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1 Introduction

This note introduces a simple “test problem” for which it isspible to obtain an analytical solution for
the optimal investment and dividend policy of a “public firmvhich invests in a single liquid capital good
k. We use the term “public firm” to distinguish it from a “privafirm” which we also analyze. The key
difference is that a public firm’s objective is to adopt anesiment and borrowing policy to maximize
the discounted stream of dividends, whereas a private fioptadcind investment and borrowing policy to
maximize the discounted streamudlity.

Debt policy is complex so we initially abstract from debt amsume that the firms are “liquidity
constrained” in the sense that any investment they undertalst be financed out of current cash flows.
We consider situations where a firm would consider havingafned earnings” but generally, the firms
we study will not find it optimal to hold cash balances, buheateither invest all cash, or pay it out as
dividends to shareholders. However firms that start witkelinitial capital may want to borrow. We
consider a simplest situation where the firm is allowed tairdebt in the initial period of its existence
and pay off any debt it incurs ascansol— i.e. a perpetual bond. We show that firms with sufficiently
small initial capital stocks (including a new firm with notiai capital stock) will want to borrow as a way
of “jump starting” the firm. This significantly shortens therfd of time it takes for the firm to achieve
“optimal scale” compared to a firm that faces liquidity coastts and is unable to borrow. So the debt
option does significantly enhance the value of sufficientiyls firms, but has no benefit for firms that are
able to enter with a sufficient level of initial capital.

Consider first a firm that has no ability to borrow and which trfirance any new investment out of
current cash flows. We assume a “putty-clay” production ietdgy where the firm can purchase new
capital k using cash flows but once the capital is installed, it caneotliguidated” or partially sold to
obtain more cash. The firm is constrained to invest using thrdynew cash flows produced by this capital
stock f (k).

At the start of period, suppose the firm has a capital stockofIt obtains a deterministic cash flow
(return) of f (k), wheref’(k) > 0, f”(k) < 0 and limo f’(k) = +e. Using this cash flow, the firm can
either pay dividendd) > 0, or invest an amourt> 0, subject to the firm budget constraidit- | < f (k).
The amount investek is subject to a deterministic depreciation rate (0,1) and the investment is long-

term and irreversible, in the sense that the only way to redluis via depreciation. However the amount



invested can be increased by new investmest that the capital stock follows the law of motion
ks = k(1—8) +1. (1)

We initially assume that the firm is liquidity constraineddazannot borrow, so it can only use its current
cash flowf (k) to finance dividend payments and new investment. The firmodigs the future at a
constant raté3 € (0,1) and its objective is to maximize the present discountedevafufuture dividend
payments.

In the next section we describe the analytical solution @ globlem. In section 3 we extend the
solution to the case where the firm can make an initial bomgwdiecision in the first period of its existence,
paying off any debit it incurs using@nsolwhich is a bond that has no maturity date, but rather invalves
infinite stream of interest payments whose discounted \eduls the initial amount borrowed. We show
how the borrowing option increases the value of sufficiesthall firms. Then in section 4 we compare
the analytical solution to the numerical solution produbgdhe the method of “discrete policy iteration”
(DPI) and show it is highly accurate. In DPI the value funatie approximated by a piece-wise linearly
interpolated solution to a linear system of equations ovignite grid of points in the state spade, In
section 4 we introduce the problem of a “private firm” thatidject to borrowing constraints, where an
individual invests his/her private wealth in the firm and @pes the firm not to maximize the discounted
stream of dividends, but rather to maximize the discounteshm of utility from consumption, where
consumption includes payment of profits from the firm. We shiost the investment policy of a private
firm is very different from the investment policy of a publiofi due to the consumption smoothing motive
of the owner of a privately held firm. In section 5 we considérether the owner of a private firm would
wish to “go public” by selling off their ownership interst their firm, converting it from a privately owned
firm to a publicly owned firm whose objective is to maximize ttiscounted value of dividends. This
decision can be viewed as a simplified model of an “initial [ubffering” (IPO). We show that similar to
borrowing, the IPO decision is generally optimal only fonfg that are sufficiently small. When the firm

is sufficiently large, the owner would prefer to remain ptéveather than “take it public.”

2 Publicly held firm: Analytical Solution

Let V (k) denote the value of a publicly held firm when its capital itent isk > 0. Recall the term

“publicly held” signals that the firm’s objective functioa io maximize the discounted value of dividend



payments to shareholds. The Bellman equation for the firrivengoy

V (k) :Oérpgag((k)[f(k)—l+BV(k(1—6)+I)]. (2)
It is clear thatv (0) = 0, since when the firm has no capital investment, it generadesash returns, and
thus cannot invest any more funds, and thus will not receiydature cash flows from which it can pay out
dividends in the future. Since the marginal return to invesit approaches infinity &3, 0, it is reasonable
to conjecture that the firm’s optimal investment policy Hagé different regions: 1) an initial regigd, k)
where the firm pays no dividends and devotes all cash flowssiment, 2) an intermediate regifok]
where the firm invests and pays dividends, and 3) a final re@ion) where the firm has “excess capital”
and so it does not invest and pays out all cash flow in the fordimidends. In the intermediate zone where
the firm invests and pays dividends, we conjecture that theifivests just enough to achieve a target or

“steady state” level of capitd* which is the solution to

. f(k) — ok

k* = ar%rgaﬁi((l)_ B) —k 3
The interpretation is th&t" is the level of capital that can be maintained in steady statiemaximizes the
discounted present value of the firm, net of the cost of th&lnnvestmenk. That is, if an investor were
to takek in cash and invest it in the firm today, and in all future pesidide firm’s investment equals the
replacement investment (i.e. the depreciation of thisstea capitaldk), in order to maintain the capital at
level k, then the optimal initial investment that maximizes thdéedénce between the net present value of
the firm after the investment (a perpetual dividend streari(kf — ok that starts with a one period delay)
and the initial amount of the investmekis the valuek* given in equation (3). It is not hard to see using
calculus thak* is given by

k= f"1(1/B—1+9). (4)

where 't is the inverse of the marginal return functiai(k), which is invertible due to our assumption
that f” (k) < 0.
If we write  =1/(1+r) wherer > 0 is the one period “market interest rate”, then we can revinié

first order condition determining the optimal steady stafjgital stockk* as follows
f'(K)=r+9d (5)

and observe that this is similar to the equation for the “@noldule” steady state capital stock in the Solow

growth model, except that the population growth mate used in place of a “market interest rate"The
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intuition for condition (5): the marginal cash flows proddd®y the optimal stead state capital stock must
be sufficient to cover 1) depreciation of capitd),and 2) the opportunity cost of capital, Thus, the
marginal product of capital equals the sum of these , at the optimal steady state level of the capital
stock.

Given this, we conjecture that the optimal investment rdke (which describes investment when we

are not necessarily at the steady sthtgfakes the following form

f(k) if k € [0,k)
I(k)=¢ k*—(1-38)k if ke [kK (6)
0 if k € (k, ).
It is easy to see thatis given by
_ k*
k= -9 (7)
andk is given by
f(k) =k"—(1-93)k (8)

These values df andk ensure that the optimal investment functigk) is a continuous function &€ The
optimal dividend function is then determined trivially adléws by assuming that the budget contraint is
binding at allk

D(k) = f(k) —I(k). 9)

Using equation (6) we obtain the following equation (k)

0 if k € [0,k)
D(k)=<¢ f(k)+(1-3)k—k" ifke[kK] (10)
f(K) if k € (k,).

Now we verify these conjectures are correct and derive aficéxformula for the value functiorV (k)
by making use of the Bellman equation (2), and showing thedetconjectured optimal investment and
dividend policies do result from the solution to the firm’sllBen equation.

First, for k in the “unconstrained region'k, k] there is an interior solution for the optimal level of
investment (k) implied by the Bellman equation (2). That is, assuming tkij is differentiable in this

region, therl (k) must satisfy the following first order &uler equation

1=pV'(k(1—8) +1(K)). (11)



Substituting the optimal investment rulék) into the right hand side of the Bellman equation (2) and

differentiating with respect t&, making use of thenvelope theoremye have

V(K = f(K)+(1-8)pV (k(1—8)+1(K))
= f(K)+(1-9)

where we used the fact that the Euler equation (11) holdk fojk, k]. The envelope equation implies that
V(K) is given by
V(k) = f(k)+ (1-d)k+C (12)

for some constan€ whenk € [k,k]. Notice that ak = k* the firm generates a perpetual dividend stream

of f(k*) — ok* so this implies that
o f(K*)— 0k
V() = ((l)T (13)

So using the other formula f&f(k) from equation (12), this implies that the unknown cons@ig given

by

BIf (k") + Ok"]
(1-8)

Thus, we can see th& equals the optimized right hand size of the net gain fromainitvestment in

C= —K (14)

equation (3) which determined the optimal steady statealagibck valuek*. Thus, the value of the firm
in the intervallk, K] is this optimized value, plu§(k) + (1— 8)k. The intuition for this formula is that once
the firm is in the intervalk, k], its investment (k) = k* — (1 — )k will enable it to achieve the optimal
steady state capital levkt in the following period. So it follows tha¥ (k) equals the net dividends this
period, D(k) = f(k) — I (k) = f(k) — k* + (1 — d)k plus the present value of all future dividends in all
subsequent period¥ f (k*) — 8k*] /(1 — B) where this period’s investment has enabled the firm to aehiev
the optimal steady state capital stdck

Now we need to verify that the optimal investment ru{k) for k < [k, k] really is the formula we
conjectured) (k) = k* — (1— &)k. To show that this is correct, we need to show that this sasisfie Euler
equation (11). Using the closed form solution Yo(k) in equation (12) we can rewrite the Euler equation
as

1=B[f'(k(1-3)+1(k)+(1-9)] (15)
Solving this equation for(k) we can see that
1) = (1B~ (1-8)~(1-Bk
= k'—(1-9)k
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which does indeed match the formula we conjectured in eoju).

