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PANEL DATA MODELS WITH FINITE
NUMBER OF MULTIPLE EQUILIBRIA

JINYONG HAHN
UCLA

HYUNGSIK ROGER MOON
USC

We study a nonlinear panel data model in which the fixed effects are assumed to
have finite support. The fixed effects estimator is known to have the incidental pa-
rameters problem. We contribute to the literature by making a qualitative observation
that the incidental parameters problem in this model may not be not as severe as in
the conventional case. Because fixed effects have finite support, the probability of
correctly identifying the fixed effect converges to one even when the cross sectional
dimension grows as fast as some exponential function of the time dimension. As a
consequence, the finite sample bias of the fixed effects estimator is expected to be
small.

1. INTRODUCTION

The empirical industrial organization literature has now begun to pay attention
to the problem of multiple equilibria. In many interesting game theoretic models,
multiplicity of Nash equilibria is unavoidable.1 The statistical difficulties associ-
ated with such multiplicity of equilibria usually have been dealt with by imposing
some auxiliary assumptions on equilibrium selection. Sometimes, it is assumed
that all markets in the data choose the same equilibrium, as is done in, e.g.,
Aguirregabiria and Mira (2004). Another possibility is to assume that the equi-
libria are selected independent of the observed market characteristics, which is
the approach taken by, e.g., Ackerberg and Gowrisankaran (2006) and Sweeting
(2004). A slightly more general approach is to assume that equilibria are selected
randomly, with probability depending on some observed market characteristics;
see Bajari, Hong, and Ryan (2004). All these approaches rule out the possibility
that the equilibrium selection may depend on some unobserved market character-
istic, which may be correlated with observed characteristics.

In this paper, we propose yet another approach. Our approach is applicable
when the econometrician has access to a panel data set, where each market is ob-
served over several periods of time. We will impose a restriction that each market
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chooses the same equilibrium over the period of observation, yet at the same
time, we allow for the possibility that equilibria are selected depending on unob-
served market characteristics. When each market chooses the same equilibrium
over time, the equilibrium selection plays the same role as the fixed effects in the
standard panel data models. The “fixed effects assumption” is often imposed in
the literature; see Ackerberg and Gowrisankaran (2006) and Pakes, Ostrovsky,
and Berry (2005).

In standard nonlinear panel data analysis, it is well-known that the standard
fixed effects estimator will be subject to the incidental parameters problem; see
Neyman and Scott (1948) or Nickell (1981). The recent panel literature shows
that, for typical panel data models, the bias due to the incidental parameter prob-
lem can be significant even when the cross-sectional dimension (N ) is of the
same order of magnitude as the time series dimension (T ). In order to rule out
the incidental parameters problem in the models considered in this literature, it
is theoretically necessary for N = o(T ); see Hahn and Kuersteiner (2002, 2004),
Woutersen (2002), Carro (2007), Hahn and Newey (2004), Fernandez-Val (2005),
or Arellano and Hahn (2007).

Our contribution is the qualitative prediction that the incidental parameters
problem is not as severe in many game theoretic models. Unlike panel data mod-
els discussed in the recent literature, many interesting game theoretic models pre-
dict that the number of possible equilibria is finite. For these models, estimation
of the fixed effects is equivalent to estimation of selected equilibrium out of the
finite set of equilibria. We show that, under such circumstances, the incidental
parameters problem is negligible even when N grows as some exponential func-
tion of T . Our result is a pointwise result, not a uniform result. It is therefore
unclear if our result would apply when identification of equilibria may be prob-
lematic. For given data and econometric models, it is not clear whether we can ig-
nore the error in estimation of selected equilibrium for the inference of structural
parameters.

Our result is predicated on the assumption that the number of possible equilib-
ria is finite, which is equivalent to the assumption that the support of the “fixed
effects” is a finite set. We establish that the probability of correctly identifying
equilibrium over the entire market in the data converges to one even when N
grows as fast as some exponential function of T.

Although our result is applicable to any nonlinear panel data model where the
support of the fixed effects is known to be finite, game theoretic models are the
only class of models where finiteness can be theoretically proved, at least to our
knowledge. We do understand that the finiteness assumption may not be appli-
cable to all game theoretic models, but our contribution is deemed relevant for
many empirically interesting models, in light of the literature such as Ackerberg
and Gowrisankaran (2006), Sweeting (2004), Bajari et al. (2004).

This paper is organized as follows: In Section 2 we derive our main result un-
der a high-level assumption on the rate at which N and T grow to infinity. In
Section 3 we show that the required rate is such that N grows as fast as some
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exponential function of T . In Section 4 we present Monte Carlo simulations with
an illustrative example of a simple entry-exit game.

2. MAIN RESULT

In this section we derive our main result under some high-level assumptions. We
discuss how the degree of incidental parameters problem may be understood in
terms of the relative magnitude of T and N that ensures bias-free estimation of
common parameters of interest. In the next section, we use the large deviation
principle and show that the relative magnitude requirement is rather mild if the
number of fixed effects is finite.

We first describe our basic model. Suppose that each market i is characterized
by a finite number J of equilibria. We denote the likelihood of equilibrium j by
f( j)(xit; θ0). Here, xit denotes the vector of observed outcomes and character-
istics. Without loss of generality, we write the likelihood as f (xit; θ0,γi0). Our
object of interest is the common parameter θ0. Here, γi0 denotes the equilibrium
selected by market i . Written this way, the equilibrium selection “acts” as a fixed
effect. As discussed in the introductory section, we assume that, once an equilib-
rium is selected, the market continues to choose the same equilibrium over time.

