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1 Introduction

This note introduces a simple “test problem” for which it is possible to obtain an analytical solution for

the optimal investment and dividend policy of a “public firm”which invests in a single liquid capital good

k. We use the term “public firm” to distinguish it from a “private firm” which we also analyze. The key

difference is that a public firm’s objective is to adopt an investment and borrowing policy to maximize

the discounted stream of dividends, whereas a private firm adopts and investment and borrowing policy to

maximize the discounted stream ofutility.

Debt policy is complex so we initially abstract from debt andassume that the firms are “liquidity

constrained” in the sense that any investment they undertake must be financed out of current cash flows.

We consider situations where a firm would consider having “retained earnings” but generally, the firms

we study will not find it optimal to hold cash balances, but rather either invest all cash, or pay it out as

dividends to shareholders. However firms that start with little initial capital may want to borrow. We

consider a simplest situation where the firm is allowed to incur debt in the initial period of its existence

and pay off any debt it incurs as aconsol— i.e. a perpetual bond. We show that firms with sufficiently

small initial capital stocks (including a new firm with no initial capital stock) will want to borrow as a way

of “jump starting” the firm. This significantly shortens the period of time it takes for the firm to achieve

“optimal scale” compared to a firm that faces liquidity constraints and is unable to borrow. So the debt

option does significantly enhance the value of sufficiently small firms, but has no benefit for firms that are

able to enter with a sufficient level of initial capital.

Consider first a firm that has no ability to borrow and which must finance any new investment out of

current cash flows. We assume a “putty-clay” production technology where the firm can purchase new

capitalk using cash flows but once the capital is installed, it cannot be “liquidated” or partially sold to

obtain more cash. The firm is constrained to invest using onlythe new cash flows produced by this capital

stock f (k).

At the start of periodt, suppose the firm has a capital stock ofkt . It obtains a deterministic cash flow

(return) of f (kt), where f ′(k) > 0, f ′′(k) < 0 and limk↓0 f ′(k) = +∞. Using this cash flow, the firm can

either pay dividends,D ≥ 0, or invest an amountI ≥ 0, subject to the firm budget constraintD+ I ≤ f (kt).

The amount investedkt is subject to a deterministic depreciation rateδ ∈ (0,1) and the investment is long-

term and irreversible, in the sense that the only way to reduce kt is via depreciation. However the amount
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invested can be increased by new investmentI so that the capital stock follows the law of motion

kt+1 = kt(1−δ)+ I . (1)

We initially assume that the firm is liquidity constrained and cannot borrow, so it can only use its current

cash flow f (kt) to finance dividend payments and new investment. The firm discounts the future at a

constant rateβ ∈ (0,1) and its objective is to maximize the present discounted value of future dividend

payments.

In the next section we describe the analytical solution to the problem. In section 3 we extend the

solution to the case where the firm can make an initial borrowing decision in the first period of its existence,

paying off any debit it incurs using aconsolwhich is a bond that has no maturity date, but rather involvesin

infinite stream of interest payments whose discounted valueequals the initial amount borrowed. We show

how the borrowing option increases the value of sufficientlysmall firms. Then in section 4 we compare

the analytical solution to the numerical solution producedby the the method of “discrete policy iteration”

(DPI) and show it is highly accurate. In DPI the value function is approximated by a piece-wise linearly

interpolated solution to a linear system of equations over afinite grid of points in the state space,k. In

section 4 we introduce the problem of a “private firm” that is subject to borrowing constraints, where an

individual invests his/her private wealth in the firm and operates the firm not to maximize the discounted

stream of dividends, but rather to maximize the discounted stream of utility from consumption, where

consumption includes payment of profits from the firm. We showthat the investment policy of a private

firm is very different from the investment policy of a public firm due to the consumption smoothing motive

of the owner of a privately held firm. In section 5 we consider whether the owner of a private firm would

wish to “go public” by selling off their ownership interst intheir firm, converting it from a privately owned

firm to a publicly owned firm whose objective is to maximize thediscounted value of dividends. This

decision can be viewed as a simplified model of an “initial public offering” (IPO). We show that similar to

borrowing, the IPO decision is generally optimal only for firms that are sufficiently small. When the firm

is sufficiently large, the owner would prefer to remain private rather than “take it public.”

2 Publicly held firm: Analytical Solution

Let V(k) denote the value of a publicly held firm when its capital investment isk ≥ 0. Recall the term

“publicly held” signals that the firm’s objective function is to maximize the discounted value of dividend
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payments to shareholds. The Bellman equation for the firm is given by

V(k) = max
0≤I≤ f (k)

[ f (k)− I +βV(k(1−δ)+ I)] . (2)

It is clear thatV(0) = 0, since when the firm has no capital investment, it generatesno cash returns, and

thus cannot invest any more funds, and thus will not receive any future cash flows from which it can pay out

dividends in the future. Since the marginal return to investment approaches infinity ask↓ 0, it is reasonable

to conjecture that the firm’s optimal investment policy has three different regions: 1) an initial region[0,k)

where the firm pays no dividends and devotes all cash flows to investment, 2) an intermediate region[k,k]

where the firm invests and pays dividends, and 3) a final region(k,∞) where the firm has “excess capital”

and so it does not invest and pays out all cash flow in the form ofdividends. In the intermediate zone where

the firm invests and pays dividends, we conjecture that the firm invests just enough to achieve a target or

“steady state” level of capitalk∗ which is the solution to

k∗ = argmax
k≥0

β
f (k)−δk
(1−β)

−k (3)

The interpretation is thatk∗ is the level of capital that can be maintained in steady statethat maximizes the

discounted present value of the firm, net of the cost of the initial investmentk. That is, if an investor were

to takek in cash and invest it in the firm today, and in all future periods the firm’s investment equals the

replacement investment (i.e. the depreciation of this invested capital,δk), in order to maintain the capital at

level k, then the optimal initial investment that maximizes the difference between the net present value of

the firm after the investment (a perpetual dividend stream off (k)−δk that starts with a one period delay)

and the initial amount of the investmentk is the valuek∗ given in equation (3). It is not hard to see using

calculus thatk∗ is given by

k∗ = f ′−1
(1/β−1+δ) . (4)

where f ′−1 is the inverse of the marginal return function,f ′(k), which is invertible due to our assumption

that f ′′(k)< 0.

If we write β = 1/(1+ r) wherer > 0 is the one period “market interest rate”, then we can rewrite the

first order condition determining the optimal steady state capital stockk∗ as follows

f ′(k∗) = r +δ (5)

and observe that this is similar to the equation for the “Golden rule” steady state capital stock in the Solow

growth model, except that the population growth raten is used in place of a “market interest rate”r. The
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intuition for condition (5): the marginal cash flows produced by the optimal stead state capital stock must

be sufficient to cover 1) depreciation of capital,δ, and 2) the opportunity cost of capital,r. Thus, the

marginal product of capital equals the sum of these,r + δ, at the optimal steady state level of the capital

stock.

Given this, we conjecture that the optimal investment ruleI(k) (which describes investment when we

are not necessarily at the steady state,k∗) takes the following form

I(k) =







f (k) if k∈ [0,k)
k∗− (1−δ)k if k∈ [k,k]
0 if k∈ (k,∞).

(6)

It is easy to see thatk is given by

k=
k∗

(1−δ)
(7)

andk is given by

f (k) = k∗− (1−δ)k (8)

These values ofk andk ensure that the optimal investment functionI(k) is a continuous function ofk. The

optimal dividend function is then determined trivially as follows by assuming that the budget contraint is

binding at allk

D(k) = f (k)− I(k). (9)

Using equation (6) we obtain the following equation forD(k)

D(k) =







0 if k∈ [0,k)
f (k)+ (1−δ)k−k∗ if k∈ [k,k]
f (k) if k∈ (k,∞).

(10)

Now we verify these conjectures are correct and derive an explicit formula for the value functionV(k)

by making use of the Bellman equation (2), and showing that these conjectured optimal investment and

dividend policies do result from the solution to the firm’s Bellman equation.

First, for k in the “unconstrained region”[k,k] there is an interior solution for the optimal level of

investmentI(k) implied by the Bellman equation (2). That is, assuming thatv(k) is differentiable in this

region, thenI(k) must satisfy the following first order orEuler equation

1= βV ′(k(1−δ)+ I(k)). (11)
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Substituting the optimal investment ruleI(k) into the right hand side of the Bellman equation (2) and

differentiating with respect tok, making use of theenvelope theorem,we have

V ′(k) = f ′(k)+ (1−δ)βV ′(k(1−δ)+ I(k))

= f ′(k)+ (1−δ)

where we used the fact that the Euler equation (11) holds fork∈ [k,k]. The envelope equation implies that

V(k) is given by

V(k) = f (k)+ (1−δ)k+C (12)

for some constantC whenk∈ [k,k]. Notice that atk= k∗ the firm generates a perpetual dividend stream

of f (k∗)−δk∗ so this implies that

V(k∗) =
f (k∗)−δk∗

(1−β)
(13)

So using the other formula forV(k) from equation (12), this implies that the unknown constantC is given

by

C=
β [ f (k∗)+δk∗]

(1−β)
−k∗ (14)

Thus, we can see thatC equals the optimized right hand size of the net gain from initial investment in

equation (3) which determined the optimal steady state capital stock valuek∗. Thus, the value of the firm

in the interval[k,k] is this optimized value, plusf (k)+(1−δ)k. The intuition for this formula is that once

the firm is in the interval[k,k], its investmentI(k) = k∗ − (1− δ)k will enable it to achieve the optimal

steady state capital levelk∗ in the following period. So it follows thatV(k) equals the net dividends this

period, D(k) = f (k)− I(k) = f (k)− k∗ + (1− δ)k plus the present value of all future dividends in all

subsequent periodsβ[ f (k∗)−δk∗]/(1−β) where this period’s investment has enabled the firm to achieve

the optimal steady state capital stockk∗.

