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Are People Bayesian? Uncovering 
Behavioral Strategies 

Mahmoud A. EL-GAMAL and David M. GRETHER 

Economists and psychologists have recently been developing new theories of decision making under uncertainty that can accom- 
modate the observed violations of standard statistical decision theoretic axioms by experimental subjects. We propose a procedure 
that finds a collection of decision rules that best explain the behavior of experimental subjects. The procedure is a combination of 
maximum likelihood estimation of the rules together with an implicit classification of subjects to the various rules and a penalty 
for having too many rules. We apply our procedure to data on probabilistic updating by subjects in four different universities. 
We get remarkably robust results showing that the most important rules used by the subjects (in order of importance) are Bayes's 
rule, a representativeness rule (ignoring the prior), and, to a lesser extent, conservatism (overweighting the prior). 

KEY WORDS: Classification; Learning; Mixture models; Probability assessments. 

1. INTRODUCTION 

The economic theory of decision making under uncer- 
tainty has been seriously challenged by a series of dis- 
coveries of violations of that theory by experimental sub- 
jects. The paradoxes of Allais (1953) and Ellsberg (1961) 
are among the earliest examples, but psychologists recently 
have added several others. Some violations of statistical de- 
cision theory have been studied by Grether and Plott (1979), 
Kahneman and Tversky (1979), and Lichtenstein and Slovic 
(1971), to name but a few. Part of the economists' response 
to these developments has been the introduction of new 
theoretical decision making models designed to be consis- 
tent with some of the reported violations of expected utility 
theory. Examples include models from Bell (1982), Chew 
(1983), Kahneman and Tversky (1979), Loomes and Sugden 
(1987), Machina (1982), Quigen (1982), and Yaari (1987). 

While economists have been introducing new models of 
individual decision making, psychologists have developed 
a number of heuristic explanations of specific individual 
behaviors. (For some of these models, see Birnbaum, Cof- 
fey, Mellers, and Weiss 1992, Bostic, Herrnstein, and Luce 
1990, Goldstein and Einhorn 1987, Lichtenstein and Slovic 
1971, Loomes, Starmer, and Sugden 1989, Mellers, Or- 
donez, and Birnbaum 1992, Tversky, Sattath, and Slovic 
1988). Research on judgement of probabilities has pro- 
duced an array of heuristics which individuals use in dif- 
ferent circumstances (cf. Tversky and Kahneman 1974). 
Prominent heuristics were proposed by Edwards (1982), 
Kahneman and Tversky (1972), Lichtenstein and Slovic 
(1971), and Tversky and Kahneman (1972). Recent re- 
search (e.g., Gigerenzer, Ulrich, and Kleinbolting 1991, 
Payne 1982) suggests that the dependence of such heuristics 
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on the specific context of the decision making experiment is 
not fully understood. We alert the reader that in our empir- 
ical results, two of those heuristics (representativeness, and 
to a lesser extent conservatism), will be discovered in the 
data. We shall discuss those two heuristic decision rules as 
well as Bayes's rule in Section 3. We did not find evidence 
for individuals using any of the other cited heuristic deci- 
sion rules, and hence we do not discuss them any further. 

The current literature does not support the conclusion 
that subjects are sufficiently homogeneous to be described 
by a single theory. Different subjects may use different 
decision rules, and if the rules they use do not yield satis- 
factory outcomes, they may abandon them and use different 
ones (cf. Mellers et al. 1992). In this article we devise and 
use a general estimation/classification procedure that un- 
covers the most likely collection of rules that experimental 
subjects use. 

The article is organized as follows. In Section 2 we de- 
scribe the collection of experiments that we analyze and 
present an overview of the data. In Section 3 we intro- 
duce a class of decision rules that reduces the computa- 
tional burden to feasible levels. In Section 4 we present our 
likelihood-based estimation/classification procedure for the 
particular application at hand and motivate a particular 
penalty function for the number of classes allowed. In Sec- 
tion 5 we discuss the methods used for implementing our 
procedure in our application and discuss the results that we 
obtain from the experiments described in Section 2. In that 
section we also address some of the suboptimal properties 
that our procedure may possess in finite samples and discuss 
how they can be ameliorated by considerations of optimal 
experimental design. In Section 6 we compare our results 
to those that we may achieve using the EM algorithm. Fi- 
nally, we provide some concluding remarks in Section 7. 

2. THE EXPERIMENTS 

The experimental data that we use in this article were 
collected at four different educational institutions. Subjects 
were recruited from economics classes at UCLA, Occiden- 
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tal College, California State University at Los Angeles, and 
Pasadena City College. The subjects were told that they 
were to participate in an economics experiment and that 
they would be paid for their participation. Upon arrival, 
the subjects were randomly divided into two groups. The 
procedures were identical for both groups except for the 
method of payment. The two groups performed the experi- 
mental tasks independently in two different rooms. Because 
the analysis did not require that the number of subjects, or 
the number of tasks per subject, remain constant across ex- 
perimental sessions, those numbers were determined by the 
number of signed-up subjects who reported at the scheduled 
time and by the duration of the sessions. 

In each room there were three bingo cages, labeled "prior 
cage," cage A, and cage B. For each task presented to the 
subjects, a draw from the prior cage was made to determine 
whether cage A or cage B would be used for that task. 
The priors cage contained six balls numbered 1 through 
6; if 1 through m was drawn (where m is chosen as part 
of the experimental design), then we used cage A for this 
task; otherwise we used cage B. Therefore, the choice of m 
induces a prior for the subjects on whether the draws that 
they will observe in the current task will be from cage A or 
from cage B. Cage A contained six balls, four labelled N 
and two labelled G. Cage B also contained six balls, three 
labelled N and three labelled G. 

The experiment proceeded as follows. Cages A and B 
were placed behind an opaque screen, and a value of m was 
announced. The prior rules used were two, three, or four 
chances out of six for cage A; that is, m = 2, 3, or 4. The 
prior cage was spun and a ball selected, thus determining 
whether cage A or cage B would be used. The result of this 
draw was not revealed to the subjects. The selected cage 
was placed in the front of the room, six draws (with replace- 
ment) were performed, and the results were announced and 
written on a blackboard. Subjects also recorded the out- 
comes on their answer sheets. Subjects were then asked to 
indicate which cage (A or B) that they believed was used to 
generate the observations. After all subjects had chosen a 
cage, a new value of m was announced and the procedures 
were repeated. 