We consider the fixed effects maximum likelihood estimator, which solves

max
θ,γ1,...,γN

N

∑
i=1

T

∑
t=1

ψ (xit; θ,γi ) ,

where ψ(xit; θ,γi ) = log f (xit; θ,γi ). Hahn and Kuersteiner (2002) and Hahn and
Newey (2004), among others, considered such an estimator and showed how the
incidental parameters problem can be understood in the asymptotic framework
where N and T grow to infinity at the same rate. Their results imply that the in-
cidental parameters problem disappears as long as T grows to infinity sufficiently
fast, i.e., N = o(T ).

Our purpose in this paper is to show that in the case where γi has finite sup-
port and satisfies a certain regularity condition discussed below, the incidental
parameters problem disappears even when the time series dimension T grows at a
much slower rate. In particular, we show that the fixed effects estimator does not
suffer from the problem even when the cross-sectional dimension N grows at an
exponential function of T .

We impose the following conditions.

Condition 1.

(i) ε∗ ≡ infi
[
G(i)(θ0,γi0)− sup{γi �=γi0} G(i) (θ0,γi )

]
> 0, where G(i) (θ,γ ) ≡

E(θ0,γi0) [ψ (xt ; θ,γ )];

(ii) for all η > 0, infi
[
G(i) (θ0,γi0)− sup{|θ−θ0|>η,γ } G(i) (θ,γ )

]
> 0;

(iii) the parameter space � is compact; and

(iv) there exists some M(x) such that supθ,γ

∣∣∂ψ (x ; θ,γ )/∂θ k
∣∣ ≤ M(x) for

k = 0,1 and maxi E
[
M (xit)

2]< ∞.
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Remark 1. Condition 1(i) is the crucial condition for our result. It requires
that each equilibrium f( j)(·; ·) is well separated from each other. Our proof is
based on the idea that Ĝ(i) (θ,γ ) ≡ T −1 ∑T

t=1 ψ (xit; θ,γ ) uniformly converges to
G(i) (θ,γ ), and that G(i) (θ,γ ) are well separated from each other.

Condition 2. For each i , {xit, t = 1,2, . . .} is strictly stationary. Furthermore,
we assume that the difference, if any, of the joint distribution of {xi1, xi2, xi3, . . .}
across i is completely characterized by the difference of γi0.

Remark 2. Condition 2 assumes that the joint density of {xit}T
t=1 can be writ-

ten as fT (xi1, . . . , xiT ; θ0,γi0). Equivalently put, it assumes that, for each i , the
distribution of {xi1, xi2, xi3, . . .} is determined as one of the finite number of distri-
butions determined by the value of γ. This condition is typically satisfied when the
time series of the observed data is a time homogeneous Markov process, where
xit = ( yit, yit−1)

′ and p ( yit|yit−1; θ0) denotes the transition density of yit. In this
case, the stationary Markov process {yi1, yi2, yi3, . . .} should allow for a unique
invariant measure. Meyn and Tweedie (1993, Thm. 10.1), for example, provides
a sufficient condition.

Condition 3. Let θ , ε > 0, and η > 0 be given. There is some h(T ) strictly
increasing in T such that, for all

(
γ,γ ′) combinations, we have

Pr (θ0,γ ′)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
ψ (xt ; θ,γ )−E(θ0,γ ′) [ψ (xt ; θ,γ )]

)∣∣∣∣∣> η

3

]
= o

(
1

h(T )

)
, (1)

Pr (θ0,γ ′)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
M (xt )−E(θ0,γ ′) [M (xt )]

)∣∣∣∣∣> η

3ε

]
= o

(
1

h(T )

)
, (2)

where the
(
θ0,γ

′) subscript above denotes the probability, and the expectation of
{xt }T

t=1 is taken with respect to the density fT
(
xi1, . . . , xiT ; θ0,γ

′).
Remark 3. The h(T ) function in Condition 3 determines the required rate of

growth for N and T that guarantees consistent identification of every γi0. We
provide the detail on the h (T ) function in Section 3.

Our main result is the following theorem.

THEOREM 1. Let

γ̂i (θ) ≡ argmax
j=1,...,J

{
T

∑
t=1

log f(1) (xit; θ) , . . . ,
T

∑
t=1

log f(J ) (xit; θ)

}
,

θ̂ ≡ argmax
θ

N

∑
i=1

T

∑
t=1

ψ
(
xit; θ, γ̂i (θ)

)
,

θ̃ ≡ argmax
θ

N

∑
i=1

T

∑
t=1

ψ (xit; θ,γi0) .
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Suppose that
√

N T
(
θ̃ −θ0

)→ N (0,	) for some 	. Under Conditions 1, 2, and 3,

we have
√

N T
(
θ̂ − θ0

)→ N (0,	) if N → ∞ and T → ∞ such that N =
O(h(T )).

Proof. See Appendix, Section A.1. n

Here θ̃ requires that the econometrician can identify the correct equilibrium
for every market in the data set and, therefore, it is an infeasible estimator. Also,
θ̂ is a feasible estimator requiring the econometrician to estimate the selected
equilibrium for each market. Therefore, θ̂ can be understood to be the fixed effects
estimator. In models often encountered in panel data analysis, the fixed effects are
estimated from a continuum, and the incidental parameters problem disappears
only when N = o(T ). Theorem 1 implies that the condition on N can be relaxed
to N = O (h(T )) when the fixed effects are assumed to be in a finite set.

Remark 4. Under the asymptotics where N grows to infinity while T is fixed,
we would have Pr

[
γ̂i �= γi0

]
> 0, even asymptotically, which would create a prob-

lem similar to the one discussed by, e.g., Leeb and Pötscher (2005). It is interesting
to note how Neyman and Scott’s (1948) classical incidental parameters problem
is related to Leeb and Pötscher (2005) in this particular context.