Now we need to verify that the optimal investment ruleI(k) for k ∈ [k,k] really is the formula we

conjectured,I(k) = k∗− (1−δ)k. To show that this is correct, we need to show that this satisfies the Euler

equation (11). Using the closed form solution forV(k) in equation (12) we can rewrite the Euler equation

as

1= β
[

f ′(k(1−δ)+ I(k))+ (1−δ)
]

(15)

Solving this equation forI(k) we can see that

I(k) = f ′−1
(1/β− (1−δ))− (1−δ)k

= k∗− (1−δ)k
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which does indeed match the formula we conjectured in equation (6).

Finally we need to derive formulas forV(k) in the “constrained no dividend region”[0,k) where

I(k) = f (k) and show that it is indeed optimal for the firm to invest all available cash flow and not pay any

dividends in this region, and also for the “excess capital, no investment region” we need to deriveV(k)

and show that it is indeed optimal for the firm to invest zero inthis region and pay out all cash flows as

dividends,I(k) = 0 andD(k) = f (k).

Consider the latter region first. Consider a value ofk > k = k∗/(1− δ) that is sufficiently close to

k so that after depreciation we havek(1− δ) ∈ [k,k]. In particular, we have(1− δ)k > k∗, so that after

depreciation (assuming zero investment) the capital exceeds the optimal steady state capital levelk∗ in the

region where the firm invests and pays dividends.

We claim that for this value ofk the value of the firm is given by

V(k) = f (k)+β
[

f ((1−δ)k)+ (1−δ)2k+C
]

, (16)

and the optimal investment at this valuek is I(k) = 0. To see this, we consider the value of investing a

positive amountI > 0

V(k, I) = f (K)− I +β [ f ((1−δ)k+ I)+ (1−δ)[(1−δ)k+ I ]+C] (17)

Notice that for this fixed value ofk, the functionV(k, I) is strictly concave inI due to our assumption that

f is strictly concave. So it is sufficient to show that∂
∂I V(k, I) < 0 at I = 0. The concavity ofV(k, I) in I

then implies that this partial derivative is negative for all higher values ofI which implies that the optimal

value of investment is zero at this value ofk, I(k) = 0. Evaluating the partial derivative ofV(k, I) with

respect toI at I = 0 we have

∂
∂I

V(k, I) =−1+β f ′((1−δ)k)+β(1−δ) (18)

However the first order condition for the optimal steady state capital stock level can be written as

0=−1+β f ′(k∗)+β(1−δ) (19)

Since f is strictly concave and(1−δ)k> k∗, equation (18) implies that∂∂I V(k, I) < 0 at I = 0, and so we

can conclude it is optimal for the firm not to invest atk.

Since we know that no investment is optimal at this point, we conclude that

V(k) = f (k)+β
[

f ((1−δ)k)+ (1−δ)2k+C
]

(20)
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This will hold for any value ofk such thatk∗ < (1−δ)k < k∗/(1−δ). Continuing inductively we can so

that if k(1− δ) > k = k∗/(1− δ) but k < k∗/(1− δ)3, it will take 2 periods for capital to depreciate to a

value(1− δ)2k ∈ (k∗,k). We can show that in this interval ofk zero investment is optimal as well, using

an argument similar to the one above. In fact by a formal induction proof, we can show thatI(k) = 0 for

all k> k= k∗/(1−δ) andV(k) is given by

V(k) =
n−1

∑
i=0

βi f ((1−δ)ik)+βn [ f ((1−δ)nk)+ (1−δ)nk+C] k∈
[

k∗/(1−δ)n,k∗/(1−δ)n+1) . (21)

Since the equation above satisfies the Bellman equation (2) by construction, it follows thatI(k) = 0 and

D(k) = f (k) is the optimal investment and dividend policy for the firm in the regionk > k∗/(1− δ) and

V(k) is given by the formula in (21) once we determine the smallestnumber of periodsn that are required

for the capital to depreciate down to a levelk ∈ (k∗,k∗/(1− δ)) where it becomes optimal for the firm to

invest again.

Now consider the final intervalk∈ [0,k). In this region we claim that it is optimal for the firm to invest

all available cash flow and pay no dividends. That is,D(k) = 0 andI(k) = f (k). We now verify that this

conjecture is correct. Recall thatk was defined as the solution to the equation

f (k)+ (1−δ)k= k∗ (22)

Consider ak < k, but a value not so close to zero so that if the firm invests all cash flow and pays zero

dividends, then its capital stock at the start of next period, f (k)+ (1−δ)k, satisfies

f (k)+ (1−δ)k> k. (23)

How do we know there is ak < k that satisfies inequality (23) above? First notice thatf (k)+ (1− δ)k

is a strictly concave function ofk and notice that atk∗, it is easy to manipulate the first order condition

determining the optimal steady state capital stock in equation (3) to show that

f ′(k∗)+ (1−δ) = 1/β > 0. (24)

and hence we conclude thatf (k)+(1−δ)k is strictly increasing ink for k≤ k∗. But since dividends must

be positive atk∗ we havef (k∗)− δk∗ > 0 which is equivalent tof (k∗)+ (1− δ)k∗ > k∗. Then sincek is

defined as the value ofk that solvesf (k)+(1−δ)k= k∗, it follows thatk< k∗. If k< k, then the fact that

f (k)+ (1−δ)k is strictly increasing ink implies that f (k)+ (1−δ)k< f (k)+ (1−δ)k= k∗.
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Let k < k be such thatf (k)+ (1− δ)k > k. We now want to show that it is optimal for the firm to

invest all cash flow,f (k), and pay zero dividends. The investment-specific value function isV(k, I) given

in equation (17) above. We want to show that∂
∂I V(k, I)> 0 for all I ∈ [0, f (k)]. This is given by

∂
∂I

V(k, I) =−1+β f ′((1−δ)k+ I)+β(1−δ). (25)

Noting thatV(k, I) is strictly concave inI it is sufficient to show that∂∂I V(k, I) > 0 when I takes the

maximum possible value,I = f (k). In this case, the partial derivative in equation (25) reduces to

∂
∂I

V(k, f (k)) =−1+β f ′((1−δ)k+ f (k))+β(1−δ). (26)

But we know that, from the argument above, that∂
∂I V(k∗, f (k∗)) = 0 and thatf (k)+ (1− δ)k is strictly

increasing ink for k< k∗. So this implies that∂∂I V(k, f (k)) > 0 as claimed.

Let k1 be given by the solution tof (k1)+ (1−δ)k1 = k, or k1 = 0 if no solution exists. Then, it is not

hard to show using the same argument as above that ifk1 > 0 we must havek1 < k. Then for allk∈ [k1,k)

we haveI(k) = f (k) andD(k) = 0 and

V(k) = β [ f (k(1−δ)+ f (k))+ (1−δ)[(1−δ)K+ f (k)]+C] (27)

If k1 > 0 then we can recursively definek j , j = 2,3, . . . by the formula

f (k j)+ (1−δ)k j = k j−1 (28)

until the first value ofj is reached wherek j = 0. Define the functionT(k) by

T(k) = k(1−δ)+ f (k) (29)

and define the composite powers ofT, T2, T3, etc by

T2(k) = T(T(k)) = T(k)(1−δ)+ f (T(k)) (30)

and in general

T j(k) = T j−1(T(k)), j = 1,2, . . . (31)

where we defineT0(k) = k. Then ifk∈ [k j ,k j−1) (wherek0 = k) we have

V(k) = β j [ f (T j(k))+ (1−δ)T j(k)+C
]

. (32)
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Using an induction argument, we can show thatI(k) = f (k) andD(k) = 0 for k in every interval[k j ,k j−1).

By construction,V(k) satisfies the Bellman equation (2). We conclude that we have derived a closed form

solution for the optimal investment policy in equation (6) and the optimal dividend policy in equation (10)

and have an analytic (if recursive) expression for the valuefunction in equations (12), (21) and (32) where

the constantC is given by equation (14) and the optimal steady state capital stockk∗ is given by equation

(4). Further, we can use induction to prove the following result

TheoremV(k) is strictly concave.

The proof involves consideringV over the three different regionsk ∈ [0,k), k ∈ [k,k] andk ∈ (k,∞).

In the middle region,V(k) = f (k) + (1− δ)k+C and strict concavity in this region follows from the

assumption thatf (k) is strictly concave. In the upper region(k,∞) V is given by formula (21) and it is

straightforward to see thatV is strictly concave in this region as well. Finally in the initial “no dividend”

region[0,k), the concavity follows from an induction argument. We first show by induction that for each

j ≥ 1 thatT j(k) is concave. Then using the properties of compositions of concave functions, it is easy to

show from equation (32) thatV is strictly concave on[0,k) as well.

Figure 2 plots the optimal investment and dividend rules forthe casef (k) =
√

k. We see that optimal

investment intersects the black “replacement investment”line (i.e. the lineδk) exactly atk∗, the optimal

steady state capital stock level, which equals 23.73 in this example. The level of optimal investment at the

steady state isδk∗ = 1.1867, which of course is just enough to offset the corresponding depreciation in

capital.