At the beginning of each experiment, the instructions 
were read and the subjects elected one person to serve as 
a monitor. The monitors inspected all equipment, observed 
the draws from the cages, and generally checked that the 
experimenters were being truthful. The monitors did not 
communicate with the subjects outside of their duties as 
monitor. The monitors were guaranteed a payment at least 
equal to the average received by subjects in their rooms. 

In one room, all subjects were paid a flat fee. In the 
other room, one task was selected (randomly, using a bingo 

cage), and subjects earned a $10 bonus if their response was 
correct. A response was considered correct if the cage that 
the subject chose was in fact the cage from which the balls 
were drawn. In both treatments, subjects were not given 
any feedback on the correctness of their responses until 
the very end of the experiment, when their payoffs were 
computed. The sessions lasted approximately 1 hours, 
and the number of decisions made by each subject ranged 
from 14 to 21. 

The aggregated numbers of A's and B's chosen for each 
of the three priors and each of the seven possible outcomes 
are shown in Table 1. The information in Table 1 is sum- 
marized in Figure 1, where we show the proportion of A 
choices for each prior and each outcome, aggregated over 
all eight experimental sessions. The monotonicity of the 
proportion of A's in both the prior in favor of cage A and 
the number of N's observed suggests that subjects are to 
some extent using the priors and the evidence to formulate 
their beliefs about the parent distribution. This is indicative 
of some sort of noisy Bayesian behavior and also allows for 
some other decision rules. In the following section we in- 
troduce a large class of decision rules (including Bayes's 
rule) and postulate that each subject uses a single decision 
rule from that class throughout the experimental session, 
but that they are prone to make errors and make random 
decisions. 

3. A NATURAL CLASS OF DECISION RULES 

Ignoring the order of the draws, there are seven possible 
outcomes (zero through six N's) and three priors, resulting 
in 21 possible decision situations. In each of these situa- 
tions, the subjects could choose either cage A or cage B. 
Therefore, there are in principle 221 = 2,097,152 possible 
decision rules. Because cage A has a higher proportion of 
N's than cage B, the outcome most strongly favoring cage 
B would be no N's (six G's), and the one most strongly 
favoring cage A would be six N's (no G's). A natural rule 
would be to have a cutoff number for each of the priors, 
such that if the number of N's exceeds that cutoff number, 
the rule selects cage A, and otherwise it selects cage B. 

To use the cutoff class of rules, we need to decide how 
to treat the behavior of a subject observed choosing cage 
B when some number of N's has been observed and then 
choosing A when a smaller number has been observed. We 
introduce the possibility of subjects making errors (i.e., de- 
viating from the rule). This will allow each of our decision 
rules to give a positive probability (likelihood) to all possi- 
ble patterns of behavior. We shall assume that each subject 
uses a decision rule (C1, C2, C3), of the following form: Un- 
der prior i, choose cage A if the number of N's observed 
is greater than ci, and choose cage B if otherwise. But 

Table 1. Number of A's and B's for Each Prior and Outcome Aggregated Over the Eight Experimental Sessions 

N's 0 1 2 3 4 5 6 

Prior = 1/3 1, 47 8, 69 10, 111 39, 405 263, 424 157, 51 0, 0 
Prior = 1/2 0, 0 3, 29 38, 267 22, 138 292, 79 181, 20 42, 9 
Prior = 2/3 0, 0 15, 71 61, 210 192, 146 613, 69 256, 12 157, 13 
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Figure 1. Proportion of A Choices as a Function of Number of N's Observed for Priors 1/3 (Solid Black Line), 1/2 (Dashed Line), and 2/3 (Solid 
Gray Line). 

with probability c, the subject trembles and makes a ran- 
dom choice. In other words, for each decision (given a prior 
and a number of N's drawn) with probability (1 - E), the 
subject follows the rule (C1, C2, C3), and with probability E 

the subject chooses cage A with probability 1/2 and cage 
B with probability 1/2. Notice that subjects' choices agree 
with the rule with probability 1 - c/2 and deviates from it 
with probability c/2. Because E is the probability of acting 
randomly, we call it the error rate. Now the number of pos- 
sible rules {(C1, C2, C3); -1 < Ci < 6; i 1, 2, 3} is 83 = 512 
(where ci's are integers and we use -1 as the lower bound 
corresponding to always choosing cage A, even if zero N's 
were observed). With perfect foresight, we now identify 
the three rules in this class that appear prominently in our 
empirical results. 

A subject who correctly uses Bayes's rule chooses cage A 
if the prior in favor of cage A was 1/3, 1/2, or 2/3 and the 
number of N's was greater than 4, 3, or 2. In our notation, 
this means that the cutoff rule (C1, C2, C3) = (432) corre- 
sponds to Bayes's rule. A second decision rule appearing 
in our estimates is representativeness heuristic (Kahneman 
and Tversky 1972), which identifies samples with parent 
distributions that coincide with them (e.g., a sample of three 
N's and three G's coincides with the true composition of 
cage B). Therefore, a subject who uses the representative- 
ness heuristic would judge that samples of three N's came 
from cage B and samples of four N's came from cage A, re- 
gardless of the prior used. (The representativeness heuristic 
combined with a cutoff rule implies a judgment in favor of 
A with four or more N's and in favor of B with three or 
fewer N's, resulting in rule (333). A third class of subjects 
that we wish to identify is conservative Bayesians. Those 
subjects give more weight to the prior odds than Bayes's 
formula dictates. For instance, subjects using the cutoff rule 

(531) must observe six N's in order to pick cage A when the 
prior favoring A is 1/3. Note that due to the discreteness of 
our observations, subjects could be conservative and yet use 
rule (432); however, subjects using rule (531) are definitely 
conservative (see Edwards 1982). 

There are two ways to introduce "learning" on the part 
of the subjects. One way is to allow E to decrease over 
time; the other is to allow the rules (cutoff numbers for 
different priors) used by the subjects to change over time. 
We do not allow either kind of learning in our estimated 
class of models. This restriction should not seem too strong 
in light of our design, where the subjects were never given 
any feedback about the performance of their decision rule 
until the end of the session. 

