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1 The Problem

You were asked to solve, simulate and estimate the identified parameters of a modified version of the prison-

ers dilemma game. As noted in the problem set let the two players (prisoners) be denoted by a and b. Each

has two possible actions: confess (c) or don’t confess (d). We will also use a numerical coding to indicate

the choice of each prisoner

da =







1 if prisoner a confesses

0 if prisoner a does not confess
(1)

and db, the decision of prisoner b, is defined similarly.

Let ua(da,db,xa,εa) denote the ex post payoff to prisoner a. This payoff (the sentence awarded) is

a function of the joint decisions of the two prisoners, (da,db), a scalar variable xa denoting prisoner a’s

observed type, and a (2× 1) vector εa denoting prisoner b’s unobserved type. Similarly, there is a utility

function for prisoner b given by ub(da,db,xb,εb), which depends on the two prisoners’ decisions, player b’s

observed type xb and player b’s unobserved type εb.

According to the problem set, we specialize the utility functions as follows:

ua(da,db,xa,εa) = θa
da,db

xa +σaεa(da) (2)

ub(da,db,xb,εb) = θb
da,db

xb +σbεb(db) (3)

where (σa,σb) are positive scale parameters. Thus, each prisoner’s utility function is a linear function

of their observed type, xa or xb, with a coefficient that depends on the joint decisions made by the two

prisoners, (θa
da,db

,θb
da,db

), plus an additive term that depends only on the individual decision of each prisoner,

(εa(da),εb(db)). We assume that these latter terms are observed only be each prisoner, but not by their

opponent prisoner of by the econometrician.

Thus, we assume that the observed types of each prisoner, (xa,xb) are common knowledge (i.e. each

knows their type, the other’s type, and each knows that the other prisoner knows these things, etc.) but
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the unobserved types (εa,εb) are private information. That is, prisoner a knows his/her value of εa but

does not know εb, and vice versa for prisoner b. However, we assume that it is common knowledge that

each prisoner believes that the unobserved type of his/her opponent prisoner is distributed according to a

standardized bivariate Type III extreme value distribution, where each component of the (2× 1) vectors

(εa,εb) are distributed independently of each other.

The parameters of this model are the 10 values ({θa
i j},σa,{θb

i j},σb): i.e. there are 4 possible θ coef-

ficients for each prisoner, (θa
11,θa

10,θa
01,θa

00) (and similarly for prisoner b) corresponding to the 4 different

possible combinations for (da,db), plus the two scale parameters (σa,σb). We will let θ denote the overall

10×1 vector of unknown coefficients to be estimated.

We assume that θ is known by both prisoners and that this is common knowledge just as are the values

of the observed types, (xa,xb), however we assume that while the econometrician can observe (da,db) and

(xa,xb), the econometrician observes neither θ nor the values of (εa,εb). The point of this problem set is to

determine what the econometrician can learn about θ if the econometrician is able to observe the outcomes

of N independent prisoners dilemma games, each treated as an IID realization of an equilibrium outcome of

the game. Thus, our data set will consist of {d i
a,d

i
b,x

i
a,x

i
b}

N
i=1 where (d i

a,d
i
b,x

i
a,x

i
b) is the realized outcome

of the ith prisoners dilemma game.

Since it is hard to find real data for such outcomes, you were asked to generate artificial data using

a fixed “true value” for the unknown parameter vector θ∗ and then to see what you could learn about θ∗

using these simulated artificial data. I suggested that you program up the method of maximum likelihood

to estimate θ∗, but a simpler alternative is the semiparametric two step estimator described in the paper by

Bajari, Hong, Krainer and Nekipelov (2005) “Estimating Static Models of Strategic Interactions”.

The true values of the parameters were specified to be

(σa,σb) = (1,1) (4)

(θa
11,θ

b
11) = (−2,−2) (5)

(θa
00,θ

b
00) = (−1,−1) (6)

(θa
10,θ

b
01) = (−1/2,−1/2) (7)

(θa
01,θ

b
10) = (−5,−5) (8)

Thus, I have imposed a symmetry assumption on the true parameter vector, i.e. each prisoner has the same

utility function and faces the same incentives to confess. The problem asks which of the parameters can be
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identified under the symmetry assumption and which parameters can be identified if we relax the symmetry

assumption. Before I answer these questions, I describe software for solving and simulating the game. This

is necessary in order to create the artificial data that we will use to try to estimate θ∗.

2 Solving the Equilibrium

Let pa denote the probability (from prisoner b’s perspective) that prisoner a will confess. Due to the presence

of incomplete information, (i.e. the εa terms in prisoner a’s utility function, when σa > 0), prisoner a’s

decision will be probabilistic from the standpoint of prisoner b. We can view pa as prisoner b’s belief of

the probability that prisoner a will confess. Similarly pb represents prisoner a’s belief that prisoner b will

confess.

Given these beliefs (initially we treat the beliefs as fixed and do not consider whether they are “equilib-

rium beliefs” yet), prisoner b must take a decision, db ∈ {0,1}, to maximize his/her expected utility. The

expected utility associated with the decision db is given by

E{ub(d̃a,db,xb,εb)} = paub(1,db,xb,εb)+(1− pa)ub(0,db,xb,εb)

= paθb
1,db

xb +(1− pa)θb
0,db

xb + εb(db). (9)

The expected utility function for prisoner b is just a weighted average of the utilities associated with the

two possible actions that prisoner a might choose, with the weight equal to prisoner b’s belief about the

probability a will confess, pa. Notice that since the unobserved component of b’s payoff associated with

the decision db does not depend on prisoner a’s decision da, it comes out of the expectation, and remains an

additive “error term”’ just as in a standard single agent discrete choice model.

As we discussed in class, when the error terms have a standardized Type III extreme value distribution,

the probablity (from prisoner a’s perspective) that prisoner b will confess, if prisoner a thinks that prisoner

b thinks that a will confess with probability pa, is given by the standard binomial logit formula

pb = Pr{d̃b = 1}

= Pr{E{ub(1,xb,εb)} ≥ E{ub(0,xb,εb)}}

=
exp{(paθb

1,1xb +(1− pa)θb
1,0xb)/σb}

exp{(paθb
1,1xb +(1− pa)θb

1,0xb)/σb}+ exp{(paθb
0,1xb +(1− pa)θb

0,0xb)/σb}

=
1

1+ exp{xb(θb
0,0 −θb

1,0)/σb + paxb(θb
0,1 −θb

0,0 +θb
1,0 −θb

1,1)/σb}
(10)
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This logit formula can be thought of as a best response function. That is, it is prisoner a’s belief about

the probability prisoner b will confess, if prisoner b believes that a will confess with probability pa.