Figure 2 plots the value function for this problem. Notice there are no discontinuities in the value

function at the various break points,{k j} and{k∗/(1−δ) j} above and below the cutoffsk andk defining

the region where investment and dividends are positive. Thevalue function is monotonic and strictly

concave ink and satisfiesV(0) = 0.

The dynamics of the capital stock are clear: starting from any k the capital stock converges globally

to the unique optimal steady state levelk∗ in a finite number of periods. Fork∈ [k,k] the firm undertakes

investmentI(k) = k∗− (1− δ)k enables it to jump to the optimal steady state valuek∗ in a single period.

When initial capital is either below or above this region, the firm has to wait several periods for capital to

accumulate above the lowerk threshold, or depreciate down below the upperk threshold.
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3 Extending the model to allow debt

Note that the solution we provided above has the “boundary condition” V(0) = 0, i.e. if a firm has no initial

capital stock, it will not have any cash flows to invest, and thus it is never able to “get off the ground” even

though there may be an attractive production technologyf (k) that the firm “owns”. We might think off

as the “entrepreneurial idea” but that idea cannot be implemented with an actual cash investment to get

the firm going. As long as the firm has some way of getting this initial investment, it is enough to get it

going and eventually a sequence of investments will lead it to reach the optimal steady state capital stock

k∗, which is the same capital stock it would choose if it had sufficient capital to make a large one time

investment at the optimal scale.

We now extend the model to all the firm to make aone timeborrowing decision at period 0. The firm

would borrow enough funds to purchase an initial amount of capital to get the firm going. We assume
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that the capital cannot be installed instantaneously so that cash flows from the capital stock the firm can

achieve with the borrowing are not realized immediately, but start in period 1. Interest payments on the

debt also start in period 1 and continue indefinitely becausethe only means of finance is via a consol. We

also assume that there are no “borrowing constraints” so that the firm can choose to borrow enough capital

to reach the optimal steady state capital stock levelk∗. Will it be optimal for the firm to borrow enough to

install a plant of sizek∗ in period 0?

We will show that it depends on the amount of capital the firm already has in place, and the interest rate

at which it can borrow, which we denote byrb. Recall thatr = 1/β−1 is the “market rate of interest” at

which future dividends payed by the firm at discounted. We will now show that ifrb = r andk< k∗, it will

be optimal for the firm to borrow an amountk∗−k so that it can attain the optimal steady state capital stock

immediately, without any further delay. However ifrb > r, then the firm will find it optimal to borrow a

lower amount so that its initial capital stock that it reaches after this borrowing,k∗(rb), is strictly less than

k∗. The firm will then invest from its cash flows and in a finite number of periods after this, its sequence

of investments will lead it to reach the optimal steady statecapital stockk∗.

We work with a simplified “one shot” model of debt because of the complexities of modeling debt in

a dynamic programming framework. Any debt with a finite maturity date requires more state variables to

describe how many periods are left to pay off the existing debt, at what interest rate, and what level of in-

terest plus principal payments are made over time. Further,if the firm periodically issues new multiperiod

debt contracts, we have to keep track separately of all theseadditional state variables for each separately. It

is only convenient to deal with two polar extremes: 1) a one time issuance of perpetual debt (e.g. a consol),

or 2) roll-over of single period debt contracts. We will start by discussing the first borrowing option and

then at the end of this section consider the case of financing the firm’s investments using a sequence of

single period debt contracts.

For the case of perpetual debt, if the firm borrows amountb in period 0, it will pay that back over an

infinite stream of fixed interest paymentse in periods 1,2,3, . . .. If the rate of interest isrb, in a single

period debt contract the amount due in period 1 would be(1+ rb)b. If the borrowed amountb were

financed via a consol, the amount of each paymente has to be calculated so that the present value of a

perpetual stream of payments ofeper period equalsb(1+ rb), or

(1+ rb)b= e
∞

∑
t=0

(

1
1+ rb

)t

=
e(1+ rb)

r
(33)

and hencee= rbb, which is just the interest on the amount borrowedb. Now suppose the firm has initial
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capitalk and wishes to borrow amountb in period 0, paying back the amount borrowed in periods 1,2,3, . . .

using a consol with per period paymente= rbb as discussed above. How much should the firm borrow if

it faces no borrowing constraints?

The easiest case to consider is wherer = rb, i.e. where the firm can borrow at the same rate of interest

as the market discounts its future dividend payments to shareholders. The value of theequityof the firm

that has borrowed amountb at time period 1 is just the value of the firm at time 1,V(b+k), less the present

value of the consol payments,(1+ r)b, so the optimal borrowing levelb∗ is the solution to

b∗ = argmax
b≥0

V(k+b)−b(1+ r)
(1+ r)

. (34)

Note that since cash flows and interest payments from the investment at time 0 do not commence until

time period 1, we discount the net value of the firm at time 1,V(k+b)−b(1+ r), to obtain the net present

value of borrowing an amountb as of period 0.

Assume thatk is not too large that there is an interior solution, and conjecture that the solution occurs

in the region[k,k] whereV(k) = f (k)+(1−δ)k+C. Then we have that the optimal amount to borrow,b∗

satisfies

f ′(b∗+k) = r +δ (35)

but sincef ′(k∗) = r +δ as we have shown above, it follows that

b∗ = k∗−k, (36)

i.e. the firm borrows enough to reach the optimal steady statecapital stockk∗. If k > k∗, then sinceV is

strictly concave ink, we haveV ′(k)< r+δ, so we conclude thatb∗ = 0. Thus, we have derived the optimal

debt policy for the firm in period 0:

b∗(k) =

{

k∗−k if k< k∗

0 if k≥ k∗
(37)

Now consider the case whererb > r. This seems appropriate in many cases where firms can borrow,

but at a higher interest rate than the “market interest rate”. Though there is no uncertainty in this model, it

can reflect market imperfections where it is more costly for firms to borrow, though we will also consider

the opposite case whererb < r, which can also arise in real world situations with stochastic returns when

a firm’s dividend stream is considered to be sufficiently risky that it is discounted at a higher rate than the

rate the firm can borrow at.
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If the firm has an infinite stream of debt payments equal toe= rbb to pay out due to borrowing amount

b, the present value of this streamdiscounted at the market interest rate r back to period 0is brb/r. So the

firm’s problem in this case becomes

b∗ = argmax
b≥0

V(k+b)/(1+ r)−brb/r (38)

The first order condition forb∗ is given by

V ′(k+b∗) = (1+ r)rb/r, (39)

and by the strict concavity ofV there is a unique solution to this equation. Definek∗(rb) as the solution to

V ′(k∗(rb)) = (1+ r)rb/r, then it is easy to see thatb∗ = k∗(rb)−k.

Assume thatk∗(rb) ∈ [k,k]. In this region we haveV(k) = f (k)+(1−δ)k+C. In this case the optimal

borrowing levelb∗ satisfies

f ′(b∗+k) = δ+ rb+
(rb

r
−1

)

> δ+ r (40)

which implies thatb∗+k< k∗. Thus, it is optimal for the firm to borrows an amount that is insufficient to

enable it to reach the optimal steady state capital stockk∗ right away in period 0. Instead this initial loan

helps it to get most of the way there, but it is not optimal to borrow the full amountk∗−k due to the higher

cost of borrowing in this case. We conclude that the optimal borrowing by the firm whenrb > r is given

by

b∗(k) =

{

k∗(rb)−k if k< k∗

0 if k≥ k∗
(41)

The solution in the case whererb < r does make a lot of sense in this example. If there are truly no

borrowing constraints, the firm should want to borrow an infinite amount. The reason is that for each

dollar the firm borrows at period 0, it starts an infinite stream of consol payments in periodst = 1,2,3, . . .

that has present value (evaluated at the market interest rate r) of (1+ r)rb/r in period 1. Discounting this

back to period 0, the effect of borrowing 1 today on the net present value of the firm (even if the amount

borrowed is not used to finance investment) is 1− rb/r > 0, so the firm can increase its value without

bound by borrowing an infinite amount if it can. For this reason we do not consider the caserb < r any

further in this simple example.

When the firm has debt its value becomesV(k∗(rb))− (1+ rb)(k∗(rb)−k) in the regionk∈ [0,k∗(rb)]

and is equal toV(k) for k > k∗(rb), whereV is the solution to the Bellman equation (2) in the case of a

firm that does not have a borrowing option. So the borrowing option replaces the strictly convex segment
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Figure 2: The effect of borrowing on firm value

of V(k) over the interval[0,k∗(rb)] with the linear segment, and in particular, the firm has a positive value

even whenk= 0 when it can borrow, whereas it has no value when it cannot borrow.

The gains from debt finance are illustrated in figure 2 below which shows an example wherer = 0.05,

rb = 0.08 and f (k) =
√

k. The firm chooses to borrow only enough to reach a capital stock of k∗(rb) =

14.7929, more than 10 less than the optimal steady state capitalstock,k∗. The firm uses internal finance

(retained earnings) to reachk∗, and sincek∗(rb) < k = 21.446, it forgoes paying dividends for several

period until it can accumulate sufficient capital to enter the zone[k,k] where it has enough cash flow to

finally reachk∗ without forgoing all dividend payments to shareholders.