4. A LIKELIHOOD-BASED 
ESTIMATION/CLASSIFICATION 

PROCEDURE 

As stated in the previous section, we have restricted at- 
tention to a class of decision rules that can be written as 
(cl,c 2,ic3), where ci is the cutoff rule used when prior i 
is induced. We assume that each of our subjects uses one 
such rule (cs, cs, cs) from the class C = {(C, 2, C3): - 1 
< ci < 6; i = 1, 2,3}. Different subjects may use dif- 
ferent rules. We further assume that the error rate E is 
the same for all subjects and for all tasks. Each decision 
rule c c C and error rate E define a probability function 
fC,E: X -* [0,1], where x c X is a collection of triples 
(prior, number of N's observed, and choice of A or B). For 
a subject s, given a sequence of observations xsl, . . . xt, 
where xs = (p, N, a), {1, 2, 3} is the prior, N, is 
the number of N's observed, and a, is the choice (A or B) 
of the subject, define the variable 

s 
S 

*r if (A, = A and Xr 
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or (a, =B and N, cp), 

- 0 otherwise. 

Thus x'< equals 1 if the subject s's decision on trial T 

agrees with rule c. Now define the sufficient statistic, Xcs t 
=1 Xcs (the number of decisions that agree with rule 

c). Then under rule c = (cl, c2, c3), and error rate c, the 
subject follows rule c with probability (1 - c/2). Thus the 
likelihood at (c, c), of this subject's actions (XS... I xXs), 
can easily be computed as follows: 

f '(Xs: . : Xs = 1 _? Xs )t,-XcS 

Now we observe data on n experimental subjects, with 
each subject s being observed over ts tasks. If we assume 
that all agents are using the same rule c c C, then we can 
estimate (c, c) by the maximum likelihood estimates 

n 

(c, s) = argmaxc, J7J fCE (Xs, v. Xsl. 

s=1 

If instead we assume that different agents may be using 
different rules, and that there are exactly k such rules cl 

=(R1 c, cl),. Ck = (Ck,Ck,C,k), let 6ij be 1 if agent i is 
using the jth rule and zero otherwise. Then we can estimate 
(C1, ... I,C k,I , {6ij }li<n;1l<jk) by 

(c I ... Ic , {Iij}1<i<n;1<j<k) 

- argmaxcl ,...,ck,E,{J63}l<1<n;l<3<k 

n k 

X J7 
Jqc(Xs 

. (1 ) 

s=1 h=1 

where 6ij c {0, 1}, and >=1 &ij 1. In other words, for a 
given k, we find estimates (C1,... as follows: 

Algorithm A * For each (c., ... I, kI E) 

1. For each individual s, 
a. Calculate fc h',(XS ... .I Xs), for h c {1,..., k} 
b. Choose h c {1, ... . k} which yields the high- 

est fch, (XS.,.. ,XS ). Call the maximal value 
fs (c1,..., Ck,I ). This corresponds to maxi- 
mizing over the 6sj's for individual s. 

2. Multiply the obtained likelihoods fs (C1, ... ., C,E) 
over individuals s c {1,... , n}. Call the outcome 
F(cl, . . ,ck, E). 

* Choose (c, .. ., Ck, s) to maximize F(.) (Eq. (1)). 

In general, the last step of the algorithm would be im- 
plemented by calling a general purpose multivariate maxi- 
mization routine. In our application there are finitely many 
k-tuples of rules to check, and for each k-tuple, each in- 
dividual's contribution to the likelihood function can be 
maximized by assigning them to the rule that minimizes 
the number of deviations of that individual's actions from 
the assigned rule. The estimate of E is then easily calculated 
as twice the proportion of overall deviations. 

Notice that by following Algorithm A, our problem (for 
a fixed k) becomes a simple likelihood maximization one, 
with the number of parameters (3k for the k-tuple rules 

+ nk zeros and Is for the classifications of the n subjects) 
growing linearly in the number of rules and linearly in the 
number of subjects. This improvement over the brute-force 
algorithm (i.e., searching over all kn possible allocations 
of n subjects into k groups) makes our procedure rather 
easy to implement by invoking any of the standard multi- 
dimensional optimization subroutines generally available in 
mathematical and statistical packages. 

In Section 6 we compare our approach to this model of 
subject heterogeneity with the more common treatment of 
the { ij}'s as missing data and use of the EM algorithm to 
obtain estimates of the other parameters (Little and Rubin 
1987; Redner and Walker 1984). The EM algorithm inte- 
grates out the {?ij}'s to obtain an expected log-likelihood 
function that is then maximized, whereas we treat them 
as parameters of the model over which we maximize the 
likelihood function. It is common to interpret the maxi- 
mization of the likelihood function over those parameters 
as an approximation to maximizing the integral. The ac- 
curacy of this approximation improves as the number of 
tasks per subject gets larger. This is in the same spirit that 
a maximum likelihood estimation is an approximation of 
the integral required to calculate a Bayes posterior. It turns 
out that the integral is quite simple to calculate in this class 
of mixture models; we discuss this in more detail in Sec- 
tion 6. 

For each k, we have shown how to estimate the k most 
likely rules and the error rate E. Given n subjects, we still 
have to decide on a method to estimate k. Clearly, as k in- 
creases, the overall likelihood also increases, until k = n, 
the number of subjects. We would like to introduce a 
penalty for allowing too many decision rules; that is, a 
penalty for letting k get too large. There is substantial lit- 
erature on the problem of choosing an optimal penalty for 
the complexity of a model. The best known, and one of the 
earliest, is Akaike (1974)'s criterion (which picks the model 
that maximizes the maximal log-likelihood less the number 
of parameters). Another very popular information criterion, 
introduced by Schwarz (1978), picks the model that max- 
imizes the log of the maximal likelihood less the number 
of parameters multiplied by log of the sample size, divided 
by two. Many other criteria are implicit in the coding lit- 
erature, including Wallace and Boulton (1968)'s minimum 
message length and Rissanen (1978)'s minimum description 
length. Each of these procedures has its epistemic advan- 
tages, and some (e.g., Schwarz 1978) have known asymp- 
totic properties for a given class of likelihood functions. 

In this article we suggest obtaining the required penalty 
by introducing priors on our parameters of interest (in- 
cluding k) and finding the posterior mode estimates of 
(k, cl, ..Ick, E{Ij}). Let X be the entire observed data 
set, (xS,... ,xs) for s E {1,. ..,}, and let A be the class 
of all matrices {&ij }. Our posterior on the parameters of 
interest can be written as follows: 

Pr{k, C1, . . . fX,Aiyl 

= Dem Pr{X|k,c1, . .. ,ck,c, {8ij}} 

x Pr{k, C1,. . . C, {i} 



El-Gamal and Grether: Are People Bayesian? 1141 

The second term on the right side is the probability of 
the data conditional on having k rules, those k rules be- 
ing cl,... ,ck, having error rate c, and allocating subjects 
to rules according to matrix {fij }. The third term is the joint 
prior on k, the rules (c ,... , ck), E, and the allocations of 
subjects to rules. Denom in the first term is defined by 

00 

Denom-= EfE PPr{X|k,cl, . ..,ck,E,{j}} 
eG[0,1] k=- Ck A 

x Pr{k,c 1 ... ICk{&l 6, }} dc. 

