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Bertrand’s model of oligopoly, which gives per$ectly competitive outcomes, assumes lhat:
(1) there is competition overprices and (2) production follow dle reulizafion of demand.
We show that both of ~heseassumption are required. Moreprecisely, consider a two-stage
oligopoly game where,~rst, there is simultaneous produc~ion,and, second, ajierproduction
levels are made public, there i~price competition. Under mild assumption about demand,
the unique equilibrium outcome is the Cournot outcome, This illustrates that solutions to
oligopoly games depend on both the strategic variables employed and the contex~(game
form) in which those variables are employed,

1. Introduction

■ Since Bertrand’s (1883) criticism of Coumot’s (1838) work, economists have come

to realize that solutions to oligopoly games depend critically on the strategic variables that
firms are assumed to use. Consider, for example, the simple ease of a duopoly where each
firm produces at a constant cost b per unit and where the demand curve is linear,

p = a – q. Coumot (quantity) competition yields equilibrium price p = (a + 2b)/3, while
Bertrand (price) competition yields p = h.

In this article, we show by example that there is more to Bertrand competition than

simply “competition over prices.” It is easiest to explain what we mean by reviewing the

stories associated with Coumot and Bertrand. The Cournot story concerns producers who
simultaneously and independently make production quantity decisions, and who then bring
what they have produced to the market, with the market price being the price that equates
the totat supply with demand. The Bertrand story, on the other hand, concerns producers
who simultaneously and independently name prices. Demand is allocated to the low-price

producer(s), who then produce (up to) the demand they encounter. Any unsatisfied demand

goes to the second lowest price producer(s), and so on.
There are two differences in these stories how price is determined (by an auctioneer

in Coumot and by price “competition” in Bertrand), and when production is supposed

to take place. We demonstrate here that the Bertrand outcome requires both price com-
petition and production after demand determination. Specifically,consider the following
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game between expected profit maximizing producers: In a first stage, producers decide
independently and simultaneously how much they will produce, and thk production takes
place. They then bring these quantities to market, each learns how much the other pro-
duced, and they engage in Bertrand-like price competition They simultaneously and
independently name prices and demand is allocated in Bertrand fashion, with the proviso
that one cannot satisfy more demand than one produced for in the first stage.

In this two-stage game, it is easy to produce one equilibrium. Let each firm choose
the Coumot quantity. If each firm does so, each subsequently names the Coumot price.
If, on the other hand, either chooses some quantity other than the Coumot quantity, its
rival names price zero in the second stage. Since any defection in the first stage will result
in one facing the demand residual from the Coumot quantity, and since the Coumot
quantity is the best response to this residual demand function, this is clearly an equilib
rium. What is somewhat more surprising is that (for the very special parameterization
above and for a large class of other symmetric parameterizations) the Coumot outcome
is the unique equilibrium outcome. Moreover, there is a perfect equilibrium that yields
this outcome. (The strategies above constitute an imperfect equilibrium.) This note is
devoted to the establishment of these facts.

One way to interpret this result is to see our two-stage game as a mechanism to
generate Coumot-like outcomes that dispenses with the mythical auctioneer. In fact, an
equivalent way of thinking about our game is as follows Capacities are set in the first
stage by the two producers. Demand is then determined by Bertrand-like price compe-
tition, and production takes place at zero cost, subject to capacity constraints generated
by the first-stage decisions. It is easy to see that given capacities for the two producers,
equilibrium behavior in the second, Bertrand-like, stage will not always lead to a price
that exhausts capacity. But when those given capacities correspond to the Coumot output
levels, in the second stage each firm names the Coumot price. And for the entire game,
fixing capacities at the Coumot output levels is the unique equilibrium outcome, This
yields a more satisfactory description of a game that generates Coumot outcomes. It is
this language that we shall use subsequently.

This reinterpretation in terms of capacities suggests a variant of the game, in which
both capacity creation (before price competition and realization of demand) and pro-
duction (to demand) are costly. Our analysis easily generalizes to this case, and we state
results for it at the end of thk article.

Our intention in putting forward this example is not to give a model that accurately
portrays any important duopoly, (We are both on record as contending that “reahty” has
more than one, and quite probably more than two, stages, and that multipenod effects
greatly change the outcomes of duopoly games.) Our intention instead is to emphasize
that solutions to oligopoly games depend on both the strategic variables that firms are
assumed to employ and on the context (game form) in which those variables are employed.
The timing of decisions and information reception areas important as the nature of the
decisions, It is witless to argue in the abstract whether Coumot or Bertrand was correc~
this is an empirical question or one that is resolved only by looking at the details of the
context within which the competitive interaction takes place.