Now consider a firm that can only borrow via a sequence of one period debt contracts. The firm faces

a borrowing constraintB on the total amount that the market will lend it at interest rate rb ≥ r each period.

So if the firm borrowsb at period 0, it must pay back principal and interest(1+ r)b in period 1. It can

borrow some amountb′ ≤ B in period 1 and continue on in this way indefinitely, financingits investments

as it needs to via a sequence of one period loans. We now letV(k,b) denote the present value of a public

firm that has capital stockk and total debt ofb. The Bellman equation for this firm is given by

V(k,b) = max
0≤b′≤B

I≤ f (k)+b′−b

[

f (k)− I +b′−b+βV(k(1−δ)+ I ,b′(1+ r)),0
]

. (42)

In the Bellman equation (42) we have written the valueV(k,b) as a maximum of 0 or the value of con-

tinuing to operate as an ongoing concern. This effectively serves as a “bankruptcy constraint” that the

value of the equity of the firm can never be less than 0 due to limited liability (shareholders cannot be
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paid “negative dividends” to cover interest and principal on debt, if the cash flows of the firm are not large

enough to enable the firm to pay its accumulated debt). In particular, if the debtb is so large that there

is no feasible solution to the first optimization problem on the right hand side of (42), then the value of

the firm would also be zero. This could correspond to a situation where even if the firm invests zero and

pays no dividends, there is not enough cash flowf (k) to repay the current amount due,b, even if the firm’s

new borrowingb′ equals the maximum amount allowed,B. The firm would effectively be bankrupt at that

point, and the bondholders would take control of the firm and operate it in a way to recover as much of the

outstanding debt as possible.

Note that with one period debt, and when the borrowing limitB is sufficiently large to enable the firm

to reach the optimal capital stockk∗(rb), the firm can replicate the borrowing it could do with a consolby

perpetually rolling over one debt. That is, the firm borrowsb at period 0 and must pay backb(1+ r +b) at

t = 1. But it also borrowsb at t = 1 so its net cash out flow att = 1 is justb−(1+ rb)b=−brb. Continuing

this way, the firm could maintain a debt load ofb indefinitely at the cost of a constant stream of interest

payments ofbrb per period, the same as it would have to pay if it financed the investment by a consol.

However whenrb > r, the firm can increase its value by paying off its debt as fast as possible rather than

maintaining the debt perpetually as is the case with a consol. Thus, in principle the firm should be able to

increase its value via proper debt management when it can finance itself via a sequence of one period debt

contracts.

Unfortunately a full treatment of this case appears to be very difficult and is beyond the scope of this

note. We can partially solve the problem in certain “easy cases.” For example, ifk> k, we know from the

optimal solution to the problem without debt that optimal investment is zero in this region. It is natural to

conjecture that this is also the case when the firm can borrow.However even this case is complicated. If

rb = r, then the time path over which the firm pays off its debts should be irrelevant. It is easy to show that

this is indeed the case whenk > k. Then, we conjecture thatV(k,b) =V(k)−b whereV is the solution

to the Bellman equation (2) for the firm problem without debt.Inserting this conjecture into the Bellman

equation (42) we obtain

V(k,b) =V(k)−b= max
0≤b′≤B

I≤ f (k)+b′−b

[

f (k)− I +b′−b+βV(k(1−δ))−b′,0
]

. (43)

We have already shown thatI(k) = 0 whenk > k and this continues to be the case in the case with debt

above. We also see thatb′ completely cancels out of the right hand side of equation (43) so the value on

the right hand side reduces toV(k)−b, verifying that our conjectured solution is correct.
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However whenrb > r, the debt policy of the firm matters, even whenk> k. In this caseV(k,b) cannot

be given by the previous conjectured formV(k,b) =V(k)−b. To see why, suppose this conjectured form

did hold, then we would have a modified version of equation (43) given by

V(k,b) =V(k)−b= max
0≤b′≤B

I≤ f (k)+b′−b

[

f (k)− I +b′−b+βV(k(1−δ))−β(1+ rb)b
′,0

]

. (44)

Sinceβ(1+ rb) = (1+ rb)/(1+ r) > 1, we now see that the right hand side of equation (44) is strictly

decreasing in borrowingb′ and so the optimal solution now isI(k) = 0 andb′ = max[b− f (k),0], and this

implies that

V(k,b) =V(k)+max[b− f (k),0]

(

1− 1+ rb

1+ r

)

6=V(k)−b. (45)

In general, debt management becomes a much more complex problem whenrb > r, and it may in fact be

optimal for the firm to invest even in the “no investment region” k> k because the investment can result in

greater cash flows that can help the firm to retire its debt morequickly.

Due to the complexities identified above, it is not clear how many purely analytical insights we can

obtain for the firm’s problem with single period debt contracts. It may be that we need to resort to solving

the problem numerically, a task we defer to a future paper.

4 Optimal investment for a private firm

Consider an individual who owns the production technology and who has private wealthw that they can

invest (partially or fully) in their own firm. The individualhas utility functionu(c) satisfyingu′(c) > 0

and u′′(c) < 0. The suppose the market interest rate isrm but the individual’s personal interest rate is

rp and thus the individual discounts future utility using discount factorβ = 1/(1+ rp). If the person

purchased an annuity with their initial endowment of wealthw they would receive discounted lifetime

utility of u(rw)/(1−β). Now suppose instead the person invests their wealth to buy an equivalent amount

of capitalw= k and from each period onward the owner manages the firm to obtain dividends which he/she

consumes. What is the optimal investment and dividend policy for this “privately held firm”?

Suppose thatw > k∗ wherek∗ is the optimal steady capital stock of the publicly held firm given in

equation (4) above. Is it optimal for the owner of the privatefirm to invest this amount too? Assume

that after making an initial capital investmentk, the private owner restricts attention to “steady state”

investment policiesI(k) = (1−δ)k that will maintain the capital stock of the firm at the initially invested

valuek forever. What is the optimal value ofk that the owner would choose?
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This is given by the solutionk∗p to

k∗p = argmin
0≤k≤w

u( f (k)−δk− r(w−k))
1−β

. (46)

The first order condition for the optimal steady state policyis

f ′(k∗p) =
1
β
−1+δ (47)

so we see in fact thatk∗ = k∗p: the owner of a private firm would invest to the same steady state capital

stock value that a publicly held firm would choose if it were tomake an initial investment and be able to

borrow the funds necessary at the same interest rate as the discount rate the market uses to value the firm

(i.e. to discount its future dividend stream).

However assume thatw< k∗. For the moment, let’s conjecture that the owner would choose to invest

all of his/her wealth in the firm, so they will receive no annuity income after sinking all of their initial

wealth as an investment in their firm. Assuming the owner cannot borrow, the Bellman equation for the

privately held firm is given by

V(k) = max
0≤I≤ f (k)

[u( f (k)− I)+βV(k(1−δ)+ I)] . (48)

The first order condition for optimal investment is given by

u′( f (k)− I(k)) = βV ′(k(1−δ)+ I(k)). (49)

If we were to assume an “Inada condition” i.e. that limc↓0 u′(c) = +∞, then it is easy to see that the

optimal investment policy will always entail paying some positive level of dividends, i.e.I(k)< f (k) for

all k. However it may still be the case that if the firm had sufficientcapital, it may be optimal not to invest,

i.e. I(k) = 0 for k ≥ k, though the value ofk may be different than the valuek = k∗/(1− δ) at which a

public firm stops investing.

Using the Envelope theorem, we have

V ′(k) = u′( f (k)− I(k)) f ′(k)+βV ′((1−β)k+ I(k))(1−δ), (50)

but using the first order condition (49) we have

V ′(k) = u′( f (k)− I(k))[ f ′(k)+ (1−δ)], (51)
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and substituting this back into the first order condition (49) we can derive the Euler equation characterizing

the private investor’s optimal investment policyI(k)

u′( f (k)− I(k)) = βu′ ( f (k(1−δ)+ I(k))− I(k(1−δ)+ I(k)))
[

f ′(k(1−δ)+ I(k))+ (1−δ)
]

. (52)

This is a non-linear functional equation forI and it is ordinarily not an easy one to solve via numerical

methods. It is not clear there there is a closed form solutionin this case, unlike the one we found for the

optimal investment policy of a publicly held firm.

However we can show there is a unique steady state solutionk∗p to the Euler equation, and thatk∗p =

k∗, the same steady state solution for a public firm. Note that any steady state, we haveI(k) = δk and

substituting this forI(k) in the Euler equation above we obtain

u′( f (k)−δk) = βu′ ( f (k)− I(k))
[

f ′(k)+ (1−δ)
]

, (53)

or f ′(k) = 1/β − 1+ δ, for which the only solution isk = k∗. This suggests that even if the private

investor does not have sufficient initial wealth to invest inthe firm at the optimal levelk∗, the subsequent

investment policy will lead the firm to gradually accumulatecapital and converge to the optimal steady

state asymptotically.

Figure 4 plots the optimal investment and dividend policy functions for a privately held firm and

compares them to the ones chosen by a publicly held firm. The solutions for the privately held firm were

calculated numerically using the discrete policy iteration algorithm described in section 4 below. We see

that both are quite different from each other. The top left panel shows the optimal dividend policies plus

the level of replacement investment necessary to keep the capital stock from declining. The intersection of

the optimal investment curves and the black replacement investment line defines the optimal steady state

capital stock levelk∗ and as predicted by our analysis above, we see that it is the same for both the public

and privately held firm.