If we start with a prior Olk on having k decision rules, 
and for k rules we introduce a prior Wk (C1, ... ., Ck) 0(Pk (de) 
0 Vk ({fij}), we then calculate the posterior mode estimates 
(k, C1 ,. .I. ck, E: {I}ij). We choose the prior rk(-) to be un- 
informative (assigning prior probability 1/83k to each possi- 
ble k-tuple of rules in Ck). (Notice that this allows the same 
rule to be picked more than once in the k-tuple, which may 
happen if there are in fact fewer than k rules in the pop- 
ulation and we have free choice for the "unused" rules.) 
We also choose the prior Vk(.) to also be uninformative 
(assigning equal prior probability l/ku to all possible al- 
locations of the n subjects), 1k(de) uniform for all k, and 
ak = 1/2k. Our posterior mode estimates are then obtained 
by maximizing 

n\ 

log fi max ch (x 

- 3k log(8) -k log(2) - n log(k). 

Our procedure achieves consistent estimates (as the num- 
ber of tasks that each individual performs in the experiment 
and the number of individuals go to infinity) of the number 
of rules being used, the rules themselves, and the propor- 
tion of the population using each of the rules. (For proofs 
and technical details, see El-Gamal and Grether 1993.) 

We close this section by briefly comparing our approach 
to the vast and growing literature on classification and clus- 
tering. A primary goal of the classical classification lit- 
erature is to establish simple algorithms that work for a 
large class of problems. For example, Wallace and Boul- 
ton's (1968) Snob (and later Snob 2) program and Cheese- 
man's (1988) Autoclass II program assume normality of the 
data-generating process. The general procedure that we use 
agrees with all likelihood-based classification procedures in 
its form, but the class of likelihood functions is suggested 
by the problem. In that sense, we are closer to the coding 
theoretic approach to estimation and classification (see, for 
example, Rissanen 1987, Wallace and Freeman 1987). 

5. THE DATA ANALYSIS 

The results that we obtained by applying our algorithm to 
the data from the four universities are reported in Table 2. 
We had a total of 257 subjects, and the total number of tasks 
was 4,520. (The number of tasks per subject varied from 
one experimental session to another.) Table 2 shows the es- 
timated parameters for the four schools: UCLA, Pasadena 
City College (PCC), Occidental College (Occ. Col), and 
California State University at Los Angeles (CSULA), as 
well as estimates for the pooled sample of subjects who 

Table 2. Estimated Rules, Error Rates, and Classifications 

Sample No. of rules Rule(s) chosen Nos. class. to rule EIC x2 N 

UCLA 1 432 97 .308 -840.74 925.70 1940 
PCC 1 432 67 .409 -482.35 328.54 938 
Occ. Col. 1 332 56 .405 -479.84 332.16 939 
CSULA 1 433 37 .484 -395.81 194.64 703 
All-pay 1 432 125 .312 -1,044.89 855.26 2123 
All-flat 1 432 132 .457 -1,147.83 1,040.97 2397 
All 1 432 257 .380 -2,204.95 1,862.85 4520 

UCLA 2 432, 333 71, 26 .261 -832.21 1,091.09 
PCC 2 333, 432 36, 31 .277 -437.76 524.47 
Occ. Col. 2 332, 511 47, 9 .334 -476.56 430.23 
CSULA 2 432, 333 26, 11 .393 -387.66 276.10 
All-pay 2 432, 333 85, 40 .257 -1,019.79 1,092.62 
All-flat 2 432, 333 77, 55 .352 -1,092.98 1,346.13 
All 2 432, 333 162, 95 .302 -2,108.88 2,423.74 

UCLA 3 432,333,531 50, 26, 21 .239 -837.60 1,172.83 
PCC 3 333, 432, 531 36, 25, 6 .256 -453.13 561.92 
Occ. Col. 3 432, 333, 511 28, 19, 9 .299 -474.57 493.48 
CSULA 3 432, 333, 531 18, 11, 8 .370 -398.02 299. 24 
All-pay 3 432, 333, 531 64, 38, 23 .234 -1,022.30 1,202.82 
All-flat 3 432, 333, 531 56, 54, 22 .325 1,106.90 1,438.88 
All 3 432, 333, 531 120, 93, 44 .277 -2,121.91 2,619.13 

UCLA 4 432, 333, 531, 443 46, 24, 19, 8 .229 -852.23 1,213.25 
PCC 4 333, 432, 444, 531 34, 20, 7, 6 .239 -463.67 593.25 
Occ. Col. 4 432, 332, 333, 511 21, 14, 13, 8 .273 -479.28 530.13 
CSULA 4 432, 333, 421, 542 15, 11, 7, 4 .353 -406.53 317.39 
All-pay 4 432, 333, 531, 433 55, 31, 22, 17 .223 -1,038.55 1,256.11 
All-flat 4 333, 432, 521, 542 52, 51, 19, 10 .311 -1,126.53 1,488.36 
All 4 432,333,531,433 103, 83, 43, 28 .267 -2,160.00 2,704.12 
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Table 3. Tests of Homogeneity 

Across schools Pay vs. flat fee 

No. of rules x2 df p value x2 df p value 

1 54.02 12 0 38.33 4 0 
2 33.96 21 .035 19.94 7 .008 
3 44.16 30 .040 27.01 10 .008 
4 85.73 39 0 45.29 13 0 

were paid according to the correctness of their guesses (All- 
pay), the pooled sample of subjects who were paid a flat fee 
(All-flat), and the pooled sample of all 257 subjects (All). 
For each k, we report the maximum likelihood estimates of 
e; the rules (cl, IC2 C) ... I (Ck , CkI Ck); the number of sub- 
jects allocated to each of the rules; the information criterion 
that we introduced in Section 4 (IC = log (maximal likeli- 
hood) - 3k log(8) -k log(2) - n log(k)); a X2 goodness-of- 
fit statistic (explained later); and the total number of data 
points for each subsample. When our information criterion 
told us to stop after a certain number of rules, we indicated 
that by using boldface for the estimates corresponding to 
that k. We now summarize the most important results: 

1. For all tables but Occidental College and CSULA, 
when we force the algorithm to choose only one rule, it 
picks the rule (432), which corresponds to Bayesian up- 
dating. Even in the two institutions where (432) was not 
picked as the single most likely rule, when we allowed the 
algorithm to pick more rules, (432) surfaced. With the ex- 
ception of PCC, the (432) Bayes rule has more subjects 
allocated to it than any other rule. 

