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Abstract

This paper studies the impact of pricing choices by platform intermediaries in a two-sided

market with positive indirect network e�ects. It presents a dynamic equilibrium model to

analyze consumers' purchase decisions for competing hardware platforms and a�liated software

products, and software �rms' dynamic pricing and entry decisions. This paper develops a

new Bayesian approach for structural estimation of dynamic games. The estimation method is

implemented on the U.S. �fth-generation video game industry (May 1995 - February 2002). The

results show that overpricing one side of the market not only discourages demand on that side

but also discourages participation on the other side, which over time can lead to a death spiral.
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1 Introduction

In many two-sided or �platform� markets, consumers join a platform to access goods provided by

�rms who are a�liated with that platform, and �rms join a platform to reach consumers who have

joined that platform. The number of consumers on a platform depends on the availability, quality,

and prices of the a�liated products. The success of the a�liated products depends on the number

of consumers on the platform. This interdependence or externality between two groups of agents

that a platform serves is referred as indirect network e�ects in the literature on two-sided markets.

Moreover, platform markets are often inherently dynamic environments due to the durability of

platform intermediaries and the a�liated products. In the dynamic two-sided market environment,

overpricing one side of the market not only discourages demand on that side but also discourages

participation on the other side, which over time can lead to a death spiral.

This paper presents a dynamic equilibrium model to analyze consumers' purchase decisions for

competing hardware platforms and their a�liated software products, and software �rms' dynamic

pricing and entry decisions. Consumers are heterogeneous, forward-looking, and have rational

expectations about future software entry and prices. In each time period, they choose whether

and when to purchase hardware and a�liated software. The hardware purchase decision and the

software purchase decision are interdependent. On the one hand, the value of hardware depends

on the value from being able to purchase the a�liated software. Hence, consumers rationally

anticipate the software market when they make their purchase decisions of hardware. On the other

hand, the number of potential consumers for a software product depends on how many consumers

have purchased the compatible hardware.

On the software side of the market, there exists a �nite number of separate submarkets. In each

submarket and each time period, incumbents decide how much to charge, and potential entrants

decide whether to enter. There are four important dynamic factors that in�uence software �rms'

choices. First, the consumption value of a software product decays over time because consumers

favor newness. Second, the competitive environment changes over time, which is mainly driven by

the entry of new software products. Third, the distribution of potential buyers in each submarket

changes over time. Because consumers are heterogeneous, they purchase hardware or enter the

a�liated software submarkets at di�erent points in time, and they also purchase software and leave

a software submarket at di�erent points in time. This gives software �rms an incentive to engage in

inter-temporal price discrimination. Fourth, consumers are forward-looking. If prices are declining
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and product variety is growing over time, consumers have an option value associated with waiting.

Forward-looking software �rms also take this into account when deciding their prices and entry.

In dynamic equilibrium models, given other agents' strategies, each agent's best response is

the solution to a single-agent dynamic programming problem. Moreover, each equilibrium is the

�xed point of the system of best response operators. For relatively complicated models, calculating

the continuation value and policy function is computationally di�cult, or even impossible. This

paper provides a new practical method for structural estimation of these models. To the best of my

knowledge, there is no published work on the use of Bayesian Markov Chain Monte Carlo (MCMC)

methods for estimation of dynamic games. The di�culty with adopting a MCMC approach stems

from the fact that estimating a dynamic game involves solving for the �xed point in the value

function space as well as for the equilibrium in the agent action space.

The estimation method introduced by this paper combines the Bayesian algorithm and the

dynamic game solution algorithm into a single algorithm that estimates the parameters and solves

the model simultaneously. For a given draw of the parameter vector along the MCMC chain, I

solve the dynamic game as follows: �rst, I randomly pick a subset from the entire state space

for each period; second, for a given point in the subset, I nonparametrically approximate each

agent's equilibrium strategy and value function by using the pseudo-best response functions and

pseudo-value functions from previous MCMC iterations; third, I adopt an interpolation approach to

obtain each agent's continuation value, solve for each agent's best response function (pseudo-best

response function) and value function (pseudo-value function) given that other agents play their

equilibrium strategies, and store these pseudo-best response functions and pseudo-value functions

for future iterations. This algorithm is similar to the method of Pakes and McGuire (2001). In

their algorithm, the continuation value is approximated by the average of the returns from past

outcomes of the algorithm, and the value and policy functions are updated at a recurrent class of

points (rather than at all possible points) in the state space.

My estimation approach has the following attractive features. First, it iterates each agent's

Bellman equation only once for each draw of the parameter vector, and hence dramatically reduces

the computational burden of estimating complicated dynamic games. Second, it fully solves the

dynamic game, and hence can accommodate a rich speci�cation of observed and unobserved hetero-

geneity. Third, the use of interpolation allows my estimation method to be able to handle models

with large state spaces and continuous state variables.

The estimation method is implemented on the U.S. �fth-generation video game industry. This
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generation was dominated by three consoles, Sega Saturn, Sony PlayStation One and Nintendo 64.

Sega Saturn failed during this period, even though it was very successful in the previous generation.

My counterfactual simulations suggest that Sega priced inconsistently with the two-sided business

pricing model and hence was shaken out of the market. It would have survived if it lowered its

console price to attract more consumers and hence more games, or if it subsidized software R&D to

encourage the participation of more games and hence the participation of more consumers, or if it

lowered its royalty fees to reduce the game prices, attract more consumers and thus more games to

join its platform.

The rest of the paper is organized as follows. In the remainder of this section, I provide a brief

review of the related literature. In section 2, I describe the data set and the U.S. video game industry.

In section 3, I build a structural equilibrium model of dynamic demand and dynamic supply. In

section 4, I propose a Bayesian MCMC estimation method and discuss the related computational

issues. In section 5, I report the estimation results. In section 6, I conduct three counterfactual

exercises to analyze the impacts of platform pricing. In section 7, I conclude.

Related Literature

This paper contributes the literature on two-sided markets which has been growing quickly in the

last decade. Rysman (2009), and Hagiu and Wright (2011) provide general reviews of the literature

on this �eld. One main result of previous theoretical studies is that pricing on one side of the market

depends not only on its demand, but also on how it a�ects participation on the other side of the

market (Rochet and Tirole, 2003; Anderson and Coate, 2005; Hagiu, 2006; Weyl, 2010). In addition,

in those two-sided markets with positive indirect network e�ects, one side of the market is always

waiting for the other before making its own action. This �chicken-and-egg� coordination problem

is originally noted by Caillaud and Jullien (2003). However, most previous studies have usually

adopted static models to investigate this problem which is really a dynamic game. In contrast, this

paper presents a full dynamic game to look at the formation processes of the consumer network and

the software network.

Not many empirical studies on two-sided markets exist. Rysman (2004) adopts a static model

and estimates the network e�ects in the market for yellow pages. He �nds that advertisers value

consumer usage of a directory and consumers value advertising. Lee (2010) and Gowrisankaran,

Park, and Rysman (2011) estimate forward-looking consumer demand for hardware and a�liated

products. They mainly focus on the e�ect of the a�liated software products on the consumer
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hardware adoption, and do not model the decisions made by producers of a�liated products. In

contrast, this paper models not only consumers' adoption decisions of hardware and software, but

also software producers' price and entry decision. Therefore, this paper can examine not only how

a platform's pricing on consumers a�ects the software market, but also how a platform's pricing on

the software producers a�ects consumers' adoption of hardware.

This paper adds to the literature on dynamic pricing and the literature on dynamic entry. Most

previous studies on dynamic pricing in the durable goods markets are theoretical studies which

have focused on establishing closed-form results for relatively simple models. Few results exist for

the more complicated multi-�rm, multi-characteristic settings of actual markets. One exception is

Nair (2007), who considers a video game seller as a single product durable-goods monopolist. In

the literature on empirically estimating dynamic entry models, almost all previous studies have

described the demand side in a static way (Ericson and Pakes, 1995; Bajari, Benkard and Levin,

2007). To my knowledge, no previous work has focused on both dynamic pricing and dynamic entry.

My estimation approach contributes to the literature on Bayesian estimation methods. This

approach has been commonly applied to the static discrete choice models with latent variables.1

Imai, Jain and Ching (2009), and Norets (2009) pioneered the use of Bayesian estimation method for

dynamic discrete choice models. Both use the MCMC algorithm to draw a sequence of parameter

vectors from their posterior distributions. During each MCMC iteration, they partially solve for the

value functions and stores those partially solved value functions. For the current trial parameter

vector, they non-parametrically approximate the expected value functions using those solved value

functions from past MCMC iterations. They also provide theory to justify statistical inference

made based on this algorithm. My method is based on their idea: iterate the Bellman equation

only once at each estimation iteration and use the outcomes from previous iterations to approximate

the expectation in the Bellman equation. In contrast to those two papers, my estimation method

is designed for estimating dynamic games which have another layer of complication because each

equilibrium is the �xed point of the best response system.

My estimation approach contributes to the literature on estimating dynamic games. The most

popular methods in the literature are the nested �xed point approach (for example, Berry, Levin-

sohn, and Pakes, 1995) and the two-step approach (for example, Bajari, Benkard, and Levin, 2007).

The former solves for the equilibrium for each guess of parameter vector. The latter sidesteps the

equilibrium computation step by substituting nonparametric functions of the data for the policy

1See Albert and Chib (1993), McCulloch and Rossi (1994), Jiang, Manchanda and Rossi (2009).
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functions. In contrast to the existing approaches, the Bayesian method proposed in this paper uses

MCMC algorithm to simulate the posterior distribution of the structural parameters, and solves the

dynamic game for each draw of parameter vector by incorporating nonparametric approximation

method and interpolation method.