In the next section, we show that h(T ) is typically exponential in T. Our paper
therefore shows that the incidental parameter problem is far less severe if the
support of the fixed effects can be assumed to be finite in models.

3. CONDITION 3 AND THE LARGE DEVIATION PRINCIPLE

In Condition 3 it is assumed that the tail probabilities tend to zero at the speed of
h(T ). We argue in this section that the tail probabilities are typically exponential;
that is, h (T ) is an increasing exponential function of T. By Theorem 1 it implies
that γ̂i = γi0 for all i with probability approaching one if N is some exponential
function of T .

For simplicity of notation, we omit index i in xit. Without loss of generality,
we let ξt denote either ψ

(
xt ; θj ,γ

)− E
[
ψ
(
xt ; θj ,γ

)]
or M (xt ) − E[M (xt )] ,

so that E[ξt ] = 0. We also denote ST = 1
T ∑T

t=1 ξt to be the sample average of
{ξ1,ξ2, . . . , ξT }. Let PT be the probability measure of ST . We show that the h(T )
in Condition 3 is some exponential function by characterizing the bound on the
tail probability of ST .

We consider three cases: (i) when {ξ1,ξ2, . . .} is i.i.d.; (ii) when {ξ1,ξ2, . . .}
may allow some serial correlation but is an α-mixing process; and (iii) when
{ξ1,ξ2, . . .} may allow some serial correlation but is an φ-mixing process.

3.1. I.I.D.

We first consider the case where ξt is i.i.d. In general, we establish the exponential
bound of the tail probability of ST using the large deviation principle (LDP).2
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We denote 
(λ) = logE
[
eλξt
]
, the logarithmic moment generating function of

ξt and 
∗(x) = supλ∈R {λx −
(λ)}, the Fenchel-Legendre transform of 
(λ).
The following is Cramer’s theorem, which provides the LDP of PT .

THEOREM 2 (Cramer’s theorem, Dembo and Zeitouni, 1998, Thm. 2.3.3).
The sequence of measures {PT } satisfies the LDP with the convex rate function

∗(x); that is, for any closed set F ⊂ R,

limsup
T

1

T
log PT (F) ≤ − inf

x∈F

∗(x), (3)

and for any open set G ⊂ R,

liminf
T

1

T
log PT (G) ≥ − inf

x∈G

∗(x).

The 
∗(x) in Theorem 2 is called a rate function.3 A desired exponential bound
can be derived if we assume


∗(x) > 0 if x �= 0. (4)

(In the Appendix, Section A.3, we provide sufficient conditions under which re-
striction (4) is satisfied.) Then, in view of (3) in Theorem 2 together with (4),
for any η > 0, we can choose a small ε > 0 such that − inf|x |≥η 
∗(x) + ε =
− inf(
∗ (−η), 
∗ (η))+ ε < 0. Then, equation (3) implies that if T is large,

P {|ST | ≥ η} < exp
{−T

[
inf
(

∗ (−η) ; 
∗ (η)

)− ε
]}→ 0.

Therefore, if we set

h(T ) = exp
{

T
[

inf
(

∗ (−η), 
∗ (η)

)−2ε
]}

,

then Condition 3 is satisfied.

3.2. ααα-Mixing

Now consider the case when ξt may be serially correlated.4 We first look at the
case when ξt are stationary α-mixing random vectors. Let ‖ξ‖r , 1 ≤ r ≤∞ denote
the Lr -norm of random variable ξ. Assume there exist constants m and M such
that

0 < mk ≤ ‖ξt+1 +·· ·+ ξt+k‖∞ ≤ Mk for any t and k. (5)

Notice that whenever ξt are bounded and there exists an m > 0 such that P{ξt+1 ≥
m, . . . , ξt+k ≥ m} > 0, then condition (5) is satisfied. Define

α(k) = sup
A∈F t−∞, B∈F∞

t+k

|P (A ∩ B)− P (A) P (B)|
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to be α-mixing coefficients of ξt , where F t1
t2 denotes the sigma fields generated by

{ξs : t2 ≤ s ≤ t1}.

THEOREM 3 (Bosq, 1993, Cors. 4.1 and 4.2). Suppose that ξt are stationary
α-mixing random vectors that satisfy the restriction in (5).

(a) If {ξt } is k0-dependent, that is, α(k) = 0 if k > k0, then

P{ST ≥ η} ≤ 8exp

(
− η2

25M

T

k0 +1

)
, where T ≥ 2(k0 +1).

(b) If α(k) = aρk, a > 0, 0 < ρ < 1, k ≥ 1, then

P{ST ≥ η} ≤ c1 exp
(− c2

√
T
)
,

where n ≥ 2, and c1 and c2 are strictly positive constants that depend on
m, M,a,ρ,η.

By Theorem 3, if {ξt } is k0-dependent, then we can take

h(T ) = exp

((
η2

25M

1

k0 +1
− ε

)
T

)
to have Condition 3 satisfied, where ε > 0 is an arbitrarily small number. If α(k) =
aρk , then it suffices to take h(T ) = exp

(
(c2 − ε)

√
T
)
.

3.3. φφφ-Mixing

We now discuss how to use the LDP in deriving an exponential bound for the
tail probabilities when ξt may be serially dependent stationary φ-mixing random
vectors:

φ(k) = sup
A∈F t−∞, B∈F∞

t+k

{P (B|A)− P (A) : P (A) > 0} → 0 as k → ∞.