2. The second most prominent rule in all but the PCC 
table (where it is the most prominent) is (333). This is the 
"representativeness" rule, and its robustness regardless of 
the number of rules that we allow our algorithm to pick is 
also remarkable. 

3. The third most prominent rule, once enough rules are 
allowed, is (531), a conservative rule. Our information 
criterion usually excludes this rule but does not exclude 
weaker versions of conservatism that may be subsumed un- 
der (432). 

4. Of our four schools, UCLA had the lowest estimated 
e, followed by PCC, Occidental College, and CSULA. Ta- 
ble 2 also shows that our estimate of E for the subjects 
who were paid according to the outcome was lower than 
its counterpart for the subjects who were paid a flat fee. A 
similar ordering is induced by the proportions of subjects 
who use Bayes's rule. 

5. In Table 3, we report, for k c {1,2,3,4}, the x2 
statistics for likelihood ratio tests of homogeneity across 
schools and across payment schemes. The likelihoods for 
the pooled sample are estimated under the constraint that 
e, and the rules used were invariant across all schools and 
payment schemes. Thus we can construct a likelihood ratio 
test for the null hypothesis that the value of E and the es- 
timated rules are the same for both payment treatments by 
using the ratio of the likelihood in the pooled sample and 
the product of the likelihoods for the two payment schemes. 
Negative twice the lik-elihood ratio for each number of rules 

k is asymptotically distributed x2 with 3k + 1 degrees of 
freedom. Similarly, we can take the ratio of the likelihood 
using the pooled sample to the product of the likelihoods 
estimated for each of the schools to construct a test statistic 
for the null of homogeneity across schools. The resulting 
statistic is asymptotically x2 with 9k + 3 degrees of free- 
dom. In Table 3, we report for each k the values of the 
x2 statistic for the two homogeneity tests (across schools 
and across payment schemes), together with the degrees of 
freedom and the p value of a test of homogeneity. The 
tests in Table 3 strongly reject the hypothesis that subjects 
in different schools are acting in similar ways, and strongly 
reject the hypothesis that subjects across different payment 
schemes act in similar ways. Other evidence on the effect 
of monetary incentives in similar contexts is equivocal (see, 
for example, Scott, Farg, and Podsakoff 1988 and Wright 
and Aboul-Ezz 1988). 

6. Our test of goodness of fit in Table 2 is a likelihood 
ratio test comparing the unconstrained estimated E's and 
rules, and a constrained model where we estimate E and 
a single rule for all agents in {(-1, -1, -1), (6, 6, 6)}. The 
rule (-1, -1, -1) corresponds to always choosing cage A, 
and the rule (6, 6, 6) corresponds to always choosing cage 
B, all other choices being explained by noise. The estima- 
tion of this model is very simple: Count the number of A 
responses (#A) and B responses (#B) in each data set, 
assign all subjects to the rule that always makes the more 
common choice, and classify all other choices as errors. 
The likelihood is then 

L(#A, #B) 

(1 - min(#A, #B)/(#A + #B))max(#A,#B) 

x (min(#A, #B)/(#A + #B))min(#A,#B). 

This measure of goodness of fit is similar to a test of R2 = 0 
in a binary choice model of the following kind: 

y* = a +3X+u, 

with y = 1 if y* > 0, and y = 0 otherwise. The test of Rf2 
= 0 in that model will be a test of how much of the variance 
of y* is explained by the variance of u. In other words, we 
estimate a, restricting 3 = 0, and compare the goodness 
of fit for 13 restricted and unrestricted to zero. Notice that 
in the restricted case of this model, if & > 0, then, barring 
errors/noise u, the agent should systematically choose y 
= 1, and if &z < 0, then if there is no noise, the agent will 
always choose y = 0. It is clear from Table 1 that we very 
strongly reject this model that explains the choices of A and 
B by noise; that is, our estimated decision rules explain a 
significant proportion of the total variation in responses. 

Some cautionary notes are in order. In finite samples, 
certain individuals' data could have the same likelihood un- 
der two or more rules, so the likelihood function will have 
multiple maxima. In Table 1 we gave the benefit of the 
doubt to rules that were a priori more appealing to us; for 
example, (432) was chosen any time it was tied with one 
of the other rules. We simulated the percentage of time 
that the data of an individual using the rule (432) can be 
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Table 4. EM Algorithm Estimates 

Sample No. of rules Rule(s) chosen 7rj for each rule ANE 

UCLA 2 432, 333 .79, .21 .270 .243 
PCC 2 333, 432 .53, .47 .290 .362 
Occ. Col. 2 332, 511 .84, .14 .340 .111 
CSULA 2 432, 333 .66, .34 .400 .313 
All-pay 2 432, 333 .74, .26 .302 .326 
All-flat 2 432, 333 .59, .41 .322 .356 
All 2 432, 333 .66, .34 .312 .343 

UCLA 3 432,333,531 .61, .22, .17 .250 .364 
PCC 3 333, 432, 531 .54, .40, .06 .272 .274 
Occ. Col. 3 432, 333, 511 .55, .32, .13 .308 .324 
CSULA 3 432, 333, 531 .66, .34, .00 .392 .384 
All-pay 3 432, 333, 531 .61, .26, .13 .202 .343 
All-flat 3 432, 333, 531 .47, .41, .12 .304 .352 
All 3 432, 333, 531 .54, .34, .12 .296 .350 

tied with either (333) or (531) as a function of the num- 
ber of tasks performed. We ran a Monte Carlo where, for 
number of tasks t, we drew 5,000 artificial subjects using 
rule (432) and making errors with probability E = .3. It was 
clear from the Monte Carlo simulations that the probability 
of a tie declines to zero at a very fast rate. We then ran 
another Monte Carlo simulation using 5,000 draws of arti- 
ficial subjects who use the rule (432) and make errors with 
probability E = .3, and calculated the proportion of sub- 
jects using (432) classified to either (333) or (531) under 
three tie-breaking rules. The first rule is the one that we 
used in this article and that always favors (432); the second 
rule uses 5,000 random draws that do not have ties (i.e., it 
ignores a draw that produces a tie and looks for another 
one); and the third rule randomly assigns a subject with a 
tie with equal probability (1/2 if a two-way tie, 1/3 if a 
three-way tie). The simulations show that the number of 
misclassifications also declines very quickly and that for a 
number of tasks close to the ones in our data, the proportion 
of misclassifications is around 15%. 