2 The U.S. Videogame Industry

Since Pong was introduced in the early 1970's, the U.S. video game industry has grown to reach 22

billion dollars in revenue in 2008, over twice the total box-o�ce revenue in the movie industry (10

billion dollars). The video game industry is a two-sided market in which consoles (hardware) act

as platform intermediaries, and consumers and video games (software) are on the two sides of the

market. On one side, console providers design and sell consoles to consumers who pay a one-time

�xed fee to join a platform (i.e., the console price). On the other side, console providers charge

game producers a royalty fee for the right to the code which allows the game producers to make

their games compatible with the console. The royalty fee is not a one-time payment, rather, it is

a unit payment per copy sold to consumers. In fact, console providers manufacture all the video

games themselves to track sales for royalty collection.

To satisfy consumers' needs for the latest technology, console providers have introduced new

systems approximately every �ve years. The �fth-generation was dominated by three consoles, Sega

Saturn (released in May 1995), Sony PlayStation One (released in September 1995), and Nintendo

64 (released in September 1996).

2.1 Data

My main data set is obtained from the NPD Group, a market research �rm. It includes the monthly

revenue and unit sales of three �fth-generation consoles, Sega Saturn, Sony PlayStation One (PS1)

and Nintendo 64 (N64), from May 1995 until February 2002. I calculate the console price by taking

the ratio of revenue over unit sales in each month. Since the sixth-generation started when Sony

launched its PlayStation 2 in October 2000, the data set covers the entire �fth-generation video

game industry.

The data set also includes the monthly revenue and the unit sales for 1697 unique game titles

released for the three consoles during this period. It was collected from thirty of the largest retailers

in the U.S., which account for around 85% of video game sales, and was extrapolated by the NPD
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for the entire U.S. market. I calculate the game price by taking the ratio of revenue over unit sales

in every month. The data that I use for estimating the game market only includes sports games. I

do this because it is relatively easy to sort sports games into groups and it reduces the estimation

time to use a smaller sample. The data for estimation contains 397 sports games distributed in 29

software submarkets. I also collect the data of the critics and user rating score for each game title

from several large websites such as IGN, gamerankings, GameSpot and Gamasutra.

General descriptive statistics are provided in Table 1. Up to February 2002, the installed bases

of users in U.S. market for the Saturn, PS1, and N64 were 1.28 million, 28.25 million and 17.17

million, respectively. The total unit sales of their a�liated video games were 8.09 million, 300.02

million and 111.55 million, respectively. Even though Sega Saturn was the �rst mover, it became

the �other� system barely two years after its release, running a distant third behind its two rivals.

2.2 Industry Description

Below I brie�y discuss three important features of this industry, the positive indirect network e�ect,

the declining pattern of game price and sales, and the seasonality of console and game sales.

1. Positive Indirect Network E�ect

Consumers buy a console to access its video games, and game producers make their games compati-

ble with a console to reach consumers who own that console. Hence, the number of users of a console

is largely contingent on current and expected availability and prices of games; and the number of

games a�liated with a console depends on how many users have purchased and are expected to

purchase that console.

On the one side of the market, consumers decide whether to purchase consoles and games. A

console has no stand-alone value. Its value comes from the compatible game titles. Figure 1 (a)

presents the number of each console's owners during the sample period. The installed bases of PS1

users and N64 users grew fast during this period. On the contrary, the number of Saturn owners

stopped growing one and a half years after its release, because consumers stopped buying it.

On the other side of the market, incumbent game producers choose their prices and potential

entrants choose whether to enter. Figure 1 (b) presents the number of existing game titles sold for

each console in every month during the sample period. The number of PS1 game titles and the

number of N64 game titles grew fast. By contrast, the number of Saturn game titles started to

shrink from January 1998, because no new games a�liated with that platform.
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2. Game Prices and Sales Decline with Age

The second feature of the U.S. video game market is that game price and sales start at a high level,

then decline rapidly in the �rst six months after release. In �gure 2, the horizontal axis is the game

age measured by the months since introduction and the vertical axis is the average game price in

(a) and the average unit sales in (b). The average game price is around $45 per copy at release and

then drops to about $23 in the preceding year. The average game unit sales are around 40 thousand

in the �rst month and then fall to around 5 thousand per month after the �rst year.

What drives the game price and sales to drop so quickly? A falling-cost explanation is not

convincing for this industry. Once a video game is developed, the producer only needs to pay

royalty fees to the console marker and production cost. Both costs remain roughly constant per

unit over time.2 The most reasonable explanation is inter-temporal price discrimination. Consumers

are heterogeneous in their preferences for either product characteristics or price or both. They

purchase consoles and games at di�erent times. As a result, the distribution of potential buyers of

a game title changes over time. The di�erent composition of consumers at di�erent times induces

game producers to charge di�erent prices. Intuitively, consumers with high net valuations purchase

earlier than those with low net valuations. Thus, it is optimal for game producers to set high initial

prices to sell to consumers with high net valuations and cut prices thereafter to appeal to those

with low net valuations. In addition, the entry of new games leads to more intense competition and

thus induces the existing game titles to cut their prices.

3. Seasonality

Figure 3 shows the monthly unit sales of each console and the monthly unit sales of the a�liated

games from May 1995 till February 2002. During holiday months (November and December) sales

are easily double or triple the average sales in other months.

3 Model Framework

In this section, I present a dynamic equilibrium model of demand and supply. The model is dynamic,

time is discrete and the horizon is �nite.3 There exists a �nite number of hardware platforms.

2Coughlan (2001) reports that production/packaging costs for 32-bit CD-ROM games remains roughly constant
at $1.5 per disc. Nair (2007) reports that the royalty fee for the 32-bit Sony PlayStation compatible games was
pre-announced and held �xed at $10 by Sony throughout the life-cycle.

3In the application to the video game industry, I focus on one generation market. My data set is monthly data
lasting for 82 months, hence I set one time period is one month. I assume that one generation dies after 100 time
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Consumers with no hardware decide whether to buy one in each time period. Each consumer is

allowed to buy at most one hardware.4 Once she owns one, she does not need to make the purchase

decision of hardware any more. Moreover, once she own a hardware, she become a potential buyer

for the a�liated software products.

The software market consists ofM separate submarkets, explicitly ruling out competition across

submarkets. Each consumer can only purchase at most one software product within a submarket,

explicitly allowing for competition within a submarket. In the context of videogames, I de�ne a

software submarket that a game title belongs to based on the console that game is compatible with

and the game genre it is grouped in.5 In Appendix B, I �nd supporting evidence for this assumption

as sports video games are found to be strong substitutes within a submarket and weak substitutes

across submarkets.

The following events occur in each software submarket and in each time period:

(i) Each incumbent software producer decides how much to charge. Each potential entrant draws

an entry cost from a known distribution, and decides whether to enter. Price and entry decisions

are made simultaneously.

(ii) Potential buyers immediately observe the software prices but not the entry outcomes. How-

ever, they have rational expectations about software �rms' entry strategy. They decide whether to

buy an a�liated software product and, if so, which software. Each consumer is allowed to buy at

most one product in a software submarket. Hence, once she makes a purchase in a submarket, she

leaves that submarket forever.

(iii) Software entry decisions are implemented. We move to the next period.

Below, I �rst describe consumer dynamic purchase of hardware and software, software producers'

dynamic pricing and entry, and lastly de�ne the equilibrium concept for the model.

3.1 Demand for Hardware

There is a discrete �nite number of consumer types in the population (indexed by i), each having the

same preference for product characteristics but with di�erent preferences over price. The expected

periods (roughly 8 years).
4Ruling out multiple console purchasing may potentially cause biases. This paper does not allow for consumer

multihoming for two main reasons. First, including multihoming purchase signi�cantly complicates the estimation.
Lee (2010) allows for multihoming but he does not model the supply side. However, the model in this paper is an
equilibrium model of both demand and supply. Second, precise data on the degree of multihoming is unavailable.

5For example, Football games on PlayStation 1 is a submarket, Baseball games on PlayStation 1 is a submarket,
Football games on Nintendo 64 is another submarket, and so on.
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lifetime utility of consumer type i from purchasing platform l at time t is

Uilt = Γilt − ϕHi Plt + ψHXt + ξHlt + εHilt,

where Γilt is the expected value of optimally purchasing software associated with platform l. The

functional form of Γilt is derived from the software adoption portion of the model, which will be

described in the next subsection. Plt is the price of hardware l, and ϕHi represents consumer

type-speci�c sensitivity to money. In this paper, I focus on how hardware providers' choices a�ect

consumers' purchase decisions and software producers' pricing and entry decisions. I do not model

how hardware providers make those choices; rather, I treat hardware price as exogenous.6 Xt is the

holiday dummy. ξHlt represents additional hardware characteristics observed by consumers but not

by researchers. εHilt is idiosyncratic consumer taste.

Since hardware products are durable goods, consumers are forward-looking when they decide

whether to buy them. The no-purchase option captures the value of delaying purchases to a future

period. I specify the utility of not buying at time t as the sum of the discounted expected value of

waiting and an idiosyncratic consumer taste:

Ui0t = βcEt

[
max{max

l
Uilt+1, Ui0t+1}

]
+ εHi0t,

where βc is the consumer's discount factor and the expectation is taken with respect to the distribu-

tion of future variables unknown to the consumer conditional on the current information. As usual

in the literature, εHilt and ε
H
i0t are assumed to follow the standard Type-I Extreme Value distribution

and are i.i.d. over time, products and consumer types.