There is a symmetrical best response function for prisoner b:

pa = Pr{d̃a = 1}

= Pr{E{ua(1,xa,εa)} ≥ E{ua(0,xa,εa)}}

=
exp{(pbθa

1,1xa +(1− pb)θa
1,0xa)/σa}

exp{(pbθa
1,1xa +(1− pb)θa

1,0xa)/σa}+ exp{(pbθa
0,1xa +(1− pb)θa

0,0xa)/σa}

=
1

1+ exp{xa(θa
0,0 −θa

1,0)/σa + pbxa(θa
0,1 −θa

0,0 +θa
1,0 −θa

1,1)/σa}
(11)

As a shorthand, we will define the best response probability functions for prisoners a and b as

pa ≡ λa(pb,xa)

=
1

1+ exp{xa(θa
0,0 −θa

1,0)/σa + pbxa(θa
0,1 −θa

1,1 +θa
1,0 −θa

0,0)/σa}
(12)

and

pb ≡ λb(pa,xb)

=
1

1+ exp{xb(θb
0,0 −θb

0,1)/σb + paxb(θb
1,0 −θb

1,1 +θb
0,1 −θb

0,0)/σb}
(13)

A Bayesian Nash equilibrium is simply a set of mutually confirming beliefs, i.e. a pair of beliefs (p∗
a, p∗b)

which are mutual best responses:

p∗a = λa(p∗b,xa)

p∗b = λb(p∗a,xb) (14)

It is easy to see that in a Bayesian Nash equilibrium, each prisoner is taking a decision that maximizes their

expected utility, with correct (in equilibrium) beliefs about the actions their opponent will take.

One can show, via the Implicit function theorem, that (p∗
a, p∗b) are implicit functions of (xa,xb) as well

as functions of the preference parameters θ∗. We can emphasize this dependence by writing

p∗a = pa(xa,xb,θ∗)

p∗b = pb(xa,xb,θ∗) (15)

where (pa, pb) are now interpreted as equilibrium selection functions, i.e. for any set of observed types,

(xa,xb) and θ∗, these functions select one of the equilibria of the game. Using results from differential
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topology, particularly Index Theorems, one can show that for “almost all” (xa,xb,θ∗), the equilibria to this

game will be regular and isolated and therefore, due to the compactness of the [0,1] interval, there will be

an odd number of equilibria.

A regular equilibrium is a pair (p∗
a, p∗b) for which small perturbations in the types, (xa,xb) and/or θ∗,

results in only a small perturbation in (p∗
a, p∗b). That is, at a regular equilibrium, pa and pb, will be continuous

functions of (xa,xb) and θ∗. From the Implicit Function Theorem we know that a sufficient condition for

this to hold is that a certain Jacobian matrix is non-singular. To see what this Jacobian matrix must be, we

can write the best response mappings as a mapping from the unit square S = {(p,q)|p ∈ [0,1],q ∈ [0,1]}

into itself:

s = Π(s) (16)

where s = (pa, pb) and Π : S → S is defined by

Π(s) =





π1(s1,s2)

π2(s1,s2)
=



 =





λa(pb)

λb(pa)



 . (17)

Since Π is a continuous mapping from S to itself, and S is homoemorphic to the closed unit ball in R2, the

Brouwer Fixed Point Theorem implies that at least one Bayesian Nash equilibrium point always exists. Since

the map Π is continuously differentiable, the Implicit Function Theorem implies that for any equilibrium

(i.e. fixed point of Π) for which the 2×2 matrix [I −∇Π] is non-singular, that any fixed s∗ = (p∗a, p∗b) will

be at least locally a continuously differentiable function of (xa,xb) and θ∗. We can see this by converting the

equilibrium problem to an equivalent problem of finding a zero to the function F : S → R2 given by

F(s|xa,xb,θ∗) = s−Π(s|xa,xb,θ∗). (18)

By the Implicit Function Theorem, any solution s∗ will be a continuously differentiable funtion of (xa,xb)

and θ∗ provided that the Jacobian of F with respect to s is nonsingular at the solution point s∗. Calculating

the Jacobian, we have

∇F(s) = [I −∇Π] , (19)

where

∇Π(s|xa,xb,θ∗) =





∂π1(s1,s2)/∂s1 ∂π1(s1,s2)/∂s2

∂π2(s1,s2)/∂s1 ∂π2(s1,s2)/∂s2



 =





0 ∂λa(pb,xa)/∂pb

∂λb(pa,xb)/∂pa 0



 (20)
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Recall that a matrix is non-singular if and only if its determinant is non-zero. Thus, a sufficient condition

for the Implicit function theorem to hold is that

det (I −∇Π) = 1− [∂λa(pb,xa)/∂pb] [∂λb(pa,xb)/∂pa] 6= 0. (21)

Thus, a regular equilibrium is one where I −∇Π(s∗) is nonsingular, and for such equilibria, the Implicit

Function Theorem implies that (pa, pb) will be (locally) continuously differentiable functions of (xa,xb) and

θ∗.

Figure 1 illustrates an equilibrium (which happens to be unique in this case) for the observed types

(xa,xb) = (.52, .22). The figure plots the two best response functions: λa as a function of pb and is plotted as

the dashed line (its domain is actually the vertical axis, so the graph of this function has be rotated clockwise

by 90 degrees in figure 1), and λb as a function of pa (the solid line in figure 1). The intersection of the two

functions occurs at (p∗a, p∗b) = (.7456, .6272). We can sense that this is a regular equilibrium, since small

perturbations in xa or xb should result in small perturbations in λa and λb, causing only a small perturbation

in the intersection point, (p∗a, p∗b).

Figure 1: Bayesian Nash Equilibrium in Prisoners Dilemma when (xa,xb) = (.52, .22)
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Figure 2: Computing the BNE via successive approximations, λ2i
a , i = 0,1,2, . . . (xa,xb) = (.52, .22)

Figure 2 describes the equilibrium in terms of the second order best response function λ2
a(pa,xa,xb).

This function allows makes it easy to verify that the non-zero determinant condition, (21) does in fact hold

in this case. We define the second order best response function λ2
a by substituting λb into λa resulting in a

mapping from pa to pa, (i.e. λ2
a : [0,1] → [0,1]).

λ2
a(pa,xa,xb) = λa(λb(pa,xb),xa). (22)

Similarly, we could define the 4th order best response function λ4
a as

λ4
a(pa,xa,xb) = λ2

a(λ
2
a(pa,xa,xb),xa,xb), (23)

and so forth. All (even) higher order best response functions can be defined similarly, λ2i
a (pa,xa,xb),

i = 0,1,2, . . .. It is easy to see from Figure 2 that all of these higher order best response functions cross

the 45 degree line at the equilibrium value for p∗
a = .7456. Indeed, with a little thought you should be able

to see that the sequence {λ2i
a (pa,xa,xb)} is simply the sequence of successive approximations to the equilib-

rium p∗a starting from the initial point pa. In this case we see that the sequence of successive approximations
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converges rapidly to the (unique) BNE of this game: by the i = 2nd successive approximations iteration, the

iterated value is nearly equal to p∗
a = .7456 for any starting value pa. This is shown in figure 2 by the flat

graph of λ4
a(pa,xa,xb) as a function of xa: this represents the results of doing only 2 successive approxima-

tion steps from any starting point pa. The fact that it is nearly a horizontal line of height p∗
a = .7456 means

that the method of successive approximations converges remarkably quickly in this example. However since

the function λ2
a is not necessarily a contraction mapping, the method of successive approximations need not

always converge, especially in cases where there are multiple equilibria.