It turns out in our application that the tie-breaking rule 
was very seldom invoked. In the UCLA data with the three 
rules (432), (333), and (531) and E = .239, we invoked 
the rule for only 2 individuals out of 97; both had equal 
likelihoods under (333) and (531). In the PCC data, with 
three rules, we invoked the rule for only 1 of 56 subjects 
who could equally well be classified as (333) or (531). In 
the Occidental College data, when we restrict attention to 
three rules, we invoked the rule for 2 subjects out of 56; 
both could be classified as either (333) or (511). On the 
whole, the tie breaking rule did not have much of an impact 
on our results. 

On the positive side, those problems arising in finite 
samples can be resolved not only by letting the number 
of tasks and the number of individuals get large, but also 
by considering optimal experimental design. Our data set 
was not constructed for the purposes of this article (see 
Grether 1980 for discussion). The data-generating mecha- 
nism was chosen to increase the probability of getting out- 
comes (three N's or four N's) that mimic the parent distri- 
butions of cages A and B. That design may be suboptimal 

for our purposes, and we probability would have chosen a 
large number of priors and more draws from the cages to 
reduce the probability of ties between various rules. 

6. COMPARISON WITH THE MIXTURE MODEL 

So far, we have not discussed estimating the proportions 
of the different types (where a type is identified by the rule 
they use) in the population. Let wFj > 0, j = 1, ... k be the 
probability that each subject would be of type j, then we 
might want to estimate those probabilities from the esti- 
mated classifications (e.g., b Z> &= /n)r Because the 
estimates of the 8, 's are consistent, so will the estimates 
of the wFj's. 

In the mixture of types model, however, one can follow 
the literature (Little and Rubin 1987; Redner and Walker 
1984) by treating the &ij's as missing data and using the 
EM algorithm to estimate the expected values of the 81 's 
as well as the -w.'s and the rest of the parameters of the 
model. This procedure has some advantages over our esti- 
mation/classification procedure. First, because we classify 
each subject to the rule that maximizes their contribution 
to the likelihood function, we are in essence minimizing 
the number of errors attributed to each person. This re- 
sults in a downward bias in our estimates of e. Moreover, 
the small-sample misclassification errors are not taken into 
consideration when we estimate the rest of the parameters 
of the model. 

The application of the EM algorithm to the mixture of 
types model would replace maximizing the likelihood func- 
tion (1) with a maximization of expected log-likelihood. 
For the ith iteration, given our current guesses pi for the 
expectations of the {6ij}'s, the M step produces the esti- 
mates 

I* *, kSt) = argmaxc .ck,g 

n k 

x pt log (f ch 
IE 

(sl Xts) 
s=1 h=1 

then, for the E step, we define 1rL t = (1/n) En> pt and 
calculate Pt+' as the Bayes posterior with prior rj, and with 
the likelihood function calculated at (c&l,. ... ck, t). (See 



1144 Journal of the American Statistical Association, December 1995 

Little and Rubin 1983 and Redner and Walker 1984 for the 
details of applying the EM algorithm in this framework.) 

It is well known (see, for example, Dempster, Laird, and 
Rubin 1977 and Tanner 1993, chap. 4) that the EM algo- 
rithm can be quite slow to converge, and performing the 
global optimization over all k-tuples of rules for each it- 
eration of the algorithm (the M step), the computational 
requirements of this procedure can be extremely high. But 
it has the undeniable advantage of giving us natural esti- 
mates of the pij's and the wFj's, as well as reducing the 
downward bias in our estimates of E. We note that if the 
pij's are very close to zeros and Is, then the results from the 
EM algorithm and from our estimation/classification pro- 
cedures would coincide. Moreover, with probability 1, as 
the number of tasks per individual goes to infinity, the two 
procedures will coincide and share the same consistency 
properties. 

In Table 4 we fixed the estimated ( i1 ,k) of Table 
2 for k = 2 and 3, then ran the EM algorithm discussed 
earlier where at each M step, we maximized only over E. 
The resulting estimates of the pij's were very close to zeros 
and Is, suggesting that our estimates of the rules are quite 
robust to the choice of estimation technique. The measure 
of divergence from zeros and Is that we show in this table 
is what we call average normalized entropy (ANE), which is 

simply -(1/n) Zn = pijlogk(pij), where we use logk 
to make the maximal entropy equal to 1 and then average 
the entropy over all individuals. If the pij's were all zeros 
and Is, then ANE = 0 would be diagnostic of very good 
behavior for the estimation/classification procedure, and a 
maximal ANE = 1 would correspond to all the pij's equal to 
(l/k), with very poor performance of our procedure. The 
ANE's in Table 4 are all quite small; for instance, k = 2 
and wF = (.925,.075) or k = 3 and wF = (.88,.1,.02) would 
produce an entropy of .38, the highest in Table 4. Moreover, 
the 5's estimated from the EM algorithm are quite close to 
the ones that our procedure produced. We thus are quite 
confident that the results provided by our simpler and less 
computationally demanding procedure are reliable for our 
data sets. 

7. CONCLUDING REMARKS 

The response of economists and psychologists to the dis- 
covery of anomalous violations of standard models of statis- 
tical decision theory has mainly been to devise new theories 
that can accommodate those apparent violations of rational- 
ity. The enterprise of finding out what experimental sub- 
jects actually do (instead of focusing on what they do not 
do; i.e., violations of standard theory) has not progressed 
to the point that one would hope. As a first step in that di- 
rection, we propose a general estimation/classification ap- 
proach to studying experimental data. The procedure is 
sufficiently general in that it can be applied to almost any 
problem. The only requirement is that the experimenter or 
scientist studying the experimental data can propose a class 
of decision rules (more generally likelihood functions) that 
the subjects are restricted to use. In many cases, such a 
class of rules may even be dictated by the experimental de- 

sign itself. In earlier work (El-Gamal and Grether 1993), 
we have shown that our proposed procedure has asymptotic 
optimality results that can be approximated in small sam- 
ples by preselecting the experimental design to discriminate 
among the class of likelihood functions under consideration. 
(For further discussions of optimal discrimination between 
a given class of models, see Boylan and El-Gamal 1993, 
El-Gamal, McElvey, and Palfrey 1993, and El-Gamal and 
Palfrey 1995.) 

