
The Dynamics of Bertrand Price Competition
with Cost-Reducing Investments†

Fedor Iskhakov∗
CEPAR, University of New South Wales

John Rust‡

Georgetown University

Bertel Schjerning §

University of Copenhagen

April, 2015

Abstract: We extend the classic model of Bertrand price competition to a dynamic environment with un-
certain technological progress, where competing duopolists can undertake cost reducing investments in an
attempt to leapfrog their rival to attain temporary low cost leadership. We analytically characterize the set of
all Markov perfect equilibria in this game and show that the generic equilibrium outcome involves leapfrog-
ging and piece-wise flat equilibrium price paths with permanent discontinuous declines that occur when one
firm leapfrogs its rival. Unlike the static Bertrand model, the equilibria of the dynamic Bertrand model are
generally inefficient due to excessively frequent or duplicative investments.

Keywords: duopoly, Bertrand-Nash price competition, Bertrand investment paradox, leapfrogging, cost-
reducing investments, technological improvement, dynamic models of competition, Markov-perfect equi-
librium, tacit collusion, price wars, coordination and anti-coordination games, strategic preemption

JEL classification: D92, L11, L13

† We acknowledge helpful comments from Michael Baye, Jeffrey Campbell, Dan Cao, Joseph E. Harrington, Jr.,
Dan Kovenock, Roger Lagunoff, Stephen Morris, Michael Riordan, Jean-Marc Robin, David Salant, Karl Schmed-
ders, Che-Lin Su, and other participants at seminars at Columbia, University of Copenhagen, CREST, Georgetown,
Princeton, the Chicago Booth School of Business, University of New South Wales, the 3rd CAPCP conference at
Pennsylvania State University, the 2012 conferences of the Society of Economic Dynamics, the Society for Compu-
tational Economics, the North American Summer Meetings of the Econometric Society, the 4th World Congress of
the Game Theory Society, the Initiative for Computational Economics at Chicago and Zurich (ICE 2012 and ZICE
2013 to 2015), and the NSF/NBER CEME Conference on “The Econometrics of Dynamic Games.” Fedor Iskhakov
acknowledges support from Frisch Centre project 1307 financed by the Ministry of Labor, Norway.

∗ Email: f.iskhakov@unsw.edu.au
‡ Correspondence address: Department of Economics, Georgetown University, Washington, DC, phone: (301)

801-0081, email: jr1393@georgetown.edu
§ Email: bertel.schjerning@econ.ku.dk



1 Introduction

Given the large theoretical literature since the original work of Bertrand (1883), it is surprising

that our understanding of price competition in the presence of production cost uncertainty is still

rudimentary. For example, in the introduction to his paper on the static Bertrand model, Routlege

(2010) states “However, there is a notable gap in the research. There are no equilibrium existence

results for the classical Bertrand model when there is discrete cost uncertainty.” (p. 357). Less is

known about Bertrand price competition in dynamic models where firms compete by undertaking

cost-reducing investments. In these environments firms face uncertainty about their rivals’ invest-

ment decisions as well as uncertainty about the timing of technological innovations that can affect

future prices and costs of production.

This paper analyses a simple dynamic extension of the textbook Bertrand-Nash duopoly model

of price competition where the firms can make investment decisions as well as pricing decisions.

At any time t a firm can decide whether to replace its current production plant with a new state

of the art production facility that enables it to produce at a lower marginal cost than its rival. A

key assumption of our model is that the state of the art technology improves stochastically and

exogenously, whereas technology adoption decisions are endogenous.

The term leapfrogging describes the long run investment competition where a higher cost firm

purchases a state of the art production technology that reduces its marginal cost relative to its rival

and allows it to attain, at least temporarily, a position of low cost leadership. The assumption that

the state of the art technology evolves exogenously differentiates our model from earlier examples

of leapfrogging in the literature by, for example, Fudenberg et. al. (1983) and Reinganum (1985).
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This earlier work on patent races and models of research and development focused on firms’

continuous choice of R&D expenditures with the goal of producing a patent or a drastic innovation

that could not be easily duplicated by rivals.

However, in many industries firms do little or no R&D themselves but can obtain a production

cost advantage by investing in a state of the art production technology that is developed and sold by

third parties. We model this investment as a binary decision: each firm faces a decision of whether

or not to incur the substantial fixed investment cost to replace their current legacy production

technology with the latest technology in order to become the current low cost leader. Since all

firms have equal opportunity to acquire the state of the art production technology the markets we

study are different from those studied in the earlier literature on leapfrogging in the context of

R&D and patent races. Though the market we study abstracts from entry and exit, it is contestable

due to ease of investment. This may promote competition in ways that are similar to markets that

are contestable due to ease of entry (Baumol, Panzar and Willig, 1982).

However the ease by which either firm can invest in our model leads to an issue we call the

“Bertrand investment paradox”. If both firms invest at the same time, then Bertrand price compe-

tition drives ex post profits to zero. If the firms expect this, the ex ante return on their investments

will be negative, so it is possible that no firm would have an incentive to undertake cost-reducing

investments. But if no firm invests, it may make sense for at least one firm to invest. Thus, the

investment problem has the structure of an anti-coordination game.

Riordan and Salant (RS,1994) showed how the Bertrand investment paradox can be resolved.

They analyzed a model of Bertrand price competition between duopolists who can both invest to
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acquire a deterministically improving state of the art technology to try to gain a temporary cost

advantage over their rival. RS proved that investment does incur in equilibrium, but by only one

of the firms. In this preemption equilibrium consumers never benefit from technological improve-

ments, because the price remains at the high marginal cost of the non-adopting firm. Further, they

showed that the preemption equilibrium is completely inefficient: the preempting firm adopts new

technologies so frequently to discourage entry of its rival that all of its profits (and thus all so-

cial surplus) is completely dissipated. Their result implies that leapfrogging is incompatible with

Bertrand price competition.

Though RS stressed that their investment preemption result was “narrow in that it need not hold

for other market structures” their analysis “suggests a broader research agenda exploring market

structure dynamics” such as “Under what conditions do other equilibrium patterns emerge such as

action-reaction (Vickers, 1986) or waves of market dominance in which the identity of the market

leader changes with some adoptions but not others?” (p. 258). Giovannetti (2001) showed that

a particular type of leapfrogging — alternating adoptions — can be an equilibrium outcome in

a discrete time duopoly model of Bertrand price competition under assumptions that are broadly

similar to RS. Though Giovannetti did not cite or specifically address RS’s work, he showed that

both preemption and alternating adoptions can be equilibrium outcomes depending on the elasticity

of demand.

Giovannetti’s analysis was done in the context of a game where firms make simultaneous in-

vestment decisions, whereas RS modeled the investment choices as an alternating move game.

The alternating move assumption seems to be a reasonable way to approximate decisions made
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in continuous time, where it is unlikely that two firms would be informed of a new technologi-

cal innovation and make investment decisions at precisely the same instant. However, the change

in timing assumptions could have significant consequences, since Theorem 1 of RS shows that

preemption is the only equilibrium in the continuous time limit of a sequence of discrete-time al-

ternating move investment games as the time between moves tends to zero. RS conjectured that

whether firms move simultaneously or alternately makes no difference with respect to the conclu-

sion that preemption is the unique equilibrium of the continuous time limiting game. “We believe

the same limit holds if the firms move simultaneously in each stage of the discrete games in the

definition. The alternating move structure obviates examining mixed strategy equilibria for some

subgames of sequence of discrete games.” (RS, p. 255).

Giovannetti’s finding that an equilibrium with alternating investments investments is possible if

firms move simultaneously suggests that Riordan and Salant’s conjecture is incorrect. Giovannetti

did not consider whether his results hold if firms move alternately rather than simultaneously, or

whether leapfrogging is sustainable in the continuous time limit. Further neither Giovannetti nor

RS considered the effect of uncertain technological progress on their conclusions: both assumed

that the state of the art production cost declines deterministically over time. Stochastic techno-

logical change could create investment opportunities that could upset the preemption equilibrium

and lead to more complex adoption dynamics. In particular, deterministic technological progress

rules out the possibility of drastic innovations in the sense of Arrow (1962), where there is a there

is sudden large improvement in technology. Riordan and Salant conjectured that the preemption

result was a robust conclusion that would continue to hold in the presence of drastic innovations:
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“We conjecture that there exists an equilibrium adoption pattern featuring increasing dominance

and rent dissipation quite generally. The heuristic reason is the standard one (Gilbert and New-

bery, 1982, Vickers, 1986) that the leading firm always has a weakly greater incentive to preempt

to protect its incumbent profit flow.” (RS, p. 257).

This paper is the first to characterize the set of all Markov perfect equilibria (MPE) — both

pure and mixed (behavioral) strategies — of a dynamic duopoly model of Bertrand price com-

petition with stochastic technological progress — under both simultaneous and alternating move

assumptions (including stochastic alternating move versions of the game). We provide a unifying

framework and reconcile the conflicting results of Giovannetti and RS, and by allowing for stochas-

tic technological progress we also study a much wider range of environments than either of these

analyses were able to consider. In particular, by allowing for stochastic technological progress we

analyze firm behavior and industry dynamics when there is a possibility of drastic innovations that

Arrow (1962) contemplated. Similar to the result of Routledge (2010) in the static context, we

establish existence of equilibria in the dynamic Bertrand investment game.

We show that rent dissipating investment preemption will not be an equilibrium outcome if any

of the three key assumptions (deterministic technological progress, alternating moves, continuous

time) is removed, contrary to RS’s conjectures. Instead, we show that very complex patterns of

dynamic investment competition are supported, with leapfrogging occurring in many other forms

than simple patterns of deterministically alternating investments of Giovannetti (2001). In fact, we

show that various types of leapfrogging equilibria constitute the generic outcome of the Bertrand

investment game. Our finding that investment competition takes the form of leapfrogging seems
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to be empirically more realistic than investment preemption, since consumers would never benefit

from technological progress if the latter theory were true. However, there are numerous examples

of consumer electronics and many different physical goods (e.g. homogeneous commodities such

as cardboard) where technological improvements coupled with leapfrogging investments by firms

have resulted in dramatic price declines to consumers over time.

In the simultaneous move version of the game there is a vast multiplicity of equilibria, and our

characterization the set of all MPE of this game is reminiscent of the Folk Theorem: the convex hull

of the set of initial node pay-offs of the game is a triangle, whose vertices include two monopoly

pay-offs and the origin — a mixed strategy equilibrium with zero pay-offs to both firms. In the

monopoly MPE of our game one duopolist never invests and the other does all of the investing and

keeps the price equal to the higher marginal cost of production, earning full monopoly profit.

When firms invest in an alternating fashion (under deterministic and stochastically alternating

move variations), we show that the convex hull of the set of equilibrium pay-offs is a strict subset of

the same triangle, and in particular neither the monopoly or the zero profit mixed strategy MPE is

supportable in this case. We provide a sufficient condition for the uniqueness of equilibrium: in the

alternating moves specification when technology improves in every time period with probability

one, Bertrand investment game has a unique MPE. This condition is satisfied in RS’s and Giovan-

netti’s frameworks where technological progress is deterministic, and thus improves with certainty

in every period. However, when the probability that the state of the art does not improve in any

period is sufficiently large, the set of MPE is no longer a singleton and will in general include a

large number of equilibria that exhibit various types of leapfrogging.
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Besides analytic characterization of the set of equilibrium pay-offs, we utilize the Recursive

Lexicographic Search (RLS) algorithm of Iskhakov, Rust and Schjerning (2014) to numerically

compute all MPE in a discretized version of the Bertrand investment game. Using the RLS al-

gorithm we can calculate the empirical distribution of the efficiency of all MPE in the Bertrand

investment game. We find that the equilibria in our model are typically inefficient due to invest-

ments that occur too frequently relative to the social optimum and due to duplicative investments

that are a reflection of coordination failures in this game. The most inefficient equilibria are those

involving mixed strategies, however we show that there are also fully efficient equilibria that take

the form of asymmetric pure strategy equilibria.

Though most of the leapfrogging equilibria display some degree of inefficiency due to duplica-

tive investments, contrary to fully inefficient preemption equilibrium in RS, the overall efficiency

is generally very high in the Bertrand investment games we have solved: the median efficiency

of all equilibria in examples we provide in section 4 is over 95%. One case of a fully efficient

equilibrium is the monopoly MPE where the social surplus is extracted in full by the investing

firm. Although investment competition in the non-monopoly equilibria of the model does bene-

fit consumers by lowering costs and prices in the long run, it does generally come at the cost of

some inefficiency due to coordination failures. However, we provide examples (and thus establish

existence) of perfectly coordinated, fully efficient leapfrogging equilibria as well.

Price paths in the equilibria of our model are piece-wise flat, with discontinuous declines just

after one of the firms invests and displaces its rival to become a new low cost leader. These large

drops in prices could be interpreted as “price wars”. However, in our model these periodic price
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wars lead to a permanent decrease in prices and are part of a fully competitive outcome where the

firms are behaving as Bertrand price competitors in every period.

In the next section we present our model and summarize the solution method we used to com-

pute all MPE of the game. Section 3 discusses the socially optimal investment strategies and solves

the social planner’s problem. We present our main results in section 4, and section 5 concludes.

2 The Model

Consider a market consisting of two firms producing an identical good. Assume that the two firms

are price setters, have no fixed costs and can produce the good at a constant marginal cost of c1

and c2, respectively. Both firms have constant return to scale production technology, so neither of

them ever faces a binding capacity constraint.