Figure 3: Example of Multiple Equilibria in the Prisoners Dilemma Game, (xa,xb) = (.52, .22)

Figure 3 illustrates a case where there are multiple equilibria to the Prisoners dilemma game, and in

this case, we can verify that there are an odd number (3) of isolated equilibrium points. This equilibrium

was calculated for a different value of the θ∗ parameters, where the penalty to the prisoner who does not

confess when the other does is not as severe as it is in the problem we were to solve for this problem set. In

fact, for the equilibrium in figure 3, I set penalties for the prisoner who did not confess when the other did

to be only .9 years in jail compared to the original value of 5 years in jail. With this lower “threat” to not

confessing, we now see 3 equilibria in figure 3: a “good” equilibrium where both prisoner’s don’t confess
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with about 98% probability, and two “bad” equilibria where both confess with very high probabilities.

Parameters used to compute equilibria displayed in Figure 3

(σa,σb) = (.1, .1) (24)

(θa
11,θ

b
11) = (−2,−2) (25)

(θa
00,θ

b
00) = (−1,−1) (26)

(θa
10,θ

b
01) = (−1/2,−1/2) (27)

(θa
01,θ

b
10) = (−.9,−.9) (28)

It is easy to see that the “middle” equilibrium in Figure 3 is not stable under successive approximations: the

iterates will tend to go towards either the good “low confession” equilibrium, or the worst “high confession”

equilibrium. If one wanted to compute the middle equilibrium, then some algorithm other than successive

approximations would be required.

Note that all 3 of the equilibria of the problem illustrated in figure 3 are regular, i.e. whenever the 2nd

order best response function crosses the 45 degree line, it does so from either above or below. This ensures

that the slope of the second order best response function is either strictly greater or less than 1, and you

should be able to see that this implies that the regularity condition in equation (21) holds. It follows that

all 3 of these equilibria are “regular” and as a result, small shifts in (xa,xb) will result in small shifts in λ2
a,

and thus, small shifts in any of the equilibrium points p∗
a. In such cases “comparative static” calculations

are possible. We can ask, for example, by how much small changes in (xa,xb) or θ∗ will affect a particular

equilibrium point. Thus, for example, if we wish to compute the derivative of p∗
a with respect to θ∗, we have,

via the Implicit Function Theorem,

∂p∗a/∂θ∗ =
∂λ2

a(p∗a,xa,xb,θ∗)/∂θ∗

1−∂λ2
a(p∗a,xa,xb)/∂pa

. (29)

We can evaluate this expression at any one of the 3 equilibrium points in figure 3 and determine the effect of

changes in the parameters on the equilibrium point. We will see, it is important to have this to help provide

analytical derivatives for the nested fixed point maximum likelihood algorithm we will describe shortly.

Figure 4 presents an example of an “irregular” equilibrium point. This example was produced by in-

creasing slightly the penalty to the prisoner who does not confess when the other does confess. In this case

I have chosen θa
1,0 = θb

0,1 =−.98, keeping all of the other parameters fixed at the values chosen in equations

(24) to (28) above. In this case we see that there only only two equilibria of this game.
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Figure 4: Example of an Irregular Equilibrium in the Prisoners Dilemma Game, (xa,xb) = (.52, .22)

Does this violate the index theorem we discussed above, which states that there should almost always

be an odd number of equilibria? The answer is no, since the 2nd equilibrium, which occurs where λ2
a is

just tangent to the 45 degree line is not a regular equilibrium. In fact, this is an example of an irregular

equilibrium point, where the determinant condition in equation (21) fails to hold. This is a case where the

Jacobian matrix I −∇Π is singular at the second “high confession probability” equilibrium point. This

implies that the sufficient condition for the Implicit Function Theorem will not hold at this second, irregular,

equilibrium point, and so small changes in (xa,xb) or in θ∗ can result in large, discontinuous changes in the

equilibrium.

Figure 5 illustrates the discontinuous impact of a slight change in θ∗ on the set of equilibria to this game.

I decreased θa
1,0 and θb

0,1 from −.98 to −1.1. We see that there is only a single “low confession” equilibrium

now. It is possible to create similar examples where small changes in xa or xb lead to discontinuous changes

in the set of equilibria, in some cases causing one of the equilibria to “disappear”. Intuitively, irregular

equilibria are “rare” in the sense that any small perturbation in the parameters causes the irregular equilibria

to disappear, resulting in a case where there are an odd number of regular equilibria. Thus, the index
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theorem is correct, and it tells us that “‘almost all” equilibria are such that each equilibrium point is a

regular equilibrium. The idea of “almost all” can be be formalized by specifying how the equilibria are

parameterized or shifted by parameters such as θ∗ or variables such as (xa,xb). If there are values of θ∗

or (xa,xb) that happen to result in an irregular equilibrium, then such values have measure zero relative to

Lebesgue measure, which is another way of formalizing the statement that “almost all” equilibria are regular.

Figure 5: Effect of Small Parameter Change on an Irregular Equilibrium, (xa,xb) = (.52, .22)

Does this mean that we need not worry about discontinuities in the equilibrium mappings p∗
a(xa,xb)

and p∗b(xa,xb)? The answer is no: we need to be careful and use a consistent equilibrium selection rule,

since our econometric estimation algorithm will be computing equilibria for many different (xa,xb) and

θ values. Even though the set of parameter values that result in “irregular” equilibria has measure zero,

it is possible that the estmation algorithm, in the course of searching over different θ values, may jump

from one region of the parameter space where there is only 1 equilibrium, to another where there are 3 or

more equilibria. Or alternatively, it might happen that there is a unique equilibrium for certain values of the

“covariates” (xa,xb), but multiple equilibria for other values. In such circumstances it is important to employ

an consistent “equilibrium selection rule” otherwise problems can result from “extraneous” discontinuities
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in the likelihood function due to from arbitrary jumps from one equilibrium to another as the parameter

vector θ, or the covariates (xa,xb) vary in the course of the estimation.