Our first application of this procedure to experimental 
data dealing with decision making under uncertainty is (ap- 
propriately) targeted at the building block of any model of 
such decision making. Our results seem robust, and the 
most prominent rules that our algorithm selected are rea- 
sonable rules. The most prominent rule in most cases is 
the Bayes updating rule. Hence, even though the answer 
to "are experimental subjects Bayesian?" is "no," the an- 
swer to "what is the most likely rule that people use?" is 
"Bayes's rule." The second most prominent rule that people 
use is "representativeness," which simply means that they 
ignore the prior induced by the experimenter and make a 
decision based solely on the likelihood ratio. The third 
most prominent rule that our algorithm selects on the basis 
of the data is "conservatism," which means that subjects 
give too much weight to the prior induced by the experi- 
menter, needing more evidence to change their priors than 
the Bayes rule would imply. We believe that given the flex- 
ibility of our approach, and given the strong results that it 
generated in our particular application, its positive useful- 
ness for uncovering the rules used by experimental subjects 
can be quite substantial. 

[Received April 1994. Revised February 1995.] 

REFERENCES 

Akaike, H. (1974), "A New Look at the Statistical Identification Model," 
IEEE Transactions on Automatic Control, 19, 716-723. 

Allais, M. (1953), "Le Comportement de l'Homme Rationel Devant le 
Risque, Critique des Postulates et Axiomes de l'Ecole Americaine," 
Econometrica, 21, 503-546. 

Bell, D. (1982), "Regret in Decision Making Under Uncertainty," Opera- 
tions Research, 30, 961-981. 

Birnbaum, M., Coffey, G., Mellers, B., and Weiss, R. (1992), "Utility Mea- 
surement: Configural-Weight Theory and the Judge's Point of View," 
Journal of Experimental Psychology: Human Perception and Perfor- 
mance, 18, 331-346. 

Bostic, R., Herrnstein, R., and Luce, D. (1990), "The Effect on the 
Preference-Reversal Phenomenon of Using Choice Indifference," Jour- 
nal of Economic Behavior and Organization, 13, 193-212. 

Boylan, R., and El-Gamal, M. (1993), "Fictitious Play: A Statistical Study 
of Multiple Economic Experiments," Games and Economic Behavior, 
5, 205-222. 

Cheeseman, P. (1988), "Autoclass II Conceptual Clustering System," in 
Proceedings of Machine Learning Conference, pp. 54-64. 

Chew, S. (1983), "A Generalization of the Quasi-Linear Mean With Appli- 
cations to the Measurement of Income Inequality and Decision Theory 
Resolving the Allais Paradox," Econometrica, 51, 1065-1092. 

Dempster, A., Laird, N., and Rubin, D. (1977), "Maximum Likelihood 
From Incomplete Data via the EM Algorithm," Journal of the Royal 
tatistical Society, Ser. B, 39, 1-38. 

Edwards, W. (1982), "Conservatism in Human Information Processing," 
In Judgment Under Uncertainty: Heuristic and Biases, eds. D. Kahne- 
man, P. Slovic, and A. Tversky, Cambridge, U.K.: Cambridge University 
Press, pp. 359-369. 



El-Gamal and Grether: Are People Bayesian? 1145 

El-Gamal, M., and Grether, D. (1993), "Uncovering Behavioral Strategies: 
Likelihood-Based Experimental Data Mining," Social Science Working 
Paper 850, California Institute of Technology. 

El-Gamal, M., McKelvey, R., and Palfrey, T. (1993), "A Bayesian Sequen- 
tial Experimental Study of Learning in Games," Journal of the American 
Statistical Association, 88, 428-435. 

El-Gamal, M., and Palfrey, T. (1995), "Economical Experiments: Bayesian 
Efficient Experimental Design," International Journal of Game Theory, 
in press. 

Ellsberg, D. (1961), "Risk, Ambiguity, and the Savage Axioms," Quarterly 
Journal of Economics, 75, 643-669. 

Gigerenzer, G., Ulrich, H., and Kleinbolting, H. (1991), "Probabilistic 
Mental Models: A Brunswikian Theory of Confidence," Psychological 
Review, 98, 506-528. 

Goldstein, W., and Einhorn, H. (1987), "Expression Theory and the Pref- 
erence Reversal Phenomena," Psychological Review, 94, 236-254. 

Grether, D. (1980), "Bayes Rule as a Descriptive Model: The Representa- 
tiveness Heuristic," Quarterly Journal of Economics, 95, 537-557. 

Grether, D., and Plott, C. (1979), "Economic Theory of Choice and the 
Preference Reversal Phenomenon," American Economic Review, 69, 
623-638. 

Kahneman, D., and Tversky, A. (1972), "Subjective Probability: A Judg- 
ment of Representativeness," Cognitive Psychology, 3, 430-454. 

(1979), "Prospect Theory: An Analysis of Decision Under Risk," 
Econometrica, 47, 263-292. 

Lichtenstein, S., and Slovic, P. (1971), "Reversals of Preferences Between 
Bids and Choices in Gambling Decisions," Journal of Experimental Psy- 
chology, 89, 46-55. 

Little, R., and Rubin, D. (1983), "On Jointly Estimating Parameters and 
Missing Data," The American Statistician, 37, 218-220. 

Little, R., and Rubin, D. (1987), Statistical Analysis With Missing Data, 
New York: John Wiley. 

Loomes, G., Starmer, C., and Sugden, R. (1989), "Preference Rever- 
sal: Information-Processing Effect or Rational Non-Transitive Choice?," 
Economic Journal, 99, 140-151. 

Loomes, G., and Sugden, R. (1987), "Some Implications of a More General 
Form of Regret Theory," Journal of Economic Theory, 41, 270-287. 

Machina, M. (1982), "Expected Utility Analysis Without the Independence 
Axiom," Econometrica, 50, 277-323. 

Mellers, B., Ordonez, L., and Birnbaum, M. (1992), "A Change-of-Process 
Theory for Contextual Effects and Preference Reversals in Risky Deci- 
sion Making," Organizational Behavior and Human Decision Processes, 
52, 331-369. 

Payne, J. (1982), "Contingent Decision Behavior," Psychological Bulletin, 
92, 382-402. 

Quigen, J. (1982), "A Theory of Anticipated Utility," Journal of Economic 
Behavior and Organization, 3, 323-343. 

Redner, R., and Walker, H. (1984), "Mixture Densities, Maximum Likeli- 
hood and the EM Algorithm," Siam Review, 26, 195-239. 