Under the assumption of perfectly inelastic demand, it is well known that Bertrand equilibrium

arises in these settings, leading to the lower cost firm to serve the entire market at a price p(c1,c2)

equal to the marginal cost of production of the higher cost rival, i.e. p(c1,c2) = max[c1,c2]. In

the case where both firms have the same marginal cost of production we obtain the classic result

that Bertrand price competition leads to zero profits for both firms at a price equal to their common

marginal cost of production. Normalizing the market size to one, we can write the instantaneous

profits of firm 1 as

r1(c1,c2) =


0 if c1 ≥ c2,

c2− c1 if c1 < c2,

(1)

and the profits for firm 2, r2(c1,c2) are defined symmetrically, so we have r2(c1,c2) = r1(c2,c1).
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We introduce the dynamics into the model by assuming that at each time period t both firms

have the ability to make an investment to acquire a new production facility (plant) to replace their

existing technology. Technological progress that drives down the marginal cost of production

(while maintaining constant returns to scale) is exogenous and stochastic. Denote c the current

state of the art marginal cost of production, and let K(c) be the cost of investing in the plant that

embodies this state of the art production technology. If either one of the firms purchases the state of

the art technology, then after a one period lag (constituting the “time to build” the new production

facility), the firm can produce at the new marginal cost c.

We assume there are no costs of disposal of an existing production plant, or equivalently, the

disposal costs do not depend on the vintage of the existing plant and are embedded as part of the

new investment cost K(c). Yet, we allow the fixed investment cost K(c) to depend on c. This

can capture different technological possibilities, such as the possibility that it is more expensive to

invest in a plant that is capable of producing at a lower marginal (K′(c) < 0), or situations where

technological improvements lower both the marginal cost of production c and the cost of building a

new plant (K′(c)> 0). Clearly, if investment costs are too high, then there may be a point at which

the potential gains from lower costs of production are insufficient to justify incurring the investment

cost K(c). Moreover, when the competition between the duopolists leads to leapfrogging behavior,

the investing firm will not be able to capture the entire benefit of lowering its cost of production:

some of these benefits will be passed on to consumers in the form of lower prices.

Let c(t) denote the marginal cost of production under the state of the art production technology

at time period t ∈ {0,1,2, ..,∞}.1 Each period t the firms face a simple binary investment decision:

1We formulate the model in discrete time with infinite horizon, so normally time script is not needed. On rare
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firm j can decide not to invest and continue to produce using its existing production facility at

the marginal cost c(t)j . If firm j pays the investment cost K(c(t)) and acquires the state of the art

production plant with marginal cost c(t), then when this new plant comes on line at t + 1, firm j

will be able to produce at the marginal cost c(t+1)
j = c(t) < c(t)j . If there has been no improvement

in the technology and state of the art marginal cost at t + 1 remains the same, it follows c(t+1) =

c(t) = c(t+1)
j . Otherwise, if technological innovation occurs at t +1, c(t+1) < c(t) = c(t+1)

j , and firm

j’s new plant is already slightly behind the frontier at the moment it comes online.

If c is a continuous stochastic process, the state space for this model which we denote S, is

given by the pyramid S = {(c1,c2,c) : c1 ≥ c and c2 ≥ c and 0 ≤ c ≤ c0} in R3, where c0 > 0 is

the initial state, and zero represents the lower bound of the state of the art technology. The choice

of lower bound is not essential for any of our results. The Bertrand investment game starts at the

apex of the pyramid given by (c0,c0,c0). In cases where for computational reasons we restrict c to

a finite set of possible values in [0,c0], the “discretized” state space is a finite subset of S.

We assume that both firms believe that the state of the art technology for producing the good

evolves stochastically according to a Markov process with transition density π(c(t+1)|c(t)). Specif-

ically, suppose that with probability π(c(t)|c(t)) there is no improvement in the state of the art tech-

nology, and with probability 1−π(c(t)|c(t)) technology improves to marginal cost c(t+1) which is a

draw from some distribution over the interval [0,c(t)]. An example of a convenient functional form

for such a distribution is the Beta distribution. However, the presentation of the model and neither

of our results do not depend on specific functional form assumptions about π.

occasions we use superscript to denote time period of any state variable.
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The feature of the transition density π that turns out to be crucial for the uniqueness of equilib-

rium is whether π(c|c)> 0 for some c> 0 or not. We single out a special case of strictly monotonic

technological progress when π(c|c) = 0 for all c > 0, i.e. the state of art improves in every time

period until it reaches the absorbing state where π(0|0) = 1.2 Note that for the completely deter-

ministic technological progress it holds π(c(t+1)|c(t)) = 1 if c(t) > c(t+1) ≥ 0 and π(c(t+1)|c(t)) = 0

if c(t) = c(t+1) including the case c(t) = c(t+1) = 0. Deterministic technological improvement is

strictly monotonic, but not vice versa.

2.1 Timing of Moves

Let m(t) ∈ {0,1,2} be a state variable that governs which of the two firms are “allowed” to under-

take an investment at time t. We will assume that {m(t)} evolves as an exogenous Markov chain

with transition probability f (m(t+1)|m(t)) independent of the other state variables (c(t)1 ,c(t)2 ,c(t)).

While it is natural to assume firms simultaneously set their prices, their investment choices may or

may not be made simultaneously.

In this paper we analyze two variants of the Bertrand investment game: 1) a simultaneous

move game where the firms make their investment choices simultaneously, denoted by m(t) = 0,

with f (0|m(t)) = 1 (so m(t) = 0 with probability 1 for all t), and 2) alternating move game, with

either deterministic or random alternation of moves, but where there is no chance that the firms

could ever undertake simultaneous investments (i.e. where m(t) ∈ {1,2} and f (0|m(t)) = 0 for all

t). Here m(t) = 1 indicates a state where only firm 1 is allowed to invest, and m(t) = 2 is the state

2Throughout the paper we use π(c|c) = 0 to refer to strictly monotonic progress bearing in mind that it only
applies for c > 0.
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where only firm 2 can invest. Under either the alternating or simultaneous move specifications,

each firm always observes the investment decision of its opponent after the investment decision is

made. However, in the simultaneous move game, the firms must make their investment decisions

based on their assessment of the probability their opponent will invest. In the alternating move

game, since only one of the firms can invest at each time t, the mover can condition its decision

on the investment decision of its opponent if it was the opponent’s turn to move in the previous

period. The alternating move specification can potentially reduce some of the strategic uncertainty

that arises in a fully simultaneous move specification of the game.

We interpret random alternating moves as a way of reflecting asynchronicity of timing of de-

cisions in a discrete time model that occurs in continuous time models where probability of two

firms making investment decisions at the exact same instant of time is zero. There are cases where

equilibrium has been shown to be unique (e.g. Lagunoff and Matsui, 1997). We are interested in

conditions under which uniqueness emerges in asynchronous move versions of our model.

The timing of events in the model is as follows. At the start of period t each firm knows the

costs of production (c(t)1 ,c(t)2 ), and both learn the current values of c(t) and m(t). If m(t) = 0, then

the firms simultaneously decide whether or not to invest. We assume that both firms know each

others’ marginal cost of production, i.e. there is common knowledge of state (c(t)1 ,c(t)2 ,c(t),m(t)).

Further, both firms have equal access to the new technology by paying the investment cost K(c(t))

to acquire the current state of the art technology with marginal cost of production c(t).

After each firm decides whether or not to invest in the latest technology, the firms then inde-

pendently and simultaneously set the prices for their products, where production is done in period
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t with their existing plant. The Bertrand equilibrium price is the unique Nash equilibrium of the si-

multaneous move pricing stage game. The one period time-to-build assumption implies that even if

both firms invest in new plants at time t, their marginal costs c(t)1 and c(t)2 in period t are unchanged,

and enter profit formula (1).

We assume that consumer purchases of the good is a purely static decisions, and consequently

there are no dynamic effects of pricing for the firms, unlike in the cases of durable goods where

consumer expectations of future prices affects their timing of new durable purchases as in Goettler

and Gordon (2011). Thus in our model, the pricing decision is given by the simple static Bertrand

equilibrium in every period. The only dynamic decision in our model is firms’ investment deci-

sions.

2.2 Solution concept

Assume that the two firms are expected discounted profit maximizers and have a common discount

factor β ∈ (0,1). We adopt the standard concept of Markov-perfect equilibrium (MPE) for this

dynamic game between the two firms. In a MPE, the firms’ investment and pricing decision rules

are restricted to be functions of the current state, (c(t)1 ,c(t)2 ,c(t),m(t)). When there are multiple

equilibria in this game, the Markovian assumption also restricts the “equilibrium selection rule” to

depend only on the current value of the state variable. The firms’ pricing decisions only depend

on their current production costs (c(t)1 ,c(t)2 ) in accordance with the static Bertrand equilibrium.

However, the firms’ investment decisions also depend on the value of the state of the art marginal

cost of production c(t) and the designated mover m(t).
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Definition 1. A Stationary Markov Perfect Equilibrium of the duopoly investment and pricing game

consists of a pair of strategies (Pj(c1,c2,c,m), p j(c1,c2)), j ∈ {1,2} where Pj(c1,c2,c,m) ∈ [0,1]

is firm j’s probability of investing and p j(c1,c2) = max[c1,c2] is firm j’s pricing decision. The

investment rules Pj(c1,c2,c,m) must maximize the expected discounted value of firm j’s future

profit stream taking into account the investment and pricing strategies of its opponent.

We allow the investment strategies of the firms to be probabilistic to allow for the possibility of

mixed strategy equilibria. To derive the functional equations characterizing a stationary Markov-

perfect equilibrium, suppose the current state is (c1,c2,c,m), i.e. firm 1 has a marginal cost of

production c1, firm 2 has a marginal cost of production c2, and the marginal cost of production

using the current best technology is c and m denotes which of the firms (or both if m = 0) has the

right to make a move and invest. The firms’ value functions Vj, j = 1,2 take the form

Vj(c1,c2,c,m) = max[vI, j(c1,c2,c,m),vN, j(c1,c2,c,m)] (2)

where, when m = 0, vN, j(c1,c2,c,m) denotes the expected value to firm j if it does not invest in

the latest technology, and vI, j(c1,c2,c,m) is the expected value to firm j if it invests. However,

when m ∈ {1,2}, the subscripts N and I refer to whether an investment is made in period t by the

firm m, who has the right of move. When m = 1 (firm 1 has the right to invest), vI,1(c1,c2,c,1) and

vN,1(c1,c2,c,1) denote the expected values to firm 1 from investing and not investing. When m = 2

(firm 2 has the right to invest), vI,1(c1,c2,c,2) and vN,1(c1,c2,c,2) denote the expected values to

firm 1 from the scenarios when firm 2 makes the investment or does not make the investment. To

simplify exposition below, we use the simultaneous move interpretation of N and I (m = 0), while

alternative move interpretation can be reconstructed analogously.
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The formula for the expected profits associated with not investing is given by:

vN, j(c1,c2,c,m) = r j(c1,c2)+βEVj(c1,c2,c,m,0), (3)

where EVj(c1,c2,m,c,0) denotes the conditional expectation of firm j’s next period value function

Vj(c1,c2,c,m) given that it does not invest this period (represented by the last 0 argument in EVj),

conditional on the current state (c1,c2,c,m).

The formula for the expected profits associated with investing is given by

vI, j(c1,c2,c,m) = r j(c1,c2)−K(c)+βEVj(c1,c2,c,m,1), (4)

where EVj(c1,c2,c,m,1) is firm j’s conditional expectation of its next period value function given

that it invests (the last argument is 1), conditional on (c1,c2,c,m).

Let P1(c1,c2,c,m) be firm 2’s belief about the probability that firm 1 will invest in state is

(c1,c2,c,m). Consider the simultaneous move case (m = 0) first. It follows from (2) that

P1(c1,c2,c,m) = 1{vI,1(c1,c2,c,m)> vN,1(c1,c2,c,m)} , (5)

where 1{·} denotes an indicator function, and mixed strategy investment probability arises in the

case of equality. Similar formula holds for P2(c1,c2,c,m).

The Bellman equations for firm 1 in the simultaneous move case are as follows.3 Similar

3Variable m = 0 is omitted for clarity
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equation for firm 2 are omitted for space considerations.

vN,1(c1,c2,c) = r1(c1,c2)+β

∫ c

0

[
P2(c1,c2,c)max(vN,1(c1,c,c′),vI,1(c1,c,c′)) +

(1−P2(c1,c2,c))max(vN,1(c1,c2,c′),vI,1(c1,c2,c′))
]

π(dc′|c).

vI,1(c1,c2,c) = r1(c1,c2)−K(c)+β

∫ c

0

[
P2(c1,c2,c)max(vN,1(c,c,c′),vI,1(c,c,c′)) +

(1−P2(c1,c2,c))max(vN,1(c,c2,c′),vI,1(c,c2,c′))
]

π(dc′|c). (6)

In the alternating move case, the Bellman equations for the two firms lead to a system of

eight functional equations for
{

vN, j(c1,c2,c,m),vI, j(c1,c2,c,m)
}

for j,m ∈ {1,2}. The Bellman

equations for firm 1 are given below, similar equations for firm 2 are omitted.

vN,1(c1,c2,c,1) = r1(c1,c2)+β f (1|1)
∫ c

0
max(vN,1(c1,c2,c′,1),vI,1(c1,c2,c′,1))π(dc′|c)+

β f (2|1)
∫ c

0
ρ(c1,c2,c′)π(dc′|c)

vI,1(c1,c2,c,1) = r1(c1,c2)−K(c)+β f (1|1)
∫ c

0
max(vN,1(c,c2,c′,1),vI,1(c,c2,c′,1))π(dc′|c)+

β f (2|1)
∫ c

0
ρ(c,c2,c′)π(dc′|c)

vN,1(c1,c2,c,2) = r1(c1,c2)+β f (1|2)
∫ c

0
max(vN,1(c1,c2,c′,1),vI,1(c1,c2,c′,1))π(dc′|c)+

β f (2|2)
∫ c

0
ρ(c1,c2,c′)π(dc′|c)

vI,1(c1,c2,c,2) = r1(c1,c2)+β f (1|2)
∫ c

0
max(vN,1(c1,c,c′,1),vI,1(c1,c,c′,1))π(dc′|c)+

β f (2|2)
∫ c

0
ρ(c1,c,c′)π(dc′|c). (7)

where

ρ(c1,c2,c) = P2(c1,c2,c,2)vI,1(c1,c2,c,2)+ [1−P2(c1,c2,c,2)]vN,1(c1,c2,c,2). (8)

Note that P2(c1,c2,c,1) = 0, since firm 2 is not allowed to invest when it is firm 1’s turn to invest,
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m = 1, and similarly for P1(c1,c2,c,c,2).