Finally we need to derive formulas f&f (k) in the “constrained no dividend region0,k) where
I (k) = f(k) and show that it is indeed optimal for the firm to invest allillde cash flow and not pay any
dividends in this region, and also for the “excess capitaljnvestment region” we need to derivek)
and show that it is indeed optimal for the firm to invest zerthis region and pay out all cash flows as
dividends,l (k) = 0 andD (k) = f (k).

Consider the latter region first. Consider a valuekof k = k*/(1— &) that is sufficiently close to
k so that after depreciation we hakél — 3) € [k, k]. In particular, we havél — )k > k*, so that after
depreciation (assuming zero investment) the capital electhee optimal steady state capital lekeln the
region where the firm invests and pays dividends.

We claim that for this value df the value of the firm is given by
V(K) = f(K)+B[f((1—8)k) + (1-8)*k+C], (16)

and the optimal investment at this vallés | (k) = 0. To see this, we consider the value of investing a

positive amount > 0
VkI)=f(K)=T+B[f((1-3)k+1)+(1—90)[(1—-0d)k+1]+C] (a7)

Notice that for this fixed value d, the functionV (k, ) is strictly concave i due to our assumption that
f is strictly concave. So it is sufficient to show trﬁt/(k, ) < 0atl =0. The concavity oV (k,l) in |
then implies that this partial derivative is negative fdrradher values of which implies that the optimal
value of investment is zero at this valuelgfl (k) = 0. Evaluating the partial derivative d(k,I) with

respect td atl = 0 we have

%V(k,l):—1+Bf’((1—6)k)+[3(1—6) (18)

However the first order condition for the optimal steadyestatpital stock level can be written as
0=-1+Bf'(k)+B(1-9) (19)

Sincef is strictly concave andl — d)k > k*, equation (18) implies tha%V(k, ) <0atl =0, and so we
can conclude it is optimal for the firm not to investkat

Since we know that no investment is optimal at this point, wectude that
V(K) = f(K)+B[f((1—8)k) + (1—8)*k+C] (20)
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This will hold for any value ok such thak* < (1—98)k < k*/(1—8). Continuing inductively we can so
that if k(1 — &) > k= k*/(1—8) butk < k*/(1—8)3, it will take 2 periods for capital to depreciate to a
value (1—8)%k € (k*,k). We can show that in this interval &fzero investment is optimal as well, using
an argument similar to the one above. In fact by a formal itidongroof, we can show thatk) = O for

all k> k=k*/(1-8) andV (k) is given by

V(k):E:Bif((l—é)ik)+B”[f((1—6)”k)+(1—6)”k—i—C] ke[k*/(l—é)”,k*/(l—é)”*l). (21)

Since the equation above satisfies the Bellman equationy(2phstruction, it follows that(k) = 0 and
D(k) = f(k) is the optimal investment and dividend policy for the firm e tregionk > k* /(1 — 8) and
V (k) is given by the formula in (21) once we determine the smatiastber of periods that are required
for the capital to depreciate down to a leket (k*,k*/(1—d)) where it becomes optimal for the firm to
invest again.

Now consider the final interv&d € [0,K). In this region we claim that it is optimal for the firm to intes
all available cash flow and pay no dividends. Thaigk) = 0 andl (k) = f(k). We now verify that this

conjecture is correct. Recall thatvas defined as the solution to the equation
f(k)+(1— k=K (22)

Consider & < k, but a value not so close to zero so that if the firm investsadhdlow and pays zero

dividends, then its capital stock at the start of next perfqéd) + (1 — d)k, satisfies
f(k)+ (1—0)k > k. (23)

How do we know there is & < k that satisfies inequality (23) above? First notice th@d) + (1 — d)k
is a strictly concave function &€ and notice that ak*, it is easy to manipulate the first order condition

determining the optimal steady state capital stock in egqug8) to show that
f'(K)+(1-3)=1/B > 0. (24)

and hence we conclude thitk) 4+ (1 — )k is strictly increasing irk for k < k*. But since dividends must
be positive ak* we havef (k*) — dk* > 0 which is equivalent td (k*) + (1 — &)k* > k*. Then sincek is
defined as the value &fthat solvesf (k) + (1— 8)k = k*, it follows thatk < k«. If k < k, then the fact that
f(k) 4+ (1 —d)k s strictly increasing irk implies thatf (k) + (1 — )k < f(k) + (1— &)k = k*.



Let k < k be such thatf (k) + (1 —d)k > k. We now want to show that it is optimal for the firm to
invest all cash flowf (k), and pay zero dividends. The investment-specific valuetiomdsV (k, 1) given

in equation (17) above. We want to show tl§pv(k, I)>0foralll € [0, f(k)]. This is given by

%V(k,l):—1+Bf’((l—6)k+l)+[3(l—6). (25)

Noting thatV (k,1) is strictly concave inl it is sufficient to show that(;’—lV(k,I) > 0 whenl takes the

maximum possible valué,= f (k). In this case, the partial derivative in equation (25) resuo

aglV(k,f(k)):—1+Bf’((1—6)k+f(k))+[3(1—6). (26)

But we know that, from the argument above, tl§§\t'(k*, f(k*)) = 0 and thatf (k) + (1 — &)k is strictly
increasing irk for k < k*. So this implies thaﬁV(k, f(k)) > 0 as claimed.

Letk! be given by the solution té(k*) 4 (1 — 8)k! =k, ork* = 0 if no solution exists. Then, it is not
hard to show using the same argument as above thatsif0 we must havé! < k. Then for allk [I_<1,I_<)
we havel (k) = f(k) andD(k) = 0 and

V(k) =B[f(k(1-08)+ f(k))+ (1-9)[(1—-d)K+ f(k)]+C] (27)
If k! > 0 then we can recursively defiké, j = 2,3,... by the formula
f(kI)+ (1- gkl =k (28)
until the first value ofj is reached wherk! = 0. Define the functiofl (k) by
T(k) =k(1—-290)+ f(k) (29)
and define the composite powersTafT2, T3, etc by
T2(k) =T(T (k) =T (k)(1-8) + f(T (k) (30)

and in general
Tk =T"YT(k), j=12... (31)

where we defin@°(k) = k. Then ifk € [k, kI~1) (wherek® = k) we have

V(K) =B [f(TI(Kk)+(1-8TI(k) +C]. (32)



Using an induction argument, we can show ti{#& = f (k) andD(k) = 0 for k in every intervalk!, k! ~1).

By constructiony (k) satisfies the Bellman equation (2). We conclude that we hexieat] a closed form
solution for the optimal investment policy in equation (6gahe optimal dividend policy in equation (10)
and have an analytic (if recursive) expression for the valaetion in equations (12), (21) and (32) where
the constanC is given by equation (14) and the optimal steady state degitek k* is given by equation
(4). Further, we can use induction to prove the followingites

TheoremV (K) is strictly concave.

The proof involves considering over the three different regiorsc [0,k), k € [k, k] andk € (k, ).

In the middle regionV (k) = f(k) + (1— d)k+ C and strict concavity in this region follows from the
assumption thaf (k) is strictly concave. In the upper regighk, «) V is given by formula (21) and it is
straightforward to see th&t is strictly concave in this region as well. Finally in thetiai “no dividend”
region|[0, k), the concavity follows from an induction argument. We fitsbw by induction that for each
j > 1thatT!(k) is concave. Then using the properties of compositions ofaemfunctions, it is easy to
show from equation (32) that is strictly concave of0, k) as well.

Figure 2 plots the optimal investment and dividend ruledliercasef (k) = vk. We see that optimal
investment intersects the black “replacement investmiamd”(i.e. the linedk) exactly atk*, the optimal
steady state capital stock level, which equal&33n this example. The level of optimal investment at the
steady state i8k* = 1.1867, which of course is just enough to offset the corresipgndepreciation in
capital.

Figure 2 plots the value function for this problem. Noticerth are no discontinuities in the value
function at the various break pointg! } and{k*/(1— )/} above and below the cutoffsandk defining
the region where investment and dividends are positive. veihge function is monotonic and strictly
concave irk and satisfie¥ (0) = 0.