Rissanen, J. (1978), "Modeling by Shortest Data Description," Automatica, 
14, 465-471. 

(1987), "Stochastic Complexity," Journal of the Royal Statistical 
Society, Ser. B, 49, 223-239, 252-265. 

Schwarz, G. (1978), "Estimating the Dimension of a Model," The Annals 
of Statistics, 6, 461-464. 

Scott, W., Farg, J., and Podsakoff, P. (1988), "The Effect of 'Intrinsic' and 
'Extrinsic' Reinforcement Contingencies on Task Behavior," Organiza- 
tional Behavior and Human Decision Processes, 41, 405-425. 

Tanner, M. (1993), Tools for Statistical Inference, New York: Springer- 
Verlag. 

Tversky, A., and Kahneman, D. (1972), "Availability: A Heuristic for 
Judging Frequency and Probability," Cognitive Psychology, 51, 207- 
232. 

(1974), "Judgment Under Uncertainty: Heuristics and Biases," Sci- 
ence, 185, 1124-1131. 

Tversky, A., Sattath, S., and Slovic, P. (1988), "Contingent Weighting in 
Judgement and Choice," Psychological Review, 95, 371-384. 

Wallace, C., and Boulton, D. (1968), "An Information Measure for Clas- 
sification," Computer Journal, 11, 185-195. 

Wallace, C., and Freeman, P. (1987), "Estimation and Inference by Com- 
pact Coding," Journal of the Royal Statistical Society, Ser. B, 49, 240- 
265. 

Wright, W., and Aboul-Ezz, M. (1988), "Effects of Extrinsic Incentives on 
the Quality of Frequency Assessments," Organizational Behavior and 
Human Decision Processes, 41, 143-152. 

Yaari, M. (1987), "The Dual Theory of Choice Under Risk," Econometrica, 
55, 95-116. 


	Article Contents
	p. 1137
	p. 1138
	p. 1139
	p. 1140
	p. 1141
	p. 1142
	p. 1143
	p. 1144
	p. 1145

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 90, No. 432 (Dec., 1995), pp. 1137-1504
	Volume Information [pp. 1500-1504]
	Front Matter
	Applications and Case Studies
	Are People Bayesian? Uncovering Behavioral Strategies [pp. 1137-1145]
	Stochastic Modeling of Early Hematopoiesis [pp. 1146-1155]
	Bayesian Models for Multiple Local Sequence Alignment and Gibbs Sampling Strategies [pp. 1156-1170]
	A Nonparametric Regression Approach to Syringe Grading for Quality Improvement [pp. 1171-1178]
	Searching for Structure in Curve Sample [pp. 1179-1188]
	Local Prediction of a Spatio-Temporal Process with an Application to Wet Sulfate Deposition [pp. 1189-1199]

	Theory and Methods
	Adapting to Unknown Smoothness via Wavelet Shrinkage [pp. 1200-1224]
	Overdispersion Diagnostics for Generalized Linear Models [pp. 1225-1236]
	Tests of Homogeneity for Generalized Linear Models [pp. 1237-1246]
	Simulation-Extrapolation: The Measurement Error Jackknife [pp. 1247-1256]
	An Effective Bandwidth Selector for Local Least Squares Regression [pp. 1257-1270]
	Transformations for Improving Linearization Confidence Intervals in Nonlinear Regression [pp. 1271-1276]
	Fixed-Domain Asymptotics for Spatial Periodograms [pp. 1277-1288]
	Bootstrap Inference for a First-Order Autoregression with Positive Innovations [pp. 1289-1300]
	Bayesian Inference in Cyclical Component Dynamic Linear Models [pp. 1301-1312]
	Marginal Likelihood from the Gibbs Output [pp. 1313-1321]
	Optimal Design via Curve Fitting of Monte Carlo Experiments [pp. 1322-1330]
	Modeling and Inference with v-Spherical Distributions [pp. 1331-1340]
	Information and Conditional Inference [pp. 1341-1346]
	Conjugate Parameterizations for Natural Exponential Families [pp. 1347-1356]
	Some Remarks on Noninformative Priors [pp. 1357-1363]
	An Empirical Bayes Model for Markov-Dependent Binary Sequences with Randomly Missing Observations [pp. 1364-1372]
	Correlation Analysis of Extreme Observations from a Multivariate Normal Distribution [pp. 1373-1379]
	Control Charts for Multivariate Processes [pp. 1380-1387]
	Rank Tests for Main and Interaction Effects in Analysis of Variance [pp. 1388-1398]
	Likelihood Ratio-Based Confidence Intervals in Survival Analysis [pp. 1399-1405]
	Estimating the Occurrence Rate for Prevalent Survival Data in Competing Risks Models [pp. 1406-1415]
	How Pooling Failure Data May Reverse Increasing Failure Rates [pp. 1416-1423]
	Quantiles in Nonrandom Samples and Observational Studies [pp. 1424-1431]
	Analyzing Bivariate Ordinal Data Using a Global Odds Ratio [pp. 1432-1437]
	Computation of Maximum Likelihood Estimates in Association Models [pp. 1438-1446]
	Dispersion of Categorical Variables and Penalty Functions: Derivation, Estimation, and Comparability [pp. 1447-1452]
	Network Models for Complementary Cell Suppression [pp. 1453-1462]
	A Class of Sequential Conditional Probability Ratio Tests [pp. 1463-1473]
	Simultaneous Detection of Shift in Means and Variances [pp. 1474-1481]

	Book Reviews
	[List of Book Reviews] [p. 1482]
	Review: untitled [pp. 1483-1488]
	Review: untitled [pp. 1488-1489]
	Review: untitled [p. 1489]
	Review: untitled [pp. 1489-1490]
	Review: untitled [p. 1490]
	Review: untitled [pp. 1490-1491]
	Review: untitled [p. 1491]
	Review: untitled [pp. 1491-1492]
	Review: untitled [p. 1492]
	Review: untitled [p. 1492]
	Review: untitled [pp. 1492-1493]
	Review: untitled [p. 1493]
	Review: untitled [p. 1493]
	Review: untitled [p. 1493]
	Review: untitled [p. 1493]
	Review: untitled [p. 1493]
	Review: untitled [p. 1493]
	Review: untitled [pp. 1493-1494]

	Correction: Simultaneous Confidence Intervals and Sample Size Determination for Multinomial Proportions [p. 1494]
	Back Matter [pp. 1495-1499]