In this example, I have used the following equilibrium selection rule: always choose the equilibrium

that results in the highest probability of confession for prisoner a. This is a well defined equilibrium selec-

tion rule, since the set of equilibria (for p∗
a) can always be ordered from the lowest equilibrium p∗

a to the

highest. If the estimation algorithm happens to move from a part of the parameter space where there are

three equilibria to a parameter where there is only one equilibrium, then this equilibrium selection rule will

always select a consistent equilibrium point (i.e. the one with the highest value of p∗
a) and there will be no

“extraneous” and discontinous jumping from one equilibrium to another. An example of such “extraneous

discontinuities” would be an equilibrium algorithm that might (apparently at random) result in convergence

to the equilibrium with the lowest value of p∗
a for some values of (xa,xb) or θ, and to the equilibrium with

the highest value of p∗a for other values. These discontinuities can result in an “irregular” likelihood func-

tion, and destroy the traditional properties of maximum likelihood estimation (e.g. consistency, asymptotic

normality, asymptotic efficiency), all of which depend on general regularity conditions for the likelihood

function as a function of θ, in particular, a key assumption is that the likelihood function is continuously

differentiable in θ.

I do note that even in cases where there are “non extraneous” discontinuities resulting from values of

the covariates (xa,xb) which result in unique equilibria and other values where there are multiple equilibria,

typically the set of (xa,xb) and θ values where such discontinuities occur can be show to have measure

zero. If this is the case, and if there is sufficient variation in (xa,xb) so that one can show expected likelihood

function E{L(θ)} is continuously differentiable in θ, then the standard properties of the maximum likelihood

estimator can typically be shown to hold, even though in finite samples, the finite sample likelihood function

LN(θ) can be discontinuous in θ. Ideas from the literature on empirical processes and simulation estimation

can be adapted to show that in the limit, the maximum likelihood estimator enjoys desirable properties,

despite the discontinuities in the finite sample likelihood functions, LN(θ). The technical details associated

with establishing the necessary regularity and convergence conditions are beyond the scope of this problem

set, but we will provide evidence shortly, that such regularity conditions are in fact satisfied in this prisoners

dilemma example.
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3 Solution/Simulation Algorithm Details

In the directory containing this answer sheet, I have left a number of Gauss programs that I used to compute

equilibria for this problem. I solved for equilibria by searching for the fixed point of the second order best

response function λ2
a. Recall that my equilibrium selection rule is to use the equilibrium with the highest

value of p∗a. Since it is typically the case that λ2
a(1,xa,xb) < 1 if σa > 0, it is not hard to show that a

sequence of successive approximations starting from pa = 1 will be decreasing and will converge to the

largest equilibrium point p∗a. Of course, successive approximations is given by

pt+1
a = λ2

a(pt
a,xa,xb) = λ2(t+1)

a (1,xa,xb). (30)

However to speed up the solution, and produce formulas for the derivatives of (p∗
a, p∗b) with respect to

θ, after getting sufficiently close to p∗
a using successive approximations, I switch to Newton’s method to

produce a super accurate estimate of the equilibrium point. Newton’s algorithm is given by

pt+1
a = pt

a −
pt

a −λ2
a(pt

a,xa,xb)

1−∂λ2
a(pt

a,xa,xb)/∂pa
, (31)

where, by the chain rule, we have

∂λ2
a(pa,xa,xb) = [∂λa(λb(pa,xb),xa)/∂pb] [∂λb(pa,xb)/∂pa] . (32)

Using (12) and (13), the derivatives are given by

∂λa(pb,xa)/∂pb = −λa(pb,xa)[1−λa(pb,xa)]xaβa (33)

∂λb(pa,xb)/∂pa = −λb(pa,xb)[1−λb(pa,xb)]xbβb, (34)

where

βa = (θa
0,1 −θa

1,1 +θa
1,0 −θa

0,0)/σa (35)

βb = (θb
1,0 −θb

1,1 +θb
0,1 −θb

0,0)/σb. (36)

As a nice by-product of the Newton iterations, we can use the converged probability values to compute

expressions for the partial derivatives ∂p∗
a(xa,xb,θ)/∂θ and ∂p∗b(xa,xb,θ)/∂θ. The formula for the former is

given in equation (29) above, and for the latter, we employ the chain rule:

∂p∗b(xa,xb,θ)/∂θ) = [∂λb(p∗a,xb)/∂pa]∂p∗a(xa,xb,θ)/∂θ. (37)
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The Gauss procedure equil.g computes the equilbrium pair (p∗
a, p∗b) via the combined successive approx-

imations, Newton iteration algorithm outlined above, and the Gauss procedure dequil.g does this plus it

computes the derivatives of (p∗
a, p∗b) with respect to θ using the formulas given above.

Note that both equil.g and dequil.g make repeated calls to the best response functions λa and λb.

These best response functions are coded in the Gauss procedures bra.g and brb.g. Both of these proce-

dures have 2 return values: the best reponse probability, and the derivative of the best reponse probability

with respect to its argument, i.e. bra.g returns λa(pb,xa) and ∂λa(pb,xa)/∂pb. The product of these two

derivatives can then be used to compute the derivative of the second order best response function given in

formula (32) above.

Figure 6 below shows the result of computing the equilibria of the prisoners dilemma game at all pos-

sible (xa,xb) combinations, for the original parameter values for θ∗ given in equation (8). No cases of

multiple equilibria were encountered for any values of (xa,xb), so the need for an equilibrium selection rule

is superfluous — at least for θ∗.

Figure 6: Set of All Equilibria to the Prisoners Dilemma Game

We see that, as we would expect, the equilbrium probability of confessing is monotonically increasing

in xa and xb. These variables govern relative weight of the sentencing parameters, i.e. the θa
i j and θb

i j values,

relative to the “idiosyncratic” random factors affecting whether to confess or not (i.e. the εa and εb vectors).

However note that when xa = 0, then the sentencing parameters receive no weight for prisoner a and his/her
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behavior appears completely random, regardless of the value of xb. Thus, when xa = 0, it follows that

p∗a(0,xb) = .5 for all xb. Symmetrically we have p∗b(xa,0) = .5 for all xa.

When xa > 0 and xb > 0, the equilibrium probability of confessing is increasing in both observed types:

the higher the other prisoner’s type is, the more likely it is that the prisoner will confess. The rationale for

this is straightforward: when xa = xb = 1, it is easy to see that it is a dominant strategy to confess. This is

illustrated by the expected payoff functions (excluding εa and εb which are set to zero) in figure 7 below.

We see that regardless of the probability that the other prisoner will confess, it is always in each prisoner’s

interest to confess. Even when xa < 1 and xb < 1, it is still better to confess when the εa and εb shocks are

zero – except in the case where xa = 0 or xb = 0, in which case both prisoners are indifferent about confessing

or not. Thus, the higher the value of xb, the higher weight prisoner b places on confessing, and as we see

from the figures below, the higher is the relative gain in expected utility for prisoner a to confess rather than

not confess. This leads the equilibrium probabilities p∗
a(xa,xb) and p∗b(xa,xb) to be strictly increasing in both

of their arguments except in the case where xa or xb is zero.

Figure 7: Expected Payoffs to Confessing as a Function of the Probability the Other Prisoner Confesses

The presence of the additive idiosyncratic errors (εa,εb) implies that neither prisoner will always confess

in equilibrium, however the variance of these idiosyncratic shocks when σa = σb = 1 is not so large to

override the incentive to confess, and this is why there is a unique equilibrium for these parameter settings.