Away from the steady state, investment and dividends are quite different from each other. Investment

by the privately held firm is less than investment by the public firm for k ∈ (0,k∗], but investment by the

privately held firm is greater than investment by the public firm for k> k∗. The pattern for dividends is the

opposite: the private firm pays higher dividends than the public firm for k ∈ (0,k∗], but lower dividends

for k> k∗, unless capital is sufficiently high that both the public andprivate firm stop investing, and in this

region the dividend payments coincide.

The lower left panel of figure 4 plots the value of the privately held firm V(k) and compares it to

the utility the investor would have obtained if they invested all of their wealth in an annuity earning the
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market rate of return. We see that at least if investment is framed as an all or nothing choice, it is always

preferable for the investor to invest their wealth in the private firm rather than in an annuity. The private

firm generates sufficiently greater returns to dominate the return ofr = .05 that the person could obtain

from an annuity. Another way to see this is to look at the blackline in the right hand top panel of figure

4. This plots the annuity income the investor would receive each period if they invested all of their wealth

into an annuity. We see that the dividend income from investing in a private firm dominates the annuity

income they would receive at all levels of initial investment k.

Finally, the lower right hand panel of figure 4 compares the evolution of investment and capital stock

for a public and a private firm that each begin life with an initial capital stock ofk = 1. We see that due

to the higher early investment, the public firm reaches the steady state capital stockk∗ = 25 after only 15

periods, whereas the privately held firm approachesk∗ only asymptotically.

Now consider a final question. Suppose the person who “owns” the technology has a third option:

instead of investing their own wealth in their firm, the ownercould “take their firm public” via an IPO
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(initial public offering) and after the IPO the firm would be be run by a professional manager whose

objective is to maximize the present value of dividends. By selling off a 100% stake in the firm at the IPO,

the owner no longer has any operating control over the firm, but the owner can take the proceeds raised by

the IPO and buy an annuity and live happily ever after on this annuity income. What will the owner decide

to do: sell their firm in an IPO, or keep the firm private?

If there are no transactions costs to doing an IPO, the answeris clear: the owner of the production

technologyf (k) will do better by investing their initial wealthw to provide the capital to start the firm (so

k= w), and then immediately hold an IPO. LetVm(k) be the market value of the firm (which does not have

access to borrowing, similar to the privately held firm) given by the solution to the Bellman equation (2)

in section 2. This represents the funds the owner would raiseif this firm were to be sold in an IPO. The

owner can then use these IPO proceeds to purchase an annuity equal to(1−β)Vm(k). Thus, the discounted

utility to the owner from holding an IPO is given by

Vpub(k) =
u((1−β)Vm(k))

(1−β)
, (54)

and the owner compares this value to the value of keeping his firm private and operating it to maximize

their lifetime discounted utility. Call this valueVpri(k), which is the solution to the private owner’s Bellman

equation (48).

Figure 4 below plots these two value functions,Vpub andVpri as well as the value of simply using their

initial wealth to buy an annuity,u((1−β)w)/(1−β). Though it is slightly hard to see, the value of doing an

IPO uniformly dominates the value of running the firm as a private company. The reason is that the owner

of a private firm, while undertaking aprivately optimaldividend and investment policy, are nevertheless

adopting asuboptimal policyfrom the standpoint of maximizing the market value of the company. The

distorted dividend and investment policies that we illustrated above, plus the slower trajectory of capital

accumlation due to a private owner’s incentive to pay dividends in every period are costly in terms of

lowering the present value of what the owner could consume ifhe/she sold the market to a professional

manager whose objective is to maximize the market value of the firm. In essence, it is better for the

owner to use theannuity marketto smooth their consumption, than to attempt to do this on their own by

distorting their investment and dividend policy. By doing an IPO, the owner allows the new management

to adopt value maximizing investment and dividend policiesand the owner is free to take these proceeds

and smooth their consumption stream in the annuity market. This is another example of what is known as

aseparation theoremin the finance literature.
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Figure 4: The value of going public with zero transactions costs

There is exactly one point where the owner is exactly indifferent between doing an IPO or keeping

his/her firm private. Care to guess what that point is? Yes, you guessed it:k∗. At the optimal steady state

capital stock the owner does adopt a value maximizing dividend and investment policy, and stays at that

point forever. So at this particular capital stock, the owner would be indifferent between going public or

staying private.

Now suppose there are transactions costs associated with doing an IPO. In many countries interme-

diaries such as investment banks charge hefty proportionaland fixed transaction fees. A common pro-

portional fee for doing an IPO is 7% of the proceeds raised, and the fixed costs can often be hundreds of

thousands or even millions of dollars depending on the size of the company that is sold. Figure 5 plots the

value of staying private and the value of selling in in an IPO in the case where the proportional transactions

costs are 7% and the fixed transactions costs are zero.

We see that in the presence of transactions costs, it is no longer better to go public regardless of the

initial capital stock of the firm. It is only optimal forsufficiently small firms to do an IPO.Once the firm

has sufficient capital, it generates enough income from retained earnings to enable investment that can take

the private firm close enough to the optimal steady state capital stockk∗ that is it not optimal for it to do

an IPO: the transactions costs involved in doing the IPO outweigh the benefits from going public.

The model can be extended to allow for debt. If we assume that the firm can take on debt at the same

time it goes public, the advantages to doing an IPO are enhanced. This is illustrated by the black line in

figure 5. When debt is allowed, the public firm has greater value because it is able to raise more capital to
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accelerate its investment, enabling it to immediately jumpto the steady state capital stockk∗ immediately

after the IPO. This results in a bigger region of capital stocks over which it is optimal to do the IPO despite

the 7% transaction cost.

Of course, we could also assume that the private investor either had sufficient initial wealth or could

also borrow and be able to make an initial investment equal tothe optimal steady state capital stockk∗. If

the owner did this, then as we have shown above, there is no reason to do an IPO since the owner has been

able to invest at a scale to achieve a value maximizing investment and dividend policy and so there is no

benefit from doing an IPO and only transactions costs.

If the owner of the firm intiially has limited wealth and borrowing potential, then we have shown that

these are the conditions where an IPO makes sense, even despite the high transactions costs. The IPO

enables the small firm to raise the capital necessary to invest at the efficient scale (or at least approach it

more quickly if the firm is not able to borrow as much as it needsimmediately after the IPO) and this gain

more than offsets the transactions cost of doing the IPO.

5 IPOs with partial cash-outs

Most IPOs do not entail a 100% sell-off of the original owner’s stake in the company. Intead, the original

owner retains a partial ownership stake in the firm, and only takes part of the IPO proceeds in cash to

finance consumption or other investment projects. The otherimportant role of a partial cash-out is that

when the original owner continues to own a significant share of the post-IPO company, the share of the
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IPO proceeds that the owner does not “cash out” are re-invested in the company, thereby providing a new

infusion of capital to the firm after the IPO that is not reflected in our analysis of an IPO with a 100% cash

out by the original owner. Thus, an IPO can have two effects that can boost the value of the firm: 1) the

IPO can switch the objective function of the firm from utilitymaximization of the private owner to one of

value maximization in the market (an effect we describe as a “moral hazard effect”), and 2) to the extent

that the original owner reinvests some of the proceeds of theIPO back into the company, it represents a

new source of capital to the firm (an effect we describe as the “financing” or “leverage” effect of the IPO).

Suppose the firm is originally a privately owned firm by a sole owner, and the owner chooses to take

the firm public via an IPO and retain only a fractionα ∈ (0,1) of his/her original 100% ownership stake

in the firm. Thus, after the IPO the original owner will own a fractionα of the firm (i.e. α is fraction of

shareholdings still owned by the founder of the firm) and the outside investors who bought shares in the

new firm will own the remaining fraction 1−α of the firm’s shares.

The “IPO proceeds” equal the total amount the founder receives from selling shares in the newly public

firm to the new “outside investors” and the founder can eitherreinvest these funds to increase the capital

stock (and hence future profit/dividend stream of the firm), or take some or all of the proceeds as a “cash

out” for private consumption purposes (e.g. to buy an annuity). Or the founder might want to reinvest

some of the IPO proceeds in other nascent investment projects such as to found some other new firm. We

will let the symbolω ∈ [0,1] represent the fraction of the IPO proceeds that the owner chooses to take out

for consumption or other investment purposes, and thus the fraction 1−ω is reinvested in the firm.

Let P(k,α,ω) represent the IPO proceeds received by a founder/owner of a private firm who decides

to take the firm public when it has initial capitalk, and the owner chooses to retain an ownership shareα

after the IPO, and to “cash out” a fractionω of the IPO proceeds and reinvest the remaining fraction 1−ω.

We assume that the fractionsα andω are publicly observable, as a newly public firm must meet various

accounting standards that are designed to protect outside investors from fraud such as “take the money and

run” schemes that are patent ripoffs of unsuspecting investors. It is one function of intermediaries such

as investment banks to do thedue diligenceto investigate a private firm that wishes to go public with an

IPO and verify that the company really does exist and the founder will not “take the money and run” after

an IPO. Thus, the reputation of the investment bank intermediary, in addition to market regulation (such

as is done by government agencies such as the Securities and Exchange Commission) helps to convince

outsider investors that an IPO is legitimate and is not a thinly disguised take the money and run scheme.