The equilibria of the Bertrand investment game with simultaneous moves are characterized

by the large system of non-linear equations composed of equations (5) and (6) written for every

combination of (c1,c2,c) in the discrete representation of the state space S. Similarly, in the alter-

nating moves game, all equilibria are characterized by the system composed of equations (5) and

(7) for every combination of (c1,c2,c)and all values of m. In this paper we study the theoretical

properties of this system and its solutions, but also solve it for a number of parameter values to pro-

vide computed examples and counter-examples. The key feature of the Bertrand investment game

is the directionality of its transitions in the state space S, which is ensured by the unidirectional

evolution of the state of the art cost c (which can only improve), and the absence of any depreci-

ation of the technologies employed by the firms (c1 and c2 decrease under all feasible strategies).

Together with the finiteness of the state space in the discretized version of the game, this places

the Bertrand investment game in the class of dynamic directional games introduced in Iskhakov,

Rust and Schjerning (2014). The Recursive lexicographical search algorithm (RLS) introduced

in in the same paper is guaranteed to find all MPE in the games of this class, provided there is a

finite number of equilibria in every “stage game” defined in this model by a unique combination

of (c1,c2,c), and that all of them can be computed. These requirements are satisfied in our model,

so the RLS algorithm does find all MPE of the Bertrand investment game.

Apart from several numerical counter-examples that we provide to disprove the conjecture

in Riordan and Salant (1994), we only use the numerical solution of the game to illustrates the

theoretical concepts. Yet, being able to solve for all MPE of the Bertrand investment game greatly
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improved our understanding of the structure and the properties of the set of equilibrium outcomes

and ultimately facilitated the analytical proofs of the theoretical results we present below.

3 Socially optimal production and investment

We assess the efficiency of the Bertrand investment outcomes relative to a social planning bench-

mark that maximizes total expected discounted consumer and producer surplus. In a dynamic

model, the social planner has to account for the investment costs. Since the production technol-

ogy has constant returns to scale the social planner will only operate a single plant. Thus, the

duopoly equilibrium can be inefficient due to duplicative investments that a social planner would

not undertake. However, we will show that inefficiency manifests itself in other ways as well.

Our model of consumer demand is based on the implicit assumption that consumers have quasi-

linear preferences; the surplus they receive from consuming the good at a price of p is some

initial level of willingness to pay net of p. The social planning solution entails selling the good

at the marginal cost of production, and adopting an efficient investment strategy that minimizes

the expected discounted costs of production. Let cς be the marginal cost of production of the

current production plant, and let c be the marginal cost of production of the current state of the art

production process, which we continue to assume evolves as an exogenous Markov process with

transition probability π(c′|c) and its evolution is beyond the purview of the social planner. All the

social planner needs to do is to determine an optimal investment strategy for the production of the

good.

Let C(cς,c) be the smallest present discounted value of costs of investment and production
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when the plant operated by the social planner has marginal cost cς and the state of the art tech-

nology has a marginal cost of c ≤ cς. The minimization occurs over all feasible investment and

production strategies, but subject to the constraint that the planner must produce enough in every

period to satisfy the unit mass of consumers in the market. We have

C(cς,c) = min
{

cς +β

∫ c

0
C(cς,c′)π(dc′|c), cς +K(c)+β

∫ c

0
C(c,c′)π(dc′|c)

}
, (9)

where the first component corresponds to the case when investment is not made, and cost cς is

carried in the future, and the second component corresponds to the case when new state of the art

cost c is acquired for additional expense of K(c).4.

It follows that the optimal investment strategy takes the form of a cutoff rule where it is optimal

to invest in the state of the art technology if the current cost cς is above a cutoff threshold cς(c).

Otherwise the drop in expected future operating costs is not sufficiently large to justify undertaking

the investment and thus it is optimal to produce the good using the existing plant with marginal cost

cς. The cutoff rule cς(c) is the indifference point in (9), and thus it is the solution to the equation

K(c) = β

∫ c

0

[
C(cς(c),c′)−C(c,c′)

]
π(dc′|c), (10)

if it exists, and cς(c) = c0 otherwise.5

We have implicitly assumed that the cost of investment K(c) is not prohibitively high, so that

the social planner would always want to invest in a new technology. Theorem 1 provides a bound

on the costs of investments that must be satisfied for investment to occur under the socially opti-

mum solution.

4The details about the cost recursion are given in Appendix B
5In problems where the support of {ct} is a finite set, the cutoff cς(c) is defined as the smallest value of cς in

the support of {ct} such that K(c)> β
∫ c

0 [C(cς,c′)−C(c,c′)]π(dc′|c).
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Theorem 1 (Necessary and sufficient condition for investment by the social planner). Let the

current costs be (cς,c). Investment (in the current period or some time in the future) is socially

optimal if and only if there exists c′ ∈ [0,cς] in the support of the Markov process of the state of the

art marginal cost c(t), such that

β(cς− c′)
1−β

> K(c′). (11)

The proof of Theorem 1, and all subsequent proofs unless sufficiently short, are provided in Ap-

pendix A. The condition under which it is socially optimal to invest plays a central role when we

analyze the duopoly investment dynamics in section 4.

Assumption A1. We will say that the investment costs are not prohibitively high, or that invest-

ment is socially optimal if the condition (11) in Theorem 1 holds with cς = min[c1,c2], where c j

denotes the marginal cost of production of firm j in the Bertrand investment game.

As we will show in the next section, Bertrand investment game with simultaneous moves sup-

ports a monopoly outcome. The following lemma establishes the efficiency of a monopoly out-

come, which is useful for what follows in the next section.

Lemma 1 (Social optimality of monopoly solution). The socially optimal investment policy is

identical to the profit maximizing investment policy of a monopolist who faces the same discount

factor β and the same technological process {ct}with transition probability π as the social planner,

assuming that in every period the monopolist can charge a price of c0 equal to the initial value of

the state of the art production technology.
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Proof. Since the monopolist is constrained to charge a price no higher than c0 every period, it

follows that the monopolist maximizes expected discounted value of profits by adopting a cost-

minimizing production and investment strategy as per social planner.

4 Duopoly Investment Dynamics

We are now in position to solve the model of Bertrand duopoly investment and pricing and char-

acterize the stationary Markov Perfect equilibria of this model. As mentioned above, we used the

RLS algorithm from Iskhakov, Rust and Schjerning (2014) to compute all MPE in the Bertrand

investment game. These computations facilitated the illustrative examples below. Yet the majority

of our results are based on analytical proofs of the general properties of the equilibria of this game.

In the subsequent analysis we focus on a subclass of Bertrand investment games where the

support of the Markov process {c} representing the evolution of the state of the art production

technology is a finite subset of R1. Therefore, as discussed above, the state space of the investment

game is a finite subset of S where all of the coordinates c1, c2 and c lie in the support of the Markov

process {c}.6 If we further restrict the set of possible equilibrium selection rules to be deterministic

functions of the current state (c1,c2,c), we can show that there will only be a finite number of

possible equilibria in both the simultaneous and alternating move formulations of the game. The

number of the equilibria grows exponentially fast in the number of points in the discretized state

space.7

6We proved Theorem 2 by mathematical induction, and this is the reason we assume that the support of {c} is
a finite set. We believe most of the results still hold when the state space is continuous. However, in the interest
of space we do not attempt to prove this result here and merely state it as a conjecture that we believe to be true.

7We can show that if investment is socially optimal and the support of the Markov process {c} is the full
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4.1 The set of equilibrium payoffs in the Simultaneous Move Game

Provided that the investment cost is not prohibitively high, the set of all MPE in the Bertrand

investment game is surprisingly rich. Despite the prevalence of leapfrogging in equilibrium, we

show that “monopoly” equilibria is supported in the simultaneous move game.8 A static Bertrand-

like outcome with zero expected payoff for both duopolists is also supported in the simultaneous

move game. We summarize these findings in the following theorem that constitutes our main result.

Theorem 2 (Equilibrium payoffs in the simultaneous move game). If investments are socially

optimal (in the sense of the assumption A1) at the apex (c0,c0,c0) of the state space of the Bertrand

investment and pricing game with simultaneous moves, the following holds:

1. No investments by both firms is not supported in any of the MPE equilibria of the game;

2. The simultaneous move game has two fully efficient “monopoly” equilibria in which either

one or the other firm makes all the investments and earns maximum feasible profit;

3. There exist a symmetric equilibrium in the simultaneous move game that results in zero

expected payoffs to both firms at all states (c,c,c′) ∈ S with c′ ∈ [0,c], and zero expected

payoffs to the high cost firm and positive expected payoffs to the low cost firm in states

(c1,c2,c) where c1 6= c2;

4. The convex hull of the set of the expected discounted equilibrium payoffs to the two firms in

all MPE equilibria of simultaneous move game at the apex is a triangle with vertices (0,0),

interval [0,c0] the simultaneous move Bertrand investment and pricing game has a continuum of MPE.
8Note that the monopoly equilibria we characterize below are not the preemption equilibrium of Riordan and

Salant (1994). In contrast to their rent dissipation result, monopoly profits in our model are positive and are equal
to the maximum possible profits subject to the limit on price, by Lemma 1 monopoly outcome is fully efficient.
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Figure 1: Initial node equilibrium payoffs in the simultaneous move game

Notes: The panels plot payoff maps of the Bertrand investment game with deterministic (a) and random (b) technolo-
gies. Parameters are β = 0.9512, k1 = 8.3, k2 = 1, nc = 5. Parameters of beta distribution for random technology are
a = 1.8 and b = 0.4. Panel (a) displays the initial state payoffs to the two firms in the 192,736,405 equilibria of the
game, though there are 63,676 distinct payoff pairs among all of these equilibria. Panel (b) displays the 1,679.461
distinct payoff pairs for the 164,295,079 equilibria that arise under stochastic technology. The color and size of the
dots reflect the number of repetitions of a particular payoff combination.

(0,VM) and (VM,0), where VM = Vi(c0,c0,c0) is the expected discounted payoff of firm i

which makes all investments in the monopoly equilibrium.

Figure 1 illustrates Theorem 2 by plotting all apex payoffs to the two firms under all possible

deterministic equilibrium selection rules in the simultaneous move game where the support of

{c} is the 5 point set {0,1.25,2.5,3.75,5}. Panel (a) plots the set of payoffs that occur when

technological progress is deterministic, whereas panel (b) shows the much denser set of payoffs that

occur when technological progress is stochastic. Though there are actually a greater total number

of equilibria (192,736,405) under deterministic technological progress, many of these equilibria are

observationally equivalent repetitions of the same payoff point which arise due to our treatment of

the equilibrium selection rules that only differ off the equilibrium path as distinct. We indicate the

number of repetitions by the size of the payoff point plotted to be proportional to the number of
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repetitions. Figure 1 shows that when technology is stochastic there are fewer repetitions and so

even though there are actually 28 million fewer equilibria, there are actually a substantially greater

number (1,679,461 versus 63,676) of distinct payoff points.

Define the leapfrogging equilibria as those where the high cost firm has a positive probability

of investing at least in one point of the state space along the equilibrium path, and thus a realization

of such equilibrium may contain an event when a high cost firm leapfrogs the cost leader. With this

definition, leapfrogging equilibria are very typical. In all of our numerical solutions of simultane-

ous move game, we found that in the symmetric zero profit mixed strategy equilibrium the high

cost firm always has a strictly higher probability of investing than the low cost firm, thus satisfying

the definition of a leapfrogging equilibrium. We have not been able to prove this result in general,

however we did prove it in the end game (when c = 0, see Lemma A.2 in the appendix), and in the

symmetric, zero expected profit mixed strategy stage game equilibria under a slight strengthening

of the condition of social optimality of investment. For the interest of space we don’t include this

result here.

4.2 Equilibria in the Alternating Move Game

When firms make simultaneous investment decisions, the high cost firm has no incentive to deviate

from the equilibrium path in which its opponent always invests. However, when the firms move

in an alternating fashion, the high cost firm will have an incentive to deviate because it knows that

its opponent will not be able to invest at the same time (thereby avoiding the Bertrand investment

paradox), and once the opponent sees that the firm has invested, it will not have an incentive to
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immediately invest to leapfrog for a number of periods until it is once again its turn to invest

and there has been a sufficient improvement in the state of the art. This creates a temptation for

each firm to invest and leapfrog their rival that is not present in the simultaneous move game,

and the alternating move structure prevents the firms from undertaking inefficient simultaneous

investments, though it also generally prevents either firm from being able to time their investments

in a socially optimal way.