We impose the following regularity conditions: First, we assume that the mix-
ing coefficients φ(k) tend to zero in a hypergeometric rate, i.e., eckφ(k) → 0 as
k → ∞ for each c ≥ 0. We also assume that ξt are bounded. These two conditions
lead the exponential bound to be qualitatively identical to the i.i.d. case:

THEOREM 4 (Bryc, 1992, Thm. 1). Suppose that ξt are stationary hyperge-
ometric φ-mixing random vectors whose support is bounded. Then STT satisfies
the LDP in R; that is, there exists a convex lower semicontinuous rate function

∗ : Rd → [0,∞] with compact level sets 
∗−1 [0,a] , a ≥ 0, such that

limsup
T

1

T
log PT (F) ≤ − inf

x∈F

∗(x)
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for any closed set F ⊂ R;

liminf
T

1

T
log PT (G) ≥ − inf

x∈G

∗(x)

and for any open set G ⊂ R. Moreover, the limit

lim
T

1

T
logE

[
eT λST

]= 
(λ)

exists for each λ ∈ R, and the rate function is given by


∗(x) = sup
λ

(λx −
(λ)) .

As discussed earlier in the i.i.d. case, if 
∗(x) > 0 for x �= 0, the exponential
bound for the tail probability of ST follows as P {|ST |≥η}< exp

(−T
(
inf|x |≥η


∗(x)− ε
))

for some small 0 < ε < inf|x |≥η 
∗ (x). Therefore, it suffices to take

h(T ) = exp

(
−T

(
inf|x |≥η


∗(x)−2ε

))
to have Condition 3 satisfied.

4. MONTE CARLO: A SIMPLE ENTRY-EXIT GAME

An illustrative example of the model that we discuss here is a simple yet exten-
sively discussed entry-exit game (e.g., Ciliberto and Tamer, 2004) of market i
at time t whose payoff matrix is summarized as follows:

Player b
Exit Enter

Player a Exit (0,0)
(
0,εb

it

)
Enter

(
εa

it,0
) (

θa0 + εa
it,θb0 + εb

it

)
In the game, εit = (εa

it,ε
b
it

)
is observed by players a and b but unobservable to

the econometrician. We assume that εit = (εa
it,ε

b
it

)
are i.i.d. across i over t , with

a known distribution Fε(·, ·). The parameter of interest is θ0 = (θa0,θb0)
′. Denote

by xk
it = 0 if player k in market i at time t chooses “Exit” and otherwise, xk

it = 1,

where k = a,b. Let xit = (xa
it , xb

it

)′
. We make three additional assumptions.

Assumption 1. The parameter set for θ0 = (θa0,θb0) is [−Ml ,−Mu] ×
[−Ml ,−Mu], where 0 < Mu < Ml < ∞, and the true parameter θ0 exists in an
interior of the parameter set [−Ml ,−Mu]× [−Ml ,−Mu].

Assumption 2. εit is a continuous random vector whose support is R2 and the
cdf function of εit is Fε(·, ·) and is continuously differentiable.
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Assumption 3. The observed outcome xit is a Nash equilibrium.

An economic justification of Assumption (i) is that a firm’s profit as a monop-
olist is greater than as a duopolist. Examination of f(1) (xit; θ) and f(2) (xit; θ)
derived below reveals that they are different from each other only when θ0 �= 0.
With θ0 �= 0, the two equilibria are distinct from each other and can be correctly
identified with a large enough T. On the other hand, if θ0 = 0, then there exists
a unique equilibrium since the two equilibria are identical. This suggests that,
when θ0 is close to zero, the two equilibria are very similar to each other. Con-
sequently, identification of equilibria would be very difficult. Although identifi-
cation of equilibria may be difficult, it may not lead to a disastrously incorrect
identification of parameter θ0. Suppose that the econometrician incorrectly iden-
tifies the equilibrium to be 1, even though the true equilibrium is 2. When the
two likelihoods are very similar, the pseudo-parameter maximizing the incorrect
likelihood would tend to be very close to the true parameter. As a consequence,
the difficulties of identification of equilibria and parameter seem to be inversely
related when θ0 is close to 0. We are yet to articulate and generalize this intuition
in a rigorous manner.

Under these assumptions, we have

xit = (0,0) ⇔ εa
it ≤ 0, εb

it ≤ 0,

xit = (1,1) ⇔ εa
it ≥ −θa0, εb

it ≥ −θb0,

while

xit = (0,1) ⇒ εa
it ≤ −θa0, εb

it ≥ 0,

xit = (1,0) ⇒ εa
it ≥ 0, εb

it ≤ −θb0.

The reason is that when 0 ≤ εa
it ≤ −θa0, 0 ≤ εb

it ≤ −θb0, the game has two pure
strategy equilibria, xit = (0,1) and (1,0). (That is, the equilibrium identifies the
number of firms in the market, in this case, only one firm, but not which firm
enters.)

We denote

G00 (θ) = Pr
{

εa
it ≤ 0, εb

it ≤ 0
}

,

G11 (θ) = Pr
{

εa
it ≥ −θa0, εb

it ≥ −θb0

}
,

G01 (θ) = Pr
{

εa
it ≤ −θa0, εb

it ≥ 0
}

,

G10 (θ) = Pr
{

εa
it ≥ 0, εb

it ≤ −θb0

}
,

G10,01 (θ) = Pr
{

0 ≤ εa
it ≤ −θa0,0 ≤ εb

it ≤ −θb0

}
.
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Then,

Pr{xit = (0,0)} = G00 (θ0) ,

Pr{xit = (1,1)} = G11 (θ0) ,

G01 (θ0)− G10,01 (θ0) ≤ Pr{xit = (0,1)} ≤ G01 (θ0) ,

G10 (θ0)− G10,01 (θ0) ≤ Pr{xit = (1,0)} ≤ G10 (θ0) .