In this sense, I chose an “easy” problem in order to avoid complications associated with multiple equilibria.
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4 Identification of the Parameters

As I noted above, there are potentially 10 unknown parameters to be estimated in this problem: the eight

values of {θa
i j,θb

i j} plus the two scale parameters, (σa,σb). However it is clear that not all of these parameters

are identified. In particular, multiplying all of these parameters by a positive scale factor k does not affect

the decisions of either prisoner, and hence the equilibria are invariant to arbitrary scalings. Similarly, adding

a fixed constant to all utility values shifts expected utility by the same amount and thus cannot affect the

decision of either prisoner.

Definition: We say two parameter values θ and θ∗ are observationally equivalent if they both have the same

set of equilibria for all values of (xa,xb).

Theorem: Parameters θ and θ are observationally equivalent if and only if the following conditions hold:

1
σa

[

θa
0,0 −θa

1,0

]

=
1

σa

[

θa
0,0 −θa

1,0

]

1
σa

[

θa
0,1 −θa

1,1

]

=
1

σa

[

θa
0,1 −θa

1,1

]

1
σb

[

θb
0,0 −θb

0,1

]

=
1

σb

[

θb
0,0 −θb

0,1

]

1
σb

[

θb
1,0 −θb

1,1

]

=
1

σb

[

θb
1,0 −θb

1,1

]

. (38)

Proof: Suppose the conditions (38) hold. Then we will show that θ and θ have the same set of equilibria

for all values of (xa,xb). To see this, consider the formula for the best response function, λa(pb,xa) and

λb(pa,xb) in equations (12) and (13). It is easy to see that if (38) holds, then for any (pa, pb) ∈ [0,1]× [0,1]

and any (xa,xb) ∈ [0,1]× [0,1] we have:

λa(pb,xa,θ) = λa(pb,xa,θ)

λb(pa,xb,θ) = λb(pa,xb,θ). (39)

This holds, for example, in the case of λa since it depends on its arguments (pb,xa) via the binomial logit

formula in equation (12). λa depends on xa in two places: 1) by itself, multiplied by a coefficient equal to

the formula in either the right or left hand side of the first equation in (38), and 2) as a product of xa and

pb multiplied by a coefficient equal to the difference in the left (or right) hand sides of the first equation

in (38) less the left (or right) hand side formula in the second equation of (38). These are the only two

ways in which xa and pb enter the best response probability λa, and since the observational equivalence

condition (38) implies the coefficients of xa and xa pb are the same for parameters θ and θ̂, it follows that
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the top equality in equation (39) must hold for all values of (pb,xa). A similar argument establishes that

the second equation in (39) holds for all (pa,xb). Since θ and θ imply identical best response functions, it

follows immediately that the equilibria implied by these two different parameter values must be the same.

Conversely, it is not hard to show, using (12) and (13) that if θ and θ have the same set of equilibria, then

they must have the same best response functions, λa and λb. This holds since

pa(xa,xb,θ) = pa(xa,xb,θ)

pb(xa,xb,θ) = pb(xa,xb,θ) (40)

which implies that

pa(xa,xb,θ) = λa(pb(pa(xa,xb,θ),xa,θ)

= λa(pb(pa(xa,xb,θ),xa,θ). (41)

Using the binomial logit formula for the best response probability in equation (12), it is easy to see that the

equation above will hold only if the coefficients of xa and pbxa are the same. But these coefficients cannot

be the same unless the top two equations in (38) hold. A similar argument establishes that observational

equivalence of θ and θ implies that the bottom two equations in (38) must hold as well.

Comment: From Theorem 1, we see that there are basically only four identified parameters in the prisoners

dilemma model. These are the four “normalized” coefficients defined on the right or left hand sides of

equation 38). We see that these coefficients are the rescaled losses from not confessing relative to confessing

for both prisoners, under two cases: 1) where the other prisoner confesses, and 2) where the other prisoner

does not confess. In particular, we cannot infer the absolute values of θa
0,0 and θa

1,0, but only the rescaled

difference in their values: (θa
0,0 −θa

1,0)/σa. The rescaling is a normalization that is clearly needed, since as

we noted above, if we were to multiply σa and all {θa
i, j} by a positive constant, we would not change prisoner

a’s decision. The fact that we can only indentify the rescaled difference in the coefficients (θa
0,0 −θa

1,0)/σa

is a consequence of Theorem 1. It tells us that it is really only necessary to specify these 4 normalized

coefficients, since any specification for the full set of 10 unknown coefficients that implies the same four

normalized parameter values will result in the same predicted behavior in this game.

Comment: Note that Theorem 1 tells us that it is not necessary to impose symmetry in payoffs in order to

identify all of the behavioral-relevant parameters of this game. In particular, symmetry implies that instead

of four coefficients, it would only be necessary to estimate two coefficients, since symmetry implies that the
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coefficients of variables (xa,xa pb) in λa are the same as the coefficients of the variables (xb, paxb) in λb. As

such, the hypothesis of symmetry is not necessary for identification and is therefore a testable hypothesis:

we can estimate an “unrestricted” specification and then test whether the symmetry conditions hold:

αa = αb

βa = βb, (42)

where βa is the coefficient of xa pb in the formula for λa in (12), and βb is the coefficient of xb pa in the

formula for λb in equation (13), and αa and αb are the coefficients of xa and xb, respectively, in these two

best response formulae, or explicitly,

αa = (θa
0,0 −θa

1,0)/σa

αb = (θb
0,0 −θb

0,1)/σb. (43)

In terms of equations (38) defining the four identified “parameters” of this model, we see that the first

two equations are equal to αa and αb, respectively, and the last two equations equal βa −αa and βb −αb,

respectively.

We will treat the 4×1 identified parameter, i.e. the vector of normalized coefficients (αa,αb,βa,βb) as

the “parameters of interest” of the prisoners dilemma model. We have also imposed the symmetry condition,

so it follows that there are only two parameters to estimate in this case: θ = (α,β) where α is the coefficient

for xa and β is the coefficent of xa pb in λa(pb,xa), and α is also the coefficient of xb and β is the coefficient

of xb pa in λb(pa,xb). Given the true parameter values specified in equation (8), it follows that the true values

of the identified, normalized parameters are

α∗ = −0.5

β∗ = −2.5. (44)

In the next section I will propose and illustrate two estimators for these parameters.

5 Estimation of the Parameters

The most efficient method of estimation is full information maximum likeihood (FIML). However this

method is also the most computationally demanding, since it requires computing the Bayesian Nash equi-

librium for every observation i = 1, . . . ,N in order to take account of the different realized values of (x i
a,x

i
b)
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for each separate observation, which requires N separate solutions for the BNE each time the likelihood is

evaluated at any trial θ value. Thus, computation of the FIML estimates requires a nested fixed point algo-

rithm. That is, nested within each evaluation of the likelihood function is the computation of N fixed point

problems to compute the Bayesian Nash equilibrium for each of the N observations in the data set.