Theorem 3 (The set of equilibrium payoffs in the Alternating Move Game). If investments are

socially optimal (in the sense of the assumption A1) at the apex (c0,c0,c0) of the state space of the

Bertrand investment and pricing game with alternating moves, no investments by both firms is not

supported in any of the MPE equilibria of the game, and the (convex hull of the) set of expected

discounted equilibrium payoffs to the two firms in all possible MPE equilibria at the apex of the

alternating move game is a strict subset of the triangle with vertices defined in Theorem 2.

It is perhaps not surprising that when firms move in an alternating fashion neither one of them

will be able to attain monopoly payoffs in any equilibrium of the alternating move game (except for

some isolated counterexamples we discuss below). Theorem 3 states that the zero expected profit

mixed strategy equilibrium is not sustainable in the alternating move game either. Though it may

seem tempting to conclude that mixed strategies can never arise in the alternating move game, we

find that both pure and mixed strategy stage game equilibria are possible in the alternating move

game. The intuition as to why this should occur is that even though only one firm invests at any

given time, when π(c|c)> 0 the firms know that there is a positive probability that they will remain

in the same state (c1,c2,c) for multiple periods until the technology improves. The possibility of
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remaining in the same state implies that the payoff to each firm from not investing depends on their

belief about the probability their opponent will invest in this state at its turn.

In spite of very large number of MPE we find in the Bertrand investment game, there is a

subclass of games for which the equilibrium is unique, or allowing relabeling of the firms, there

are two asymmetric equilibria of the game.

Theorem 4 (Sufficient conditions for uniqueness). In the dynamic Bertrand investment and pric-

ing game a sufficient condition for the MPE to be unique is that (i) firms move in alternating

fashion (i.e. m 6= 0), and (ii) for each c in the support of π we have π(c|c) = 0.

Theorem 4 implies that under strictly monotonic technological improvement the alternating

move investment game has a unique Markov perfect equilibrium. This is closely related to, but not

identical with an assumption of the deterministic technological progress as discussed in section 2.

There are specific types of non-deterministic technological progress for which Theorem 4 will still

hold, resulting in a unique equilibrium to the alternating move game.

It is also helpful to understand why multiple equilibria can arise in the alternating move game

when π(c|c)> 0. The reason is that when there is a positive probability of remaining in any given

given state (assuming firms choose not to invest when it is their turn to invest), it follows that

each firm’s value of not investing depends on their belief about the probability of investment by

their opponent. Thus, by examining the Bellman equations (7) it not hard to see that for firm 1

the value of not investing when it is its turn to invest, vN,1(c1,c2,c,1), depends on P2(c1,c2,c,2)

when π(c|c) > 0. This implies that P1(c1,c2,c,1) will depend on P2(c1,c2,c,2), and similarly,

P2(c1,c2,c,2) will depend on P1(c1,c2,c,1). This mutual dependency creates the possibility for
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multiple solutions to the Bellman equations and the firms’ investment probabilities and multiple

equilibria at various stage games of the alternating move game.

4.3 Efficiency of equilibria

We evaluated the efficiency of duopoly equilibria by calculating their efficiency score defined as

the ratio of total surplus (i.e. the sum of discounted consumer surplus plus total discounted profits)

under the duopoly equilibrium to the maximum total surplus achieved under the social planning

solution.9 We note that the calculation of efficiency is equilibrium specific and thus its value de-

pends on the particular equilibrium of the overall game that we select. For example, we have

already proved that monopoly investment by one of the firms is an equilibrium in the simultaneous

move game, provided the cost of investment is not prohibitively high. This implies immediately

that there do exist fully efficient MPE in the simultaneous move game. We now show that the non-

monopoly equilibria of either the simultaneous or alternating move investment games are generally

inefficient and this inefficiency is typically due to two sources a) duplicative investments (only in

mixed strategy equilibria in the simultaneous move investment game), and b) excessively frequent

investments. Note that it is logically possible that inefficiency could arise from excessively infre-

quent investments and the logic of the Bertrand investment paradox might lead us to conjecture that

we should see investments that are too infrequent in equilibrium relative to what the social planner

would do. Surprisingly, we find that duopoly investments are generally excessively frequent com-

9It is not hard to show that the sum of discounted expected consumer surplus and discounted expected profits
can be calculated from model parameters and the expected discounted cost function C(c1,c2,c) which we compute
in the similar procedure as the value functions in Section 2. Further details are available from authors upon
request.
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pared to the social optimum, with preemptive investments (when they arise) representing the most

extreme form of inefficient excessively frequent investment in the new technology.

The two panels in the left column in Figure 2 illustrate the set of equilibrium payoffs from

all MPE equilibria computed by the RLS algorithm of Iskhakov, Rust and Schjerning (2014). We

compute the efficiency of each of the equilibria, and treating the calculated efficiencies as “data”,

we plot their empirical distribution in the corresponding panels in the right column in Figure 2.

Panels (a) and (c) in Figure 2 represent an alternating move investment game with deterministic

alternations of the right to move and technological progress which is not strictly monotonic, i.e.

π(c|c) > 0 for some c. The opposite of the latter condition ensures an unique equilibrium in this

game according to Theorem 4, but multiple equilibria is a typical outcome in the alternative move

game with “sticky” state of the art technology. Consistent with Theorem 3 the set of equilibrium

payoffs is a strict subset of the triangle, showing that it is not possible to achieve the monopoly

payoffs (corners) or the zero profit mixed strategy equilibrium payoff (origin) in this case. As

before, we have used the size of the plotted payoff points to indicate the number of repetitions of

the payoff points, but now we use the color of plotted equilibrium payoffs to indicate the efficiency.

Red (hot) indicates high efficiency payoffs, and blue (cool) indicates lower efficiency payoffs.

We see a clear positive correlation between payoff and efficiency in panel (a) — there is a

tendency for the points with the highest total payoffs (i.e. points closest to the line connecting

the monopoly outcomes) to have higher efficiency indices. The CDFs of efficiency levels in panel

(c) shows that 1) overall efficiency is reasonably high, with the median equilibrium having an

efficiency in excess of 97%, and 2) the maximum efficiency of the equilibria involving mixed
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Figure 2: Payoff maps and efficiency of MPE in two specifications of the game
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Notes: Panel (a)-(b) plots payoff maps and panel (c)-(d) cdf plots of efficiency by equilibrium type for two versions
of the Bertrand investment pricing game. In panel (a) and (c) the case of deterministic alternating moves and non-
strictly monotonic one step stochastic technological progress. Parameters in this case are β = 0.9592, k1 = 5, k2 = 0,,
f (1|1) = f (2|2) = 0, f (2|1) = f (1|2) = 1, ctr = 1 nc = 4. In panel (b) and (d) we plot the payoffs and the distribution
of efficiency for the simultaneous move game with deterministic one step technology. Leapfrog equilibria are defined
as having positive probability to invest by the cost follower along the equilibrium path, mixed strategy equilibria are
defined as involving at least one mixed strategy stage equilibrium along the equilibrium path.

strategies along the equilibrium path is strictly less than 100%.

In panels (b) and (d) of Figure 2 we plot the set of equilibrium payoffs and distribution of equi-

librium efficiency for a simultaneous move investment under the deterministic technology process.

In accordance with Theorem 2 the monopoly and zero profit outcomes are now present among

the computed MPE equilibria of the model. Overall, the equilibria in this game are less efficient
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compared to the equilibria in the alternating move game displayed in the top row panels, but the

tendency of more efficient equilibria to be located closer to the “monopoly” frontier remains. The

additional source of inefficiency in this game is redundancy of simultaneous investments, which

appear in the mixed strategy equilibria. It is clearly seen in the cumulative distribution plot in panel

(d) that even though more than 30% of the equilibria are approaching full efficiency10, the mixed

strategy equilibria are not among them. Instead, the distribution of their efficiency is stochastically

dominated by the distribution of efficiencies in all the equilibria of the game.

We formalize the above discussion in the following theorem.

Theorem 5 (Inefficiency of mixed strategy equilibria). A necessary condition for efficiency in the

dynamic Bertrand investment and pricing game is that along MPE path only pure strategy stage

equilibria are played.

Figure 3 establishes the existence of fully efficient leapfrogging equilibria. Panel (a) of figure

3 plots the set of equilibrium payoffs in a simultaneous move investment game where there are

four possible values for state of the art costs {0,1.67,3.33,5} and technology improves determin-

istically. Recall that the payoff points colored in dark red are 100% efficient, so we see that there

are a number of other non-monopoly equilibria that can achieve full efficiency. The significance

of this finding is that we have shown that it is possible to obtain competitive equilibria where

leapfrogging by the firms ensures that consumers receive some of the surplus and benefits from

technological progress without a cost in terms of inefficient investment such as we have observed

occurs in mixed strategy equilibria of the game where socially inefficient excessive investment re-

10To be exact, 15.22% have efficiency of 0.9878 and the same fraction of equilibria is fully efficient.
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Figure 3: Efficiency of equilibria

0 20 40 60  80.370
0

20

40

60

 80.370

Panel (a): Pay−off map
46939 equilibria, 892 distinct pay−off points
Size: number of repetitions Color: efficiency

 

 

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Panel (b): Cdf of efficiency by equilibrium type
 46939 equilibria,  26980 leapfrog,  19155 mixed strategy

 

 

all equilibria

leapfrog

mixed strategy

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Panel (c): Monopolist equilirium path

Time

M
ar

g
in

al
 C

o
st

s,
 P

ri
ce

s

 

 

c
1

c
2

c

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Panel (d): Leapfrogging equilirium path

Time

M
ar

g
in

al
 C

o
st

s,
 P

ri
ce

s

 

 

c
1

c
2

c
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efficient “monopoly” equilibrium, while panel (d) displays the example of fully efficient equilibrium that involves
leapfrogging.

sults in lower prices to consumers but at the cost of zero expected profits to firms. Notice, however,

that even the least efficient mixed strategy equilibrium still has an efficiency of 96%, so that in this

particular example the inefficiency of various equilibria may not be a huge concern.

Panels (c) and (d) of Figure 3 plot the simulated investment profiles of two different equilibria.

Panel (c) shows the monopoly equilibria where firm 2 is the monopolist investor. The socially

optimal investment policy is to make exactly two investments: the first when costs have fallen
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from 5 to 1.67, and the second when costs have fallen to the absorbing value of 0. Panel (d) shows

the equilibrium realization from a pure strategy equilibrium that involves leapfrogging, yet the

investments are made at exact same time as the social planner would do. After firm 1 invests when

costs reach 1.67 (consumers continue to pay the price p1 = 5), in time period 5 it is leapfrogged by

firm 2 who becomes the permanent low cost producer. At this point a “price war” brings the price

down from 5 to 1.67, which becomes new permanent level.

We conclude that the leapfrogging equilibria may be fully efficient if investments are made in

the same moments of time as the monopolist would invest, but in these equilibria consumers also

benefit from the investments because the price decreases in a series of permanent drops.

Lemma 2 (Existence of efficient non-monopoly equilibria). In both the simultaneous move and

alternating move investment games, there exist fully efficient non-monopoly equilibria.

Proof. The proof is by example shown in Figure 3. An example of a fully efficient non-monopoly

equilibrium when the firms move alternately (in deterministic fashion) can be constructed as well11.

While we find that efficient leapfrogging occur generically as equilibria in the simultaneous

move investment game, the result that there exist efficient leapfrogging equilibria in the alternating

move investment game should be viewed as a special counterexample, and that we typically do not

get fully efficient leapfrogging equilibria in alternating move games with sufficiently details dis-

11Let the possible cost states be {0,5,10}, assume deterministic technological progress, the cost of investing
K = 4, and the discount factor β = 0.95. Then the socially optimal investment strategy is for investments to occur
when c = 5 and c = 10, and these investments will occur at those states in the unique equilibrium of the game,
but where one firm makes the first investment at c = 5 and the opponent makes the other investment when c = 0.
These investments clearly involve leapfrogging that is also fully efficient.
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cretization of the state space and when investment costs are “reasonable” in relation to production

costs (i.e. when the cost of building a new plant K(c) significantly different from zero). However,

due to the vast multiplicity of equilibria in the simultaneous move investment game, we have no

basis for asserting that efficient leapfrogging equilibria are any more likely to arise than other more

inefficient equilibria.

We conclude by stating that the inefficiency is caused by excessive frequency of investment

rather than underinvestment. In simultaneous move games we already noted that another source

of inefficiency is redundant, duplicative investments that occur only in mixed strategy equilibria.

We noted that while mixed strategy equilibria also exist in the alternating move investment game,

duplicative simultaneous investments cannot occur by the assumption that only one firm can in-

vest at any given time. Thus, the inefficiency of the mixed strategy equilibria of the alternating

move games is generally a result of excessively frequent investment under the mixed strategy equi-

librium. However, it is important to point out that we have constructed examples of inefficient

equilibria where there is underinvestment relative to the social optimum. Such an example is pro-

vided in panel (b) of Figure 4 in the next section.

4.4 Leapfrogging, Rent-dissipation and Preemption

In this section we consider the Riordan and Salant conjecture that was discussed in the introduction.

Riordan and Salant (1994) conjectured that regardless of whether the firms move simultaneously

or alternately, or whether technological progress is deterministic or stochastic, the general outcome

in all of these environments should be that of rent-dissipating preemption, a situation where only
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one firm invests and does so sufficiently frequently in order to deter its opponent from investing.

These frequent preemptive investments fully dissipate any profits the investing firm can expect to

earn from preempting its rival (and hence also dissipating all social surplus). We first confirm their

main result stated in terms of our model.