When the game has multiple equilibria, in the case of 0 ≤ εa
it ≤ −θa0, 0 ≤ εb

it ≤
−θb0, we assume players in each market select one of the pure strategy equilibria
{(0,1) , (1,0)} and maintain the same selection over time. Write γi = 1 if market
i selects (1,0) and γi = 2 otherwise. The log likelihood is then

log f(1) (xit; θ)

= 1{xit = (0,0)} log G00 (θ)+1{xit = (1,1)} log G11 (θ)

+1{xit =(0,1)} log
{

G01 (θ)−G10,01 (θ)
}+1{xit =(1,0)} log{G10 (θ)} ,

and

log f(2) (xit; θ)

= 1{xit = (0,0)} log G00 (θ)+1{xit = (1,1)} log G11 (θ)

+1{xit = (0,1)} log G01 (θ)+1{xit = (1,0)} log
{

G10 (θ)− G10,01 (θ)
}

.

This game satisfies conditions in our paper; see the Appendix, Section A.4.
Using the illustrative game model above, we investigated finite sample prop-

erties of the estimators θ̂ and θ̃ in Theorem 1 with small-scale Monte Carlo
simulations. For computational simplicity, we assume that θa0 = θb0 = θ0 and
θa = θb = θ. The data generating process of the Monte Carlo simulations is

εit = (εa
it,ε

b
it

) iid∼ N (0, I2), and the ratio of the type 1 equilibrium and the type 2
equilibrium is 0.5. The sample sizes we consider are N = {100, 250} and T =
{5, 10, 20} . The true parameters we consider are θ0 ∈ {0.01, 0.05, 0.1, 0.5, 1}.5

The results of our Monte Carlo simulations are summarized in Table 1. Even
with T = 5, the bias of θ̂ due to the incidental parameters is quite small over the
whole parameter set that we consider, {0.01, 0.05, 0.1, 0.5, 1}. When T = 20, it
is almost negligible.

Although the bias is small in absolute terms, it can be large in relative terms,
especially when T = 5. The RMSE of θ̂ is about five times as large as that of θ̃
when θ0 = −0.01 and T = 5, although they become almost equal when T = 20, as
is predicted by our theory. The large relative RMSE does indicate that our result
should be taken with a grain of salt when it comes to parameter inference in a
given finite sample.

In the beginning of this section, we mentioned that if the two equilibria are
difficult to decipher, it may actually help identification of the parameter of inter-
est θ0. This intuition is confirmed in the Monte Carlo simulation. The absolute
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TABLE 1. Monte Carlo results

θ0 N T E
[
θ̃ − θ0

] √
E

[(
θ̃ − θ0

)2
]

E
[
θ̂ − θ0

] √
E

[(
θ̂ − θ0

)2
]

E
[∣∣∣θ̃ − θ̂

∣∣∣] √
E

[(
θ̃ − θ̂

)2
]

–0.01 100 5 –0.00042 0.04685 0.01659 0.20226 0.01701 0.18459
–0.01 100 10 –0.00293 0.03350 –0.00464 0.03808 0.00171 0.00522
–0.01 100 20 0.00102 0.02292 0.00025 0.02493 0.00077 0.00299
–0.01 250 5 0.00078 0.02896 0.00069 0.06698 0.00009 0.05458
–0.01 250 10 –0.00086 0.02076 –0.00219 0.02361 0.00133 0.00366
–0.01 250 20 –0.00018 0.01472 –0.00107 0.01598 0.00089 0.00250

–0.05 100 5 –0.00121 0.04805 –0.01124 0.05862 0.01004 0.01409
–0.05 100 10 –0.00321 0.03342 –0.01029 0.03890 0.00709 0.00860
–0.05 100 20 0.00056 0.02316 –0.00393 0.02562 0.00448 0.00541
–0.05 250 5 0.00031 0.02923 –0.00941 0.03615 0.00972 0.01147
–0.05 250 10 –0.00086 0.02116 –0.00743 0.02508 0.00657 0.00745
–0.05 250 20 –0.00066 0.01509 –0.00534 0.01716 0.00469 0.00521

–0.1 100 5 –0.00109 0.04916 –0.02067 0.06224 0.01959 0.02211
–0.1 100 10 –0.00418 0.03428 –0.01770 0.04214 0.01352 0.01448
–0.1 100 20 –0.00016 0.02367 –0.00896 0.02715 0.00880 0.00935
–0.1 250 5 –0.00058 0.02992 –0.01995 0.04083 0.01937 0.02038
–0.1 250 10 –0.00155 0.02158 –0.01475 0.02837 0.01320 0.01369
–0.1 250 20 –0.00085 0.01542 –0.01002 0.01944 0.00918 0.00952

(continued)
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TABLE 1. continued.

θ0 N T E
[
θ̃ − θ0

] √
E

[(
θ̃ − θ0

)2
]

E
[
θ̂ − θ0

] √
E

[(
θ̂ − θ0

)2
]

E
[∣∣∣θ̃ − θ̂

∣∣∣] √
E

[(
θ̃ − θ̂

)2
]

–0.5 100 5 0.00329 0.06109 –0.08655 0.11323 0.08984 0.09182
–0.5 100 10 –0.00184 0.04030 –0.05958 0.07452 0.05775 0.05870
–0.5 100 20 0.00140 0.02904 –0.03493 0.04671 0.03633 0.03699
–0.5 250 5 –0.00157 0.03735 –0.09125 0.10156 0.08968 0.09044
–0.5 250 10 –0.00123 0.02691 –0.05915 0.06644 0.05792 0.05835
–0.5 250 20 –0.00043 0.01877 –0.03738 0.04255 0.03695 0.03725