The dynamics of the capital stock are clear: starting fromlathe capital stock converges globally
to the unique optimal steady state lekelin a finite number of periods. Fére [k, k| the firm undertakes
investment (k) = k* — (1— d)k enables it to jump to the optimal steady state vdduen a single period.
When initial capital is either below or above this regiore flrm has to wait several periods for capital to

accumulate above the lowkthreshold, or depreciate down below the uplpétreshold.
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Figure 1: Optimal investment and dividend policy and valuection for f (k) = vk

3 Extending the model to allow debt

Note that the solution we provided above has the “boundamgdition” VV (0) = 0, i.e. if a firm has no initial
capital stock, it will not have any cash flows to invest, angsth is never able to “get off the ground” even
though there may be an attractive production technolfigy that the firm “owns”. We might think of

as the “entrepreneurial idea” but that idea cannot be imeidged with an actual cash investment to get
the firm going. As long as the firm has some way of getting thisalnnvestment, it is enough to get it
going and eventually a sequence of investments will leaaliéach the optimal steady state capital stock

k*, which is the same capital stock it would choose if it had sigfit capital to make a large one time

investment at the optimal scale.

We now extend the model to all the firm to makerae timeborrowing decision at period 0. The firm

would borrow enough funds to purchase an initial amount pitahto get the firm going. We assume
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that the capital cannot be installed instantaneously goctigh flows from the capital stock the firm can
achieve with the borrowing are not realized immediately, dtart in period 1. Interest payments on the
debt also start in period 1 and continue indefinitely becéins@nly means of finance is via a consol. We
also assume that there are no “borrowing constraints” ddhledirm can choose to borrow enough capital
to reach the optimal steady state capital stock lkeWill it be optimal for the firm to borrow enough to
install a plant of sizé* in period 0?

We will show that it depends on the amount of capital the fimeady has in place, and the interest rate
at which it can borrow, which we denote by. Recall thar = 1/ — 1 is the “market rate of interest” at
which future dividends payed by the firm at discounted. Wémalv show that ifrp, = r andk < k*, it will
be optimal for the firm to borrow an amoukit— k so that it can attain the optimal steady state capital stock
immediately, without any further delay. Howeverjf> r, then the firm will find it optimal to borrow a
lower amount so that its initial capital stock that it reashéer this borrowingk*(rp), is strictly less than
k*. The firm will then invest from its cash flows and in a finite nwenlof periods after this, its sequence
of investments will lead it to reach the optimal steady stafgital stockk*.

We work with a simplified “one shot” model of debt because ef thmplexities of modeling debt in
a dynamic programming framework. Any debt with a finite miggudate requires more state variables to
describe how many periods are left to pay off the existing,dmbwhat interest rate, and what level of in-
terest plus principal payments are made over time. Furith@e firm periodically issues new multiperiod
debt contracts, we have to keep track separately of all tdditional state variables for each separately. It
is only convenient to deal with two polar extremes: 1) a ometissuance of perpetual debt (e.g. a consol),
or 2) roll-over of single period debt contracts. We will sty discussing the first borrowing option and
then at the end of this section consider the case of finanbaditm’s investments using a sequence of
single period debt contracts.

For the case of perpetual debt, if the firm borrows amdwintperiod O, it will pay that back over an
infinite stream of fixed interest paymerdsn periods 12, 3,.... If the rate of interest isy, in a single
period debt contract the amount due in period 1 would be ry)b. If the borrowed amounb were
financed via a consol, the amount of each paynedmhs to be calculated so that the present value of a

perpetual stream of paymentseper period equalb(1+ry), or

21\ el
(1+rb)b—et;<l+rb>— - (33)

and hences = rpb, which is just the interest on the amount borroviedNow suppose the firm has initial
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capitalk and wishes to borrow amouhin period 0, paying back the amount borrowed in periods3, . ..
using a consol with per period payment rpb as discussed above. How much should the firm borrow if
it faces no borrowing constraints?

The easiest case to consider is whetery, i.e. where the firm can borrow at the same rate of interest
as the market discounts its future dividend payments toeslodders. The value of thequity of the firm
that has borrowed amoubfat time period 1 is just the value of the firm at timé&/{b-+k), less the present

value of the consol paymentd, +r)b, so the optimal borrowing levéd* is the solution to

V(k+b)—b(1+r)
b* = argmax
bo (1+1)

(34)

Note that since cash flows and interest payments from thetiment at time 0 do not commence until
time period 1, we discount the net value of the firm at timé (k+b) —b(1+r), to obtain the net present
value of borrowing an amoutitas of period 0.

Assume thak is not too large that there is an interior solution, and cctojee that the solution occurs
in the regionlk, k] whereV (k) = f (k) + (1— 8)k+C. Then we have that the optimal amount to borrbtv,
satisfies

f'(b*+k)=r+d (35)

but sincef’(k*) =r + & as we have shown above, it follows that
b* =k" —k, (36)

i.e. the firm borrows enough to reach the optimal steady sttéal stockk*. If k > k*, then sinceV is
strictly concave irk, we have/’(k) < r + 8, so we conclude thdt* = 0. Thus, we have derived the optimal

debt policy for the firm in period O:

o [ k=K ifk<kt
b (k)_{ 0 if k > k* (37)

Now consider the case wherg> r. This seems appropriate in many cases where firms can borrow,
but at a higher interest rate than the “market interest ratebugh there is no uncertainty in this model, it
can reflect market imperfections where it is more costly fongito borrow, though we will also consider
the opposite case wherg < r, which can also arise in real world situations with stodicagtturns when
a firm’s dividend stream is considered to be sufficientlyyigiat it is discounted at a higher rate than the

rate the firm can borrow at.
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If the firm has an infinite stream of debt payments equaltayb to pay out due to borrowing amount
b, the present value of this streatiscounted at the market interest rate r back to periad fr, /r. So the
firm’s problem in this case becomes
b* = argmaw/ (k+b)/(1+4r) —bry/r (38)
b>0

The first order condition fob* is given by
V/(k+b") = (1+1)ro/r, (39)

and by the strict concavity &f there is a unique solution to this equation. Defh@p) as the solution to
V/(K*(rp)) = (14r)rp/r, then it is easy to see thbt = k*(rp) — k.
Assume thak*(rp) € [k,K]. In this region we hav¥ (k) = f (k) + (1 — 8)k+C. In this case the optimal
borrowing levelb* satisfies
(b +K) =8+ o+ (2~ 1) > 5 (40)

which implies thab* + k < k*. Thus, it is optimal for the firm to borrows an amount that sufficient to
enable it to reach the optimal steady state capital skéeight away in period 0. Instead this initial loan
helps it to get most of the way there, but it is not optimal torbe the full amounk* — k due to the higher

cost of borrowing in this case. We conclude that the optinoatdwing by the firm whemy, > r is given

by
v [ K(rp)—k ifk<k

The solution in the case wherg < r does make a lot of sense in this example. If there are truly no
borrowing constraints, the firm should want to borrow an itdiramount. The reason is that for each
dollar the firm borrows at period 0, it starts an infinite stneaf consol payments in periods=1,2,3,...
that has present value (evaluated at the market interest)rat (1+r)r,/r in period 1. Discounting this
back to period 0, the effect of borrowing 1 today on the nes@né value of the firm (even if the amount
borrowed is not used to finance investment) is i, /r > 0, so the firm can increase its value without
bound by borrowing an infinite amount if it can. For this reasee do not consider the cagsg< r any
further in this simple example.

When the firm has debt its value beconvd&* (ry)) — (1+rp) (K" (rp) — K) in the regiornk € [0,K*(rp)]
and is equal t&/ (k) for k > k*(rp), whereV is the solution to the Bellman equation (2) in the case of a

firm that does not have a borrowing option. So the borrowintipopgeplaces the strictly convex segment
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Figure 2: The effect of borrowing on firm value

of V (k) over the interval0,k*(rp)] with the linear segment, and in particular, the firm has atjpesvalue
even wherk = 0 when it can borrow, whereas it has no value when it cannabtor

The gains from debt finance are illustrated in figure 2 belowcivehows an example where= 0.05,
rp, = 0.08 andf (k) = vk. The firm chooses to borrow only enough to reach a capitakstb&* (r,) =
14.7929, more than 10 less than the optimal steady state capitEt, k*. The firm uses internal finance
(retained earnings) to readfi, and sincek*(r,) < k = 21446, it forgoes paying dividends for several
period until it can accumulate sufficient capital to entex sonelk,k| where it has enough cash flow to
finally reachk* without forgoing all dividend payments to shareholders.

