steady-state level, but the wage rate and inter-
estrate continue to vary for another 2(T +1) periods, after which time they are held fixed.

10.3.7  Computing an equilibrium transition path

1. Compute the initial steady-state equilibrium. Use a backward recursion to compute
the agents” Value fiinctions and policy functions, taking as given government pol-
icy, bequests, and prices. Iterate until convergence on the following four-difnensional
fixed-point problem with arguments given by: " - o
(a) the social secu'ri'fy pension, in order to match the desired replacement rate;

(b) bequests, so that planned bequests coincide with received ones;
(c) thelabourincome or consumption tax to satisfy the government budget constraint;
(d) factor prices, to match the firms’ first-order conditions.!?

2. Compute the final steady-state equilibrium. In addition to following the above proce-

dure for the initial steady state, there is an additional do-loop layer in which iterations
are performed on the government debt level to match the debt-to-GDP ratio to a
prescribed value such as that in the initial steady state.

14The life tables are taken from Bell ef al. (1992).

5In practice, the wage rate is a function of the real interest rate through the Cobb-Douglas production
function. Therefore, the last component of the steady-state fixed point is just the real interest rate.
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. 3. Compute the equilibrium transition path between the steady states. For a given time

path of factor prices, bequests, and government policy parameters, compute the tran-

sition dynamics by solving backward the sequence of value functions and policy

functions, and then:

(a) iterate until convergence on a parameterized path for the tax rate to match the
final debt-to-GDP ratio;

(b) iterate until convergence on the time path of factor prices to match the firms’
first-order conditions.

Although the model economy would converge to the final steady-state equilibrium
only asymptotically (because prices are endogenous) De Nardi et al. follow Auerbach
and Kotlikoff (1987) and assume that convergence obtains in 3T periods. 6

104 Cohclusions

This chapter presents two versions of an overlapping generations model with incomplete
markets and describes How this Tiodel can be used to analyse issues related to public
pension 'Eﬁfé"ﬁié‘iﬁéﬁ“é‘é’“iﬁ'é'iii’i’ﬁihdéd“s6'ciél"'§éEﬁ'ﬁ'f"y"@?féﬁ”éﬁﬁ’éfli]“ﬁﬁ‘bTEéé in the
United States and many other developed countries. The first version of the model departs
from the Ariow-Debreu world of comipleté Contingent claims markets by assuming the
presence of exogenously given borrowing constraints. Both versions of the model assume
that private annuity markets are missing, thereby limiting the ability of agents to insure
against uncertain lifespans.

The two versions of the model differ in their preference structures as well as in other
respects. The first version assumes that labour is supplied inelastically, whereas the sec-
ond version relaxes this assumption. The second version incorporates a form of bequest
motive, whereas the first version is populated by pure life-cycle consumers. The first ver-
sion allows for a richer set of within-cohort heterogeneity, whereas the second version
(essentially) assumes that intra-cohort heterogeneity is normally distributed. Huggett
and Ventura (1998) and Fuster (1997) have incorporated a variable labour supply ifito a
model with preferences similar to those used in the first version of the model presented
here. In addition, Fuster’s odel iicludes a bequest motive that is different from the one
described here. T

The chapter presents the numerical solution algorithms used to compute steady-state
equilibria for each version of the model. For the second version of the model, the chap-
ter also describes the solution algorithm for computing transition paths between steady

states.

16To compute a steady-state equilibrium, De Nardi et al. (1998) use a secant algorithm which is a
method to find the root of a system of nonlinear equations. In computing an equilibrium transition path
between steady states, they use a relaxation algorithm which is a method for solvin‘g two-poipt poundary
value problems. See Press et al. (1986) and references contained therein for a detailed description of the

secant and relaxation algorithms.