Let St denote the information set that a�ects consumer purchase decision of hardware at time

t. Then, a type-i consumer's dynamic optimization problem can be written as

Hit(ε
H
it ,St) = max

{
max
l
Uilt, ε

H
i0t + βcE

[
EεHHit+1(ε

H
it+1,St+1) | εHit ,St

]}
,

where Hit(ε
H
it ,St) is consumer type-i's value function with information set St and tastes εHit . Let

Hit(St) denote the expected value function, that is, the value function before consumers know their

6It is widely speculated that all the major consoles were sold at a price near marginal cost. The literature on
two-sided markets (e.g., Armstrong 2006 and Hagiu 2006) provides good reasons why a platform provider keeps the
price of one side low and make money from the other side. Hence, the declining console price may be mainly driven
by the declining costs of producing consoles.
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demand shocks εHit :

Hit(St) =

ˆ
εHit

Hit(ε
H
it ,St))dFεH (εHit )

Following Rust (1987), the integration with respect to the extreme value error terms has a closed

form, and the deterministic component of the consumer's value function satis�es

Hit(St) = ln{
∑
l

exp(Γilt − ϕHi Plt + ψHXt + ξHlt + ξHlt ) + exp[βcEHit+1(St+1 | St)]}. (1)

Then, the probability that a type-i consumer purchases hardware l at time t is

Bilt(St) =
exp(Γilt − ϕHi Plt + ψHXt + ξHlt + ξHlt )

exp[βcEHit+1(St+1 | St)] +
∑
L

exp(Γilt − ϕHi Plt + ψHXt + ξHlt + ξHlt )
. (2)

Hence, the demand for the hardware l in period t is Qlt =
∑

iNitBilt, where Nit is the number of

consumers who have not purchased any hardware at time t. In dynamic models of discrete choice

demand, {Nit}Tt=1 evolves according to

Nit+1 = Nit(1−
∑
l

Bilt).

3.2 Demand for Software

As I assumed, the software market consists of M separate submarkets. Below I describe consumers'

demand for software, and software producers' pricing and entry in a software submarket. Same

events occur in other submarkets.

Software Utility

Let Jmt denote the set of software products available for consumers to purchase in submarket m

at time t. The lifetime utility that consumer type i can get from purchasing a software product

j ∈ Jmt at time t is given by

uijt = xjtψ − ϕipjt + ξjt + εijt,

where xjt is a vector of observed software product characteristics, including platform-speci�c dummy,

online rating score, product newness and holiday dummy; pjt is the price of software j; ξjt is addi-

tional software characteristics observed by consumers but not by researchers; and εijt is idiosyncratic

consumer taste. Here, ψ represents consumers preferences in observed software characteristics and
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ϕi is type-i consumer's sensitivity to money.

The utility of not buying in the submarket m at time t as the sum of the discounted expected

value of waiting and an idiosyncratic consumer taste:

uim0t = βcEt

[
max{ max

j∈Jmt+1

uijt+1, uim0t+1}
]

+ εim0t

where εim0t is the idiosyncratic taste from not buying. εijt and εim0t are assumed to follow the

standard Type-I Extreme Value distribution and i.i.d. over time, products and consumer types.

Consumer Belief

Most of the literature on estimating dynamic demand models assumes that consumer purchase

decisions are only based on a scalar state variable (the inclusive value) which follows an AR(1)

process.7 Such a functional form restriction on consumer beliefs is di�cult to reconcile with a

supply model, in which �rms condition their actions on consumer responses. This paper considers an

alternative where consumers have rational expectations regarding the future environment. They can

calculate the equilibrium strategies for all market participants as well as their own expected utility.

This assumption is always adopted in theory literature and can be reconciled with a consistent

supply model.

Information Set

Let smt denote the information set a�ecting agents' choices in submarket m at time t. It includes

(1) the time period, t; (2) the set of available products, Jmt; (3) the observed and unobserved

product characteristics of each available product, xmt ≡ {xjt}j∈Jmt and ξmt ≡ {ξjt}j∈Jmt ; and (4)

the mass of consumers remaining, nmt ≡ {nmit}Ii=1, where nmit is the number of type-i consumers

who have not purchased any product in the submarket m at the beginning of period t. Besides,

consumers also can observe the price of each available product, pmt ≡ {pjt}j∈Jmt , and their own

demand shocks in submarket m, εmit = ({εijt}j∈Jmt , εim0t).

7See Lee (2010), Gowrisankaran and Rysman (2011), Gowrisankaran, Park and Rysman (2011), and Hendel and
Nevo (2007).

12



Software Purchase

Let Git(smt,pmt) denote the expected value function. Then, it can be written as

Git(smt,pmt) = log{
∑
j∈Jmt

exp(xjtψ − ϕipjt + ξjt)

+exp[βcEGit+1(smt+1,pmt+1 | smt,pmt)]}. (3)

The probability that a type i consumer purchases software j ∈ Jmt at time t is

bijt(smt,pmt) =
exp(xjtψ − ϕipjt + ξjt)

exp[βcEGit+1(smt+1,pmt+1 | smt,pmt)] +
∑

j∈Jmt
exp(xjtψ − ϕipjt + ξjt)

. (4)

Hence, the demand for software j ∈ Jmt at time t is qjt =
∑

i nmitbijt.

Consumer Distribution

In dynamic models of discrete choice demand, the mass of consumers remaining in a submarket is

endogenous to the historic entry and pricing behavior of all software producers in that submarket.

So, the dynamics of entry and pricing introduce a dynamic evolution of the consumer distribution

in the software submarket m as follows:

nmit+1 = nmit(1−
∑
j∈Jmt

bijt) +Qmit (5)

where nmit(1 −
∑

j∈Jmt
bijt) is the mass of consumers who do not buy in period t and remain active

the next period; and Qmit is the mass of new consumers who purchase the compatible hardware, as

described in the previous subsection.

Total Software Utility

In the previous subsection, I specify that the consumption value of a hardware depends on the total

utility from being able to purchase its a�liated software, Γilt. To close the demand side of the

model, I need to link it to the value of being able to purchase the a�liated software. Let Ml denote

the set of software submarkets a�liated with hardware l. Then, Γilt is a type-i consumer's total
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value being active in all submarkets a�liated with hardware l:

Γilt =
∑
m∈Ml

Git(smt,pmt). (6)

3.3 Software Pricing and Entry

I now describe how software �rms behave in a submarket m, that is, how the incumbents set their

optimal sequence of prices over time and how potential entrants make their optimal choices of

whether or not to release a new product.

3.3.1 A Firm's Problem

Incumbent Firms. Let cm be the marginal cost of software production in submarket m which

is assumed to be constant over time. An incumbent software �rm's one-period pro�t depends on

its own price choice this period (pjt) but also on its competitors' prices (p−jt); moreover, it also

depends on the state vector smt in the submarket m which includes the set of available products,

product characteristics and the consumer distribution. An incumbent's optimization problem is to

pick a price to maximize its own discounted pro�t,

Πjt(smt, pjt,p−jt) = πjt(smt, pjt,p−jt)

+E

{
T∑

τ=t+1

βτ−tf

[
max
pjτ

πjτ (smτ , pjτ ,p−jτ )

]
| smt,pmt

}
,

where βf is the �rm's discount factor and πjt(smt, pjt,p−jt) = (pjt − cm)qj(smt,pmt) is the one-

period pro�t.

Potential Entrants. Every period, there is �nite number of potential entrants outside the soft-

ware submarket m. Let Emt denote the set of potential entrants. Each potential entrant j ∈ Emt

�rst draws an entry cost from a known distribution and then decides whether to enter. Potential

entrants are short lived and base their entry decisions on the net present value of entering today;

they do not take the option value of delaying entry into account. If it enters, it pays the entry cost

and starts to earn pro�t next period; if not, it earns zero pro�ts. The entry cost is assumed to

be γm + νjt where γm is the component that is common to all software �rms in submarket m and

νjt is a private information shock which is assumed to be independently and identically distributed

across �rms and periods with c.d.f. Fν(·). Let yjt+1 = 1 i� entrant j enters. Essentially, a potential
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entrant j's optimization problem is to compare the entry cost and the expected pro�t.

3.3.2 Perceived Strategy Function

Because a potential entrant's entry decision depends on its own entry cost shock νjt which is

unobservable to consumers and other software �rms, other agents cannot know exactly a potential

entrant's entry strategy even if they can observe the actual outcomes. We can de�ne a set of

conditional choice probabilities for j ∈ Emt such that

ρjt(smt) =

ˆ
I(yjt+1(smt, νjt) = 1)dFν(νjt),

where I(·) is the indicator function. The probabilities represent the expected behavior of entrant j

from the point of view of consumers and the rest of the �rms. The game has a Markov structure,

and I assume that each �rm plays Markov strategies. That is, if smt = sm′t, then �rm j's decision

in submarket m and m′ are the same. Let Ψ = {Ψjt(smt)} be a set of strategy functions or

decision rules, one for each software �rm, with Ψjt(smt) = pjt(smt) if j is an incumbent �rm and

Ψjt(smt) = ρjt(smt) if j is a potential entrant.

3.3.3 Incumbent's Bellman Equation

Let Vjt(smt | Ψ) denote the expected net present value of all future cash �ows to incumbent �rm

j ∈ Jmt at state vector smt, computed under the presumption that consumers respond optimally

and other software �rms follow their strategies in Ψ. By Bellman's principle of optimality, it can

be written as

Vjt(smt | Ψ) = max
p̃jt

πjt(smt, p̃jt, p−jt) + βfE [Vjt+1(smt+1 | Ψ) | smt, p̃jt,Ψ−jt] , (7)

where

E [Vjt+1(smt+1 | Ψ) | smt, pjt,Ψ−j ] =

ˆ
ξmt+1

 ∑
ymt+1

Vjt+1(smt+1 | Ψ)fj(ymt+1 | smt, pjt,Ψ−jt)

 dξmt+1

is the expected value function conditional on �rm j choosing pjt and the other �rms behaving

according to Ψ. Here, the conditional transition probability function is given by

fj(ymt+1 | smt, pjt,Ψ−j) =
∏

k∈Emt

ρkt(smt)
ykt+1(1− ρkt(smt))1−ykt+1 .
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The optimal pricing strategy in response to pro�le Ψ is the solution of the right hand side of equation

(7), denoted as pjt(smt | Ψ).