We assume that an investment bank intermediary incurs costsof doing the due diligence and insuring
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that a private firm that wants to go public via an IPO is legitimate. The investment bank recovers the

costs of providing these services by charging a proportional fee ρ ∈ (0,1) plus, possibly, a fixed feeF.

Thus if the gross proceeds of the IPO areP(k,α,ω), the net proceeds received by the founder from the

investment bank (after it deducts its fees) are(1− ρ)P(k,α,ω)−F. Initially we will study the IPO in a

“frictionless market” setting where the costs of doing due diligence are zero, and hence we initially assume

thatρ = F = 0. In this case, the gross and net proceeds of the IPO coincide.

In a market wherek, α andω are public information, and where the operations of a publicfirm are

sufficiently regulated by both government regulators and the discipline of market competition, the public

will also have a rational expectation that the newly public firm operates to maximize the discounted stream

of dividend payments to its shareholders. In this case we canwrite an equation for the new proceeds of the

IPO as

P(k,α,ω) = (1−α)V(k+(1−ω)[P(k,α,ω)(1−ρ)−F ]). (55)

whereV(k) is the value of a public company with capital stockk as defined in the Bellman equation

(2) in section 2 above, which is the value of the company afteran IPO withα = 1. In equation (2) we

assume that the net proceedsP(k,α,ω)(1− ρ)−F ≥ 0, otherwise it is not clear that the founder would

see any benefit to doing the IPO. Further we assume thatk > (1−ω)F . This implies that the function

V(P) = (1−α)V(k,(1−ω)[P−F]) satisfiesV(0)> 0, and together with the strict concavity ofV implies

that there is a unique solutionP(k,α,ω) to equation (55). Furthermore, it is easy to see from the strict

concavity, that at this solution we have 1> (1−α)(1−ω)(1−ρ)V ′(k+(1−ω)[P(k,α,ω)(1−ρ)−F ]).

This implies that, in equilibrium, if an additional dollar were raised in the IPO, the amount of this extra

dollar, net of IPO costs and the fraction of proceeds taken out by the founder, will raise the market value

of the fraction of the shares held by the outside investors, 1−α, by less than 1 dollar.

Equation (55) tells us that the IPO proceeds will equal the value of the outside shareholders’ share of

the firmafter the original founder has reinvested the fraction 1−ω of the net proceedsP(k,α,ω)(1−ρ)−F

received from the investment bank as new capital for the newly public firm. The IPO proceeds is implicitly

defined as the solution to equation (55) above. Due to the strict concavity ofV(k), there is a unique solution

to (55) for eachk≥ 0 and eachα ∈ (0,1), andω ∈ [0,1]. The Implicit Function Theorem guarantees that

P(k,α,ω) is continuously differentiable in its argumentsk, α andω for almost all values ofk, α andω
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with derivatives

∂
∂k

P(k,α,ω) =
(1−α)V ′(k+(1−ω)[P(k,α,ω)(1−ρ)−F ])

1− (1−α)(1−ω)(1−ρ)V ′(k+(1−ω)[P(k,α,ω)(1−ρ)−F])
∂

∂α
P(k,α,ω) =

−V ′(k+(1−ω)[P(k,α,ω)(1−ρ)−F])
1− (1−α)(1−ω)(1−ρ)V ′(k+(1−ω)[P(k,α,ω)(1−ρ)−F])

∂
∂ω

P(k,α,ω) =
−V ′(k+(1−ω)[P(k,α,ω)(1−ρ)−F])

1− (1−α)(1−ω)(1−ρ)V ′(k+(1−ω)[P(k,α,ω)(1−ρ)−F])
(56)

It follows thatP(k,α,ω) is increasing ink and decreasing inα andω, as we would naturally expect.

We can viewP(k,α,ω)/(1−α) as the market’s rational expectation of the total value of the firm

following an IPO where it has full knowledge of the fraction of the firm owned by the founder after the IPO,

and the fraction of the IPO proceeds that the founder cashed out for consumption or other purposes, leaving

only the fraction 1−ω of the net proceeds as the amount of new investment the firm actually undertakes

as a result of the IPO. It also is contingent on the assumptionthat after the IPO the firm will be run in

a discounted profit maximizing manner, even if the owner retains a majority stake in the company after

the IPO. Thus, our theory of rational market valuation following an IPO and partial cash out encompasses

both the moral hazard and financing/leverage effects that anIPO can have on the valuation of a company

that we discussed above.

Figure 6 illustrates how an IPO can be used as leverage, substantially increasing a firm’s value by

reinvesting a fraction of the IPO proceeds to acquire more capital, which further increases the value of the

firm. We focus on a small private firm that has an initial capital stock ofk= 3 when it decides to go public

via an IPO. We plot the value of the firm as a fraction ofα, the fraction of the firm that the founder chooses

to own after the IPO. We assume thatω = 0, so that the owner does not divert any of the IPO proceeds to

any other purposes except reinvestment in the firm. The left panel of figure 6 plots the total value of the

firm, the amount reinvested, and the value of the share of the firm owned by the founder as a function of

α.

Notice that the value of the founder’s interest in the firm is zero whenα = 0. Clearly it would make no

sense for the founder to sell off his/her entire ownership interest and then reinvest all proceeds back into a

firm he/she no longer owns: this would be a nice gift to the new shareholders but not something that the

founder would want to do absent a peculiar sense of altruism to outside investors. The case whereα = 1

corresponds to a situation where the founder decides to takethe company public but without raising any

new capital from outside investors. There is no new investment resulting from the IPO in this case, and

the value of the firm is equal to the value we already calculated in section 4 under 100% sell off option,
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Figure 6: Value of a firm after IPO, and return to investment from IPO proceeds

namely $52.47.

The black line in the left hand panel of figure 6 shows that amount of the IPO that is reinvested in

the firm as a function ofα. If the owner was to be so nice to sell off his/her entire ownership interest to

outside invstors and reinvest the entire IPO proceeds in thefirm, the firm would attain its maximum value

of $217.58, which equals the amount of new capital the original owner reinvests in the firm. However if

the owner were to retain 50% ownership, the value of the firm is$110.41, which is double the amount the

original owner reinvests in the firm whenα = .5. Thus, the owner obtains a 100% return from doing an

IPO and reinvesting half of their ownership stake in the firm,even though the outside investors will also

benefit from this investment made by the founder. The founder’s net worth after this deal is $55.21, which

exceeds the founder’s net worth from the option of selling off his entire ownership stake and not reinvesting

any of the IPO proceeds back in the company, $52.47. Thus, some degree of apparent “altruism” towards

the outside shareholders by the founder is actually in the founder’s self-interest.

If we consider which value ofα maximizes the founder’s net worth after the IPO (assumingω is fixed

at 0), we find thatα = .64 and the founder’s net worth (i.e. the value of his/her ownership stake in the

post IPO firm) is $57.47. The founder invests $32.08, and the total value of the firm is $89.13 after this

investment. Thus, the return on this investment is equal to(57.47−32.08)/32.08= .7915. This represents

a very high return even though the founder is not able to capture all of the benefit from this investment:

the outside investors reap 36% of the increase in the firm value resulting from the founder’s reinvestment

of the $32.08 in IPO proceeds back into the capital stock of the firm.

The right hand panel of figure 6 plots the rate of return on the marginal dollar the owner reinvests in the
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firm, as a function ofα. The first dollar reinvested has an exceptionally high rate of return in this example.

Naturally there are diminishing returns to investment and so the return falls asα (the fraction the owner

cashes out) decreases quick to zero asα tends to zero. However even whenα = 0.64, the founder obtains

a 79% return on their investment as we noted above.

To complete the model, we now discuss the founder’s choice ofα andω. It is simplest to consider

the case where the only motive for a cash out is to buy an annuity to smooth consumption. If the owner

retains ownership of a fractionα of the company following the IPO, the owner could initially invest this

fraction of the IPO proceeds in the company (to benefit from the effective leverage or financing effect of

the IPO) and then immediately sell off this residual stake after the IPO and the investment in new capital

is completed. Then the owner could purchase an annuity with the total proceeds. Under this formulation

of the owner’s problem we have that the optimal values ofα∗ andω∗ solves

(α∗(k),ω∗(k)) = argmax
α∈[0,1]

argmax
ω∈[0,1]

u((1−β)(ω+α/(1−α)P(k,α,ω))/(1−β). (57)

Notice that the optimal fraction to cash out depends on the size of owner’s initial capital stockk when the

firm is privately held, just prior to doing the IPO. Sinceu is monotonically increasing, the founder’s prob-

lem reduces to simply maximizing the value of his/her net worth following the IPO, where the net worth

is a combination of the cash taken out of the IPO proceeds,ωP(k,α,ω), plus the value of the founder’s

sharedholdings in the post-IPO company,αV(k+(1−ω)[P(k,α,ω)(1−ρ)−F ]) = αP(k,α,ω)/(1−α).

Thus, the founder’s problem reduces to

(α∗(k),ω∗(k)) = argmax
α∈[0,1]

argmax
ω∈[0,1]

(ω+α/(1−α))P(k,α,ω) (58)

Figure 7 plots the net worth of the founder,(ω+α/(1−α))P(k,α,ω) as a function of(α,ω). It turns

out that this function is symmetric as a function of(α,ω) about the diagonal lineα=ω. As a result we find

two symmetrically located optimal solutions,(α∗(k),ω∗(k)) = (.42, .38) and(α∗(k),ω∗(k)) = (.38, .48),

and both yield the optimal level of net worth for the founder equal to $57.04. We see that when we fixα,

if α is sufficiently small, the founder’s net worth is initially increasing inω and then decreasing, so there

is an optimal value of the cash out fractionω∗(k,α) for any fixedα. By symmetry, there is also an optimal

value of the fraction of ownershipα∗(k,ω) that the founder should retain for any fixed cash out fractionω

providedω is not too close to 1.