Now consider a firm that can only borrow via a sequence of oriegheebt contracts. The firm faces
a borrowing constrainB on the total amount that the market will lend it at interesg¢ rg > r each period.
So if the firm borrowsb at period 0, it must pay back principal and interékt-r)b in period 1. It can
borrow some amourif < Bin period 1 and continue on in this way indefinitely, financitsginvestments
as it needs to via a sequence of one period loans. We ndw(keb) denote the present value of a public
firm that has capital stodkand total debt ob. The Bellman equation for this firm is given by

Vikb) = max [f(K)~1+D ~b+BV(k(1-8)+1,(1+1)),0]. (42)

1<f(K)+b'—b

In the Bellman equation (42) we have written the valld, b) as a maximum of O or the value of con-
tinuing to operate as an ongoing concern. This effectivelyes as a “bankruptcy constraint” that the

value of the equity of the firm can never be less than 0 due tidddiability (shareholders cannot be
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paid “negative dividends” to cover interest and principaldebt, if the cash flows of the firm are not large
enough to enable the firm to pay its accumulated debt). Iricpéat, if the debtb is so large that there
is no feasible solution to the first optimization problem be tight hand side of (42), then the value of
the firm would also be zero. This could correspond to a sitnatthere even if the firm invests zero and
pays no dividends, there is not enough cash ffdly to repay the current amount due even if the firm’s
new borrowingd’ equals the maximum amount allowegl, The firm would effectively be bankrupt at that
point, and the bondholders would take control of the firm goekrate it in a way to recover as much of the
outstanding debt as possible.

Note that with one period debt, and when the borrowing linis sufficiently large to enable the firm
to reach the optimal capital sto&k(ry,), the firm can replicate the borrowing it could do with a cortspl
perpetually rolling over one debt. That is, the firm borrdwet period 0 and must pay babkl+r +b) at
t =1. Butit also borrow$ att = 1 so its net cash out flow &t 1 is justb— (1+r,)b = —bry. Continuing
this way, the firm could maintain a debt loadloindefinitely at the cost of a constant stream of interest
payments obr, per period, the same as it would have to pay if it financed thesitment by a consol.
However wherry, > r, the firm can increase its value by paying off its debt as fagiassible rather than
maintaining the debt perpetually as is the case with a cofs$uls, in principle the firm should be able to
increase its value via proper debt management when it camcirigself via a sequence of one period debt
contracts.

Unfortunately a full treatment of this case appears to bg ddficult and is beyond the scope of this
note. We can partially solve the problem in certain “easysad-or example, ik > k, we know from the
optimal solution to the problem without debt that optimaldstment is zero in this region. It is natural to
conjecture that this is also the case when the firm can botHmwever even this case is complicated. If
rp, = r, then the time path over which the firm pays off its debts sthbelirrelevant. It is easy to show that
this is indeed the case whérn> k. Then, we conjecture that(k,b) =V (k) — b whereV is the solution
to the Bellman equation (2) for the firm problem without ddbserting this conjecture into the Bellman

equation (42) we obtain

V(k,b) =V (k) —b= ongixﬁ [f(k)—1+b —b+pBV(k(1-3))—b,0]. (43)
I<f(k)+b'—b
We have already shown thbtk) = 0 whenk > k and this continues to be the case in the case with debt
above. We also see thiatcompletely cancels out of the right hand side of equation $43the value on

the right hand side reduces\dKk) — b, verifying that our conjectured solution is correct.
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However wherry, > r, the debt policy of the firm matters, even wHen k. In this caseé/ (k,b) cannot
be given by the previous conjectured foxhk,b) =V (k) — b. To see why, suppose this conjectured form
did hold, then we would have a modified version of equatior) ¢d&n by

V(k,b) =V(k)—b= Or<nb/a<xE [f(k)—14+b —b+pBV(k(1—3)) — B(1+rp)b',0]. (44)
I<f(k)+b—b
SinceP(1+rp) = (1+rp)/(1+r) > 1, we now see that the right hand side of equation (44) istlstric
decreasing in borrowing’ and so the optimal solution nowligk) = 0 andb’ = maxb— f(k),0], and this
implies that

l—l—l’b
T > £V (K) —b. (45)

In general, debt management becomes a much more compleemrathenr, > r, and it may in fact be

V(k,b) =V (k) + maxb— f(k),0] (1_

optimal for the firm to invest even in the “no investment regik > k because the investment can result in
greater cash flows that can help the firm to retire its debt moiekly.

Due to the complexities identified above, it is not clear hoangnpurely analytical insights we can
obtain for the firm’s problem with single period debt contsadt may be that we need to resort to solving

the problem numerically, a task we defer to a future paper.

4 Optimal investment for a private firm

Consider an individual who owns the production technologgl who has private wealtiv that they can
invest (partially or fully) in their own firm. The individuaias utility functionu(c) satisfyingu’(c) > 0
andu’(c) < 0. The suppose the market interest rate,jsut the individual’s personal interest rate is
rp and thus the individual discounts future utility using disot factorfy = 1/(1+rp). If the person
purchased an annuity with their initial endowment of weaitithey would receive discounted lifetime
utility of u(rw)/(1—B). Now suppose instead the person invests their wealth tohegaivalent amount
of capitalw = k and from each period onward the owner manages the firm taniitadends which he/she
consumes. What is the optimal investment and dividend p&dicthis “privately held firm”?

Suppose thaiv > k* wherek* is the optimal steady capital stock of the publicly held firiveg in
equation (4) above. Is it optimal for the owner of the privhte to invest this amount too? Assume
that after making an initial capital investmekt the private owner restricts attention to “steady state”
investment policie$(k) = (1 — &)k that will maintain the capital stock of the firm at the inijainvested

valuek forever. What is the optimal value &fthat the owner would choose?
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This is given by the solutiokj, to

u(f (k) — 8k — r (w—k))

K = argmin 46
P Oggkgw 1-B (46)
The first order condition for the optimal steady state poiscy
/(K 1
( p):B—l+6 47

so we see in fact thdt" = ki the owner of a private firm would invest to the same steady stapital
stock value that a publicly held firm would choose if it werentake an initial investment and be able to
borrow the funds necessary at the same interest rate assttwudt rate the market uses to value the firm
(i.e. to discount its future dividend stream).

However assume that < k*. For the moment, let's conjecture that the owner would cadosnvest
all of his/her wealth in the firm, so they will receive no artguncome after sinking all of their initial
wealth as an investment in their firm. Assuming the owner oaborrow, the Bellman equation for the
privately held firm is given by

V(K = max [u(f(k)—1)+BV(K(1=8)+1)]. (48)

The first order condition for optimal investment is given by
u'(f(k) —1(k)) = BV'(k(1—8) +1(Kk)). (49)

If we were to assume an “Inada condition” i.e. thatdjgu/(c) = +o, then it is easy to see that the
optimal investment policy will always entail paying somesjive level of dividends, i.el (k) < f(k) for
all k. However it may still be the case that if the firm had sufficiesgpital, it may be optimal not to invest,
i.e. 1(k) = 0 for k > k, though the value ok may be different than the valde= k*/(1— &) at which a
public firm stops investing.

Using the Envelope theorem, we have
V/(k) = u'(f (k) —1(K) f'(k) +BV'((1— B)k+1(k))(1-02), (50)
but using the first order condition (49) we have

VI(K) = U (f(k) = 1()[F'(K) + (1-3)], (51)
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and substituting this back into the first order condition) @@ can derive the Euler equation characterizing

the private investor’s optimal investment poliik)
U (F(K) —1(K)) = BU (F(k(1—8)+1(K) — 1 (K(1—8) +1(K))) ['(k(1—8) +1(K))+ (1-8)] .  (52)

This is a non-linear functional equation fbrand it is ordinarily not an easy one to solve via numerical
methods. It is not clear there there is a closed form solutighis case, unlike the one we found for the
optimal investment policy of a publicly held firm.

However we can show there is a unique steady state sollgiom the Euler equation, and thigy =
k*, the same steady state solution for a public firm. Note thgtsteady state, we haue¢k) = dk and

substituting this fott (K) in the Euler equation above we obtain
u'(f (k) — 8k) = Bu (f (k) — 1 (k) [f'(k) + (1-3)], (53)

or f'(k) = 1/B— 1+, for which the only solution ik = k*. This suggests that even if the private
investor does not have sufficient initial wealth to investhia firm at the optimal levet*, the subsequent
investment policy will lead the firm to gradually accumulaggpital and converge to the optimal steady
state asymptotically.

Figure 4 plots the optimal investment and dividend policpctions for a privately held firm and
compares them to the ones chosen by a publicly held firm. Tluigs for the privately held firm were
calculated numerically using the discrete policy itematédgorithm described in section 4 below. We see
that both are quite different from each other. The top lefigpahows the optimal dividend policies plus
the level of replacement investment necessary to keep ghakstock from declining. The intersection of
the optimal investment curves and the black replacemerstment line defines the optimal steady state
capital stock levek® and as predicted by our analysis above, we see that it is the &a both the public
and privately held firm.

Away from the steady state, investment and dividends arte giifferent from each other. Investment
by the privately held firm is less than investment by the mufitim for k € (0,k*], but investment by the
privately held firm is greater than investment by the pubfimfior k > k*. The pattern for dividends is the
opposite: the private firm pays higher dividends than thdipdiom for k € (0,k*], but lower dividends
for k > k*, unless capital is sufficiently high that both the public aniglate firm stop investing, and in this
region the dividend payments coincide.