3.3.4 Entrant's Bellman Equation

Let V e
jt(smt, νjt | Ψ) denote the expected net present value of all future cash �ows to potential

entrant j ∈ Emt at state vector smt and entry cost shock νjt, computed under the presumption that

consumers respond optimally and other software �rms behave according to strategy pro�le Ψ:

V e
jt(smt, νjt | Ψ) = max

ỹjt+1

ỹjt+1 {−γm − νjt + βfE[Vjt+1(smt+1 | Ψ) | smt,Ψ]} ,

where

E[Vjt+1(smt+1 | Ψ) | smt,Ψ] =

ˆ
ξmt+1

 ∑
ymt+1

Vjt+1(smt+1 | Ψ)fj(ymt+1 | smt,Ψ)

 dξmt+1

is the expected value function conditional on on software �rm j choosing entering and the other

software �rms behaving according to strategy pro�le Ψ. Here, the conditional transition probability

function is given by

fj(ymt+1 | smt,Ψ) =
∏

k∈Emt,k 6=j
ρkt(smt)

ykt+1(1− ρkt(smt))1−ykt+1

The optimal entry decision follows a cuto� rule characterized by

yjt+1(smt, νjt | Ψ) =


1, if νjt ≤ ν̄jt(smt | Ψ)

0, otherwise

where

ν̄jt(smt | Ψ) = βfE[Vjt+1(smt+1 | Ψ) | smt,Ψ]− γm

is the cuto� entry cost shock for which the potential entrant is indi�erent between entering and

staying out of the submarket. Then, the probability of entering is

ρjt(smt | Ψ) =

ˆ
I[νjt ≤ ν̄jt(smt | Ψ)]dFν(νjt) = Fν [ν̄jt(smt | Ψ)].
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Therefore, the unconditional Bellman equation of a potential entrant j can be written as

V e
jt(smt | Ψ) = max

ρ̃jt
−
ˆ
νjt<F

−1
ν (ρ̃jt)

νjtdFν(νjt)

+ρ̃jt {−γm + βfE[Vjt+1(smt+1 | Ψ) | smt,Ψ]} . (8)

3.4 Equilibrium Concept

In this model, a hardware's value depends on the total utility from a�liated software, and thus any

software �rm's choice a�ects consumers' adoption of hardware. However, to simplify the model,

I assume that software �rms do not take that e�ect into account when they make their choices.

One condition is that each software is tiny compared to the whole market. Under this assumption,

strategic interactions only occur among software �rms in the same submarket.

This paper adopts the Markov Perfect Equilibrium (MPE) concept. The MPE in this model is

de�ned by a set of value functions, {Git(smt,p∗mt), Hit(St)}Ii=1 and {Vjt(smt)}j∈Jmt , a set of price

functions, {p∗jt(smt)}j∈Jmt , and a set of entry functions, {ρ∗jt(smt)}j∈Emt , such that equation (1) -

(8) are simultaneously satis�ed at every state smt. In other words, the equilibrium is the �xed point

of the game de�ned by equation (1) - (8), with the following properties.

[1] Software Firms. Equation (7) implies that in equilibrium, when faced with state smt, each

incumbent software producer's pricing policy is a best response to other software �rms' strategies

and consumers' behavior at that state. Meanwhile, equation (8) implies that in equilibrium, when

faced with state smt, each entrant's entry policy is a best response to other software �rms' strategies

and consumers' behavior at that state.

[2] Consumers. Equation (3) and (4) imply that when faced with a state smt and price p(smt),

consumers who own a hardware rationally anticipate software �rms' future pricing and entry, and

optimally make purchase decisions of software. At the same time, equation (1) and (2) imply that

in equilibrium, consumers who do not own any hardware make purchase decisions of hardware by

maximizing intertemporal utility. In addition, the value of a hardware is given by the equation (6).

[3] State Transition. Software �rms take into account the e�ect of their actions on the evolution

of states in the submarket through equation (5).
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4 Bayesian Estimation

In this section, I describe my estimation method in detail. Let θ denote the vector of parameters in

the model that need to be estimated. Let data denote all the data available for estimation which

includes two parts: (i) the prices and quantity sold of each hardware product in each time period;

and (ii) the availability, characteristics, prices, and quantity sold of each software in each time period

across M independent software submarkets. Hence, data = {Pt,Qt, {ymt,xmt,pmt,qmt}Mm=1}
Td
t=1,

where Td is the number of time periods in the data set. I assume that the data are generated from

the model presented in the previous section.

4.1 Posterior

Generally speaking, it is di�cult to analytically prove the existence and uniqueness of a MPE in

pure strategy for dynamic oligopoly models.8 I am unable to formally state whether an equilibrium

exists and whether the equilibrium is unique.9 In this paper, I assume that there exist a unique

equilibrium.

Let L(data | θ) denote the likelihood. Rather than using a nested-�xed point or a two-step

method to maximize the likelihood, I employ the Bayesian MCMC method to sample the parameter

vector θ from its posterior distribution,

P(θ | data) ∝ L(data | θ)π(θ), (9)

where π(θ) is the prior distribution of the parameter vector θ.

4.2 Likelihood Contributions L(data | θ)

The demand for hardware is a dynamic discrete choice model. I assume that the unobserved

(to researcher) platform-speci�c demand shifters ξHlt are normally distributed with mean zero and

variance σ2ξH , independent across all products and over time. The distribution of the aggregate

8One way is to impose additional restrictions on the model to ensure that each agent's best reply is always unique.
Doraszelski and Satterthwaite (2010) provide a condition on model primitives that guarantees the existence of pure
strategy equilibrium in Ericson-Pakes-style models. To guarantee the uniqueness of the entry and exit best responses,
they assume that the densities of the scrap values and setup values are continuous. Furthermore, they prove that
if the transition function is unique investment choice (UIC) admissible, then a �rm's investment decision is indeed
uniquely determined.

9I have proved that, under some restrictions, there exists a unique equilibrium in pure strategy for a �nite-period
model of dynamic oligopoly pricing with forward-looking consumers. Yet it is extremely hard to go further to show
the equilibrium existence for the model proposed in this paper which also contains dynamic entry and self-selected
consumers.
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demand shocks generate the distribution of the units sold of each hardware in each time period.

Conditional on the state St, the joint density of the sales of all hardware at time t is

LHd (Qt | St; θ) =
∏
l

[
φ(ξHlt /σξH)/σξh

]
|
(
J(Qt→ξHlt )

)−1
|, (10)

where φ(·) is the pdf of the standard normal distribution and J(Qt→ξHlt )
is the Jacobian matrix.

To specify the likelihood contribution of the demand for software, I assume that the unobserved

game-speci�c demand shifters ξjt are normally distributed with mean zero and variance σ2ξ , indepen-

dent across all products and over time.10 The distribution of the aggregate demand shocks generate

the distribution of the units sold of each existing software product in each time period. Conditional

on the state (smt,pmt), the joint density of the sales of all existing software products in submarket

m at time t is

LGd (qmt | smt,pmt; θ) =
∏
j∈Jmt

[φ(ξjt/σξ)/σξ] |
(
J(qmt→ξmt)

)−1 |, (11)

To evaluate the likelihood, we need to derive ξjt, which is described in the next subsection, and

evaluate the Jacobian, J(qmt→ξmt), which is derived in Appendix C.

Next I specify the likelihood contribution of the software pricing policy function. Let p̃jt and p
∗
jt

denote the observed price and the actual price of product j at time t, respectively. Assume that the

observed price is proportional to the actual price, that is, p̃jt = p∗jtςjt, where ςjt is the measurement

error that re�ects discrepancies between the observed prices and the actual prices.11 Furthermore,

it is assumed to follow a log-normal distribution with mean zero and variance σ2ς , independent over

time and across products. Hence, conditional on the state vector smt, the likelihood contribution of

incumbent j ∈ Jmt at time t is given by

Lp(pjt | smt; θ) =
1

σς
φ

(
ln[p̃jt/pj(smt, θ)]

σς

)
. (12)

To specify the likelihood contribution of the software entry policy function, I assume that the entry

cost shocks follow an independent normal distribution with mean zero and variance σ2ν .
12 Hence,

10In the context of sports video games, ξjt may capture such demand shocks as events related to the celebrities
on whom game characters are based, e.g., their performance in major tournaments and even their scandals. Those
shocks occur independently across products and over time and thus it is reasonable to assume no cross-correlation
and no auto-correlation.

11In the dataset, I can observe the revenue (measured in dollars) and the units sold in each month of each game
title released during the sample period. The price in each month is measured by the average price in that month, i.e.,
the ratio of the revenue over the units sold. However, this measurement of price contains some measurement error
because the actual price changes during each month. Hence, I add the measurement error term ςjt.

12We should notice that this assumption on entry cost shocks may not hold if we consider learning-by-doing or
technology spillover e�ect.
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conditional on the state vector smt, the likelihood contribution of entrant j ∈ Emt is

Ly(yjt+1 | smt; θ) =

(
Φ

[
βfE[Vjt+1(smt+1 | smt; θ)]− γ

σν

])yjt+1

×
(

1− Φ

[
βfE[Vjt+1(smt+1 | smt; θ)]− γ

σν

])1−yjt+1

. (13)

Therefore, the likelihood can be written as

L(data | θ) =

Td∏
t=1

LHd (Qt | St; θ)
M∏
m=1

{LGd (qmt | smt,pmt; θ)
∏
j∈Jmt

Lp(pjt | smt; θ)
∏

j∈Emt

Ly(yjt+1 | smt; θ)}.