Theorem 6 (Riordan and Salant, 1994). Consider a continuous time investment game with de-

terministic alternating moves. Assume that the cost of investment is independent of c, K(c) = K

and is not prohibitively high in the sense of A1). Further, assume that technological progress is

deterministic with state of the art costs at time t ≥ 0 given by the continuous, non-decreasing

function c(t) and continuous time interest rate r > 0. Assume that the continuous time analog of

the condition that investment costs are not too high holds, i.e. C(0) > rK. Then there exists a

unique MPE of the continuous time investment game (modulo relabeling of the firms) that involve

preemptive investments by one or the other of the two firms and no investment in equilibrium by its

opponent. The discounted payoffs of both firms in equilibrium is 0, so the entire surplus is wasted

on excessively frequent investments by the preempting firm.

Corollary 6.1 (Riordan and Salant, 1994). The continuous time equilibrium in Theorem 6 is a

limit of the unique equilibria of a sequence of discrete time games where β = exp{−r∆t} and

per period profits of the firms, ri(c1,c2), are proportional to ∆t and the order of moves alternates

deterministically, for a deterministic sequence of state of the art costs given by (c0,c1,c2,c3, . . .) =

(c(0),c(∆t),c(2∆t),c(3∆t), . . .) as ∆t→ 0.

The proofs of Theorem 6 and Corollary 6.1 is given in Riordan and Salant (1994) who used a

mathematical induction argument to establish the existence of the continuous time equilibrium as
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the limit of the equilibria of a sequence of discrete time alternating move investment games.

In Figure 4 we plot simulated MPE for three versions of the Bertrand investment pricing game

with deterministic alternating move and strictly monotonic technological progress. In the panel (a)

we let the length of the time periods be relatively small to provide a good discrete time approx-

imation to Riordan and Salant’s model in continuous time. In panel (b) we decrease the number

of points of support of the marginal cost and increase the length of the time period. In panel(c)

in addition we lower investment cost. These three examples demonstrate that preemptive rent-

dissipating investments indeed can happen in discrete time when the cost of investing in the new

technology K(c) is large enough relative to per period profits, but fails when the opposite is true

as shown in panels (b) and (c). In discrete time, both duopolist have temporary monopoly power

that can lead to inefficient under-investment as shown in the equilibrium realization in panel (b)

or leapfrogging as shown in panel (c). Since per period profits are proportional to the length of

the time period, the latter increases the value of the temporary cost advantage a firm gains after

investment in the state of the art technology. If investment costs are sufficiently low relative to per

period profits, it can be optimal for the cost follower to leapfrog the cost leader, in the limiting case

even for a one period cost leadership.

While the Riordan and Salant result of strategic preemption with full rent dissipation only holds

in the continuous time limit ∆t → 0, their conclusion that investment preemption will occur is ro-

bust to discreteness of time. To this extent we find investment preemption as the only equilibrium

in our discrete time numerical solutions when ∆t is sufficiently small. Thus, there is a “neighbor-

hood” of ∆t about the limit value 0 for which their unique preemption equilibrium also holds in
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Figure 4: Production and state of the art costs in simulated MPE: continuous. vs. discrete time
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Panel (a): Preemption and rent−dissipation
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Notes: The figure plots simulated MPE equilibria for three versions of the Bertrand investment pricing game with
deterministic alternating move and strictly monotonic technological progress. In panel (a) we present a discrete time
approximation to Riordan and Salant’s model in continuous time, with parameters β = 0.9512 k1 = 2, k2 = 0, π(c|c) =
0, f (1|1) = f (2|2) = 0, f (2|1) = f (1|2) = 1, nc = 100, ∆t = 0.25. In panel (b) we decrease the number of discrete
support points for c tonc = 25 and increase the length of the time period such that ∆t = 1 adjusting per period values.
In panel(c) we in addition lower investment costs by setting k1 = 0.5.

a discrete time framework. However, the conclusion that preemption is fully inefficient and rent

dissipating is not robust to discrete time. In discrete time the preempting firm does earn positive

profits which results in that the equilibrium is not completely inefficient.

Allowing for random alternation in the right to move, we obtain a unique pure strategy equilib-

rium, since random alternations does not violate the sufficient conditions for uniqueness given in

Theorem 4. Yet, random alternation of the right to move destroys the ability to engage in strategic

preemption and creates the opportunity for leapfrogging, since firms cannot have full control. Fig-

ure 5, panel (a) gives an example of a simulated equilibrium path when the right to move alternates

randomly. While this equilibrium path depicts a unique pure stately equilibrium, we clearly see

the leapfrogging pattern.

If there is positive probability of remaining with the same state of the art cost c for more that

one period of time, i.e. π(c|c) > 0, the main results of Riordan and Salant (1994) will no longer
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Figure 5: Production and state of the art costs in simulated MPE under uncertainty
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Notes: The figure plots simulated MPE by type for four stochastic generalizations of the model illustrated in Figure
4.b. In panel (a) we consider random alternating moves where f (1|1) = f (2|2) = 0.2 and f (2|1) = f (1|2) = 0.8. In
panel (b) we allow for non-strictly monotonic one step random technological improvement. In panel (c) we allow
technological progress to follow a beta distribution over the interval [c,0] where c is the current best technology
marginal cost of production. The scale parameters of this distribution is a = 1.8 and b = 0.4 so that the expected cost,
given an innovation, is c ∗ a/(a+ b). Panel (d) plots an equilibrium path from the simultaneous move game. Unless
mentioned specifically remaining parameters are as in panel (b) of Figure (4).

hold in our model. We may have multiple equilibria, there will be leapfrogging, and full rent

dissipation fails.

Figure 5 presents simulated equilibrium paths when we introduce randomness in the evolution

of the state of the art technology, the order of moves in the alternating move game, or possibility

for simultaneous investment. All panels exhibit leapfrogging, reflecting the statement that stochas-

ticity in the model presents the cost follower with more opportunities to leapfrog its opponent and

makes it harder for the cost leader to preempt leapfrogging. Overall, in presence of uncertainty,
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the game becomes much more contestable.

Lemma 3. (Limits to Riordan and Salant result) Preemption does not hold when (1) cost of in-

vestment K(c) is sufficiently small relative to per period profits, (2) investment decisions are made

simultaneously, (3) the right to move alternates randomly, (4) π(c|c) > 0, i.e. under other than

strictly monotonic technological progress.

Proof. The proof is by counter examples which are shown in Figure 4 and 5.

The vast majority of MPE equilibria in the many specifications of the game we have solved

using the RLS algorithm exhibited leapfrogging. It appears that Riordan and Salant results are not

robust to any of the mentioned assumptions, at least in the discrete time analog of their model.

However, with the exception of the full rent dissipation result, we believe that there is a neighbor-

hood about the limiting set of parameter values that Riordan and Salant used to prove Theorem

6 for which their conjectured preemption equilibrium will continue to hold, at least with high

probability.

5 Conclusions

The key contribution of this paper is to provide the first characterization of all equilibria of a

dynamic duopoly model of Bertrand price competition in the presence of stochastic technologi-

cal progress. Contrary to the previous literature which has focused on investment preemption as

the generic equilibrium outcome, we have shown that the generic equilibrium outcome involves

various types of leapfrogging that result in some of the benefits of technological progress being
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passed on to consumers. We have shown that these dynamic equilibria are generally inefficient

due to a combination of excessively frequent investments and duplicative investments resulting

from coordination failures between the firms. However, we have shown that efficiency is generally

very high and there even exist fully efficient asymmetric monopoly equilibria, as well as efficient

non-monopoly equilibria involving perfectly coordinated leapfrogging by the two firms.

Our analysis provides an alternative interpretation of “price wars.” In the equilibria of our

model, prices are piecewise flat with large sudden declines that occur when a high cost firm

leapfrogs its rival to become the new temporary low cost leader. It is via these periodic price drops

that consumers benefit from technological progress and the competition between the duopolists.

Even with the assumption that the dynamics of the state of the art production technology is in-

dependent of the actions of the players, which leads to a relatively simple dynamic model, we find

a surprisingly large and complex set of equilibria ranging from pure strategy monopoly outcomes

to mixed strategy equilibria where expected profits of both firms are zero. In between are equilib-

ria where leapfrogging investments are relatively infrequent so that consumers see fewer benefits

from technological progress in the form of lower prices. We argue that leapfrogging, rather than

preemption, is a better description of competitive behavior in actual markets, and empirical studies

such as Goettler and Gordon (2011) seem to confirm this.

Our analysis also contributes to the long-standing debate about the relationship of market

structure and innovation. Schumpeter (1939) argued a monopolist innovates more rapidly than

a competitive industry since the monopolist can fully appropriate the benefits of R&D or other

cost-reducing investments, whereas some of these investments would be dissipated in a competi-
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tive market. However, Arrow (1962) argued that innovation (or new technology adoption) under a

monopolist will be slower than in a competitive market which is in turn slower than the social op-

timum. Both types of results have appeared in the subsequent literature. For example, in the R&D

investment model analyzed by Goettler and Gordon (2011), the rate of innovation under monopoly

is higher than under duopoly but still below the rate of innovation that would be chosen by a social

planner. These inefficiencies are driven in part by the existence of externalities such as knowledge

spillovers that are commonly associated with R&D investments.

In a settings where each competing firm can at any time access an exogenously developing state

of the art technology, we have shown that the rate of adoption of new cost-reducing technologies

under the duopoly equilibrium is generally higher than the monopoly or socially optimal solution.

We showed that equilibria where there is leapfrogging and equilibria where there is investment

preemption both lead the duopolists to collectively invest more in cost reducing technologies than

a social planner. Moreover, our model provides an example where monopoly outcome coincides

with social optimum investment strategy. This result is rather specialized, and should be checked

against some of the restrictive assumptions of the model. In particular, it would be important to

extend the model to allow for entry and exit of firms.12

A disturbing aspect of our findings from a methodological standpoint is the plethora of Markov

perfect equilibria present in a relatively simple extension of the standard static model of Bertrand

price competition, which is reminiscent of the “Folk theorem” for repeated games. Though we

12We refer readers to the original work by Reinganum (1985) as well as recent work by Acemoglu and Cao
(2011) and the large literature they build on. It is an example of promising new models of endogenous innovation
by incumbents and new entrants. In their model entrants are responsible for more “drastic” innovations that tend
to replace incumbents, who focus on less drastic innovations that improve their existing products.
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have shown that the set of payoffs shrinks dramatically under the alternating move specification of

the game and a unique MPE obtains when the probability of technological improvement in every

time period is sufficiently close to one, there will generally be a huge multiplicity of equilibria

either when firms move simultaneously, or when the probability of technological improvement

is sufficiently low. Thus, though we have demonstrated how leapfrogging can be viewed as an

endogenous solution to the “anti-coordination problem” our paper leaves unsolved the more gen-

eral question of how firms coordinate on a single equilibrium when there is a vast multiplicity of

possible equilibria.
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A Proofs of Lemmas and Theorems
Theorem 1 (Necessary and sufficient condition for investment by the social planner).

Proof. Note that the left hand side of inequality (11) is the discounted cost savings from adopting
the state of the art technology c when the existing plant has marginal cost cς. We first prove that
if this inequality holds, then investment will be socially optimal at some state (c′ς,c

′) satisfying
c′ς ∈ [0,cς] and c′ ∈ [0,c′ς]. Suppose, to the contrary, that investment is not optimal for the social
planner for any value c′ς ≤ cς and any c′ ∈ [0,c′ς]. It follows that C(c′ς,c

′) = c′ς/(1− β) for all
c′ς ≤ cς and all c′ ∈ [0,c′ς]. However if the social planner did decide to invest when the state is
(cς,c) the planner’s discounted costs would be cς +K(c)+ β

∫ c
0 C(c,c′)π(dc′|c). Since we have

assumed it is not optimal for the social planner to invest at any state (c′ς,c
′) with c′ ∈ [0,c′ς], then

it cannot be optimal to invest in particular at any state (cς,c) with c ∈ [0,cς]. It follows that
cς/(1−β)≤ cς+K(c)+β

∫ c
0 C(c,c′)π(dc′|c) for all c∈ [0,cς]. However since C(c,c′) = c/(1−β)

for all c′ ∈ [0,c], it follows that βcς/(1−β) ≤ K(c)+βc/(1−β) for all cς ≥ 0 and all c ∈ [0,cς],
but this contradicts inequality (11).

Conversely, suppose inequality (11) does not hold. Then it follows that there is no value of
[c′ς,c

′] with c′ ∈ [0,c′ς] for which investment is optimal, since in this case C(c′ς,c
′) = c′ς/(1−β) for

all c′ς ∈ [0,cς]. This latter result follows by verifying that it is a solution to the Bellman equation
(9), where it follows that the cost of replacing a plant with marginal cost c′ς in state c′ is c′ς +
K(c′)+βc′/(1−β) which exceeds the cost of keeping the existing plant C(c′ς,c

′) = c′ς/(1−β) by
our assumption that inequality (11) does not hold for any c′ς ∈ [0,cς] and c′ ∈ [0,c′ς]. Since the
solution to the Bellman equation is unique (via the contraction mapping property) and corresponds
to an optimal investment policy, we conclude that there is no state (c′ς,c

′) with c′ς ∈ [0,cς] and
c′ ∈ [0,c′ς] for which investment in the state of the art technology c′ is socially optimal.

Theorem 2 (The set of equilibrium payoffs in the Simultaneous Move Game).
The proof is presented in parts corresponding to the five statements of the theorem, after several
required lemmas.

Lemma A.1 (Necessary condition for no investment MPE). If no investments by neither of the
firms if an MPE of the Bertrand investment game, it holds

K(c)≥ β(c1− c)
(1−β)

(12)

in every state (c1,c2,c) ∈ S = {(c1,c2,c) : c≤ c1 ≤ c0,c≤ c2 ≤ c0,0≤ c≤ c0}.