–1 100 5 –0.00043 0.08738 –0.17162 0.20503 0.17120 0.17632
–1 100 10 –0.00224 0.05929 –0.09812 0.11857 0.09588 0.09832
–1 100 20 –0.00342 0.04212 –0.05294 0.06884 0.04953 0.05085
–1 250 5 –0.00385 0.05588 –0.17250 0.18628 0.16865 0.17057
–1 250 10 –0.00164 0.03948 –0.09776 0.10755 0.09612 0.09707
–1 250 20 –0.00111 0.02775 –0.05144 0.05921 0.05033 0.05096

Note: All results are based on 1,000 Monte Carlo runs. The θ̃ denotes the infeasible MLE that maximizes the likelihood with correct equilibria. The θ̂
denotes our estimator that maximizes the likelihood with estimated equilibria.
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bias of θ̂ is, in fact, larger with θ0 = −1 than with θ0 = −0.01 for most values
of T .

NOTES

1. Most game theoretic econometric models are plagued with computational difficulty in addition
to the problem of multiplicity of equilibria. In order to focus on the latter problem, we assume away
the computational issue in this note.

2. If ξ has a bounded support, then the exponential bound can be proved by using the Hoeffding’s
inequality as well. See Pollard (2002), for example.

3. In the Appendix, we provide examples of 
∗(x) associated with some distribution functions.
4. When ξt is bounded, that is, |ξt | ≤ M < ∞, it is possible to extend the Hoeffding’s inequality

for a mixing process. One can find exponential inequalities for various mixing processes in Doukhan
(1995), for example.

5. To estimate parameter θ0, we employed a grid search with grid size 0.005 over the parameter set
[−2,2]. All the estimates ended up in an interior of the parameter set.
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APPENDIX

A.1. Proofs.

Proof of Theorem 1. In what follows (see Lemma 3) we show Pr[∃i, such that
γ̂i �= γi0] = o(1).

Then, since

θ̂ ≡ argmax
θ

N

∑
i=1

T

∑
t=1

ψ
(
xit; θ, γ̂i

)
and θ̃ ≡ argmax

θ

N

∑
i=1

T

∑
t=1

ψ (xit; θ,γi0) ,

we have

Pr
{
θ̂ �= θ̃

}
≤ Pr

{
N

∑
i=1

T

∑
t=1

(
ψ
(
xit; θ, γ̂i

)−ψ (xit; θ,γi0)
) �= 0

}

≤ Pr
[∃i, such that γ̂i �= γi0

]
= o(1).

The required result follows since∣∣∣Pr
{√

N T
(
θ̂ − θ0

)
≤ c
}

−Pr
{√

N T
(
θ̃ − θ0

)
≤ c
}∣∣∣

≤
∣∣∣Pr
{√

N T
(
θ̂ − θ0

)
≤ c,

√
N T
(
θ̃ − θ0

)
> c
}∣∣∣

+
∣∣∣Pr
{√

N T
(
θ̂ − θ0

)
> c,

√
N T
(
θ̃ − θ0

)
≤ c
}∣∣∣

≤ Pr
{
θ̂ �= θ̃

}
+Pr
{
θ̂ �= θ̃

}
for any c. n

LEMMA 1. Suppose that Conditions 1, 2, and 3 hold. For all η > 0, it follows that

Pr

[
max

1≤i≤N
sup
(θ,γ )

∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣≥ η

]
= o

(
N

h(T )

)

Proof. Let η > 0 be given. By Condition 1 (iv), we can choose ε > 0 such that 2εmaxi
E[M (xit)] < η/3. By Condition 1 (iii), we can divide � into subsets �1,�2, . . . ,�C(ε),
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such that
∣∣θ − θ ′∣∣< ε whenever θ and θ ′ are in the same subset. Let θj denote some point

in �j for each j . Then,

max
1≤i≤N

sup
(θ,γ )

∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣= max

1≤i≤N
max

γ
max

j
sup
�j

∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣ ,

and therefore

Pr

[
max

1≤i≤N
sup
(θ,γ )

∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣> η

]

≤
C(ε)

∑
j=1

Pr

[
max

1≤i≤N
max

γ
sup
�j

∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣> η

]
. (A.1)

For θ ∈ �j , we have∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣≤ ∣∣∣Ĝ(i)

(
θj ,γ
)− G(i)

(
θj ,γ
)∣∣∣

+ ε

T

∣∣∣∣∣ T

∑
t=1

(M (xit)−E[M (xit)])

∣∣∣∣∣+2εE[M (xit)] .

Then,

Pr

[
max

1≤i≤N
max

γ
sup
�j

∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣> η

]

≤ Pr

[
max

1≤i≤N
max

γ

∣∣∣Ĝ(i)
(
θj ,γ
)− G(i)

(
θj ,γ
)∣∣∣> η

3

]

+Pr

[
max

1≤i≤N

1

T

∣∣∣∣∣ T

∑
t=1

(M (xit)−E[M (xit)])

∣∣∣∣∣> η

3ε

]
. (A.2)

We will bound the two terms on the right-hand side of (A.2). For this purpose, we note
that

Pr

[
max

1≤i≤N
max

γ

∣∣∣Ĝ(i)
(
θj ,γ
)− G(i)

(
θj ,γ
)∣∣∣> η

3

]

≤
J

∑
γ=1

N

∑
i=1

Pr (θ0,γi0)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
ψ
(
xit; θj ,γ

)−E(θ0,γi0)
[
ψ
(
xit; θj ,γ

)])∣∣∣∣∣> η

3

]
(A.3)

and

Pr

[
max

1≤i≤N

1

T

∣∣∣∣∣ T

∑
t=1

(M (xit)−E[M (xit)])