The lower left panel of figure 4 plots the value of the privatbeld firmV (k) and compares it to

the utility the investor would have obtained if they investl of their wealth in an annuity earning the
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Figure 3: Optimal investment and dividend policy and valuection for f (k) = vk

market rate of return. We see that at least if investmentisiéd as an all or nothing choice, it is always
preferable for the investor to invest their wealth in thevgie firm rather than in an annuity. The private
firm generates sufficiently greater returns to dominate é¢erm ofr = .05 that the person could obtain
from an annuity. Another way to see this is to look at the blauk in the right hand top panel of figure
4. This plots the annuity income the investor would receaeheperiod if they invested all of their wealth
into an annuity. We see that the dividend income from inmgsin a private firm dominates the annuity
income they would receive at all levels of initial investrh&n

Finally, the lower right hand panel of figure 4 compares thawgion of investment and capital stock
for a public and a private firm that each begin life with aniatitapital stock ok = 1. We see that due
to the higher early investment, the public firm reaches tbadst state capital stodk = 25 after only 15
periods, whereas the privately held firm approadtiesnly asymptotically.

Now consider a final question. Suppose the person who “owres'téchnology has a third option:

instead of investing their own wealth in their firm, the oweuld “take their firm public” via an IPO
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(initial public offering) and after the IPO the firm would be bun by a professional manager whose
objective is to maximize the present value of dividends. &8iirgy off a 100% stake in the firm at the IPO,
the owner no longer has any operating control over the firmtHaiowner can take the proceeds raised by
the IPO and buy an annuity and live happily ever after on thisigy income. What will the owner decide
to do: sell their firm in an IPO, or keep the firm private?

If there are no transactions costs to doing an IPO, the ansagear: the owner of the production
technologyf (k) will do better by investing their initial wealttv to provide the capital to start the firm (so
k =w), and then immediately hold an IPO. D\ (k) be the market value of the firm (which does not have
access to borrowing, similar to the privately held firm) giv®y the solution to the Bellman equation (2)
in section 2. This represents the funds the owner would ratbés firm were to be sold in an IPO. The
owner can then use these IPO proceeds to purchase an argquaty@ 1 — 3)Vi(k). Thus, the discounted
utility to the owner from holding an IPO is given by
u((1—PB)Vm(k))

(1-B)

and the owner compares this value to the value of keepingriisgiiivate and operating it to maximize

Vpub(K) = (54)

their lifetime discounted utility. Call this valué,; (k), which is the solution to the private owner’s Bellman
equation (48).

Figure 4 below plots these two value functioWs,, andV,y; as well as the value of simply using their
initial wealth to buy an annuity((1—p)w)/(1—B). Though it is slightly hard to see, the value of doing an
IPO uniformly dominates the value of running the firm as agggwcompany. The reason is that the owner
of a private firm, while undertaking jrivately optimaldividend and investment policy, are nevertheless
adopting asuboptimal policyfrom the standpoint of maximizing the market value of the pany. The
distorted dividend and investment policies that we illattd above, plus the slower trajectory of capital
accumlation due to a private owner’s incentive to pay dindtein every period are costly in terms of
lowering the present value of what the owner could consunhe/ghe sold the market to a professional
manager whose objective is to maximize the market value effitm. In essence, it is better for the
owner to use thannuity marketo smooth their consumption, than to attempt to do this oir thven by
distorting their investment and dividend policy. By doing &0, the owner allows the new management
to adopt value maximizing investment and dividend poligied the owner is free to take these proceeds
and smooth their consumption stream in the annuity markes i§ another example of what is known as

aseparation theorerin the finance literature.

21



Effect of borrowing on the value of the firm
100

Firm value, no borrowing

Firm value, borrowing

90"

80 [

i 5
60 - B ()
50

40
30
20

10fF

0 . . L . . . . . )
0 5 10 15 20 25 30 35 40 45 50
Capital stock, k

Figure 4: The value of going public with zero transactionstso

There is exactly one point where the owner is exactly indffié between doing an IPO or keeping
his/her firm private. Care to guess what that point is? Yes,guessed itk*. At the optimal steady state
capital stock the owner does adopt a value maximizing dnddend investment policy, and stays at that
point forever. So at this particular capital stock, the ommeuld be indifferent between going public or
staying private.

Now suppose there are transactions costs associated viity dio IPO. In many countries interme-
diaries such as investment banks charge hefty proportamalfixed transaction fees. A common pro-
portional fee for doing an IPO is 7% of the proceeds raised,tha fixed costs can often be hundreds of
thousands or even millions of dollars depending on the diflgeocompany that is sold. Figure 5 plots the
value of staying private and the value of selling in in an IlR@hie case where the proportional transactions
costs are 7% and the fixed transactions costs are zero.

We see that in the presence of transactions costs, it is mgitdretter to go public regardless of the
initial capital stock of the firm. It is only optimal fasufficiently small firms to do an IP@nce the firm
has sufficient capital, it generates enough income froninedeearnings to enable investment that can take
the private firm close enough to the optimal steady statdalagibckk* that is it not optimal for it to do
an IPO: the transactions costs involved in doing the IPO eigiivthe benefits from going public.

The model can be extended to allow for debt. If we assume liedfirim can take on debt at the same
time it goes public, the advantages to doing an IPO are eelarithis is illustrated by the black line in

figure 5. When debt is allowed, the public firm has greateresalkecause it is able to raise more capital to
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Figure 5: The value of going public with 7% transactions sost

accelerate its investment, enabling it to immediately jumhe steady state capital stockimmediately
after the IPO. This results in a bigger region of capital lssomver which it is optimal to do the IPO despite
the 7% transaction cost.

Of course, we could also assume that the private investoerelitad sufficient initial wealth or could
also borrow and be able to make an initial investment equild@ptimal steady state capital stdck If
the owner did this, then as we have shown above, there is soréa do an IPO since the owner has been
able to invest at a scale to achieve a value maximizing invest and dividend policy and so there is no
benefit from doing an IPO and only transactions costs.

If the owner of the firm intiially has limited wealth and bowimg potential, then we have shown that
these are the conditions where an IPO makes sense, evetedigphigh transactions costs. The IPO
enables the small firm to raise the capital necessary totimtake efficient scale (or at least approach it
more quickly if the firm is not able to borrow as much as it neetisediately after the IPO) and this gain

more than offsets the transactions cost of doing the IPO.

5 [IPOs with partial cash-outs

Most IPOs do not entail a 100% sell-off of the original owsestake in the company. Intead, the original
owner retains a partial ownership stake in the firm, and cakeds part of the IPO proceeds in cash to
finance consumption or other investment projects. The athportant role of a partial cash-out is that

when the original owner continues to own a significant shamhe post-IPO company, the share of the
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IPO proceeds that the owner does not “cash out” are re-iest@stthe company, thereby providing a new
infusion of capital to the firm after the IPO that is not reféztin our analysis of an IPO with a 100% cash
out by the original owner. Thus, an IPO can have two effeds ¢an boost the value of the firm: 1) the
IPO can switch the objective function of the firm from utilityaximization of the private owner to one of
value maximization in the market (an effect we describe amaral hazard effect”), and 2) to the extent
that the original owner reinvests some of the proceeds ofRfieback into the company, it represents a
new source of capital to the firm (an effect we describe asftharicing” or “leverage” effect of the IPO).

Suppose the firm is originally a privately owned firm by a soMner, and the owner chooses to take
the firm public via an IPO and retain only a fractiane (0,1) of his/her original 100% ownership stake
in the firm. Thus, after the IPO the original owner will own adtiona of the firm (i.e. a is fraction of
shareholdings still owned by the founder of the firm) and thiside investors who bought shares in the
new firm will own the remaining fraction & a of the firm’s shares.

The “IPO proceeds” equal the total amount the founder resdivowm selling shares in the newly public
firm to the new “outside investors” and the founder can eitbévest these funds to increase the capital
stock (and hence future profit/dividend stream of the firm}a&e some or all of the proceeds as a “cash
out” for private consumption purposes (e.g. to buy an aghuiOr the founder might want to reinvest
some of the IPO proceeds in other nascent investment psgjach as to found some other new firm. We
will let the symbolw € [0, 1] represent the fraction of the IPO proceeds that the ownersg®oto take out
for consumption or other investment purposes, and thug#oidn 1— wis reinvested in the firm.

Let P(k, a0, w) represent the IPO proceeds received by a founder/owner ¥atefirm who decides
to take the firm public when it has initial capitiel and the owner chooses to retain an ownership share
after the IPO, and to “cash out” a fractionof the IPO proceeds and reinvest the remaining fractieruil
We assume that the fractionsandw are publicly observable, as a newly public firm must meetouesi
accounting standards that are designed to protect outsidstors from fraud such as “take the money and
run” schemes that are patent ripoffs of unsuspecting iovestit is one function of intermediaries such
as investment banks to do tdee diligenceo investigate a private firm that wishes to go public with an
IPO and verify that the company really does exist and thedeuwill not “take the money and run” after
an IPO. Thus, the reputation of the investment bank interangdn addition to market regulation (such
as is done by government agencies such as the Securitiesxahdrige Commission) helps to convince
outsider investors that an IPO is legitimate and is not dythdisguised take the money and run scheme.