Proof. Consider the simultaneous move game first, i.e. the case m = 0 (omitted below for clarity
of exposition). If it is an equilibrium for neither firm to invest, it follows that

vN,1(c1,c0,c) =
c0− c1

(1−β)
,

vI,1(c1,c0,c) = c0− c1−K(c)+
β(c0− c)
(1−β)

,

43



and that vN(c1,c0,c)≥ vI,1(c1,c0,c) in every point of S. This implies that the following inequality
must hold ∀c1 ∈ [0,c0] and ∀c ∈ [0,c1]

c0− c1

(1−β)
≥ (c0− c1)−K(c)+β

(c0− c)
(1−β)

. (13)

It is easy to see via simple algebra that inequality (13) is equivalent to inequality (12). Now
consider the alternating move game, m 6= 0. It is not hard to show, using the Bellman equations for
the alternating move game (see equation 7 in section 2), that if it is never optimal for either firm
to invest, then it follows that for the state (c1,c2,c) = (c1,c0,c) (where recall that c0 is the initial
value of the state of the marginal production c), that P1(c1,c0,c) = 0 for all c1 ∈ [0,c0] and for all
c ∈ [0,c1]. But this will be true if and only if

vN,1(c1,c0,c,1) =
c0− c1

(1−β)

vI,1(c1,c0,c,1) = c1−K(c)+
β(c0− c)
(1−β)

and vN,1(c1,c0,c,1)≥ vI,1(c1,c0,c,1). But it is easy to see that this is equivalent to inequality (13)
above, which is in turn equivalent to the inequality (12), thereby proving Lemma A.1.

Lemma A.2 (Leapfrogging in the mixed strategy equilibrium of the end game). In the simultane-
ous move (m = 0) end game (c = 0) when condition A1 is satisfied, if c1 > c2 > 0, in the mixed
strategy equilibrium if holds P1(c1,c2,0)> P2(c1,c2,0).

Proof. For convenience, drop the arguments in the mixed strategy probabilities and write P1 and P2

instead, similarly K = K(0). Note first, that when c = 0 condition A1 boils down to K(0) < βc2
1−β

,
which ensures that investment is profitable even for firm 1 whose potential pay-off is smaller.

The value functions of the two firms in the point (c1,c2,0) can be written as

V1 = P1×
(

P2 · (−K)+(1−P2) ·
(

βc2

1−β
−K

))
+

+(1−P1)× (P2 ·0+(1−P2) ·βV1)

V2 = P2×
(

P1 · (c1− c2−K)+(1−P1) ·
(

c1− c2 +
βc1

1−β
−K

))
+

+(1−P2)× (P1 · (c1− c2)+(1−P1) · (c1− c2 +βV2))

where the definition of the probability P1 of investment by firm 1 in the mixed strategy equilibrium
gives

P2 · (−K)+(1−P2) ·
(

βc2

1−β
−K

)
= P2 ·0+(1−P2) ·βV1

and thus the value function itself becomes the weighted sum of equal parts, leading to

V1 = P2 · (−K)+(1−P2) ·
(

βc2

1−β
−K

)
= P2 ·0+(1−P2) ·βV1
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Using the second equality in the last expression, we find V1 = 0, and then using the first equality
in the same expression, we find 1−P2 =

K(1−β)
βc2

.
The definition of the probability P2 of investment by firm 2 in the mixed strategy equilibrium,

similarly gives

V2 = P1 · (c1− c2−K)+(1−P1) ·
(

c1− c2 +
βc1

1−β
−K

)
= P1 · (c1− c2)+(1−P1) · (c1− c2 +βV2)

Using the second equality in the last expression, we find V2 =
c1−c2

(1−β·(1−P1))
, and using the it once

again we get

P1(c1− c2−K)+(1−P1)

(
c1− c2 +

βc1

1−β
−K

)
= P1(c1− c2)+(1−P1)(c1− c2 +βV2)

(1−P1)

(
βc1

1−β
−K

)
−P1K = (1−P1)βV2

c1

1−β
− K

β · (1−P1)
= V2

Combining the two expressions for the value function V2, we get the following equation

c1− c2

1−β · (1−P1)
=

c1

1−β
− K

β · (1−P1)

Multiplying by 1−β and inserting the expression for 1−P2, we have

c1− c2

1+ β

1−β
P1

= c1−
1−P2

1−P1
c2

c1− 1−P2
1−P1

c2

c1− c2
=

1

1+ β

1−β
P1

6 1

c1−
1−P2

1−P1
c2 6 c1− c2

1−P2

1−P1
> 1

P1 > P2

The inequalities are due to the fact that 0 6 P1 6 1, β

1−β
> 0, c1− c2 > 0, c2 > 0. The final

inequality is strict unless P1 = P2 = 0, which implies K = βc2
1−β

thus leading to a contradiction. We
conclude then that P1 > P2.

Lemma A.3 (Efficiency of equilibria in the simultaneous move end game). Suppose m = 0 and
c = 0 (the end game of the simultaneous move game). In states where investment is not socially
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optimal in the sence of A1, the investment game has a unique pure strategy equilibrium where
neither firm invests. When investment is socially optimal, the investment game has three subgame
perfect Nash equilibria: two efficient pure strategy equilibria and an inefficient mixed strategy
equilibrium.

Proof. Recall that we are considering the simultaneous move game and show that there are two
possible equilibrium configurations at any end game state (c1,c2,0): either the state admits a
unique no-investment equilibrium where neither firm invests, or there are three possible equilibria
in the state, two of which are the pure strategy “anti-coordination” equilibria and the third is a
mixed strategy equilibrium. We now prove that the no-investment equilibrium obtains if and only
if a social planner who is operating two plants with marginal costs (c1,c2) when the state of the art
marginal cost is 0 does not find it optimal to incur the investment cost K(0) to acquire this state of
the art technology. Also the social planner will invest in the state of the art technology if and only
if there are the three above mentioned equilibria exist at the end game state (c1,c2,0).

Consider the case where c1 ≤ c2. It is enough to prove this case since it will be clear that the
proof in the case where where c1 > c2 is symmetric to the argument given below. The optimal
operating and investment rule for a social planner who controls two plants with costs c1 ≤ c2 is to
a) shut down plant 2 since it is obsolete relative to plant 1 and plant 1 can supply the entire market,
and b) invest in the state of the art zero marginal cost technology if this lowers the discounted
production costs. Since the investment cost of building the new state of the art plant is K(0) and
there is a one period time to build it, the discounted costs of investment and production from
investing in the state of the art technology is c1 +K(0). If the social planner does not invest in the
state of the art technology and produces forever using the lower cost plant at a marginal cost of c1
the present value is c1/(1−β). Thus the social planner will invest in the state of the art techology
if and only c1 +K(0)< c1/(1−β), or equivalently,

βc1

(1−β)
> K(0). (14)

This condition states that the cost of investing is not too high relative to the discounted marginal
cost of production of the lower cost plant c1, i.e. that the cost of investing does not outweigh the
discounted future cost savings resulting from the investment.

Now consider the Nash equilibria of the (c1,c2,0) end game. We show that if investment is
not optimal for the social planner, i.e. if c1 < (1− β)K(0)/β, then there is only a single “no
investment” equilibrium of this game. Otherwise there are three equilibria: two pure strategy
anticoordination equilibria where either firm 1 invests and firm 2 doesn’t (and vice versa), and a
zero expected profit mixed strategy equilibria where the two firms invest with probabilities π1 < π2,
respectively, by Lemma A.2. Consider first the pure strategy equilibrium where firm 1 invests
and firm 2 doesn’t. The payoff to firm 1 to investing is c2− c1 +βc2/(1−β)−K(0) whereas the
payoff to to firm 2 from not investing is 0. If firm 2 deviates and chooses to invest, then its payoff is
−K(0) because by simultaneous investment both firms 1 and 2 will have acquired the zero marginal
cost state of the art technology and the ensuing Bertrand price competition will drive prices and
profits of both firms to zero. Thus, the high cost firm (firm 2) does not want to invest if it knows
that the low cost firm (firm 1) plans to invest under any circumstances. However the “deviation
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payoff” to firm 1 involves not investing this period but thereafter “returning to the equilibrium
path” and making the investment one period later. The payoff to this one period delay in investing
is c2− c1 + β[c2− c1 + βc2/(1− β)−K(0)]. For the conjectured pure strategy equilibrium to
actually be possible it must be

c2− c1 +
βc2

(1−β)
−K(0)> c2− c1 +β

[
c2− c1 +

βc2

(1−β)
−K(0)

]
. (15)

But after some simple algebraic rearrangements, this inequality id is equivalent to inequality (14)
defining the socially optimal investment condition. Thus, we conclude that the pure strategy equi-
librium where firm 1 invests and firm 2 doesn’t exists if and only if it is socially optimal for the
investment to occur.

Now consider the other pure strategy equilibrium where firm 2 invests and firm 1 doesn’t. The
payoff to firm 2 from investing is βc1/(1−β)−K(0) whereas the payoff to deviating and delaying
the investment by one period is β[βc1/(1−β)−K(0)], so as long as βc1/(1−β)−K(0)> 0 it will
be optimal for firm 2 to invest, but of course this is the same as inequality (14) defining the optimal
investment rule for the social planner. For firm 1, the payoff to not investing is c2−c1 whereas the
payoff to investing given that it knows that firm 2 will also invest is c2− c1−K(0). Thus, firm 1
will never want to invest if it knows firm 2 will invest, and we have shown that the pure strategy
equilibrium where only firm 2 invests exists if and only if it is socially optimal for investment
to occur. Notice that even though firm 2 is the high cost firm, the fact that it invests rather than
investing being done by the low cost firm does not entail any higher costs because regardless of
whether firm 1 or firm 2 invests, both of their existing plants will become obsolete and production
will be done using the new state of the art zero marginal cost production technology.

Finally, consider the mixed strategy equilibrium. Following the proof of Lemma A.2, the
probability that firm 1 invests in the mixed strategy equilibrium is given by

π1 =
βc1/(1−β)−K(0)

βc1/(1−β)
(16)

and π2 > π1. Note that π1≥ 0 if and only if βc1/(1−β)−K(0)≥ 0 which is the same as inequality
(14) for investment to be socially optimal. However this does not imply that the mixed strategy
equilibrium is efficient because of the potential redundant investment by the two firms in the mixed
strategy equilibrium. Let Cm be the present discounted value of investment and production costs
under this mixed strategy equilibrium. We have

Cm = 2Kπ1π2 +Kπ1(1−π2)+Kπ2(1−π1)+ c1 +β(1−π1)(1−π2)Cm

= K(π1π2)+ c1 +β(1−π1)(1−π2)Cm

We will now show that Cm = (K(π1 +π2)+ c1)/(1−β(1−π1)(1−π2)) exceeds the socially op-
timal production and investment costs c1 +K(0) that a social planner can achieve by undertaking
only a single investment in the state of the art technology and avoid the higher costs due to re-
dundant investments (when the two firms invest at the same time) and the costs due to delayed in
investment (due to the probability (1−π1)(1−π2) that neither firm invests under the mixed strat-
egy equilibrium. Since the algebra to show that Cm > c1 +K(0) gets rather messy, we establish
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this inequality via an indirect argument. Let p = π1 +π2−π1π2 ∈ (0,1) be the probability that at
least one of the firms invests in the mixed strategy equilibrium. Define a new cost value Cm by

Cm = c1 + pK(0)+β(1− p)Cm.

=
c1 + pK(0)

1−β(1− p)
.

Since Cm is the present value of costs under a mixed strategy equilibrium that ignores the occur-
rence of redundant investments by the two firms, it is evident that Cm < Cm. We now show that
Cm > c1 +K(0), and thus Cm > c1 +K(0). To see why Cm > c1 +K(0) we write Cm(p) to em-
phasize its dependence on p, the probability that at least one firm invests in the mixed strategy
equilibrium. Note that Cm(0) = c1/(1−β) > c1 +K(0), and Cm(1) = c1 +K(0). Since we know
that the true value of p < 1, it suffices to show that d/d pCm(p) < 0. Calculating this derivative,
we have

d
d p

Cm(p) =
K(0)−βCm(p)

1−β(1− p)
. (17)

Note that since Cm(0) = c1/(1−β) we have d/d pCm(p)|p=0 < 0 by inequality (14). Further we
have

d
d p

Cm(p)|p=1 = K(0)(1−β)−βc1 < 0 (18)

again by inequality (14). It is not hard to see from the two inequalities above that in fact we
also have d/d pCm(p) < 0 for each p ∈ [0,1]. Thus, it follows that Cm > Cm > c1 +K(0) which
establishes the inefficiency of the mixed strategy equilibrium.

Lemma A.4 (No investment equilibrium at edge states). In both the simultaneous and alternating
move games there is a unique stage equilibrium (defined in Iskhakov, Rust and Schjerning 2014)
at all edge states {(c1,c2,c) : c1 = c or c2 = c} in which neither firm invests.

Proof. once one of the firms has acquired the state of the art technology (i.e. c j = c), it will not
want to invest again, but rather wait until a further technological innovation occurs at some time in
the future and perhaps invest again at that time. Similarly, the opponent will not have an incentive
to invest either even if its plant is not state of the art since it realizes that its investment will only
enable it to match the state of the art production cost of its rival, and the resulting Bertrand price
competition will ensure that both firms earn zero profits until some technological innovation occurs
in the future that would enable one or the other firms to leapfrog its opponent. So the Bertrand
investment paradox logic does indeed hold at the edge states {(c1,c2,c) : c1 = c or c2 = c} and is
the reason for no investment by either firm there.