2. Model formulation

■ We consider two identical firms facing a two-stage competitive situation. These firms
produce perfectly substitutable commodities for which the market demand function is
given by P(x) (price as a function of quantity x) and D(p) = P-’(p) (demand as a function
of price p).

The two-stage competition runs as follows.At the first stage, the firms simultaneously
and independently build capacity for subsequent production. Capacity level x means that
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up to x units can be produced subsequently at zero cost. The cost to firm i of (initially)
installing capacity level x, is b(x,).

After this first stage, each firm learns how much capacity its opponent installed. Then
the firms simultaneously and independently name prices p, chosen from the interval

[O,P(O)]. If p, < P,, then firm 1 sells

zl = min (xl, D(pl)) (1)

units of the good at price p, (and at zero additional cost), for a net profit of ptzj – b(xl).
And if p, < pj, firm 2 sells

Zz= min (xz, max (O,D(pz) – xl)) (2)

units at price p2 for a net profit of p2z2 – b(x2). If pz < p,, symmetric formulas apply.
Finatly, if p2 = P(, then firm i sells

( –+max(05-’yJ)=min(-x(YD@‘3)z,= min x,, ‘~)

at price p,, for net profits equal to p,z, – /?(x,).(In (3), and for the remainder of the article,

subscript j means not i. Note the use of the capacity and .mhseguent production termi-
nology.)

Each firm seeks to maximize the expectation of its profits, and the above structure
is common knowledge between the firms, At this point the reader will notice the particular
rationing rule we chose. Customers buy first from the cheapest supplier, and income
effects are absent. (Alternatively, this is the rationing rule that maximizes consumer sur-
plus. Its use is not innocuous–see Beckmann (1965) and Levitan and Shubik (1972).)

The following assumptions are made:

Am.onption 1. The function P(x) is strictly positive on some bounded interval (O,X), on
which it is twice-continuously differentiable, strictly decreasing, and concave. For x > X,
P(x) = o.

,4ssurnption 2. The cost function b, with domain [0, m) and range [0, m), is twice-
continuously differentiable, convex, and satisfies b(0) = Oand b’(0) >0. To avoid triv-
ialities,Y(O) < P(0)—production at some level is profitable,

3. Preliminaries: Cournot competition

■ Before analyzing the two-stage competition formulated above, it will be helpful to
have on hand some implications of the assumptions and some facts about Cournot com-
petition between the two firms. Imagine that the firms engage in Coumot competition
with (identical) cost function c. Assume that c is (as h), twice-continuously differentiable,
convex, and nondecreasing on [0, m), Note that from Assumption 1, for every y < D(O)
the function x ~ xl’(x + y) – C(X) is strictly concave on [0, y – x). Define

rC(y)= argmax XP(X+ y) – c(x).
OSXSX–J,

That is, r,(y) is the optimal response function in Coumot competition if one’s rival puts
y on the market. It is the solution in x of

P(x + y) + XP’(X+ y) - c’(x) = o. (4)

Lemma 1. (a) For every c as above, r, is nonincreasing in y, and r, is continuously
differentiable and strictly decreasing over the range where it is strictly positive.
(b) r: z – 1, with strict inequality for y such that r,(y)> O,so that x + r,(x) is nonde-
creasing in x.
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(c) If c and d are two cost functions such that c’ > d’, then r, < rd.
(d) If y > r,(y), then r,(r.(y)) < y.

Proo~ (a) For any y, we have

P(rC(y)+ y) + rC(y)F’’(rC(y)+ y) - c’(r,(y)) = O.

Increase yin the above equation while leaving r,(y) fixed. This decreases the (positive)
first term and decreases the second (it becomes more negative). Thus the concavity of
.xP(x + y) – C(X)in x implies that, to restore equality, we must decrease r,(y). Where P
is strictly positive, the decrease in rC(y)must also be strict. And the differentiability of rc
follows in the usual fashion from the smoothness of P and c.

For (b), increase y by h and decrease r,(y) by h in the equation displayed above. The
first (positive) term stays the same, the second increases (becomes less negative), and the
third increases, Thus the left-hand side, at y + h and r,(y) – h, is positive. The strict
concavity of the profit function ensures, therefore, that r.(y + h) > r,(y) – h (with the
obvious qualifications about values y for which r,(y) = O).