An alternative, less efficient, but consistent and asymptotically normally distributed estimator is a semi-

parametric two step estimator. This estimator is less computationally demanding that the full information

maximum likelihood. However this estimator requires a “first stage” estimate of the equilibrium probability

of confessing pb(xa,xb) for player b. As we will see, if we have such an estimate, we can estimate the un-

known parameters (α,β) of prisoner a’s best response function λa (which by the symmetry assumption are

the same as the coefficients of prisoner b’s best response function λb), by treating prisoner a’s observations

“as if” he/she were playing a single agent decision problem, i.e. a “game against nature” where “nature’s

move” (to confess or not confess) is governed the conditional probability function pb(xa,xb).

Consider the FIML estimator first. The (log) likelihood function is given by

Ln(θ) = 1
N ∑N

i=1 di
a log(pa(x

i
a,x

i
b,θ))+(1−d i

a) log(1− pa(x
i
a,x

i
b,θ))+

di
b log(pb(x

i
a,x

i
b,θ))+(1−d i

b) log(1− pb(x
i
a,x

i
b,θ)), (45)

where (d i
a,d

i
b) are the decisions taken by the two prisoners in observation i, and (xi

a,x
i
b) are their correspond-

ing observed types, and (pa, pb) are the Bayesian Nash equilibrium probabilities (calculated separately for

each of the N observations). Since these latter probabilities are the fixed point to the equilibrium problem,

the FIML estimator requires a nested fixed point algorithm. This is a standard maximization algorithm (to

maximize LN as a function of θ), except that for each observation i, the algorithm must call a nested sub-

routine to compute the fixed point to determine the probabilities (pa(xi
a,x

i
b,θ), pb(xi

a,x
i
b,θ)) necessary to

evaluate the likelihood of the actual observed decisions (d i
a,d

i
b) occurring. Thus, we can summarize the

FIML estimator θ̂FIML based on a nested fixed point maximum likelihood algorithm as

θ̂ = argmax
θ

Ln(θ) =
1
N

N

∑
i=1

di
a log(pa(x

i
a,x

i
b,θ))+(1−d i

a) log(1− pa(x
i
a,x

i
b,θ))+

di
b log(pb(x

i
a,x

i
b,θ))+(1−d i

b) log(1− pb(x
i
a,x

i
b,θ)),

subject to:

pa(x
i
a,x

i
b,θ) = λa(pb(x

i
a,x

i
b,θ),xa,θ)

pb(x
i
a,x

i
b,θ) = λb(pa(x

i
a,x

i
b,θ),xb,θ). (46)
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Computation of the nested fixed point maximum likelihood estimator (or FIML-NFXP, for short) is assisted

by using Newton’s method to compute both the fixed points (pa, pb) and the derivatives of these fixed

points with respect to θ, (∂pa/∂θ,∂pb/∂θ). Otherwise a non-derivative maximization algorithm would

need to be employed, and two extra likelihood function evaluations would need to be performed at each

iteration of the FIML-NFXP algorithm in order to compute numerical derivatives with respect to (α,β).

Although it is possible also to compute second derivatives, in practice I have found that the BHHH algorithm

provides acceptably rapid convergence using only first derivative information. Recall that BHHH uses a

search direction given by

st = [HN(θt)]
−1∂LN(θt)/∂θ (47)

where HN is the average outer product of the gradients of each term of the likelihood function. Thus, if we

have

LN(θ) =
1
N

N

∑
i=1

log( f (xi,θ)) (48)

then

HN(θ) =
1
N

N

∑
i=1

[∂ log( f (xi,θ))/∂θ]
[

∂ log( f (xi,θ))/∂θ′
]

. (49)

The idea behind the semiparametric two step estimator is that if we knew prisoner b’s probability of con-

fessing (i.e. the Bayesian Nash equilibrium probability pb(xa,xb,θ∗)), then we estimate the coefficients

(αa,βa) from prisoner a’s best response probability, the logit formula in equation (12), as a simple binomial

logit estimation by substituting the (known) value of pb = pb(xa,xb,θ∗) into the logit formula, as if it were

“data” similar to (xa,xb). By doing this we would completely bypass the need to solve the game to compute

(pa, pb). However we do not know (pa, pb) because these probabilities depend on the unknown parame-

ter θ∗ that we are trying to estimate. However under the hypothesis that the data {(d i
adi

b),(x
i
a,x

i
b)}

N
i=1 are

generated as realizations of equilibrium decisions by the two prisoners, it is possible to non-parametrically

estimate the equilibrium probability functions (pa, pb). Call these non-parametrically estimated probability

functions ( p̂a, p̂b). As N → ∞, the properties of non-parametric estimators guarantee that with probability 1

we have

lim
N→∞

p̂a(xa,xb) = pa(xa,xb)

lim
N→∞

p̂b(xa,xb) = pb(xa,xb) (50)

for each (xa,xb) ∈ [0,1]× [0,1]. Under appropriate regularity conditions (see Bajari, Hong, Krainer and

Nekipelov (2005) for details), we can obtain consistent estimates of (αa,βa) by maximizing a binomial logit
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likelihood for prisoner a using the estimated equilibrium probability function p̂b(xa,xb) and treating it as if

it were the true equilibrium probability function pb(xa,xb,θ∗).

Thus, the first step in the two step estimator is to estimate pb non-parametrically. The second step is to

compute estimates (α̂a, β̂a) by maximizing the binomial logit likelihood providing prisoner a’s best response

to prisoner b’s behavior, as represented by the estimated equilibrium probability p̂b:

(α̂a, β̂a) = argmax
(α,β)

1
N

N

∑
i=1

di
a log(λa( p̂b(x

i
a,x

i
b),x

i
a,α,β))+

(1−di
a) log(1−λa( p̂b(x

i
a,x

i
b),x

i
a,α,β)), (51)

where λ(pb,xa,α,β) is prisoner a’s best response probability, i.e. the binomial logit formula

λa(pb,xa,α,β) =
1

1+ exp{xaα+ xa pbβ}
. (52)

Under appropriate regularity conditions (again see Bajari, Hong,

Krainer and Nekipelov, 2005 for details), this two step estimator (α̂a, β̂a) will be a consistent and asymp-

totically normal estimator of the true values, (α∗
a,β∗

a), assuming the underlying model is correctly specified.