Lemma A.5 (Necessary and sufficient conditions for investments by social planner at state (c1,c)).
Suppose that it is not optimal for the social planner (or monopolist) to invest at state (c1,c), with
c1 ≥ c. Let τ̃ denote the first passage time from the point (c1,c) to the set I = {(c1,c)|ι(c1,c) = 1},
i.e. τ is the random time until it is optimal for the social planner to invest conditional on starting
at state (c1,c). We then have:

K(c)>
(c1− c)(β−E{βτ̃})

(1−β)
. (19)
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Proof. From the Bellman equation (9) for C(c1,c), defining the cost function corresponding to the
socially optimal investment strategy, we see that if ι(c1,c) = 0 (i.e. investment is not optimal at
(c1,c)), then

K(c)> β

∫ c

0

[
C(c1,c′)−C(c,c′)

]
π(dc′|c). (20)

We also have

C(c1,c) = c1 +β

∫ c

0
C(c1,c′)π(dc′|c)

C(c,c) = c+β

∫ c

0
C(c,c′)π(dc′|c). (21)

Using equation (21) we can rewrite inequality (20) as

K(c)> [C(c1,c)−C(c,c)]− [c1− c]. (22)

Let τ̃ be the first passage time from the point (c1,c) to the set I, and let c̃τ̃ be the value of the
{ct} process at the time τ̃ first enters the set I starting from the point (c1,c). Let Vτ̃(c,c) denote
the expected discounted value of the policy of starting in state (c,c) and not investing for periods
t = 1, . . . , τ̃−1 and investing at period τ̃ and investing in the state of the art technology c̃τ̃ in effect at
τ̃ and then following the socially optimal investment policy thereafter. Since C(c,c) is the minimal
cost under an optimal investment policy, it follows that

C(c,c)≤Vτ̃(c,c), (23)

and thus,
K(c)> [C1(c1,c)−Vτ̃(c,c)]− [c1− c]. (24)

Since Vτ̃(c,c) is the discounted expected value of following, with probability 1, the same optimal
investment policy that the social planner would follow starting from the point (c1,c), it follows that

C(c1,c)−Vτ̃(c,c) =
(c1− c)(1−E{βτ̃})

(1−β)
, (25)

i.e. the difference in the values is simply the total expected discounted difference in per period
costs, c1− c, from not investing in periods t = 1, . . . , τ̃ when initial production costs are c1 and
c, respectively, and then following the optimal investment policy from the point c̃τ̃ ∈ I thereafter.
Substituting the formula for the difference in expected costs in equation (25) and substituting into
inequality (22) we obtain inequality (19).

Proof. We prove Theorem 2 statement by statement.

Statement 1. By Theorem 1, if investment is optimal for the social planner, then inequality (12)
cannot hold. By Lemma A.1, it follows that no investment cannot be an MPE outcome.
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Statement 2. The two candidate “monopoly” equilibria are where firm 2 never invests in equi-
librium and where firm 1 does all the investing (whenever it is profit-maximizing for firm 1 to do
so), and symmetrically, where firm 1 never invests and firm 2 does all the investing (whenever it
is profit-maximizing for firm 2 to do so). By “monopoly equilibrium” we mean a situation where
the firm that is designated to do all the investing in this duopoly equilibrium will behave exactly
the same if this firm were an actual monopolist but constrained to charge a price no higher than the
marginal cost of production of its opponent.

Our proof is by induction in the case where the support of the exogenous Markov process {ct}
for the evolution of the state of the art production technology is a finite set, {c1, . . . ,cn} with the
normalization that c1 = 0 and cn = c0 where c0 is the initial technology level at time t = 0. We will
prove the result for the case where firm 1 is the “monopolist” and firm 2 never invests. Obviously
a symmetric proof holds for the symmetric case where firm 2 is the monopolist and firm 1 never
invests.

To start the induction, we refer the reader to Lemma A.3 which establishes that in each endgame
state (c1,c2,0) if investment is optimal for the social planner, then there exist three equilibria, one
of which is an equilibrium where firm 1 invests and firm 2 does not invest. In any state (c1,c2,0)
where investment is not socially optimal, neither firm invests. When investment is socially optimal
we choose the equilibrium where firm 1 invests and firm 2 doesn’t, and neither firm invests in states
where investment is not socially optimal. Thus, we have verified that the result holds in the initial
state c1 = 0 of our proof by induction.

Now for inductive step, we prove that if the result holds for c∈ {c1, . . . ,c j−1}, then it also holds
at the state of the art cost c j, for all points (c1,c2,c) ∈ S where c j = c and c1 ≥ c and c2 ≥ c. We
start by considering states (c1,c2,c) ∈ S for which c1 ≤ c2. We now show that for any such state
where firm 1 invests in equilibrium, that it is optimal for firm 2 not to invest, and further, firm 1
will only invest in states where it is socially optimal to invest. We will show that vN,2(c1,c2,c) = 0
and vI,2(c1,c2,c)< 0 which implies that P2(c1,c2,c) = 0.

The fact that firm 1 will adopt a socially optimal investment strategy follows immediately
once we prove that firm 2 never invests in equilibrium. Since firm 1 knows that firm 2 will not
invest, firm 1 maximizes its profits by adopting an investment strategy that minimizes its present
discounted costs of production and investment from any given starting node in the game (c1,c2,c).
For some of these points, it may be optimal for firm 1 not to invest — both at point (c1,c2,c) and
all subsequent points (c1,c2,ct) that are reached as that state of the art technology evolves from
the point c to other points {ct}. However when this is the case, it would not be socially optimal
for investment to occur by a social planner who has control of two production plants with marginal
costs c1 and c2, respectively. As we noted above, the social planner would simply produce from the
plant with the lower marginal cost of production and shut the other one down, and if the condition
β(min[c1,c2]− c′)/(1−β) ≤ K(c′) for all c′ ∈ [0,c], then condition A1 implies that it would not
be optimal for the social planner to undertake any further investment in the future.

So the remainder of this proof focuses on proving that P2(c1,c2,c) = 0. We start with the easy
case by showing that it will not be optimal for firm 2 to invest whenever P1(c1,c2,c) = 1. From
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the Bellman equations for (vN,2,vI,2) in equation (7) of section 2, we have

vN,2(c1,c2,c) = β

∫ c

0
max[vN,2(c,c2,c′),vI,2(c,c2,c′)]π(dc′|c). (26)

By the inductive hypothesis we have vN,2(c,c2,c′) = 0 and vI,2(c,c2,c′)< 0 for c′< c. This implies
that vN,2(c1,c2,c) = 0. Now consider vI,2(c1,c2,c). For the Bellman equation (7) we have when
P1(c1,c2,c) = 1 and c2 > c1

vI,2(c1,c2,c) =−K(c)+β

∫ c

0
max[vN,2(c,c,c′),vI,2(c,c,c′)]π(dc′|c). (27)

By the inductive hypothesis, max[vN,2(c,c,c′),vI,2(c,c,c′)] = 0 for c′ < c. Further, by Lemma
A.4 it is never an equilibrium for either firm to invest at the corner of the state space, so
max[vN,2(c,c,c),vI,2(c,c,c)] = 0. It follows that vI,2(c1,c2,c) = −K(c) when P1(c1,c2,c) = 1,
confirming the claim that P2(c1,c2,c) = 0.

Now consider a state (c1,c2,c) for which P1(c1,c2,c) = 0. The argument is more complicated
here since there is a potential for firm 2 to use the non-investment by firm 1 as an opportunity to
sneak in and leapfrog firm 1 to become the new low cost leader. We now show that as long as
condition A1 holds, it will never be optimal for firm 2 to try to exploit firm 1 to become the low
cost leader in any state (c1,c2,c) where P1(c1,c2,c) = 0 (where it is temporarily not optimal for
firm 1 to invest, but firm 1 will invest at some future state).

Note that though firm 1 does not invest at state (c1,c2,c), it will invest at some point in the
future at a state (c1,c′) where it is socially optimal (as well as profit maximizing for a monopolist)
to invest. Let τ̃ be the mean first passage time to the set I = {(c1,c)|ψ(c1,c) = 1}where investment
by firm 1 first occurs starting from state (c1,c2,c), and let c̃τ̃ be the random state of the art cost
that induces firm 1 to invest (i.e. for which ψ(c1, c̃τ̃) = 1 under the social planning solution or
P1(c1,c2, c̃τ̃) = 1 under the posited duopoly equilibrium). It follows that if firm 2 were to invest,
it would have temporary low cost leadership over the periods {1,2, . . . , τ̃−1} but at period τ̃ firm
1 will invest and leapfrog firm 2, returning to the firm 1 monopoly investment “equilibrium path”
(note that this includes the case τ̃ = ∞ if it is not optimal for firm 1 to invest ever again after firm
2 invests). Once (or if) firm 1 returns to the equilibrium path by investing in the state of the art
technology c̃τ̃, firm 2 will not invest and earn 0 discounted profits, as per our inductive hypothesis,
since c̃τ̃ < c with probability 1. Thus, it follows that if firm 2 does not invest at (c1,c2,c) it will
earn a discounted expected profit of vN,2(c1,c2,c) = 0, whereas if firm 2 decides to invest, it earns
an expected reward equal to

vI,2(c1,c2,c) =−K(c)+
(c1− c)(β−E{βτ̃})

(1−β)
. (28)

However by inequality (19) of Lemma A.5, the hypothesis that it is not optimal for firm 1 to invest
at (c1,c2,c) implies that the expected profits to firm 2 from this attempt to take advantage of firm
1’s non-investment and leapfrog firm 1 is negative.
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Statement 3. We use a proof by induction similar to our proof of Statement 2. We have al-
ready established that there is a mixed strategy equilibrium in the end game states (c1,c2,0) ∈ S
in Lemma A.3 above. Since the expected payoff to the high cost firm from not investing is 0, it
follows that the expected payoff to the high cost firm is zero, but in general the expected payoff to
the low cost firm is positive, though in the case where c1 = c2, it is easy to see that the expected
payoffs to both firms are zero. Further, it is not difficult to show that there is symmetry in the pay-
offs and equilibrium strategies for the two firms in this equilibrium: vN,1(c1,c2,0) = vN,2(c2,c1,0)
and vI,1(c1,c2,0) = vI,2(c2,c1,0), and P1(c1,c2,0) = P2(c2,c1,0). Thus, we have established the
initial induction step of our proof by induction.

Now suppose that the result holds for all state points (ck,ck,c j−1) ∈ S where c1 = 0, and c j is
the jth highest point in the assumed finite support of the process {ct} governing the evolution of
the state of the art marginal costs of production and ck ∈ {c j−1,c j, . . . ,cn}. The theorem will hold
if we can prove that vN,1(ck,ck,c j) = 0 and vN,2(ck,ck,c j) = 0. For notational compactness below,
we will let (c,c,c′) denote a generic point of the form (ck,ck,c j) ∈ S.

To show that the expected payoffs to both firms are 0 in these “diagonal states” (c,c,c′), it is
sufficient to show that vN,i(c,c,c′) = 0 and vI,i(c,c,c′)≤ 0, for i ∈ {1,2}. We now show that these
payoffs will hold in the two possible equilibria that can hold in the stage game at each of these
diagonal states (c,c,c′) ∈ S under the proposed equilibrium: a) a “no investment equilibrium”
where there is a unique equilibrium where neither firm invests, not invest or b) an investment
equilibrium, where there are three possible equilibria at the stage game, and we select the mixed
strategy equilibrium and show it results in zero expected payoffs to both firms.

Suppose there is a unique no investment equilibrium at (c,c,c′). Then from the Bellman equa-
tion (7) we have

vN,1(c,c,c′) =
β∑

j−1
i=1 max[vN,1(c,c,ci),vI,1(c,c,ci)]

1−βπ(c j|c j)
= 0

vN,2(c,c,c′) =
β∑

j−1
i=1 max[vN,2(c,c,ci),vI,2(c,c,ci)]

1−βπ(c j|c j)
= 0,

by the inductive hypothesis that max[vN,l(c,c,ci),vI,l(c,c,ci)] = 0 for i ∈ {1, . . . , j− 1} and l ∈
{1,2}. It follows that the claimed result of symmetric, zero expected payoffs holds in this case as
claimed.

Now consider the case where there isn’t a unique no investment stage game equilibrium at the
point (c,c,c′). We now show that there will be three equilibria at such points, two of which are the
two pure strategy “anti-coordination” equilibria and the third will be a mixed strategy equilibrium
which is the one we select, and will show entails zero expected profits to both firms.

We introduce the notation vI,i(c1,c2,c,P−i) and vN,i(c1,c2,c,P−i) for i ∈ {1,2} to represent
the values for investing and not investing, respectively, for firm i conditional on the assumption
that its opponent will invest in state (c1,c2,c) with probability P−i, (possibly a non-equilibrium
probability) but return to play equilibrium strategies in all future time periods after this current
period. We have already proven in Lemma A.4 above that there is a unique no investment stage
game equilibrium at all edge states (c1,c2,c) where either c1 or c2 equals the current state of the
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art marginal cost c. It is also possible that there is a unique no investment equilibrium at states
(c1,c2,c) where c1 > c and c2 > c provided c1 and c2 are sufficiently close to c.