We assume that an investment bank intermediary incurs obsi@ing the due diligence and insuring
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that a private firm that wants to go public via an IPO is legitien The investment bank recovers the
costs of providing these services by charging a proportiteep € (0,1) plus, possibly, a fixed feE.
Thus if the gross proceeds of the IPO &, a,w), the net proceeds received by the founder from the
investment bank (after it deducts its fees) éte- p)P(k,a,w) — F. Initially we will study the IPO in a
“frictionless market” setting where the costs of doing diligence are zero, and hence we initially assume
thatp = F = 0. In this case, the gross and net proceeds of the IPO coincide

In a market wherd&, a and w are public information, and where the operations of a puirim are
sufficiently regulated by both government regulators ameddiscipline of market competition, the public
will also have a rational expectation that the newly publimfoperates to maximize the discounted stream
of dividend payments to its shareholders. In this case wew#e an equation for the new proceeds of the
IPO as

P(k,a,0) = (1—a)V(k+ (1—w)[P(k,a,w)(1—p)—F]). (55)

whereV (k) is the value of a public company with capital stoclas defined in the Bellman equation
(2) in section 2 above, which is the value of the company aftefPO witha = 1. In equation (2) we
assume that the net proceddk,a,w)(1—p) — F > 0, otherwise it is not clear that the founder would
see any benefit to doing the IPO. Further we assumektbatl — w)F. This implies that the function
V(P)=(1—-a)V(k (1-w)[P—F]) satisfies/ (0) > 0, and together with the strict concavity\dfimplies
that there is a unique solutid?(k, o, w) to equation (55). Furthermore, it is easy to see from thetstri
concavity, that at this solution we have>1(1—a)(1— w)(1—p)V'(k+ (1— w)[P(k,a,w)(1—p) — F]).
This implies that, in equilibrium, if an additional dollarene raised in the IPO, the amount of this extra
dollar, net of IPO costs and the fraction of proceeds takerbpihe founder, will raise the market value
of the fraction of the shares held by the outside investorsplby less than 1 dollar.

Equation (55) tells us that the IPO proceeds will equal tHeevaf the outside shareholders’ share of
the firmafter the original founder has reinvested the fractiond of the net proceedd(k, a, w)(1—p) —F
received from the investment bank as new capital for the ynpublic firm. The IPO proceeds is implicitly
defined as the solution to equation (55) above. Due to tret stincavity oiV (k), there is a unique solution
to (55) for eactk > 0 and eachx € (0,1), andw € [0, 1]. The Implicit Function Theorem guarantees that

P(k,a,w) is continuously differentiable in its argumerksa and w for almost all values ok, o andw
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with derivatives

o (1— V(K + (1—w)[P(k.a,0)(1—p)— F)

ok (e T (1) o1 pVikt (1 w)Pkaw)1p) _F)
iP(kaw) _ —V/(k+ (1-w)[P(k,0,0)(1—p) —F])

oo % T (1 a)(d— )1 pV'(k+ (1 )Pk w)(1_p)_F])

0 B —V’(k+(1—w[ (k,a,w)(1—p)—F])

do ©GO) = T W@ pVikt Ao Pkao@d p F) 0

It follows thatP(k, a, w) is increasing irk and decreasing ia andw, as we would naturally expect.

We can viewP(k,a,w)/(1 —a) as the market's rational expectation of the total value ef firm
following an IPO where it has full knowledge of the fractiditlee firm owned by the founder after the IPO,
and the fraction of the IPO proceeds that the founder castgfdioconsumption or other purposes, leaving
only the fraction 1- w of the net proceeds as the amount of new investment the fimalgcundertakes
as a result of the IPO. It also is contingent on the assumpkianafter the IPO the firm will be run in
a discounted profit maximizing manner, even if the ownerimsta majority stake in the company after
the IPO. Thus, our theory of rational market valuation feilag an IPO and partial cash out encompasses
both the moral hazard and financing/leverage effects th&#®@ncan have on the valuation of a company
that we discussed above.

Figure 6 illustrates how an IPO can be used as leverage,asuiadly increasing a firm’'s value by
reinvesting a fraction of the IPO proceeds to acquire mop@alawhich further increases the value of the
firm. We focus on a small private firm that has an initial cdtack ofk = 3 when it decides to go public
via an IPO. We plot the value of the firm as a fractiorupthe fraction of the firm that the founder chooses
to own after the IPO. We assume that 0, so that the owner does not divert any of the IPO proceeds to
any other purposes except reinvestment in the firm. The #efejpof figure 6 plots the total value of the
firm, the amount reinvested, and the value of the share of timedfivned by the founder as a function of
a.

Notice that the value of the founder’s interest in the firmésozwheno = 0. Clearly it would make no
sense for the founder to sell off his/her entire ownershigrast and then reinvest all proceeds back into a
firm he/she no longer owns: this would be a nice gift to the nleareholders but not something that the
founder would want to do absent a peculiar sense of altruisautside investors. The case where- 1
corresponds to a situation where the founder decides totlt@keompany public but without raising any
new capital from outside investors. There is no new investmesulting from the IPO in this case, and

the value of the firm is equal to the value we already calcdlatesection 4 under 100% sell off option,
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Figure 6: Value of a firm after IPO, and return to investmeatrfiPO proceeds

namely $52.47.

The black line in the left hand panel of figure 6 shows that amad the IPO that is reinvested in
the firm as a function ofi. If the owner was to be so nice to sell off his/her entire owhgr interest to
outside invstors and reinvest the entire IPO proceeds ifirthhethe firm would attain its maximum value
of $217.58, which equals the amount of new capital the aaiginvner reinvests in the firm. However if
the owner were to retain 50% ownership, the value of the firi1&0.41, which is double the amount the
original owner reinvests in the firm when= .5. Thus, the owner obtains a 100% return from doing an
IPO and reinvesting half of their ownership stake in the fiewen though the outside investors will also
benefit from this investment made by the founder. The fousdet worth after this deal is $55.21, which
exceeds the founder’s net worth from the option of selliridisfentire ownership stake and not reinvesting
any of the IPO proceeds back in the company, $52.47. Thuse siegree of apparent “altruism” towards
the outside shareholders by the founder is actually in theder’s self-interest.

If we consider which value af maximizes the founder’s net worth after the IPO (assuming fixed
at 0), we find thath = .64 and the founder’s net worth (i.e. the value of his/her oginip stake in the
post IPO firm) is $57.47. The founder invests $32.08, anddte value of the firm is $89.13 after this
investment. Thus, the return on this investment is equgdIal7— 32.08) /32.08 = .7915. This represents
a very high return even though the founder is not able to capl of the benefit from this investment:
the outside investors reap 36% of the increase in the firmevasulting from the founder’s reinvestment
of the $32.08 in IPO proceeds back into the capital stock efitm.

The right hand panel of figure 6 plots the rate of return on taegmal dollar the owner reinvests in the
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firm, as a function ofi. The first dollar reinvested has an exceptionally high rétetoirn in this example.
Naturally there are diminishing returns to investment amdhe return falls ast (the fraction the owner
cashes out) decreases quick to zera #ésnds to zero. However even when= 0.64, the founder obtains
a 79% return on their investment as we noted above.

To complete the model, we now discuss the founder’s choiae afidw. It is simplest to consider
the case where the only motive for a cash out is to buy an antmgmooth consumption. If the owner
retains ownership of a fractiom of the company following the IPO, the owner could initiallwest this
fraction of the IPO proceeds in the company (to benefit fromeffiective leverage or financing effect of
the IPO) and then immediately sell off this residual stakerahe IPO and the investment in new capital
is completed. Then the owner could purchase an annuity Wwihdtal proceeds. Under this formulation
of the owner’s problem we have that the optimal valuegondw* solves

(a*(k),w" (k) = argmaxargmaxu((1—B)(w+a/(1—a)P(k,a,w))/(1—B). (57)

acl0,1] wel0,]]
Notice that the optimal fraction to cash out depends on thee i owner’s initial capital stock when the
firm is privately held, just prior to doing the IPO. Sinaés monotonically increasing, the founder’s prob-
lem reduces to simply maximizing the value of his/her nettivéollowing the IPO, where the net worth
is a combination of the cash taken out of the IPO proceek,a,w), plus the value of the founder’s
sharedholdings in the post-IPO compaay,(k+ (1— w)[P(k,a,w)(1—p) — F]) = aP(k,a,w)/(1—a).
Thus, the founder’s problem reduces to
(a*(k),w"(k)) = argmaxargmaxw+a/(1—a))P(k, a, w) (58)
ael0l]  we[0,1]

Figure 7 plots the net worth of the foundéw+a/(1—a))P(k,a,w) as a function ofa, w). It turns
out that this function is symmetric as a function(af w) about the diagonal line = w. As a result we find
two symmetrically located optimal solution&* (k), w*(k)) = (.42,.38) and (a*(k),w*(k)) = (.38,.48),
and both yield the optimal level of net worth for the foundgqual to $57.04. We see that when we dix
if ais sufficiently small, the founder’s net worth is initiallgdreasing irw and then decreasing, so there
is an optimal value of the cash out fractiari(k, o) for any fixeda. By symmetry, there is also an optimal
value of the fraction of ownership* (k, w) that the founder should retain for any fixed cash out fraatbon
providedw is not too close to 1.