4.3 Estimation Algorithm

My estimation algorithm involves two loops (see Appendix A): in the outer-loop, I use Metropolis-

Hastings algorithm to update the structural parameters; and in the inner-loop, for a given parameter

vector, I solve the dynamic game by incorporating the non-parametric approximation method.

Below I describe the two loops in detail.

4.3.1 Outer-Loop: Metropolis-Hastings

The posterior distribution in equation (9) is a high-dimensional and complex function of the param-

eters. It is known that, instead of drawing the entire parameter vector at once, it is often simpler

to partition it into blocks and draw the parameters of each block separately given the other param-

eters. Based on the model, I partition all parameters into four blocks: (i) the �rst block includes all

parameters directly a�ecting consumer purchase decisions of hardware, i.e., the parameters in the

utility function of hardware, θ1 = (ψH , ϕHi , σξH); (ii) the �rst block includes all parameters directly

a�ecting consumer purchase decisions of software, i.e., the parameters in the utility function of soft-

ware, θ2 = (ψ,ϕi, σξ); (iii) the third block includes all parameters directly a�ecting incumbent �rms'

pricing decisions, i.e., the unit cost of games sold on each platform and the standard deviation of the

pricing error, θ3 = (cSaturn, cPS , cN64, σς); and (iv) the last block includes all parameters directly

a�ecting entrants' entry decisions, i.e., the mean and the standard deviation of game producers'

entry cost to each platform, θ4 = (γSaturn, γPS , γN64, σν) .

Consider a particular iteration k. For each block l, the procedure goes as follows:

The �rst step is to draw the candidate parameter vector θ
∗(k)
l from a proposal density. As usual
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in the literature,13 I use the Random-Walk (RW) Metropolis chain as the proposal density

θ
∗(k)
l = θ

(k−1)
l +MVN(0, κΣl)

where Σl is the candidate covariance matrix and κ is a scaling constant.

The second step is to construct the acceptance-rejection ratio, given by

η
∗(k)
l =

[∑R
r=1 λ

(k−1)
r Ll(· | θ∗(k)l , θ

(k−1)
−l )

]
fl(θ

∗(k)
l | θ(k−1)l )πl(θ

∗(k)
l )[∑R

r=1 λ
(k−1)
r Ll(· | θ(k−1)l , θ

(k−1)
−l ))

]
fl(θ

(k−1)
l | θ∗(k)l )πl(θ

(k−1)
l )

,

where Ll(· | θ) equals to equation (10), (11), (12) and (13), respectively; fl(θ
∗(k)
l | θ(k−1)l ) is the

transition probability, and πl(θ
∗(k)
l ) is the prior distribution.

Lastly, we accept the candidate parameter vector θ
∗(k)
l with probability min{η∗(k)l , 1}.

4.3.2 Inner-Loop: Dynamic Game Solution

Evaluating the acceptance-rejection ratio in the outer-loop requires evaluating the likelihood which

requires solving the dynamic game given a vector of parameters. The computation di�culty comes

in two parts. One part is computing the equilibrium strategies of all agents which are the �xed

points of the best response system. The other part is computing each agent's value function given

other agents play their equilibrium strategies, which is the �xed point of a single-agent dynamic

programming (DP) problem. In this paper, I introduce a new method of solving the dynamic game

suitable for use in conjunction with the Bayesian MCMC estimation.

For a given draw of parameter vector, the main procedure goes as follows. First, for a given

point of the state space, I non-parametrically approximate the equilibrium strategies and value

function using the pseudo-best responses and pseudo-value functions of past iterations. To obtain

each agent's continuation value that requires to solving for the value function at all possible states,

I adopt interpolation method to deal with the large state space problem. Then, I solve for each

agent's best response and value functions given other agents play the approximated equilibrium

strategies, and store those pseudo-best responses and pseudo-value functions for future iterations.

13See Jiang, Manchanda and Rossi (2009), and Imai, Jain, and Ching (2009).

21



Nonparametric Approximation of Equilibrium Strategy

One challenge in computing the likelihood is to compute the equilibrium of a dynamic game which

is the �xed point of the best response system. In the literature, the nested �xed point approach

computes the equilibrium numerically.14 However, applying it for relatively complicated models

becomes extremely di�cult and even impossible even for one guess of the parameter vector. The

two-step approach (Bajari, Benkard and Levin, 2007), sidesteps the equilibrium computation step

by substituting nonparametric functions of the data for the continuation values in the game, which

is in general much computationally easier than the �xed point calculations. However, this approach

su�ers from a small sample bias problem and also can not easily deal with the unobservables.15

In this paper, I propose to use a kernel method to approximate the equilibrium strategies using

the pseudo-best response of the past iterations in which the parameter vector is �close� to the current

parameter vector. The equilibrium strategy of �rm j in iteration k is computed as

Ψ̂
(k)
jt (smt, θ) =

N(k)∑
n=1

Ψ
(k−n)
jt (smt, θ

∗(k−n))× Kh(θ − θ∗(k−n))∑N(k)
n=1 Kh(θ − θ∗(k−n))

, (14)

where Ψ
(k)
jt is the pseudo-best response function in the iteration k. For incumbent �rm j, the pseudo-

best response in price is the solution to the incumbent �rm's optimization problem, p
(k)
jt (smt, θ), and

Appendix D presents the computation method in detail. For entrant j, the pseudo-best response

in entering probability is the solution to the potential entrant's optimization problem. Under the

assumption of normally distributed entry cost shocks, it is

ρ
(k)
jt (smt, θ) = Φ

([
βf ÊV

(k)
jt+1(· | smt)− γ

]
/σν

)
.

In essence, the equilibrium strategies is approximated by the weighted average of pseudo-best re-

sponse of past iterations. In terms of computation, this method is much easier than calculating the

�xed point of the best response system. Moreover, similar to the idea of the IJC, as the number

of MCMC iterations and the number of past iterations for approximating the equilibrium strate-

gies increase, the pseudo-best response function converges to the true best response function, and

the posterior parameter draws based on the pseudo-best response functions converge to the true

posterior distributions.16

14The general idea is to start with an initial guess at the value function and substitute that into the RHS of the
Bellman equation. Then, at each state point and for each agent, solve the maximization problem yielding a new
estimate of the value function. Iterate this procedure until convergence. The literature of NFP approach includes
Pakes and McGuire (1994), Pakes and McGuire (2001).

15Hu and Shum (2011) consider nonparametric identi�cation of dynamic models with general unobservables.
16Here, I need to develop formal proofs. It is part of future research.

22



Non-Parametric Approximation of Value Function

To compute the expected value function at a given state point, the conventional iterates the Bell-

man operator until convergence. It is computationally di�cult for relatively complicated models.

The IJC proposes a nonparametric kernel approach to approximate the expected value function

using the weighted average of pseudo-value functions of most recent iterations. Unlike conventional

approaches, in which value functions need to be computed at all or a subset of pre-determined

grid points in all periods (e.g., Rust 1997), the IJC algorithm computes pseudo-value functions

at only one randomly drawn state point in each period, and the integration of the continuation

value with respect to continuous state variables can simply be done by the weighted average of past

pseudo-value functions. Thus, it has the potential to reduce the computational burden.

One issue in applying the IJC algorithm to the current model is that it is a �nite-period model

which is non-stationary; however, the original IJC algorithm applies to stationary dynamic program-

ming problems. Same idea as in Ishihara and Ching (2011), I compute and store the pseudo-value

functions for each period, and approximate the expected value functions in period t using the set

of pseudo-value functions in period t+ 1.

For consumers, the expectation of the next-period value function at next-period state (smt+1,pmt+1)

in iteration k is approximated as

Ê
[
G

(k)
it+1(smt+1,pmt+1, θ)

]
=

N(k)∑
n=1

G
(k−n)
it+1 (smt+1,pmt+1, θ

∗(k−n))× Kh(θ − θ∗(k−n))∑N(k)
n=1 Kh(θ − θ∗(k−n))

, (15)

where Kh(·) is a multivariate kernel with bandwidth h > 0, and G
(k)
it (smt,pmt, θ) is consumer's

pseudo-value function at state (smt,pmt) conditional on that all software �rms playing the equilib-

rium Ψ̂(k)

G
(k)
it (smt,pmt, θ) = ln{

∑
j∈Jmt

exp(xjtψ − ϕipjt + ξjt)

+exp
(
βcÊ[G

(k)
it+1(smt+1,pmt+1, θ) | smt,pmt, Ψ̂(k), θ]

)
} (16)

The approximated expected value function given by equation (15) is the weighted average of the

pseudo-value functions of N(k) most recent iterations. IJC (2009) show that, as the MCMC iter-

ations and the number of past iterations for approximating the expected value functions increase,

the pseudo-value function converges to the true value functions, and the posterior parameter draws

based on the pseudo-value functions will also converge to the true posterior distributions. Moreover,
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the convergence of the approximated expected value function to the true value function requires

that N(k)→∞ and k −N(k)→∞ as k →∞.

A similar method applies to computing the expectation of a software producer's next-period

value function

Ê
[
V

(k)
jt+1(smt+1, θ)

]
=

N(k)∑
n=1

V
(k−n)
jt+1 (smt+1, θ

∗(k−n))× Kh(θ − θ∗(k−n))∑N(k)
n=1 Kh(θ − θ∗(k−n))

(17)

where V
(k)
jt+1(smt, θ) is the incumbent software �rm j' pseudo-value function at state smt conditional

on that all other software �rms playing the equilibrium Ψ̂(k):

V
(k)
jt (smt, θ) = max

p̃jt
πjt(smt, p̃jt, p−jt) + βf Ê

[
V

(k)
jt+1(smt+1, θ) | smt, p̃rjt, Ψ̂(k), θ

]
. (18)

Store the solved best response functions (pseudo-best response functions), p
(k)
jt (smt, θ), and the

solved value functions (pseudo-value functions), V
(k)
jt (smt, θ) andG

(k)
it (smt,pmt, θ), for future MCMC

iterations.