The beauty of the two step estimator is that it make it unecessary to actually solve for the equilibrium of

the game, and having to worry about the issues of “equilibrium selection” that were an important detail to be

considered when estimating the parameters using the FIML-NFXP algorithm. In effect, if we hypothesize

that the observations are are realizations of some equilibrium of the game, the data already provide us with

the relevant equilibrium selection rule, and by estimating the equilibrium probability functions (pa, pb) we

are able to use the same equilibrium selection that the players of the actual game “used” to determine their

behavior. The drawback of the two-step estimator, however, is that it can be considerably less efficient

than the maximum likelihood estimator. The reason is that there are implicit “cross equation restrictions”

that the FIML-NFXP estimator uses, namely, the fact that θ appears both in the best response functions

(λa,λb) and in the equilibrium probability functions (pa, pb). The two step estimator ignores these cross

equation restrictions. Also, the two step estimator only estimates the parameters for one of the prisoners —

prisoner a in this case — and there is a loss of efficiency in not also using the decisions of prisoner b as

an additional source of information to estimate (αb,βb). Under the symmetry assumption, (al phaa,βa) =

(αb,βb), and more efficient estimates would result from pooling the data on both prisoners and estimating

the joint likelihood function

(α̂, β̂) = argmax
(α,β)

1
N

N

∑
i=1

di
a log(λa( p̂b(x

i
a,x

i
b),x

i
a,α,β))+
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(1−di
a) log(1−λa( p̂b(x

i
a,x

i
b),x

i
a,α,β))

di
b log(λb( p̂a(x

i
a,x

i
b),x

i
b,α,β))+

(1−di
b) log(1−λb( p̂a(x

i
a,x

i
b),x

i
b,α,β)). (53)

It remains to specify how to estimate the equilibrium probability functions ( p̂a, p̂b) nonparametrically. There

are many ways that this can be done, including estimating a “flexible functional form” (binary logit) model

for pb using series expansions of polynomials in the two variables (xa,xb). Another approach is to estimate

a local linear model. Still another approach is to estimate p̂b via non-parametric kernel density estimation.

I will explain the latter method first, and then explain how to estimate p̂b via local linear models. We

can write the true equilibrium function pb(xa,xb,θ∗) as a regression as follows:

db = pb(xa,xb,θ∗)+η (54)

where η is an “error term” which equals 1− pb(xa,xb,θ∗) if db = 1 or −pb(xa,xb,θ∗) if db = 0. The fact that

the error term in this “regression” takes only two possible values for any fixed value of the covariates (xa,xb)

is immaterial: it is still the case that pb(xa,xb,θ∗) is the conditional expectation of the random variable d̃b

given (xa,xb)

pb(xa,xb,θ∗) = E{d̃b|xa,xb}. (55)

Thus, we can use a huge arsenal of methods from the literature on non parametric regression to estimate

pb non-parametrically (i.e. without making any assumptions on its functional form, i.e. how (xa,xb) en-

ter as arguments). Below I summarize some ideas from this literature, but a good introduction to these

methods is Wolfgang Haerdle’s (2004) Applied Nonparametric Regression (available online at the web site

http://www.quantlet.com/mdstat/scripts/anr/html/anrhtml.html).

A classic and commonly used method for non-parametric regression is kernel smoothing. A kernel

smoother is a special case of local averaging where we estimate p̂b(xa,xb) as a simple average of the ob-

servations, but placing greater weight on observations (d i
b,x

i
a,x

i
b) which are “close” to the given point of

interest, (xa,xb) at which we are trying to evaluate p̂b(xa,xb)

p̂b(xa,xb) =
1
N

N

∑
i=1

WN,i(xa,xb)d
i
b (56)

where {WN,i(xa,xb)}
N
i=1 are weights on each observation that specifies how “close” the given point (xa,xb) is

to each observed data point (xi
a,x

i
b). We can view this local average as the result of a weighted least squares
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fitting, where {WN,i(xa,xb)} are weights

p̂b(xa,xb) = argmin
γ

1
N

N

∑
i=1

WN,i(xa,xb)[d
i
a − γ]2. (57)

What weights to use? A common technique is kernel smoothing where the weights are formed from a kernel

function K. In this case, K would be a bivariate probability density function (such as a bivariate normal

density) K(u1,u2) that integrates to 1

1 =
� ∞

−∞

� ∞

−∞
K(u1,u2)du1du2. (58)

We also often require the kernel to have mean zero in each variable (this is certain true it the kernel is the

standardized bivariate normal density)

0 =

� ∞

−∞
u1

� ∞

−∞
K(u1,u2)du1du2

0 =

� ∞

−∞
u2

� ∞

−∞
K(u1,u2)du1du2. (59)

Actually kernels need not be restricted to have mean zero, and they need not always even be probability

density functions (i.e. be non-negative): they can sometimes have negative values, as long as they still

integrate to 1: these negative valued-kernels are know as higher order kernels that are chosen to help reduce

bias that is often present when the kernel is restricted to be nonnegative.

Using the kernel function, let hN be a positive bandwidth or smoothing parameter. It is commonly

required that hN ↓ 0, as N → ∞, but at a sufficiently slow rate. Define

WN,i(xa,xb) =
KhN (xa − xi

a,xb − xi
b)

∑N
j=1 KhN (xa − x j

a,xb − x j
b)

, (60)

where KhN is the scale-transformed kernel given by

KhN (xa,xb) =
1

hN
K(

xa

hN
,

xb

hN
) (61)

Thus, hN should be seen as a variance or scaling factor that tends to zero, so that KhN can be viewed as a

bivariate probability density with a small variance. It follows that the weights WN,i(xa,xb) are simply the

value of a probability density, centered at zero and with small variance, and evaluated at (xa − xi
a,xb − xi

b).

Thus, to the extent that the observation (xi
a,x

i
b) is close to the given point (xa,xb) at which we want to

estimate p̂b(xa,xb) it will receive a high weight, but if it is far from (xa,xb) it will receive a low weight.
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Local linear regression and local linear maximum likelihood are closely related to kernel smoothing

methods. Just as p̂b(xa,xb) could be viewed as the result of a weigthed least squares fit, we can estimate a

“local linear regression model” given by the following 3 coefficients (γ̂0(xa,xb), γ̂1(xa,xb), γ̂2(xa,xb)) as

(γ̂0, γ̂1, γ̂2) = argmin
(γ0,γ1,γ2)

1
N

N

∑
i=1

WN,i(xa,xb)[d
i
b − γ0 − γ1(xa − xi

a)− γ2(xb − xi
b)]

2 (62)

and we can then form an estimate p̂b(xa,xb) as

p̂b(xa,xb) = γ̂0(xa,xb). (63)

Finally, we can also estimate p̂b(xa,xb) via a local likelihood procedure. We estimate a weighted likelihood

function, using a binomial logit model with coefficients (γ0,γ1,γ2)

(γ̂0, γ̂1, γ̂2) = argmin
(γ0,γ1,γ2)

1
N

N

∑
i=1

WN,i(xa,xb) [ di
b log(1/(1+ exp{γ0 + γ1xi

a + γ2xi
b}))+

(1−di
b) log(1−1/(1+ exp{γ0 + γ1xi

a + γ2xi
b}))

]

. (64)

Clearly the values of (γ̂0, γ̂1, γ̂2) depend implicitly on (xa,xb), the point at which the local likelihood function

is being evaluated, since the weights WN,i(xa,xb) depend on (xa,xb). Then, using these estimated coefficients

we have

p̂b(xa,xb) =
1

1+ exp{γ̂0(xa,xb)+ γ̂1(xa,xb)xa + γ̂2(xa,xb)xb}
. (65)

A final non-parametric estimation method we will consider is the so called class of series estimators.