However if we fix a value foo that is sufficiently large, say > .7, then the net worth of the founder

is monotonically decreasing i@ and thus the optimal value*(k,a) = 0 whena is sufficiently large.
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Net worth of founder as a function of (a,w)

Cash from IPO plus founder's shares

Figure 7: Net worth of founder, as a function (of, w)

That is, the founder does not want to cash out if he/she detalestain a sufficiently large stake in the
firm: the return to reinvesting in the firm is higher. By symrgehis is also true foor whenw is fixed
as a value that is sufficiently large: the optimal ownershéesis zerax*(k,w) = 0. Thus, if the founder
precommits to cashing out a sufficiently large share of tii@ poceeds, the founder will also will not find
it optimal to retain any ownership interest in the firm.

The optimal combinatioio*(k), w*(k)) represents the tradeoff between the founder’s desireriesei
in the firm, but tempered by the disincentive effect of the that the larger the amount the founder sells

to outside investors, the less the founder benefits fronvesting the IPO proceeds back into the firm.

6 Solving the model using Discrete Policy Iteration

This section describes the numerical solution of the modiguthe Howard (1960policy iterational-
gorithm. This algorithm was originally developed to solaénite horizon stationary Markovian dynamic
programming problems (often abbreviated as MDPs for Magtopecision Problems) on faite state
spaces. The optimal investment and dividend problem isrSagdly not a finite state MDP in the fol-
lowing senses: 1) the state space is continuous (the emtsigve real linek > 0), and 2) the problem is
deterministic, rather than stochastic. Despite thesergifices, we show that policy iteration can still be
applied, but to solve the problem on a finite subsegrial of points in the state space and then to apply

linear interpolationto construct an approximate value function and decisiom egkentially by “connect-

29



ing the dots” where the “dots” are the calculated value fiamcand optimal investment/divident policy at
values ofk on a pre-defined grid of pointky, ... ks } wherek; = 0 andk; < Kj+1,1=1,...,n—1. There

is quite a bit of flexibility in how one chooses a grid, but wélwhow that even for relatively smatland a
“naive” choice of equally spaced grid points, it is possiiol®btain a very accurate approximationvgk),

I (k) andD(K). The most important choice is the valkewhich constitutes an effective “upper bound” on
the capital stock. It is important to “guess” a value lgithat is large enough so thii,) = 0. Otherwise

if the guess of the upper bound is too small &fig,) > 0, this poor initial choice of upper bound can lead
to substantial errors in the calculatédl andD functions.

The basic ideal of how policy iteration works is explainedivier the case of finite state spaces in
Howard (1960) or Bertsekas (1987), but for the case whersttite space has uncountably many states,
policy iteration can also be defined but it takes somewhatenagivanced functional analysis, see e.g.
Puterman (1978). We will describe policy iteration firsthie icase where the state space is continuous, but
it is important to consider a “truncated” version of the pesb on a finite interval0, K] for someK > 0
sufficiently large. The reason for truncating the problertha& much of the standard functional analysis
machinery is based on use of thap norm||V || = sup, |V (k)| but this will equale if the state space is the
entire positive real ling0, «) if the functionV is not bounded.

However once we consider a bounded interval, we can definBahach spac€(K) of all bounded,
continuous functions on the intervil, K], and for this function space, the sup-norm is well defined. In

particular if we define th8ellman operatoi” : C(K) — C(K) by
r\Vv)k) = m%[f(k)—lJrBV(k(l—é)Jrl)] (59)
we can show thdt is acontraction mappingi.e. it satisfies
IFV) =TW)[| <BIV -W]| (60)

and via the well-know Banach Fixed Point Theorem (also knawthe Contraction Mapping Theorerh),
has a unique fixed poiM = I" (V). This unique fixed point is the value function for the trumchproblem
given by the Bellman equation (2).

Policy iteration is an iterative method for finding the salatto the Bellman equation which is equiv-
alent to finding the fixed point to the Bellman operaforThe standard method for finding a fixed point
is the method ofuccessive approximatiand it is based on any initial guegg and an updated estimate

Vj is produced by evaluating on the initial gues¥p, orV; =I'(Vp). Then we us&/; to produce another
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estimateV, = I' (V1) and we continue this iteration in general as
Vi=T(Vji.1) j=12,... (61)

until we find that the changes in the successive iteratesagethan a specified convergence toleramce
i.e. until some iteratiorj such that|V; —V;_1|| < €. The Contraction Mapping Theorem guarantees that
for anyVp € C(K) we have

limV; =T (Vj_1) =V =T(V) (62)

j—oeo
so the method of successive approximations is guarantesmht@rge from any initial gued4. A draw-

back of successive approximations is that is convergesgatynetricallythat is, we have
IV; =V < B'[[Vo—V| (63)

so that forf3 close to 1, the rate of convergence of the estimated valugifurV; to the true value function
V is very very slow.

However policy iteration is a much faster algorithm thatalsuconverges to thexact solution V in
a finite number of iterations, regardless of how cl@ses 1. This is technically true only in finite state
MDPs, but for continuous state MDPs there is a close analdgi®fesult, namely thagtolicy iteration
is equivalent to Newton’s method and will converge at a gaadrate. This implies that the error in

approximating the fixed point|V; — ' (V;)||, whereV; is thejth

iterate produced by the policy iteration
algorithm will be very small after only a “small” number oérationsj even forp very close to 1.

Policy iteration is a combination of two “sub-iterations) policy improvement and 2) policy val-
uation. We explain policy valuation first. Policy valuatitsna method to find the value function
corresponding to any given investment pollcyGiven that we are considering only truncated investment
problems, we will initially consider only a subclass of dgon rules that satisfy the constraintsl (§) is a
continuous function ok € [0,K], i.e.1 € C(K), 1) 0< I (k) < f(k) (feasibility), and 2k(1—9) +1(k) <K

for all k € [0,K]. The latter constraint ensures that the mappindefined by
M1 (V) (k) = f(k) = 1(k) + BV (k(1-0) + I (k)) (64)

makesl| a well defined operator d@(K), i.e. for anyW € C(K) we havel’| (W) € C(K). Furtherl"| can
be shown to be a constraction mapping, and thus it has a ufileepointV; =T (V;). We now show

thatl"; is anaffine operator,that is it is a “shifted linear operator” given by
M (W) (K) = Di (k) + BE (W) (K) (65)
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whereW € C(K), D (k) = f(k) — 1(k), andE; is a linear operator o8(K) defined by
E (W) (k) =W(k(1—-0) +1(k)) (66)

The constraint on the set of allowable investment ruiligsplies that ifw € C(K) thenE; (W) € C(K) so

thatE, is an operator o€(K) and further it is dinear operatorsince we have
E(V+W)(k) =V(k(1-3d)k+1(k)) +W(k(1—90)+1(Kk)) = Ei (V) (k) + E (W) (k) (67)

Now define thenormof the linear operatok, by ||E || as follows

IEV)]
E || = sup
B = U

(68)

It is not hard to show that for any € C(K) we have||E, (V)| < ||V|| which implies thal|E;| < 1, and
further, using the example of a functigv(k) = 1 fork € [0,K], it is trivially true that|| E, (W)|| = 1, which
implies that||E, || = 1.

Since we have established tlitis a linear operator, we can write the equatinoMgrthe fixed point

of the operatof | as
Vi (k) = Di (k) + BE (V) (k) (69)
or
[.7 —BE](V)(K) =Di(k) (70)

where.7 is theidentity operatoron C(K), i.e. .#(W) =W for all W € C(K) (we use the funny scripted
version of capital letter “I” here,#, to distinguish the identity operator from the investmemidtionl). It
is easy to show tha¥ is a linear operator, and th{.¥ — BE;] is also a linear operator. Suppose that this

linear operator isnvertible. Then we have the solution
Vi = [# — BE] D (71)

where[.# — BE,]1is the inverse operator ¢ — BE, ], which is itself also a linear operator. We can show

that the inverse operator exists by a geometric series anguri/e conjecture that
[/ —BE]” %B‘ E/ (72)

whereEIj is the linear operator formed as the fold composition of the operatd, i.e. E? = E (E,) and

recursively,Ej =E E Y. Since € (0,1) and||E || = 1, it follows that the norm of the right hand side
| |
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of theNeumann series expansiofithe inverse operatdty — BE;]~ in equation (72) is finite (and equals
1/(1—B)) and this establishes that the inverse operator exists.

So in summary policy valuation enables us to obtain a “closeth” expression fov, = [ —
BE;]1D, which is the value of the firm implied by a given feasible istvaent policyl. This is why
we call thispolicy valuationbecaus®/ represents thealue of the investment policy .