Interpolation

However, to obtain the expected value functions in equation (16) and equation (18), we still need

to compute equation (15) and (17) for every possible point of the state space. Due to the �curse

of dimensionality�,17 it is computationally burdensome to achieve it even with the nonparametric

approximation method proposed above.

In the literature, the simulation and interpolation approach proposed by Keane and Wolpin

(1994) has been the most widely used for applications with �nite horizon problems with large state

spaces. This method obtains simulated-based approximations to the expected value function only

at a (randomly chosen) subset of the state points every period, and obtains the expected values at

other points as the predicted values from a regression function which is estimated from the points

in that subset.

In the spirit of Keane and Wolpin's method, I propose a new approach to deal with the large

state space problem. In the �rst step, I randomly choose a subset of the state points every period,

and obtain the expected values at those points with the non-parametric approximation approach

described above. Next, I interpolate the value functions with a quadratic-in-states polynomial

17The number of possible state vectors grows geometrically in the number of agents and exponentially in the number
of states per agent. For example, if we have N agents, K state variables each taking on M distinct values, then the
number of possible state vectors for each agent is (KM)N .
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approximation in that subset. Lastly, for each current state, I simulate a next-period-state using

the approximated equilibrium strategies, and then use the predicted value at that simulated next-

period-state as the continuation value. In practice, I simulate the next-period-state for �nite times

and then take the average of the predicted values. This estimation method is similar to Pakes and

McGuire (2001) where they never attempt to obtain accurate policies on the entire state space, just

on a recurrent class of points.

This method signi�cantly alleviates the computational burden and makes it possible to estimate

models with very large state spaces and rich structure. However, we also should notice that es-

timators of structural parameters are not consistent as long as interpolation is used, because the

approximation errors in the expected value functions enter nonlinearly in optimization problems.18

Recall that the state vector in the model includes the availability and characteristics of each

software product in a submarket, and the distribution of remaining consumers of each type. Be-

sides, consumers can also observe the price of each software product in the submarket. Among those

state variables, the product characteristics evolves exogenously and deterministically; the consumer

distribution evolves deterministically depending on consumers purchase choices; the software prod-

uct availability depends on all potential entrants' entry choice up to the previous period; and the

software price is chosen by incumbent software �rms based on the state vector. In terms of compu-

tation, it is extremely di�cult and even impossible to include all of those state variables. Hence, I

characterize each agent's state vector as follows.

Consumers trace the time periods to the end; the number of software products available for

purchase; the distribution of remaining consumers of each type; his/her own mean utility from the

top-ranked software product; and the average of his/her mean utility from all existing products.

Incumbent �rms trace the time periods to the end; the number of software competitors in the same

submarket; the distribution of remaining consumers of each type; consumer's valuation of the top-

ranked product; and consumer's valuation about its product. Potential entrants trace almost the

same variables as incumbent �rms do. The only di�erence is that they trace the expected value of

new product instead of the value of its own product.

18Note that approximation error in the expected value function is not the only source of potential inconsistency, for
example, discretization of continuous variables, approximate convergence of the Bellman operator in in�nite horizon
problems and others.
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Computing ξHlt and ξjt

Once we obtain the consumer's continuation values, we can compute each consumer's probability

of purchasing from equation (4) and then the predicted demand of each product. To obtain the

likelihood contribution of demand in equation (10), I update the aggregate demand shocks based

on the expression,

ξ
(k)
jt = ξ

(k−1)
jt + ln(q̃jt)− ln

(
q
(k)
jt (smt, θ)

)
,

where q̃jt is the units sold observed in the data and q
(k)
jt (smt, θ) is the predicted quantity using the

demand shocks of the (k−1)th iteration, ξ
(k−1)
mt . This procedure is similar to the inversion proposed

by BLP (1995). The main di�erence is that, unlike BLP, consumers in my model maximize inter-

temporal utility, implying that the corresponding aggregate demands, qjt(smt, θ), are a function of

the consumer's value of waiting each period. Another di�erence is that, unlike BLP which iterates

the aggregate demand shocks until convergence for any given parameter vector, I update it only

once during each MCMC iteration. A similar procedure applies to computing the aggregate demand

shocks of hardware, ξHlt , given by

ξ
H(k)
lt = ξ

H(k−1)
lt + ln(Q̃lt)− ln

(
Q

(k)
lt (St, θ)

)
.

5 Estimation Results

5.1 Econometric Details

Consumer Heterogeneity. For simplicity but without loss of generality, I assume two consumer

types, high-type consumers and low-type consumers, with di�erent sensitivity to price.19 Besides,

it is necessary to choose an initial number of consumers, N0. Once this is pinned down, the

future distribution of each consumer type is determined by the consumer purchase decisions of

hardware and software. In particular, their purchase decision of software in a submarket determines

the number of consumers remaining for the next period, and their purchase decision of hardware

determines the number of new consumers who enter the software market next period. In this paper,

I choose N0 to be 100 millions.

19The number of customer types (I) should be determined by adding types till one of the type sizes is not statistically
di�erent from zero (Besanko et al. 2003). Nair (2007) says that the estimates for the three-type model yielded several
insigni�cant parameters and thus he presented the estimates for the two-type case.
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Prior Setting. In order to estimate the model it is necessary to specify the prior distribution

for the parameters and the equilibrium probabilities to be estimated. Consumer's preference to

product characteristics (ψ and ψH) and consumer's sensitivity to price (ϕi and ϕ
H
i ) follow normal

distribution with mean zero and large standard deviation. The initial share of high-type consumers

(δ) follows a uniform distribution on the interval [0,1]. To guarantee that cost parameters and

standard deviations are non-negative, their prior are log-normal distribution with mean zero and

large standard deviation.

Initial Guess of Equilibrium Strategies and Value Functions. The initial guess of consumer

value functions and incumbent value function are computed by assuming that both consumers and

�rms are myopic. The initial guess of product price is the predicted values from a hedonic regression

of price on state variables. The initial guess of the entry probability is computed based on the initial

value functions.

Discount Factors. Previous literature has noted that it is di�cult to estimate discounted factors.

So, I do not attempt to estimate the discount factors for consumers and �rms (βc and βf ). Instead,

I set the discount rates to be 0.95 which is lower than the monthly interest rate. However, previous

studies in experimental/behavior economics have found that the discount factor is lower than the

interest rate. Moreover, it is relatively computationally burdensome to solve consumer and �rm's

inter-temporal problem at larger discount values.

5.2 Estimates

I draw 100,000 samples from the posterior distribution. But, I use the last 50,000 samples to derive

the posterior means and standard deviations. They are reported in table 3. In addition, I also

compute those statistics from the last 25,000 samples. Since they are not statistically di�erent, I

conclude that the samples that I use to compute the posterior statistics are drawn from a stable

distribution.20

The estimates in the consumer utility function of hardware are consistent with our expectation.

High-type consumers' price sensitivity is 0.0018 and low-type consumers' price sensitivity is 0.0064.

They are positive just because they enter the utility function as a negative term. Consumers obtain

higher utility from purchasing consoles in November or December, probably because consoles are

20Here, I plan to do more stability tests.
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good gifts during holiday season. Besides, High-type consumers correspond to 14.6% of the potential

market at the beginning of the console lifecyle.

The estimates in the consumer utility function of software are consistent with our expectation.

Nintendo 64 games generate the highest utility, because it is more technologically advanced than

the other two. Consumers favor the games with high online rating score. They dislike games which

have been in the market for a long time, partly because most sports games are designed based

on the latest tournaments. Consumers obtain higher utility from purchasing games in November

or December, probably because they can spend more time playing games during holiday season.

High-type consumers' price sensitivity is 0.0137 and low-type consumers' price sensitivity is 0.0507.

The cost per unit is $14.7, $10.8 and $18.5 for games released on Sega Saturn, PS1 and N64,

respectively. As Coughlan (2001) reported, the production/packaging cost for 32-bit CD-ROM

games is around $1.5 per disc. Hence, the royalty fee charged by Sega and Sony were $13.2 and

$9.3 per copy sold. The unit cost of N64 games is much higher than Saturn games and PlayStation

games, because Nintendo used ROM cartridges to store games whose production expense was much

higher than compact disc format used by competitors.

The average entry cost of Saturn games, PS1 games and N64 games are 4.7 million dollars,

3.7 million dollars and 4.6 million dollars, respectively. The standard deviation of entry cost is 2.5

million dollars. The R&D cost of Saturn games was on average signi�cantly higher than PS1 games,

even though both adopted very similar technology, partly due to Saturn's dual-CPU architecture

and its more complex graphics.21

5.3 Fit of Model

To examine the �t of the model, I treat the posterior means of the last 50,000 samples as the

estimated values of the parameters, and simulate the equilibrium of the model. I now compare

the predicted values to those observed in the data. Figure 6 (a) compares the predicted and the

observed console owners. Figure 6 (b) compares the predicted and the observed accumulative sales

of sports games. Overall, the model �ts the data very well.

Figure 5 (a) compares the predicted and the observed price across all sports games at each

age (i.e., months since introduction). It indicates that the proposed model is able to explain the

21See http://en.wikipedia.org/wiki/Sega_Saturn#cite_note-16. �One very fast central processor would be prefer-
able. I don't think all programmers have the ability to program two CPUs�most can only get about one-and-a-half
times the speed you can get from one SH-2. I think that only 1 in 100 programmers are good enough to get this kind
of speed [nearly double] out of the Saturn. � �Yu Suzuki re�ecting upon Saturn Virtual Fighter development.
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declining pattern of game price. However, the predicted price drops not so quickly as the observed

price. One possible reason is that the model does not consider the second-hand market which

contributes to the declining game price in the data. 5 (b) compares the predicted and the observed

unit sales across all sports games at each age. It shows that the model �ts the data very well.