For other diagonal states (c,c,c′) if there is not a unique no investment equilibrium, then it must
be the case that for at least one of the firms i we must have vN,i(c,c,c′,1) = 0 and vI,i(c,c,c′,1)<
0 (i.e. it is not optimal for firm i to invest if its opponent will invest with probability 1), and
vN,i(c,c,c′,0)= 0 and vI,i(c,c,c′,0)> 0 (i.e. it is optimal for firm i to invest if it knows its opponent
will not invest with probability 1). However by the symmetry of the value functions at states
(c,c,c′) for c′ < c j, it is not hard to show using the Bellman equation (7) that we have

vI,1(c,c,c′,0) = vI,2(c,c,c′,0)> 0 (29)

and thus both firms will strictly prefer to invest when they are certain that their opponent will
not invest. This implies that the reaction functions, or best response investment probabilities
Pi(c,c,c′,P−i) for both firms i∈ {1,2} will be piece-wise flat and non-increasing and jump discon-
tinuously from 1 to 0 at a probability given by

P1(c,c,c′) = P2(c,c,c′) =
β∑

j
i=1 vN,1(c,c,ci)−K(c′)

β∑
j
i=1 vN,1(c,c,ci)

. (30)

These probabilities constitute the unique mixed strategy equilibrium of the stage game at point
(c,c,c′). However it is not difficult to show, using the Bellman equation (7), that vN,1(c,c,c′) =
vN,2(c,c,c′) = 0, so it follows that the expected payoff to both firms in the mixed strategy equilib-
rium at the diagonal state (c,c,c′) is zero, establishing the induction step.

To complete the proof, we must also show that the value functions and investment probabilities
are symmetric in the (c1,c2) argument, since we implicitly assumed that this symmetry holds
in our assertion that equation (29) holds. By our inductive hypothesis, symmetry holds for all
states (c1,c2,c) ∈ S for which c < c j = c′. Now we show that symmetry also holds for all points
(c1,c2,c′) ∈ S as well. First consider states (c1,c2,c′) for which the unique equilibrium is the no
investment equilibrium, we can use the Bellman equation (7) to express the value functions for not
investing for firms 1 and 2 as

vN,1(c1,c2,c′) =
r1(c1,c2)+β∑

j−1
i=1 vN,1(c1,c2,ci)

1−βπ(c′|c′)

vN,2(c1,c2,c′) =
r2(c1,c2)+β∑

j−1
i=1 vN,2(c1,c2,ci)

1−βπ(c′|c′)
.

It is not hard to see that the single period profit are symmetric: r1(c1,c2) = r2(c2,c1). Further by
our inductive hypothesis, all the functions vN,1(c1,c2,ci) and vN,2(c1,c2,ci) are symmetric func-
tions of their (c1,c2) arguments for i = 1, . . . , j− 1. Therefore it follows that vN,1(c1,c2,c′) =
vN,2(c2,c1,c′). The symmetry of vI,1 and vI,2 follows from the symmetry of vN,1 and vN,2 in (c1,c2)
since one can verify from the Bellman equation (7) that the former functions can be written exclu-
sively in terms of the vN,1 and vN,2 functions, and these latter functions are symmetric.

Finally consider the remaining points (c1,c2,c′)∈ S where it is not the case that a no investment
equilibrium holds. We have shown above that at these states there will be 3 equilibria, one of
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which is a mixed strategy equilibrium which is the “selected” equilibrium in each of these states.
We have already shown that the value functions are symmetric along the diagonal states (c,c,c′) so
we only need to consider the off-diagonal states (c1,c2,c′) where c1 6= c2. When c1 > c2 we have
vN,1(c1,c2,c) = 0 and when c1 < c2 we have vN,2(c1,c2,c) = 0, so symmetry holds for all points
c1 > c2: vN,1(c1,c2,c′) = 0 = vN,2(c2,c1,c′).

Finally consider points (c1,c2,c′) ∈ S for which c1 < c2. For these points we have
vN,1(c1,c2,c′) > 0. We need to show that symmetry holds in this region as well. At points in
this region, both firms are playing a mixed strategy equilibrium, so the expression for the value
functions vN,1(c1,c2,c′) depends on P2(c1,c2,c′) and the expression for vN,2(c1,c2,c′) depends
on P2(c1,c2,c′). Using the fact that vN,1(c1,c2,c′) = vI,1(c1,c2,c′) (since firm 1 must be indif-
ferent between investing and not investing when it is playing a mixed strategy), we can solve for
P2(c1,c2,c′) as a ratio of terms involving the value function vN,1(c1,c2,c′) and a weighted sum of
vN,1(c1,c2,ci) at other points (c1,c2,ci), i = 1, . . . , j−1 where our inductive hypothesis holds. We
then enter this expression for P2(c1,c2,c′) back into the equation for vN,1(c1,c2,c′), thereby “sub-
stituting out” P2(c1,c2,c′) from the equation for vN,1(c1,c2,c′). We omit the tedious and involved
algebra here, but when we do this we can express vN,1(c1,c2,c′) as the solution to a second order
polynomial equation in which the coefficients of the polynomial are all symmetric functions of
(c1,c2), as a result of our inductive hypothesis.

We can also do the same for vN,2(c1,c2,c′), i.e. first solving for P1(c1,c2,c′) using the indif-
ferent condition vN,2(c1,c2,c′) = vI,1(c1,c2,c′), and then entering this expression into the Bellman
equation for vN,2(c1,c2,c′), thereby substituting out P1(c1,c2,c′) to obtain another second order
polynomial expression for vN,2(c1,c2,c′) whose coefficients are symmetric functions of (c1,c2).

Let Q1(v,c1,c2,c′) = 0 be the second order polynomial equation, one of whose solutions is
vN,1(c1,c2,c). Similarly let Q2(v,c1,c2,c′) = 0 be the second order polynomial equation, one of
whose solutions is vN,2(c1,c2,c). By the symmetry of the coefficients of these polynomials in
(c1,c2), it follows that Q1(v,c1,c2,c′) = Q2(v,c2,c1,c′) for all v ∈ R. It follows that the solutions
to the equation Q2(v,c2,c1,c′) = 0 are the same as to the equation Q2(v,c2,c1,c′) = 0, and this
implies that vN,1(c1,c2,c′) = vN,2(c2,c1,c′). Since P1(c1,c2,c′) and P2(c1,c2,c′) can be written
as functions of vN,2(c1,c2,c′) and vN,1(c1,c2,c′), respectively, and other functions that are sym-
metric in (c1,c2) by our inductive hypothesis, it follows that P1(c1,c2,c′) = P2(c2,c1,c′), thereby
completing our proof by induction.

Statement 4. Statement 2 of this Theorem ensures the existence of two monopoly equilibria in
the simultaneous move game, proving that the two corner payoff points (VM,0) and (0,VM) ex-
ist, where VM = vN,1(c0,c0,c0) = vN,2(c0,c0,c0) is the monopoly payoff at the initial node (apex)
(c0,c0,c0) ∈ S. Since the monopoly profit equals the full social surplus and is efficient, it is in-
feasible to obtain any payoff higher than the line segment joining these two monopoly payoff
points,and thus all payoffs for all equilibria in the simultaneous move game (which are generally
less than 100% efficient) must lie below the line segment joining the two monopoly payoff points.
Finally, Statement 5 of this Theorem guarantees the existence of the zero payoff point at the origin
(0,0). Obviously the convex hull of these three payoff points equals the full triangle, and thus any
point in this triangle can be an expected payoff to the two firms if we allow stochastic equilibrium
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selection rules (i.e. selecting one of these three possible “extremal equilibria” with probabilities
(p1, p2, p3) with p1 + p2 + p3 = 1 and pi ≥ 0, i ∈ {1,2,3}).

Theorem 3 (The set of equilibrium payoffs in the Alternating Move Game).

Proof. By Theorem 1, if investment is optimal for the social planner, then inequality (12) cannot
hold. By Lemma A.1, it follows that no investment cannot be an MPE outcome in the alternating
move game similarly to the simultaneous move game.

Then it is sufficient to show that the origin is not an equilibrium payoff pair at the apex of
the alternating move game if investment costs are not too high. We have already shown that no
investment cannot be a MPE of the full alternating move game at the initial point (c0,c0,c0) ∈ S.
However if it is optimal for one of the firms to invest at some point on the equilibrium path, it must
be because the firm expects a positive profit from doing so. However from the Bellman equation
for the alternating move game, equation (7), if one or the other of the firms expects a positive profit
from investing in some stage game on the equilibrium path, the expected profit from that firm at
the initial apex of the game (c0,c0,c0) ∈ S cannot be zero. We note that Theorem 6 implies that
a zero payoff for both firms is approached in the limit as ∆t → 0 when π(ct |ct) = 0 and the order
of moves alternates deterministically. However in that case, since the equilibrium is unique, it
follows that the monopoly payoff vertices are not supportable in the limit as ∆t→ 0. Thus, even in
limiting cases, the set of equilibrium payoffs in the alternating move game will be a strict subset of
the triangular payoff region described in Statement 4 of this Theorem for the simultaneous move
game.

Theorem 4 (Sufficient conditions for uniqueness).
The proof requires some intermediary results.

Lemma A.6 (Efficiency of the alternating move end game). In the alternating move (m 6= 0) end
game (c = 0) in every state (c1,c2,0) there is a unique efficient equilibrium, i.e. both firms invest
when it is their turn to invest if and only if investment would be optimal from the point of view of
the social planner.

Proof. Consider the case where c1 < c2. The proof for the case c1 ≥ c2 is symmetric to the one
provided below for c1 < c2 and is omitted for brevity. Suppose that it is socially optimal to under-
take investment, i.e. βc1/(1−β)−K(0) > 0. We now show that in the unique equilibrium to the
alternating move end game, both firms 1 and 2 would want to invest when it is their turn to invest,
where uniqueness of equilibrium is a consequence of the uniqueness of the firms’ best responses,
and the fact that only one of the firm moves at a time. Consider firm 2’s decision in this unique
equilibrium. If firm 2 chooses to invest, its payoff is vI,2(c1,c2,0,2) = βc1/(1−β)−K(0) and if it
chooses not to invest its payoff is vN,2(c1,c2,0,2) = 0 since it believes that firm 1 will invest at its
turn with probability 1, which we will verify is true below. Thus, firm 2 will invest in equilibrium
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if and only if βc1/(1−β)−K(0) > 0, which is the same condition for optimal investment by the
social planner.

Now consider firm 1. At it’s turn to move the payoff to investing is

vI,1(c1,c2,0,1) = c2− c1 +βc2/(1−β)−K(0). (31)

Since c2 > c1 and by assumption βc1/(1− β)−K(0) > 0, it is easy to see that the payoff to
investing is strictly positive for firm 1. However we must also show that this is higher than the
payoff it would get from not investing. Since firm 1 knows that firm 2 will invest when it gets a
chance to move, the value to firm 1 to not investing is given by

vN,1(c1,c2,0,1) = c2− c1 +β f (1|1)
[

c2− c1 +
β

1−β
c2−K(0)

]
+β f (2|1)[c2− c1]. (32)

If the posited equilibrium holds (i.e. it is optimal for firm 1 to invest), then we must have
vI,1(c1,c2,0,1) > vN,1(c1,c2,0,1), and using the formulas for these values given above, this is
equivalent to

β

1−β
c2−K(0)>

β(c2− c1)

1−β f (1|1)
. (33)

Notice that the right hand side of inequality (33) above is maximized when f (1|1) = 1 (i.e. when
it is always firm 1’s turn to invest) and in this case this inequality is equivalent to βc1/(1−β)−
K(0)> 0, confirming that for all f (1|1) ∈ [0,1] it is strictly optimal for firm 1 to invest when it is
its turn to invest when it is socially optimal for this investment to occur.

Now consider the converse situation where it is not socially optimal to invest, and βc1/(1−
β)−K(0) < 0. Following the same reasoning as above, it is easy to see that it is not optimal for
firm 2 to invest when it is its turn to invest since firm 2’s payoff to investing is vI,2(c1,c2,0,2) =
βc1/(1−β)−K(0)< 0 and its payoff to not investing is vN,2(c1,c2,0,2) = 0. Now we must show
that firm 1, knowing that firm 2 will not want to invest at its turn, will also not want to invest when
it is its turn. If firm 1 never invests, its payoff is

vN,1(c1,c2,0,1) =
c2− c1

1−β
, (34)

and if it invests, its payoff is given by the same formula for vI,1(c1,c2,0,1) as given in equation
(31) above. So the condition for investment not to be optimal for firm 1 is vN,1(c1,c2,0,1) >
vI,1(c1,c2,0,1) which is algebraically equivalent to βc1/(1− β)−K(0) < 0, the condition for
when it is not socially optimal for investment to occur.

Proof. When π(c|c) = 0, the probability of remaining in any given state (c1,c2,c) ∈ S is also
zero. Using the Bellman equations (7) defining the firms’ value functions for investing and not
investing when it is their turn to invest, it is not difficult to see that each firm’s values are in-
dependent of the probability that their opponent will invest in this case. That is, for firm 1 we
have vN,1(c1,c2,c,1) and vI,1(c1,c2,c) are independent of P2(c1,c2,c,2), the probability that firm
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2 will invest when it is its turn to invest. This implies that the probability that firm 1 will in-
vest, P1(c1,c2,c,1), is also independent of P2(c1,c2,c,2), as it is given by formula (5) of section 2,
which shows that P1(c1,c2,c,1) is a logistic function of vN,1(c1,c2,c,1) and vI,1(c1,c2,c,1), both of
which are independent of P2(c1,c2,c,2). Similar arguments hold for firm 2, so that P2(c1,c2,c,2)
is independent of P1(c1,c2,c,1). Since the value functions (vN,1,vI,1,vN,2,vI,2) can be calculated
recursively using the Bellman equations (5), and since Lemma A.6 establishes that there is al-
ways a unique (efficient) equilibrium in the end game states (c1,c2,c), it follows that at every state
(c1,c2,c) ∈ S there is a unique stage game equilibrium with probabilities of investing given by
(P1(c1,c2,c,1),P2(c1,c2,c,2)), which depend on the value functions (vN,1,vI,1,vN,2,vI,2) that are
defined recursively via the Bellman equations (7).
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