∣∣∣∣∣> η

3ε

]

≤
N

∑
i=1

Pr (θ0,γi0)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
M (xit)−E(θ0,γi0) [M (xit)]

)∣∣∣∣∣> η

3ε

]
. (A.4)
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Note that the probabilities and expectations on the right-hand side in (A.3) and (A.4) are
with respect to the true distribution of xit, which explains the subscript (θ0,γi0). Because
there are only J possible values of γi0, we have

Pr (θ0,γi0)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
ψ
(
xit; θj ,γ

)−E(θ0,γi0)
[
ψ
(
xit; θj ,γ

)])∣∣∣∣∣> η

3

]

≤
J

∑
γ ′=1

Pr (θ0,γ ′)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
ψ
(
xt ; θj ,γ

)−E(θ0,γ ′)
[
ψ
(
xt ; θj ,γ

)])∣∣∣∣∣> η

3

]

and

Pr (θ0,γi0)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
M (xit)−E(θ0,γi0) [M (xit)]

)∣∣∣∣∣> η

3ε

]

≤
J

∑
γ ′=1

Pr (θ0,γ ′)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
M (xt )−E(θ0,γ ′) [M (xt )]

)∣∣∣∣∣> η

3ε

]
.

Note that the xt on the right-hand side no longer has the i subscript by Condition 2. That
is because xt there simply denotes a generic random variable following the density char-
acterized by

(
θ0,γ ′). We therefore obtain

Pr

[
max

1≤i≤N
max

γ

∣∣∣Ĝ(i)
(
θj ,γ
)− G(i)

(
θj ,γ
)∣∣∣> η

3

]

≤
N

∑
i=1

J

∑
γ=1

J

∑
γ ′=1

Pr (θ0,γ ′)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
ψ
(
xit; θj ,γ

)−E(θ0,γ ′)
[
ψ
(
xit; θj ,γ

)])∣∣∣∣∣> η

3

]

and

Pr

[
max

1≤i≤N

1

T

∣∣∣∣∣ T

∑
t=1

(M (xit)−E[M (xit)])

∣∣∣∣∣> η

3ε

]

≤
N

∑
i=1

J

∑
γ ′=1

Pr (θ0,γ ′)

[
1

T

∣∣∣∣∣ T

∑
t=1

(
M (xit)−E(θ0,γ ′) [M (xit)]

)∣∣∣∣∣> η

3ε

]
.

By Condition 3, we obtain

Pr

[
max

1≤i≤N
sup
(θ,γ )

∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣> η

]

≤ C (ε) N J 2o

(
1

h(T )

)
+C (ε) N Jo

(
1

h(T )

)

= o

(
N

h(T )

)
. �
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LEMMA 2. Suppose that Conditions 1, 2, and 3 hold. Then, Pr
[∣∣∣θ̂ − θ0

∣∣∣≥ η
]

=
o(N/h(T )) for every η > 0.

Proof. Let η be given, and let ε ≡ infi

[
G(i)(θ0,γi0)− sup{|θ−θ0|>η,γ } G(i) (θ,γ )

]
.

Note that ε > 0 by Condition 1 (ii). With probability equal to 1−o(N/h(T )), we have

max|θ−θ0|>η,γ1,...,γN
N−1

N

∑
i=1

Ĝ(i) (θ,γi ) ≤ max|θ−θ0|>η,γ1,...,γN
N−1

N

∑
i=1

G(i) (θ,γi )+ 1

3
ε

< N−1
N

∑
i=1

G(i) (θ0,γi0)− 2

3
ε

< N−1
N

∑
i=1

Ĝ(i) (θ0,γi0)− 1

3
ε,

where the first and third inequalities are based on Lemma 1, and the second inequality is
based on the definition of ε. Because

max
θ,γ1,...,γN

N−1
N

∑
i=1

Ĝ(i) (θ,γi ) ≥ N−1
N

∑
i=1

Ĝ(i) (θ0,γi0)

by definition, we can conclude that Pr
[∣∣∣θ̂ − θ0

∣∣∣≥ η
]

= o(N/h(T )). n

LEMMA 3. Suppose that Conditions 1, 2, and 3 hold. Then, Pr
[∃i such that γ̂i �= γi0

]=
o(N/h(T ))

Proof. We first prove that

Pr

[
max

1≤i≤N
sup
γ

∣∣∣Ĝ(i)

(
θ̂ ,γ
)

− G(i) (θ0,γ )
∣∣∣≥ η

]
= o

(
N

h(T )

)
, (A.5)

for every η > 0. Note that

max
1≤i≤N

sup
γ

∣∣∣Ĝ(i)

(
θ̂ ,γ
)

− G(i) (θ0,γ )
∣∣∣

≤ max
1≤i≤N

sup
γ

∣∣∣Ĝ(i)

(
θ̂ ,γ
)

− G(i)

(
θ̂ ,γ
)∣∣∣+ max

1≤i≤N
sup
γ

∣∣∣G(i)

(
θ̂ ,γ
)

− G(i) (θ0,γ )
∣∣∣

≤ max
1≤i≤N

sup
(θ,γ )

∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣+ max

1≤i≤N
E[M (xit)] ·

∣∣∣θ̂ − θ0

∣∣∣ ,
where we note that E[M (xit)] < ∞ by Condition 1 (iv). Therefore,

Pr

[
max

1≤i≤N
sup
γ

∣∣∣Ĝ(i)

(
θ̂ ,γ
)

− G(i) (θ0,γ )
∣∣∣≥ η

]

≤ Pr

[
max

1≤i≤N
sup
(θ,γ )

∣∣∣Ĝ(i) (θ,γ )− G(i) (θ,γ )
∣∣∣≥ η

2

]
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+Pr

[∣∣∣θ̂ − θ0

∣∣∣≥ η

2(1+maxi E[M (xit)])

]

= o

(
N

h(T )

)
,

by Lemmas 1 and 2.