Now consider the next sub-iteration of the policy iteratalgorinm: policy improvementUsing the
value functionv; we now seek aimproved policy 1 given by

I’(k) = argmax [f(K) —t +BVi(k(1— ) +1)] (73)
0<1<f(K)
K(1—8)+1<K
where we use the notatiorio denote a candidate investment value that we are optigh@mer in order to
find a new better policy’ (k). Givenl’ we can now return to the policy valuation step to find the v&iue
of this new, improved policy’
Vir = [.# — BEy] Dy (74)

We can show that;, >V, i.e. I’ really is animprovedpolicy that results in a higher value for the firm.
However ifV;: =V, then the new policy is not atrict improvemenbver the previous policy at any

k € [0,K], and at that poinpolicy iteration has convergedt is not hard to show that at convergende=
(M), i.e. V, is a solution to the Bellman equation, and since this is umigy the Contraction Mapping
Theorem, the policy iteration algorithm has succeeded tbtfie fixed point to Bellman’s equation.

The formulas above seem “theoretical” since they involweiision of linear operators @(K) which
are infinite-dimensional objects. However we can approténtizese “infinite dimensional” operators with
finite-dimensional operators on a large but finite dimerai@uclidean spacR". We achieve this via the
device ofdiscretizationand solving the problem on a finite grid opoints{ki,...,k.} C [0,K].

When we have a finite grid, we can produce a continuous piseecliviear approximation binear
interpolation. For example suppose we have a given functéfk) but suppose that we only have access
to values of this function at grid points{ki,...,k,} C [0,K]. That is we know the values{wy, ..., wn}
wherew; =W(k;), j =1,...,n. How can we approximate the true vaM&k) at somek € [0,K] that
is not one of these grid points? This is quite eakynmust lie between two successive grid points, i.e.
k € (kj—1,kj) and so we can represenas a convex combination of these grid points using a weigtit (o
could be interpreted as a “probabilityf) k) given by

k—kj 1
k)= — I+ 75
p(k) Kk 1 (75)
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Linear interpolation of the square root function
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Figure 8: Interpolated square root functidfk) = vk

so we can writek = p(k)kj + (1— p(k))kj_1. Then using the weighp(k) we can produce the following
approximate valu&V (k)

W(k) = p(kjw;j + (1= p(k))wj-1 (76)

Figure 8 below shows the square root function on the intd®/d] and its linear interpolation using a grid
of five equally spaced points, ko, ks, ks, ks } = {0,1,2,3,4}.

Using interpolation, we can carry out policy iteration oeegrid of n points on the interval0, K]
and nearly all of the operations becorigite because the set of piecewise linear functions with nodes
(or “knot points”) at a grid oh points{ki,...,k,} is ann-dimensional subspace ofK). Our goal is to
try to approximate the true value functisthe C(K) with an approximate value functiow, that lives in
the n-dimensional subspace 6{K) that consists of all continuous functions whose values thesentire
interval [0, K] are linearly interpolated from their values at thpoints{ki,...,kn}.

So suppose we are given an investment polieyhose values are known at each of the grid points
{Ki,...,kn} and are determined by linearly interpolation of the knowluga{l (ki),...,I(ks)} for other

values ofk € [0,K]. Recall our general equation for the policy valuation step

Vi =D, +BEV (77)
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whereE,; is the (infinite-dimensional) linear operator that “implents” the evaluation &f at a given point
k(1—-9)+1(k) € [0,K], i.e.

E (V)(k) =V (k(1-d)k+1(k)) (78)
Now consider restricting the domain of allowable valuesk o just then grid points{ki,...,k,}. Then
the infinite-dimensional version of the policy-evaluatiequation (77) above becomesgstem of n linear
equations in n unknowns in"'R

Vi =Dy +BEM (79)

where now we have, andD, arevectorsin R" given by

[ Vi(k) ]
Vi (k)

v, = \ (80)

and

D = ’ (81)

D (kn-1)
Di (kn)

andE, is ann x n transition probability matrixwhich implements the interpolation operation. That is,

consider the first row oE,;. It will be all zeros except for at most two adjacent non-zel@ments with
values 1- p; (k1) and p; (k1), repectively. Recall that we can interpolatgks (1 — &) + 1 (ky)) using its
known valuegV; (ky), ...,Vi(kn)) on the grid(ky, .. .,k,) as follows

Vi(ke(1—0) +1 (k1)) = pi(ki)Vi (Kj) 4 (1 — pi (ka) Vi (Kj-1) (82)

where | indexes the grid poirk; such thak;(1—90) + 1 (ki) € [kj—1,kj] andp, (ky) is given by

ki(1-8) +1(ky) —kj-1.

pike) = Kj —Kj-1

(83)

h

Thus the first row of; will have py(k;) in its it column and 1+ p, (k1) inits (j — 1)St column and all

other columns equal zero. It follows that the first row willnsio 1 by construction. This same idea
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applies to all other rows d&, so we conclude it as the form of a Marktnsition probability matrix.e.
all elements are between 0 and 1 and each row sums to 1.

UsingE; andD; it is now a matter of linear algebra to solve fgre R"
Vi = [ —BE] D (84)

except that now? is then x n identity matrix(which is also the “identity operator” oR"). UsingV} € R"
we can extend it to a continuous functionlobver all of the intervalO, K] via linear interpolation, so we
can also interpre¥| as an element of the-dimensional subspace 6{K) of functions which are linearly
interpolated from their values at timegrid points{ka, ...,k }.
GivenV, we can now do th@olicy improvement stefo see if we can find a better investment policy
I’(k) by optimizing over investment at each of thgrid pointsk;, j =1,...,n.
'(kj) = argmax [f(Kj)—1+PBVi(kj(1—8)+1)]

0<i<f(kj)
kj (1-9)+1<K

= argmax [f(kj)—1+
0<i<f(kj)
kj(175)+l§K

Blp(kj(1—=8)+1)Vi(k) + (1 - p(kj(1—8) + )i (k-1))]]

wherekj(1—90) +1 € [k_1,k] for some indexl € {1,...,n}. If I'(k) = I(k) for all grid pointsk €
{Kki,...,ka} (or equivalently ifv}; =V,), thenstop: policy iteration as converged to\athat solves the
Bellman equation (though restricted to the finite dimemsi@ubspace of(K) of functions defined by
linear interpolation at tha grid points{ki,...,ks}). If not, then using the improved polidy we return to
the policy valuation step (79) to calculate and continue until the policy iteration process converges.

Figure 9 presents the approximate decision rules for invest and dividends computed by poicy
iteration withn = 301 grid points, equally spaced frdp= 0 to k3p; = 30, a spacing of @ apart. Policy
iteration converged after 20 iterations, resulting in @(8arm) change in value functions af¥ x 1013,
We see that the computed solutions look virtually identicathe true solutions plotted in figure 2 in
section 2. Figure 10 also plots the interpolated value fanclrom policy iteration and it also looks
virtually identical to the true value function in figure 2.

There are approximation errors but they are small. Figurglats the approximation errors at the
grid points{ky,...,k,} for two different solutions, one using policy iteration it = 150 grid points,
and the other using = 300 grid points, in both cases equally spaced over the mitédy30]. Generally

we would expect that using a “finer grid” i.e. a larger numbigrid pointsn, should result in a better
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Optimal Investment for f(k) = V&

Optimal Dividends for f(k) = vk
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Figure 9: Approximate optimal investment and dividend ofor f (k) = vk
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Figure 10: Value function fof (k) = v’k

approximation. This is the case here, though it required eemsophisticated version of interpolation

than simple linear interpolation of the ordinat®g(x;),...,V(X,)} in the policy improvement step. We

usedpiecewise cubic hermit polynomial interpolatias implemented in thpchi p function of Matlab.

Thepchi p function interpolates the ordinates in a way that gauranteatinuous differentiability of the

interpolated function at the grid points (unlike what happevith simple linear interpolation, where the

derivatives are generally discontinuous at the grid ppautsl the interpolated function éhape preserving

which is particularly important in this case to preservedbacavity of the value function over the entire

domain.

In each policy improvement step we used the Maflabnbnd function to numerically search for the
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0035 ¢ Errors in discrete policy iteration over 150 point grid x10°3Errors in discrete policy iteration over 300 point grid
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Figure 11: Approximation errors in value function and irtwesnt rule withn = 150 andn = 300 grid
points

optimal value of investmente [0, f (k)] at each grid poink;, j = 1,...,n. When we used simple linear
interpolation, the interpolated value function has more mrore discontinuities in its derivative agyets
large. This appears to create problems for the Matlab optimand whem gets sufficiently large, the
approximation actually starts to degrade. This is not tlee @ghen thechi p interpolater was used. The
approximation error reduces as the number of grid pointeases, though there is diminshing returns to
increasingn. Further accuracy can be achieved by using the strict cagcalvthe value functions and
using a Newton or bisection algorithm to find optimal investrnas a solution to the first order condition
1=pV’'(k(1-0)+1), using the fact that thechi p interpolated results in a piecewise quadratic expression
for V'’ that makes it easy to employ Newton’s method to solve for teevofl that satisfies the first order
condition.

Overall, we have demonstrated that the DPI algorithm seerhe tapable of finding a good approxi-

mation to the true value function and decision rules.
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