5.4 Software Pricing

This subsection investigates the importance of each factor that in�uences competing game producers'

price choices. To achieve this goal, I approximate the pricing policy function as a polynomial of

observed and unobserved state variables of the equilibrium model.

In the polynomial regression, the dependent variable is software price. The state variables

include: (i) number of active software products in the same submarket which measures the com-

petition level, (ii) percentage of high-type consumers remaining in a submarket which measures

the consumer composition, (iii) consumer waiting values which measures consumer forward-looking

behavior, and the consumption value which measures a product's quality.22

Table 2 reports the �rst-order and second-order polynomial regression estimates, which implies

four important results. First, if a new software product is introduced to the same submarket,

the price of the existing software products are lower. Second, software price is increasing in the

proportion of high-type consumers. Third, software price is decreasing in the high-type consumers'

waiting value, and increasing in the low-type consumers' waiting value. Fourth, software price is

increasing in its own consumption value.

6 Counterfactuals

In this section, I make use of the recovered parameters in the demand and supply model to conduct

counterfactual exercises. The goal is to explore: what is the impact of platform pricing on the

number of consumers, the variety and prices of the a�liated products?

In the video game industry, console platforms choose console prices, software royalty fees, and

software research and development fees. On the consumer side of the market, the console price is

a one-time payment for access to the platforms. On the software side of the market, royalty fee

is a �xed payment per unit sold to consumers. In addition, game producers also have to spend

a one-time payment of research and development if they want to join a platform. Even though

22The consumption value of a software product j is de�ned by Xjtψ + ξjt, where Xjt includes online rating score,
product newness and holiday dummies.
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this cost does not directly go to platform providers' pockets, they can still strategically in�uence

this software entry fees either by o�ering easier-learning development technology or by subsidizing

software R&D directly.

6.1 Sega Saturn's Failure

Sega went from accounting for around 40% of the worldwide console sales in the fourth-generation

of video games (November 1998 - May 1995) to around 6.5% of the worldwide console sales in the

�fth-generation of video games (May 1995 - November 2000).23

What happened to Sega Saturn? It was released at a high price of $399, $100 higher than

PlayStation ($299) and $200 higher than Nintendo 64 ($199). In two-sided markets, a high price

on consumer side discourages the entry of consumers, and hence the entry of software producers.

When there are multiple competing platforms, the e�ect of participation of one side on the other has

even more bite. High console prices lose consumers to the competing platforms, which upgrades the

value of the competitors to consumers, and hence leads to a large decrease in buyer interest in the

original platform. In addition, it was widely agreed that Saturn was di�cult to develop compared

to PlayStation.

I conduct three counterfactual exercises to focus on the three platform prices, respectively. The

�rst counterfactual examines the bene�t of reducing consumer entry fees by assuming that Sega

has reduced its console price. The second counterfactual explores the bene�t that Sega may have

received from subsidizing software R&D. The last counterfactual analyzes the impacts of charges

to software producers by assuming that Sega's royalty fees were $5 lower per copy. The goal is to

investigate whether Sega Saturn can survive by adjusting any of its price choices.

6.2 Console Price

Figure 4 (a) presents the prices of the three �fth-generation consoles in every month during the

sample period. Console prices were generally declining over time. It also shows that Sega's console

prices were $100 higher than its competitors at the same age for the �rst two year. A high console

price discouraged consumer entry and hence software entry. It is speculated that contributes to the

23In the fourth-generation video game market, two major console platforms dominated the fourth-generation. The
biggest one was Super Nintendo Entertainment System, launched in November 1990 in Japan. It sold 49.1 million
units worldwide. The other big platform was Sega Mega, launched in November 1998, which sold 40 million units
worldwide. The total unit sales of other small platforms was around 10 million worldwide. In the �fth-generation
market, the worldwide unit sales for the big-3 console platforms, Sega Saturn, Sony PlaySation and Nintendo 64, are
9.5 million, 102.5 million and 32.9 million, respectively. Sega lost behind far away from its rivals.
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failure of Sega.24 In this counterfactual, I consider what if Sega has followed the price schedule of

its main rival, Sony PlayStation One. The goal is to investigate whether Sega could survive if it has

charged this lower console price schedule.

With the proposed price schedule for Sega, Sega would increase its console owners by around

10M. A lower console price attracts more users and hence more games, which attract more users

and so on. Meanwhile, PlayStation One would su�er from Sega's lower console price strategy, but

Nintendo 64 would not a�ected much. PS1's technology and entry time were almost the same as

Saturn, and hence was the main rival of Saturn; however, N64 was more technologically advanced

and entered the market two years later than Saturn, and hence was not Saturn's direct competitor.

6.3 Subsidize Software Entry

Compared to PlayStation, Saturn is di�cult to develop for. High R&D cost discourages software

entry and thus discourages consumer entry. In this counterfactual, I consider what if Sega had given

game producers a subsidy of $1M per game.

(incomplete)

6.4 Royalty Fees

In a two-sided market with indirect network e�ects, the e�ect of price on demand can be larger

than in other markets. For instance, the lower software price not only attracts elastic consumers

to purchase software, but also leads to higher valuation of the console and thus attracts more

consumers. The value extracted from the increasing number of consumers magni�es the value of

lowering software price, which leads to additional price decrease.

In this counterfactual, I consider what if Sega's royalty fee had been $5 lower per copy than the

estimated value. For software producers, lower royalty fees implies lower unit cost. The equilibrium

price depends on the demand elasticity which is more complicated in this industry.

(incomplete)

7 Conclusion

In this paper, I proposed a new Bayesian MCMC approach for structural estimation of dynamic

games. I used the outcomes from past MCMC iteration to approximate each agent's equilibrium

24See wikipedia, http://en.wikipedia.org/wiki/Sega_Saturn#cite_note-16.
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strategy and value function for the current draw of parameter vector. This signi�cantly reduces the

computation burden. To avoid computing the value function at all possible points of the state space,

I provided an approach which combines the nonparametric approximation method and interpolation

method. I demonstrated the e�ectiveness of my method by applying it to a dynamic model of pricing

and entry in the video game market. The method here can be applied to estimate other dynamic

games, especially those with unobserved heterogeneity and large state space.

This paper developed a framework to study pricing and entry in a two-sided market with posi-

tive indirect network e�ects. On the demand side, the value of a hardware platform depends on the

expected value of optimally purchasing software products associated with that platform. Moreover,

the number of potential buyers for a software product depends on the number of users who have

adopted the compatible hardware. The demand system of the model not only accounts for dynamic

selection of forward-looking and heterogeneous consumers into platforms for a�liated software prod-

ucts, but also allows for the contingency of platforms' value on the availability and prices of the

a�liated products. Incorporating the complementarity between hardware and software, I am able

to examine how a change in the pricing on the software side a�ects consumers' entry to a platform.

My counterfactual experiments showed that if Sega had subsidized software entry it would have

substantially encouraged more software entry and hence more users. In addition, my counterfactual

experiments showed that if Sega had lowered game entry cost it would have boosted game entry

and hence consumer entry.

On the supply side, software �rms compete within a submarket. Incumbents choose their prices

and potential entrants choose whether to enter, strategically accounting for competitors' reactions

and consumers' responses. I have investigated how a change in the pricing on the consumer side

a�ects software �rms' entry and price choices. Counterfactual experiments demonstrated that low-

ering console price has signi�cantly increased consumer entry and hence software entry.
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Tables:

Table 1: Statistics of the U.S. Fifth-generation Video Game Industry

Sega Saturn PlayStation Nintendo 64

HARDWARE

Release Date May 1995 Sept. 1995 Sept. 1996

Provider Sega Sony Nintendo

CPU bits 32 32 64

MHZ 28 33.87 93.75

Starting price $399.9 $299.7 $199.8

Ending price $41.0 $112.2 $87.1

Average unit sales per month (million) 0.02 0.36 0.26

Installed base (Feb. 2002, million) 1.28 28.25 17.17

SOFTWARE

Total active titles 240 1172 385

Total unit sold (Feb. 2002, million) 8.09 300.20 111.55

Average units sold per title (million) 0.03 (0.04) 0.26 (0.48) 0.39 (0.67)

Average revenue per title (million) 1.25 (1.61) 8.47 (26.71) 18.73 (34.69)

Average starting price $52.66 ($7.83) $41.57 ($12.02) $54.57 ($8.16)

Note: Numbers in parenthesis are standard deviations. Data source: NPD group.