Now recall that ε∗ ≡ infi

[
G(i)(θ0,γi0)− sup{γi �=γi0} G(i) (θ0,γi )

]
> 0 by Condition

1(i). Conditional on the event
{

max1≤i≤N supγ

∣∣∣Ĝ(i)

(
θ̂ ,γ
)

− G(i) (θ0,γ )
∣∣∣≤ 1

3ε∗},

which has a probability equal to 1−o(N/h(T )) by (A.5), we then have

max
γi �=γi0

Ĝ(i)
(
θ̂ ,γi
)
< max

γi �=γi0
G(i)(θ0,γi )+ 1

3
ε∗<G(i)(θ0,γi0)− 2

3
ε∗<Ĝ(i)

(
θ̂ ,γi0

)− 1

3
ε∗.

Since Ĝ(i)
(
θ̂ , γ̂i
)≥ Ĝ(i)

(
θ̂ ,γi0

)
, it follows that γ̂i �= γi0 for every i . n

A.2. Examples of the Rate Functions in Theorem 2. In this section we list the Fenchel-
Legendre transform of 
(λ), 
∗(x), of several different underlying distributions. These
examples are found, for example, in Dembo and Zeitouni (1998) and Deuschel and Stroock
(1989).

• For a Poisson distribution with parameter θ,


∗(x) = θ − x + x log
( x

θ

)
for x ≥ 0

= ∞ otherwise.

• For a Bernoulli distribution that takes value a with probability p and b with proba-
bility 1− p, where a < b,


∗(x) = x −a

b −a
log

x −a

(1− p)(b −a)
+ b − x

b −a
log

b − x

p (b −a)
if x ∈ [a,b]

= ∞ otherwise.

• For an exponential distribution of parameter θ,


∗(x) = θx −1− log(θx) for x > 0

= ∞ otherwise.

• For a normal distribution of mean θ1 and variance θ2,


∗(x) = − (x − θ1)2

2θ2
.

• If 
∗
X (x) is the rate function of random variable X , and Y = X −E(X), then the rate

function 
∗
Y (x) of the centered random variable Y is


∗
Y (x) = 
∗

X (x +E(X)) .
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A.3. Sufficient Conditions for (4). A sufficient condition for (4) is that (i) E[|ξ |] < ∞,
and (ii) 
∗ (x) is strictly convex around E[ξ ] that is assumed to be zero in the paper. Then,
at x = E[ξ ] = 0, 
∗(x) = 0 by equation (2.2.8) of Dembo and Zeitouni (1998). Now,
because 
∗(x) is strictly convex around zero and convex overall, 
∗(x) > 0 if x �= 0.

According to Exercise 2.2.24 in Dembo and Zeitouni (1998), 
∗(x) is strictly convex in

the interior of
{

′ (λ) : λ ∈D0




}
, where D0


 is the interior of {λ : 
(λ) < ∞}.
Notice that all the rate functions in the previous example sections satisfy restriction (4).

A.4. Entry-Exit Game and Regularity Conditions. Now we discuss how and why the
game in Section 4 satisfies the conditions in our paper. For Condition 1(i) and (ii), we
assume that f(1) (xit; θ0) is the true model without loss of generality.

1. For Condition 1(i), notice that 0 < G01(θ0)− G10,01(θ0) ≤ Pr{xit = (0,1)} and 0 <
G10 (θ0) − G10,01 (θ0) ≤ Pr{xit = (1,0)} by Assumptions 1 and 2. Also, we have
0 < G01 (θ0) ,G10 (θ0) ,G10,01 (θ0) < 1. Then, log f(1) (xit; θ0) �= log f(2) (xit; θ0) ,
and by the strict version of Jensen’s inequality, it follows that Elog f(1)(xit; θ0) >
Elog f(2) (xit; θ0) , where the expectation is taken by the true distribution function
f(1)(xit; θ0).

2. For Condition 1(ii), it is enough to show that (a) log f(1) (xit; θ0) �= log f(1) (xit; θ)
for any θ �= θ0, (b) log f(1) (xit; θ0) �= log f(2) (xit; θ) for all θ, and (c) E[log f( j)
(xit; θ)] is continuous in θ. Then, by the strict version of the Jensen’s inequality,
(a) and (b) imply that

Elog f(1) (xit; θ0) > Elog f(1) (xit; θ) for any θ �= θ0

> Elog f(2) (xit; θ) for any θ.

Combining this with (c) and the compact parameter set assumption, the required
result follows.

Part (a) follows immediately by Assumptions 1 and 2. Part (b) holds, since Pr{xit =
(1,1)} = G11(θ0) > 0 and by Assumptions 1 and 2. Part (c) follows, since
log f( j)(xit; θ) is continuous in θ and by the dominated convergence theorem with
supk,θ

∣∣log f(k)(xit; θ)
∣∣≤ M.

3. Condition 1(iii) follows by Assumption 1.
4. Notice that the functions G·· (θ) and G01,10 (θ) are continuously differentiable func-

tions over the compact parameter set. Therefore, it is possible to find a constant M
such that

sup
k,θ

∣∣log f(k) (xit; θ)
∣∣≤ M and sup

k,θ

∣∣∣∣∂ log f(k) (xit; θ)

∂θ

∣∣∣∣≤ M,

as required for Condition 1(iv).
5. Conditions 2 and 3 follow because xit are i.i.d. random vectors with a finite number

of states.