However if we fix a value forα that is sufficiently large, sayα > .7, then the net worth of the founder

is monotonically decreasing inω and thus the optimal valueω∗(k,α) = 0 whenα is sufficiently large.
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Figure 7: Net worth of founder, as a function of(α,ω)

That is, the founder does not want to cash out if he/she decides to retain a sufficiently large stake in the

firm: the return to reinvesting in the firm is higher. By symmetry this is also true forα whenω is fixed

as a value that is sufficiently large: the optimal ownership stake is zeroα∗(k,ω) = 0. Thus, if the founder

precommits to cashing out a sufficiently large share of the IPO proceeds, the founder will also will not find

it optimal to retain any ownership interest in the firm.

The optimal combination(α∗(k),ω∗(k)) represents the tradeoff between the founder’s desire to reinest

in the firm, but tempered by the disincentive effect of the fact that the larger the amount the founder sells

to outside investors, the less the founder benefits from reinvesting the IPO proceeds back into the firm.

6 Solving the model using Discrete Policy Iteration

This section describes the numerical solution of the model using the Howard (1960)policy iterational-

gorithm. This algorithm was originally developed to solve infinite horizon stationary Markovian dynamic

programming problems (often abbreviated as MDPs for Markovian Decision Problems) on afinite state

spaces. The optimal investment and dividend problem is superficially not a finite state MDP in the fol-

lowing senses: 1) the state space is continuous (the entire positive real line,k ≥ 0), and 2) the problem is

deterministic, rather than stochastic. Despite these differences, we show that policy iteration can still be

applied, but to solve the problem on a finite subset orgrid of points in the state space and then to apply

linear interpolationto construct an approximate value function and decision rule essentially by “connect-
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ing the dots” where the “dots” are the calculated value function and optimal investment/divident policy at

values ofk on a pre-defined grid of points{k1, . . . ,kn} wherek1 = 0 andk j < k j+1, 1= 1, . . . ,n−1. There

is quite a bit of flexibility in how one chooses a grid, but we will show that even for relatively smalln and a

“naive” choice of equally spaced grid points, it is possibleto obtain a very accurate approximation ofV(k),

I(k) andD(k). The most important choice is the valuekn which constitutes an effective “upper bound” on

the capital stock. It is important to “guess” a value forkn that is large enough so thatI(kn) = 0. Otherwise

if the guess of the upper bound is too small andI(kn)> 0, this poor initial choice of upper bound can lead

to substantial errors in the calculatedV, I andD functions.

The basic ideal of how policy iteration works is explained well for the case of finite state spaces in

Howard (1960) or Bertsekas (1987), but for the case where thestate space has uncountably many states,

policy iteration can also be defined but it takes somewhat more advanced functional analysis, see e.g.

Puterman (1978). We will describe policy iteration first in the case where the state space is continuous, but

it is important to consider a “truncated” version of the problem on a finite interval[0,K] for someK > 0

sufficiently large. The reason for truncating the problem isthat much of the standard functional analysis

machinery is based on use of thesup norm‖V‖= supk |V(k)| but this will equal∞ if the state space is the

entire positive real line[0,∞) if the functionV is not bounded.

However once we consider a bounded interval, we can define theBanach spaceC(K) of all bounded,

continuous functions on the interval[0,K], and for this function space, the sup-norm is well defined. In

particular if we define theBellman operatorΓ : C(K)→C(K) by

Γ(V)(k) = max
0≤I≤k

[ f (k)− I +βV(k(1−δ)+ I)] (59)

we can show thatΓ is acontraction mapping,i.e. it satisfies

‖Γ(V)−Γ(W)‖ ≤ β‖V −W‖ (60)

and via the well-know Banach Fixed Point Theorem (also knownas the Contraction Mapping Theorem),Γ

has a unique fixed pointV = Γ(V). This unique fixed point is the value function for the truncated problem

given by the Bellman equation (2).

Policy iteration is an iterative method for finding the solution to the Bellman equation which is equiv-

alent to finding the fixed point to the Bellman operatorΓ. The standard method for finding a fixed point

is the method ofsuccessive approximationand it is based on any initial guessV0 and an updated estimate

V1 is produced by evaluatingΓ on the initial guessV0, orV1 = Γ(V0). Then we useV1 to produce another
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estimateV2 = Γ(V1) and we continue this iteration in general as

Vj = Γ(Vj−1) j = 1,2, . . . (61)

until we find that the changes in the successive iterates are less than a specified convergence toleranceε,

i.e. until some iterationj such that‖Vj −Vj−1‖ < ε. The Contraction Mapping Theorem guarantees that

for anyV0 ∈C(K) we have

lim
j→∞

Vj = Γ(Vj−1) =V = Γ(V) (62)

so the method of successive approximations is guaranteed toconverge from any initial guessV0. A draw-

back of successive approximations is that is converges onlygeometrically,that is, we have

‖Vj −V‖ ≤ β j‖V0−V‖ (63)

so that forβ close to 1, the rate of convergence of the estimated value functionVj to the true value function

V is very very slow.

However policy iteration is a much faster algorithm that usually converges to theexact solution V in

a finite number of iterations, regardless of how closeβ is 1. This is technically true only in finite state

MDPs, but for continuous state MDPs there is a close analog ofthis result, namely thatpolicy iteration

is equivalent to Newton’s method and will converge at a quadratic rate. This implies that the error in

approximating the fixed point,‖Vj −Γ(Vj)‖, whereVj is the jth iterate produced by the policy iteration

algorithm will be very small after only a “small” number of iterationsj even forβ very close to 1.

Policy iteration is a combination of two “sub-iterations”:1) policy improvement and 2) policy val-

uation. We explain policy valuation first. Policy valuationis a method to find the value functionVI

corresponding to any given investment policyI . Given that we are considering only truncated investment

problems, we will initially consider only a subclass of decision rules that satisfy the constraints 0)I(k) is a

continuous function ofk∈ [0,K], i.e. I ∈C(K), 1) 0≤ I(k)≤ f (k) (feasibility), and 2)k(1−δ)+ I(k)≤ K

for all k∈ [0,K]. The latter constraint ensures that the mappingΓI defined by

ΓI (V)(k) = f (k)− I(k)+βV(k(1−δ)+ I(k)) (64)

makesΓI a well defined operator onC(K), i.e. for anyW ∈C(K) we haveΓI(W) ∈C(K). FurtherΓI can

be shown to be a constraction mapping, and thus it has a uniquefixed pointVI = ΓI (VI ). We now show

thatΓI is anaffine operator,that is it is a “shifted linear operator” given by

ΓI(W)(k) = DI (k)+βEI(W)(k) (65)
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whereW ∈C(K), DI(k) = f (k)− I(k), andEI is a linear operator onC(K) defined by

EI(W)(k) =W(k(1−δ)+ I(k)) (66)

The constraint on the set of allowable investment rulesI implies that ifW ∈C(K) thenEI(W) ∈C(K) so

thatEI is an operator onC(K) and further it is alinear operatorsince we have

EI(V +W)(k) =V(k(1−δ)k+ I(k))+W(k(1−δ)+ I(k)) = EI(V)(k)+EI(W)(k) (67)

Now define thenormof the linear operatorEI by ‖EI‖ as follows

‖EI‖= sup
V 6=0

‖EI (V)‖
‖V‖ (68)

It is not hard to show that for anyV ∈ C(K) we have‖EI (V)‖ ≤ ‖V‖ which implies that‖EI‖ ≤ 1, and

further, using the example of a functionW(k) = 1 for k∈ [0,K], it is trivially true that‖EI (W)‖= 1, which

implies that‖EI‖= 1.

Since we have established thatEI is a linear operator, we can write the equatino forVI , the fixed point

of the operatorΓI as

VI (k) = DI(k)+βEI(V)(k) (69)

or

[I −βEI ](V)(k) = DI(k) (70)

whereI is the identity operatoronC(K), i.e. I (W) =W for all W ∈C(K) (we use the funny scripted

version of capital letter “I” here,I , to distinguish the identity operator from the investment functionI ). It

is easy to show thatI is a linear operator, and thus[I −βEI ] is also a linear operator. Suppose that this

linear operator isinvertible. Then we have the solution

VI = [I −βEI ]
−1DI (71)

where[I −βEI ]
−1 is the inverse operator of[I −βEI ], which is itself also a linear operator. We can show

that the inverse operator exists by a geometric series argument. We conjecture that

[I −βEI ]
−1 =

∞

∑
j=0

β jE j
I (72)

whereE j
I is the linear operator formed as thej − fold composition of the operatorEI , i.e. E2

I = EI (EI) and

recursively,E j
I = EI(E

j−1
I ). Sinceβ ∈ (0,1) and‖EI‖= 1, it follows that the norm of the right hand side
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of theNeumann series expansionof the inverse operator[I −βEI ]
−1 in equation (72) is finite (and equals

1/(1−β)) and this establishes that the inverse operator exists.

So in summary policy valuation enables us to obtain a “closedform” expression forVI = [I −
βEI ]

−1D, which is the value of the firm implied by a given feasible investment policyI . This is why

we call thispolicy valuationbecauseVI represents thevalue of the investment policy I.