Table 2: Polynomial Regression of Pricing Policy Function

State Variables First-Order Second-Order

s1 (# competitors) -0.3241∗∗∗ -0.0336

s1 square 0.0036∗∗∗

s2 (% high-type consumers) 0.2734 ∗∗∗ 1.2489∗∗∗

s2 square -0.0202∗∗∗

s3 (high-type waiting value) -1.4450 ∗∗∗ -0.8588∗∗∗

s3 square 0.0668∗∗∗

s4 (low-type waiting value) 1.3430∗∗∗ 0.7073∗∗∗

s4 square -0.0788∗∗∗

s5 (its consumption value) 1.5168 ∗∗∗ 2.2909∗∗∗

s5 square -0.0729∗∗∗

R-square 0.47 0.57

Note: ∗ indicates signi�cance at 10 percent level; ∗∗ indicates signi�cance at 5 percent level;

and ∗∗∗ indicates signi�cance at 1 percent level.
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Table 3: Posterior Means and Standard Deviations

Last 50,000 Samples Last 25,000 Samples

Mean Std dev Mean Std dev

Block 1: Demand for Hardware

ϕH1 (H-type consumer price sensitivity) 0.0018 0.0000 0.0018 0.0000

ϕH2 (L-type consumer price sensitivity) 0.0064 0.0002 0.0064 0.0002

ψHNov (Nov. dummy) 0.7454 0.0217 0.7464 0.0219

ψHDec (Dec. dummy) 2.4049 0.0904 2.3991 0.0903

σξH (std of hardware demand shocks) 0.1049 0.0058 0.1058 0.0061

δ (initial share of H-type consumers) 0.1460 0.0009 0.1460 0.0009

Block 2: Demand for Software

ψN64 (dummy for N64 games) 1.5444 0.0343 1.5372 0.0074

ψ1 (online rating score of games) 0.1689 0.0090 0.1712 0.0068

ψ2 (game age if new) -0.3333 0.0097 -0.3407 0.0023

ψ3 (game age if old) -0.1894 0.0062 -0.1931 0.0033

ψNov (Nov. dummy) 0.2385 0.0074 0.2411 0.0041

ψDec (Dec. dummy) 0.6716 0.0206 0.6754 0.0188

ϕ1 (H-type consumer price sensitivity) 0.0137 0.0005 0.0137 0.0002

ϕ2 (L-type consumer price sensitivity) 0.0507 0.0023 0.0523 0.0017

σξ (std of software demand shocks) 2.7394 0.1073 2.7421 0.0500

Block 3: Software Pricing

cSaturn (unit cost of games for Saturn) 14.6518 0.2166 14.7735 0.2322

cPS1 (unit cost of games for PS1) 10.7551 0.1601 10.7306 0.1325

cN64 (unit cost of games for N64) 18.4576 0.1629 18.5233 0.1726

σς (std of price error) 0.8786 0.0220 0.8949 0.0154

Block 4: Software Entry

γSaturn (mean of entry cost to Saturn) 4.7166 0.0428 4.7292 0.0170

γPS1 (mean of entry cost to PS1) 3.6634 0.0505 3.6999 0.0417

γN64 (mean of entry cost to N64) 4.6130 0.0142 4.6139 0.0086

σν (std of entry cost shocks) 2.4869 0.0119 2.4929 0.0105
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Figures: Industrial Description

Figure 1: Positive Indirect Network E�ect
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Figure 2: Game Price and Unit Sale at Each Age
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Note: Monthly data of 1697 games released for Sony PlayStation One, Nintendo 64 and Sega Saturn from May 1995 to February 2002.

Figure 3: Seasonality
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Figure 4: Console and Game Price over Time
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Figures: Fit of the Model

Figure 5: Actual vs. Fitted Game Price and Unit Sales in Age

��

���

���

���

���

���

� �� �� �� �� �� ��

��
��

���
�	�

��

���

	�
�
�

�

�������������
������	����
����	
����

�

��

��

��

��

��

� �� �� �� �� �� ��

��
��

���
���

��	
�
�

��
�
�

���
	��

��
��

��

�������������	�����������	�����	����

Note: Solid lines represent actual data. Dashed lines are �tted values.
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Figure 6: Actual vs. Fitted Accumulative Sales of Consoles and Games

(a) Sega Saturn
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(b) Sony PlayStation One
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(c) Nintendo 64
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Note: Solid lines represent actual data. Dashed lines are �tted values.
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Appendix B: Competition Structure of Software Market

In section 3, I assume that software compete within a submarket and submarkets are separate from

each other. Below I specify three di�erent regression models to test the substitution between sports

games. Table 4 presents the empirical results which are consistent with that assumption.

Table 4: Empirical Results of Testing Software Competition Structure

Model 1 Model 2 Model 3

price ($) ln(qjt) ln(qjt)

its own price -.0126∗∗∗ -.009∗∗∗

(.0019) (.002)

competition in the same submarket -.148∗∗ -.0359∗∗∗ -.219∗∗∗

(.060) (.0045) (.019)

competition from other submarkets -.011 .0002 -.012

(0.066) (.0004) (.024)

online rating score 1.417∗∗∗ .3419∗∗∗ .261∗∗∗

(.047) (.0099) (.010)

product age (months) -1.141∗∗∗ -.1988∗∗∗ -.199∗∗∗

(.015) (.0099) (.004)

age square .013∗∗∗ .0015∗∗∗ .002∗∗∗

(.002) (.0000) (.000)

market size (million) 3.353∗∗∗ .2438∗∗∗ .803∗∗∗

(.088) (.0466) (.034)

R-square 0.68 0.63 0.53

observations 13779 13024 12794

Note: ∗ indicates signi�cance at 10 percent level; ∗∗ indicates signi�cance at 5 percent level;

and ∗∗∗ indicates signi�cance at 1 percent level.

In the �rst regression, the dependent variable is a game's price and the independent variables

include: (i) the competition level within a submarket measured by the number of existing games in

the same market; (ii) the competition from other submarkets measured by the number of existing

games in all other submarkets; (iii) observed characteristics including the online rating score and

the game age measured by the months since release; (iv) the market size measured by the log of the

console owners; and (v) monthly dummy. The �rst important result is that the price of an existing

game is lower by $0.148 if additional game is released in the same submarket and this impact is

statistically signi�cant. It implies that the competition within a market is strong. The second

important result is that the competition e�ect from other submarkets is not statistically signi�cant,

which implies that submarkets are separate from each other. Besides, the game price is increasing

in the online rating score, declining in game age and increasing in the number of console owners.
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In the second regression, the dependent variable is the log of a game's unit sales (measured in

thousands). The independent variables are the same as in the �rst model except that I include an

extra independent variable, the current software price. To address the endogeneity of the price, I

use the lagged price as an instrument for the current price. The third column in table 4 lists the

estimation results which are consistent with the assumption of strong competition within a market

and weak competition across markets.

The last regression mimics Nair (2007).25 I still use the log of a game's unit sales as the dependent

variable. However, I use the log of the total unit sales of all existing games in the same submarket to

measure the competition level within a submarket, and the log of the total unit sales of all existing

games in other submarkets to measure the competition e�ect from other submarkets. To address

the endogeneity problem, I use the lagged price as an instrument for the current price, the number

of existing games within the a submarket as an instrument for the within-submarket sales, and the

number of existing games in other submarkets as an instrument for the outside-submarket sales.

The results also show that the substitution e�ect within a submarket is strong while the substitution

from games sold in other markets is insigni�cant.

Appendix C: Computation of the Jacobian Matrix

The Jacobian Matrix in equation (10) is

J(qmt→ξmt) ≡‖ ∇ξmt
qmt ‖=


∂q1t/∂ξ1t ... ∂q1t/∂ξJt

...
. . .

...

∂qJt/∂ξ1t · · · ∂qJt/∂ξJt


with

∂qjt
∂ξlt

=

−
∑I
i=1 nmit

[
bijtbilt + βcbijtbim0t

∂EGmit+1

∂ξlt

]
if l 6= j∑I

i=1 nmit

[
bijt(1− bijt) + βcbijtbim0t

∂EGmit+1

∂ξjt

]
if l = j

25In Nair (2007), the dependent variable is ln(sjt/s0t), where sjt is the market share of game j and s0t is the share
of the outside good. He uses ln(sjt|g/s0t) to measure the e�ect within a market, where sjt|g is the share of units sales
of the game within its genre, g. He �nds that the substitution e�ect from other games with the same game genre is
not signi�cant, and thus he concludes that video games are separate from each other.
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Here, bim0t = 1 −
∑

j∈Jmt
bijt is the probability of not purchasing. Notice that ∂Gmit/∂ξjt and

∂bim0t/∂ξjt are determined by the following system of equations:


∂EGmit+1

∂ξjt
=
∑
l
∂EGmit+1

∂nmlt+1
nmlt

∂bim0t

∂ξjt
for all i

∂bim0t

∂ξjt
= −bijtbim0t + βcbim0t(1− bim0t)

dEGmit+1

dξjt
for all i

In the application part, I only assume two types of consumers. So, the above system includes four

linear equations and four unknowns. It is not hard to solve for ∂Gmit/∂ξjt for all i.

Appendix D: Best Response in Price

The incumbent software �rm's problem is to pick a price to maximize the discounted pro�t:

max
p̃jt

πj(p̃jt, p−jt, smt) + βfE [Vjt+1(smt+1) | smt, p̃jt,Ψ−j ] ,

with

πj(pjt, p−jt, smt) = (pjt − c)

[∑
i

nmitbij(pjt, p−jt, smt)

]

bij(pjt, p−jt, smt) =
exp(xjtψ − ϕipjt + ξjt)

exp[βcEGit+1(pmt+1, smt+1 | pjt, p−jt, smt)] +
∑

j∈Jmt

exp(xjtψ − ϕipjt + ξjt)
.

How to compute the marginal e�ect of current price on those expected values? Take an incumbent

j's continuation value, E [Vjt+1(smt+1) | smt, p̃jt,Ψ−j ], for example. The state vector smt includes

the number of existing games in the same submarket, the number of active high-type consumers, the

number of active low-type consumers, the value of the No. 1 product in the same submarket, and

its own consumption value. Notice that given competitors' prices and entrants' entry probabilities,

a software's current price only a�ects the number of next-period active consumers but not other

next-period state variables. The number of next-period active consumers is the sum of the number

of consumers who do not make any purchase today and the number of new consumers: nmit+1 =

nmitbm0it + Qmit. Hence, the analytical form of ∂smt+1(pjt, p−jt, smt)/∂pjt is known. Furthermore,

along the estimation procedure, I approximated the value functions Vj(smt+1) by using polynomial

regression in state variables. Therefore, I can pin down how current price a�ects the expectation

of incumbent value function. A similar approach can be applied to compute the marginal e�ect of

current price on consumers' continuation values.
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