These estimators can be viewed as “quasi maximum likelihood estimators” since they are formed by esti-

mating the coefficients γ in a series approximation to the unknown choice probabilities. That is, consider

approximating the equilibrium choice probability for player B, pb(xa,xb), as

pb(xa,xb) '
1

1+ exp{∑J
j=1 γ jρ j(xa,xb)}

, (66)

where the {ρ j(xa,xb)}, j = 1, . . . ,J are a set of basis functions that are used to approximate the unknown

choice probability. There are many choice for basis functions, but one natural choice is the tensor prod-

uct basis formed as a product of the standard univariate polynomial basis functions {1,xa,x2
a, . . .} and

{1,xb,x2
b, . . .}, for approximating univariate functions of xa and xb, respectively. Other choices could in-

clude tensor products of Chebyshev polynomials and more complicated nonlinear approximators (i.e. choice

probabilities that are not “linear in the parameters” γ such as neural networks and wavelets).
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There are still other types of non-parametric estimators that I have not surveyed here, including vari-

ous types of multivariate spline functions, regression and classification trees (CART) and other methods.

However this little survey should convince you that non-parametric estimation is not hard to do, and there

are many choices available in how to do it. You should realize, however, that the two-step estimator is not

entirely trivial to carry out. In any of the local averaging methods, we need to form an estimate of p̂b(xi
a,x

i
b)

at each data point (xi
a,x

i
b). However this only needs to be done once, at the beginning of the program, and

stored for subsequent use, rather than being recomputed each time (α,β) is updated in the second stage of

the semiparametric two step estimator.

6 Monte Carlo Results

To study the properties of the FIML-NFXP and two step estimators, instead of estimating the model just

once using a single set of simulated data, it is quite useful to conduct a monte carlo study. In this case,

we repeatedly resimulate the data and attempt to estimate the parameters in a do-loop, very many times.

Then using the result set of estimated parameter values (one for each monte carlo “run”) we can tabulate

the empirical or “finite sample” distribution of the various estimators and see how close these distributions

are to the approximate asymptotic normal distribution implied by standard asymptotic theory for maximum

likelihood and semiparametric two step estimators.

To start out, I have attempted to put the semiparametric two step estimator in the best possible light, by

doing a monte carlo study of an “infeasible” version of this estimator, i.e. one where we use the true equilib-

rium probabilities pa(xa,xb,θ∗) and pb(xa,xb,θ∗) in place of non-parametric estimates of these, p̂a(xa,xb)

and p̂b(xa,xb). Clearly, there will be extra “noise” if we use non-parametric estimates of these equilibrium

probabilities, and as a result we would expect that the standard errors of the parameter estimates for the

“feasible” semiparametric two step estimator to be greater than those obtained for the “infeasible” estimator

(which was only possible to do in this case since we have used “artificial data” where we know the true θ∗

and can therefore compute the true pa(xa,xb,θ∗) and pb(xa,xb,θ∗) for any (xa,xb).

As to be expected, the monte carlo study reveals that the FIML-NFXP estimator is substantially more

efficient than the semiparametric two step estimator. Thus, there is a price to be paid for avoiding the

numerical burden of doing FIML-NFXP. However from figure 8 below, we see that the infeasible “full

information” version of the semiparametric two step estimator comes close to FIML in terms of efficiency.
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Figure 8: Monte Carlo Results using the FIML-NFXP estimator, and the Infeasible semi-parametric two step Estimators
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In all cases we see that the finite sample distribution of the estimators (computed using a kernel density

estimator for 500 realized monte carlo values of the parameters) is close to the asymptotic normal approxi-

mation to the sampling distributions of the estimator. Thus, we have verified that both the FIML-NFXP and

semi parametric two step estimators “work” in the sense of yielding parameter estimates that are centered

about the true values. Furthermore we also see that asymptotic theory “works” in the sense that it provides

a relatively good aapproximation to the finite sample distributions of the estimators, estimated using the

results of our monte carlo study with 500 replications.

However now consider what happens when we try use a feasible version of the semiparametric two step

estimator using one of the various non-parametric estimation methods. I ran monte carlo results for three

different classes of nonparametric estimator to estimate the equilibrium probabilities of confessing, pa and

pb, so I could use the more efficient “full information” version of the semiparametric two step estimator.

The three different nonparametric estimators used were 1) kernel estimator, 2) local linear regression, and 3)

series estimator. The latter was implemented by taking a tensor product basis using the first three ordinary

polynomials, resulting in a basis of J = 6 polynomials ρ j(xa,xb) given by {1,xa,xb,xa ∗ xb,x2
a,x

2
b}. For the

local linear regression and kernel methods, I used a Gaussian kernel with “optimal” bandwidths given by

formulas in Silverman (1986). Figure 9 below presents the monte carlo results for each of these three meth-

ods. The top two panels of figure 9 show the distributions of the monte carlo estimates for the parameters

q1 and q2 where the kernel estimator was used to estimate pa and pb. We see that relative to the infeasi-

ble version of the full information semiparametric two step estimator, the estimates of q1 are significantly

downward biased while the estimates of q2 are significantly upward biased.

The two panels in the second row of figure 9 show the monte carlo results for q1 and q2 when local linear

regression is used to estimate pa and pb. A number of recent monographs toute local linear regression as a

superior way to do nonparametric since the addition of slope information (note that a kernel regression is a

special case of local linear regression when the slope coefficients for the xa and xb variables are not included)

is “supposed” to result in better estimation of the level of the unknown regression function. However from

figure 9, we see that if anything, the extent of the bias problem is worse The bottom two panels in figure 9

are for the series estimator. These display the least amount of bias of any of the semiparametric two step

estimators, and the standard deviations of these estimates (around their mean, not the true values of q1 and

q2) are actually slightly lower than the infeasible version of the semi-parametric two step estimator that uses

the true probabilities {pa, pb}.
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Figure 9: Monte Carlo results for the ”Full Information” Semiparametric Two Step Estimators
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The final figure, 10, provides some intuition for why the series estimator does a better job than either

the kernel or the local linear regression. This figure displays the estimated pa and pb functions based

on the 500 observations of (d i
a,d

i
b,x

i
a,x

i
b), i = 1, . . . ,500, estimated at a grid of 2500 uniformly spaced

points on the [0,1]× [0,1] domain of (xa,xb) points where (pa, pb) are defined. Comparing these figures

to the true probabilities of confessing plotted in figure 6, we see that the kernel and local linear regression

estimates are noticeably more “wavy” than the series estimates, which much more closely approximate the

true probabilities.
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Figure 10: Nonparametric estimates of Equilibrium Probabilitiesusing 500 data points
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