Now consider the next sub-iteration of the policy iterationalgorihm: policy improvement.Using the

value functionVI we now seek animproved policy I′ given by

I ′(k) = argmax
0≤ι≤ f (k)

k(1−δ)+ι≤K

[ f (k)− ι+βVI(k(1−δ)+ ι)] (73)

where we use the notationι to denote a candidate investment value that we are optimizing over in order to

find a new better policyI ′(k). GivenI ′ we can now return to the policy valuation step to find the valueVI ′

of this new, improved policyI ′

VI ′ = [I −βEI ′]
−1DI ′ (74)

We can show thatVI ′ ≥ VI , i.e. I ′ really is animprovedpolicy that results in a higher value for the firm.

However ifVI ′ = VI , then the new policy is not astrict improvementover the previous policyI at any

k∈ [0,K], and at that pointpolicy iteration has converged.It is not hard to show that at convergence,VI =

Γ(VI ), i.e. VI is a solution to the Bellman equation, and since this is unique by the Contraction Mapping

Theorem, the policy iteration algorithm has succeeded to find the fixed point to Bellman’s equation.

The formulas above seem “theoretical” since they involve inversion of linear operators onC(K) which

are infinite-dimensional objects. However we can approximate these “infinite dimensional” operators with

finite-dimensional operators on a large but finite dimensional Euclidean spaceRn. We achieve this via the

device ofdiscretizationand solving the problem on a finite grid ofn points{k1, . . . ,kn} ⊂ [0,K].

When we have a finite grid, we can produce a continuous piecewise-linear approximation bylinear

interpolation. For example suppose we have a given functionW(k) but suppose that we only have access

to values of this function atn grid points{k1, . . . ,kn} ⊂ [0,K]. That is we know then values{w1, . . . ,wn}
wherew j = W(k j), j = 1, . . . ,n. How can we approximate the true valueW(k) at somek ∈ [0,K] that

is not one of these grid points? This is quite easy:k must lie between two successive grid points, i.e.

k∈ (k j−1,k j) and so we can representk as a convex combination of these grid points using a weight (or it

could be interpreted as a “probability”)p(k) given by

p(k) =
k−k j−1

k j −k j−1
(75)
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so we can writek = p(k)k j +(1− p(k))k j−1. Then using the weightp(k) we can produce the following

approximate valuêW(k)

Ŵ(k) = p(k)w j +(1− p(k))w j−1 (76)

Figure 8 below shows the square root function on the interval[0,4] and its linear interpolation using a grid

of five equally spaced points{k1,k2,k3,k4,k5}= {0,1,2,3,4}.

Using interpolation, we can carry out policy iteration overa grid of n points on the interval[0,K]

and nearly all of the operations becomefinite because the set of piecewise linear functions with nodes

(or “knot points”) at a grid ofn points{k1, . . . ,kn} is ann-dimensional subspace of C(K). Our goal is to

try to approximate the true value functionV ∈ C(K) with an approximate value functionVn that lives in

then-dimensional subspace ofC(K) that consists of all continuous functions whose values overthe entire

interval [0,K] are linearly interpolated from their values at then points{k1, . . . ,kn}.

So suppose we are given an investment policyI whose values are known at each of the grid points

{k1, . . . ,kn} and are determined by linearly interpolation of the known values{I(k1), . . . , I(kn)} for other

values ofk∈ [0,K]. Recall our general equation for the policy valuation step

VI = DI +βEIVI (77)
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whereEI is the (infinite-dimensional) linear operator that “implements” the evaluation ofV at a given point

k(1−δ)+ I(k) ∈ [0,K], i.e.

EI(V)(k)≡V(k(1−δ)k+ I(k)) (78)

Now consider restricting the domain of allowable values ofk to just then grid points{k1, . . . ,kn}. Then

the infinite-dimensional version of the policy-evaluationequation (77) above become asystem of n linear

equations in n unknowns in Rn

VI = DI +βEIVI (79)

where now we haveVI andDI arevectorsin Rn given by

VI =












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
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· · ·
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, (80)

and

DI =






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
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, (81)

andEI is ann× n transition probability matrixwhich implements the interpolation operation. That is,

consider the first row ofEI . It will be all zeros except for at most two adjacent non-zeroelements with

values 1− pI (k1) and pI (k1), repectively. Recall that we can interpolateVI (k1(1− δ)+ I(k1)) using its

known values(VI (k1), . . . ,VI (kn)) on the grid(k1, . . . ,kn) as follows

VI (k1(1−δ)+ I(k1)) = pI (k1)VI (k j)+ (1− pI(k1))VI (k j−1) (82)

where j indexes the grid pointk j such thatk1(1−δ)+ I(k1) ∈ [k j−1,k j ] andpI (k1) is given by

pI (k1) =
k1(1−δ)+ I(k1)−k j−1

k j −k j−1
. (83)

Thus the first row ofEI will have pI (k1) in its jth column and 1− pI (k1) in its ( j −1)st column and all

other columns equal zero. It follows that the first row will sum to 1 by construction. This same idea
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applies to all other rows ofEI so we conclude it as the form of a Markovtransition probability matrixi.e.

all elements are between 0 and 1 and each row sums to 1.

UsingEI andDI it is now a matter of linear algebra to solve forVI ∈ Rn

VI = [I −βEI ]
−1DI (84)

except that nowI is then×n identity matrix(which is also the “identity operator” onRn). UsingVI ∈ Rn

we can extend it to a continuous function ofk over all of the interval[0,K] via linear interpolation, so we

can also interpretVI as an element of then-dimensional subspace ofC(K) of functions which are linearly

interpolated from their values at then grid points{k1, . . . ,kn}.

GivenVI we can now do thepolicy improvement stepto see if we can find a better investment policy

I ′(k) by optimizing over investment at each of then grid pointsk j , j = 1, . . . ,n.

I ′(k j) = argmax
0≤ι≤ f (kj )

kj (1−δ)+ι≤K

[

f (k j)− ι+βV̂I(k j(1−δ)+ ι)
]

= argmax
0≤ι≤ f (kj )

kj (1−δ)+ι≤K

[ f (k j)− ι+

β [p(k j(1−δ)+ ι)VI(kl )+ (1− p(k j(1−δ)+ ι)VI(kl−1))]]

where k j(1− δ) + ι ∈ [kl−1,kl ] for some indexl ∈ {1, . . . ,n}. If I ′(k) = I(k) for all grid points k ∈
{k1, . . . ,kn} (or equivalently ifVI ′ = VI ), thenstop: policy iteration as converged to aV that solves the

Bellman equation (though restricted to the finite dimensional subspace ofC(K) of functions defined by

linear interpolation at then grid points{k1, . . . ,kn}). If not, then using the improved policyI ′ we return to

the policy valuation step (79) to calculateVI ′ and continue until the policy iteration process converges.

Figure 9 presents the approximate decision rules for investment and dividends computed by poicy

iteration withn= 301 grid points, equally spaced fromk1 = 0 to k301= 30, a spacing of 0.1 apart. Policy

iteration converged after 20 iterations, resulting in a (sup norm) change in value functions of 5.97×10−13.

We see that the computed solutions look virtually identicalto the true solutions plotted in figure 2 in

section 2. Figure 10 also plots the interpolated value function from policy iteration and it also looks

virtually identical to the true value function in figure 2.

There are approximation errors but they are small. Figure 11plots the approximation errors at the

grid points{k1, . . . ,kn} for two different solutions, one using policy iteration with n = 150 grid points,

and the other usingn= 300 grid points, in both cases equally spaced over the interval [0,30]. Generally

we would expect that using a “finer grid” i.e. a larger number of grid pointsn, should result in a better
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approximation. This is the case here, though it required a more sophisticated version of interpolation

than simple linear interpolation of the ordinates{V(x1), . . . ,V(xn)} in the policy improvement step. We

usedpiecewise cubic hermit polynomial interpolationas implemented in thepchip function of Matlab.

Thepchip function interpolates the ordinates in a way that gaurantees continuous differentiability of the

interpolated function at the grid points (unlike what happens with simple linear interpolation, where the

derivatives are generally discontinuous at the grid points) and the interpolated function isshape preserving

which is particularly important in this case to preserve theconcavity of the value function over the entire

domain.

In each policy improvement step we used the Matlabfminbnd function to numerically search for the
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Figure 11: Approximation errors in value function and investment rule withn = 150 andn = 300 grid
points

optimal value of investmentι ∈ [0, f (k j)] at each grid pointk j , j = 1, . . . ,n. When we used simple linear

interpolation, the interpolated value function has more and more discontinuities in its derivative asn gets

large. This appears to create problems for the Matlab optimizer, and whenn gets sufficiently large, the

approximation actually starts to degrade. This is not the case when thepchip interpolater was used. The

approximation error reduces as the number of grid points increases, though there is diminshing returns to

increasingn. Further accuracy can be achieved by using the strict concavity of the value functions and

using a Newton or bisection algorithm to find optimal investment as a solution to the first order condition

1= βV ′(k(1−δ)+ I), using the fact that thepchip interpolated results in a piecewise quadratic expression

for V ′ that makes it easy to employ Newton’s method to solve for the value ofI that satisfies the first order

condition.

Overall, we have demonstrated that the DPI algorithm seems to be capable of finding a good approxi-

mation to the true value function and decision rules.
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