For (c) and (d), arguments similar to (b) are easily constructed.

Because of (d), the picture of duopoly Coumot competition is as in Figure 1. For
every cost function c, there is a unique Coumot equilibrium, with each firm bringing
forward some quantity x*(c). Moreover, for c and d as in part (c) of the lemma, it is clear
that x*(c) < x*(d). In the next section, the case where c is identically zero plays an
important role, To save on subscripts and arguments, we shall write r(y) for ro(y)and x*
for x*(0). Also, we shall write R(y) for r(y)P(r(y) + y), the revenue associated with the
best response toy when costs are identically zero.

FIGURE1

THEPICTUREOF COURNOTCOMPETITIONUNDERTHEASSUMPTIONSOF THEMODEL

,/

/

x, QUANTITYSUPPLIEDBYFIRSTFIRM
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(The astute reader will notice that the analysis to follow does not require the full
power of Assumptions 1 and 2. All that is really required is that, for each y < D(O),the
functions x + xP(x + y) – b(x) and .x - xF’(x + y) are strictly quasi-concave
(on (O,X – y)), and that rl)and r appear as in Figure 1. The former does require that
p -+ PD(P) is strictly concave where it is positive, but this is not quite sufficient. In any
event, we shall continue to proceed on the basis of the assumptions given, as they do
simplify the arguments that follow.)

4, The capacity-constrained subgames

■ Suppose that in the first stage the firms install capacities xl and Xz, respectively.
Beginning from the point where (Xl, Xt) becomes common knowledge, we have a proper
subgame (using the terminology of Selten (1965)). We call this the (Xl, X2) capachy-

constrained subgame—it is simply the Edgeworth (1897) “constrained-capacity” variation
on Bertrand competition. It is not u priori obvious that each capacity-constrained subgame
has an equilibrium, as payoffs are discontinuous in actions. But it can be shown that the
discontinuities are of the “right” kind. For subgames where xl = x?, the existence of a
subgame equilibrium is established by Levitan and Shubik (1972) in cases where demand
is linear and marginal costs are constant, Also for the cme of linear demand and constant
marginal costs, Dasgupta and Maskin (1982) establish the existence of subgame equilibria
for all pairs of xl and x2, and their methodology applies to all the cases that we consider.
(We shall show how to “compute” the subgame equilibria below.)

The basic fact that we wish to establish is that for each (x,, Xz),the associated subgame
has unique expected revenues in equilibrium. (It is very probably true that each subgame
has a unique equilibrium, but we do not need this and shall not attempt to show it.)
Moreover, we shall give formulas for these expected revenues.

For the remainder of this section, fix a pair of capacities (Xl, Xz)and an equilibrium
for the (x,, X2) subgame, Let ~i be the supremum of the support of the Prices named by
firm ~ that is, ~i = inf {pfmm i names less than p with probability one}. And let p, be
the infimum of the support. Note that if mini x, > D(0), then, as in the usual Bert~and
game with no capacity constraints, Pi = ~, = O.And if mini x, = O,we have the monopoly
case, Thus we are left with the case where O < rein, x, < D(O).

Lemma 2, For each i, ~i > P(x1 + X2).

Proo\ By naming a price p less than P(xl + xl), firm i nets at most px,. By naming
P(x, + X2),firm i nets at worst P(xl + x2)(xl + xz – x$) = P(xt + xz)x,.

Lemma 3. If jil = 82 and each is named with positive probability, then

p, = B, = P(XI + XJ and xis r(x~), for both i = 1 and i = 2.

Pmqf Suppose that ~, = jz and each is charged with positive probability. Without loss of
generality, assume xl z X2,and suppose that j] = ~z > l’(xl + .YJ).By naming a price
slightly less than ~1, firm 1 strictly improves its revenues over what it gets by naming jl.
(With positive probability, it sells strictly more, while the loss due to the lower price is
small.) Thus j, = ~z < F’(.xl+ X2).By Lemma 2, we know that fii = pi = P(x, + X2)for
i=l,2.

—

By naming a higher price p, firm i would obtain revenue (qp) – Xj)P,of, letting
x = D(p) – x,, XP(X+ xl). This is maximized at x = r(xj), so that were r(q) < x,, we

would not have an equilibrium.

Lemma 4. If x, < ~(~j) for i = 1, 2, then a (subgame) equilibrium is for each firm to
name P(xI + X2)with probability one,
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ProoJ The proof of Lemma 3 shows that naming a price greater than P(x1 + x2) will not
profit either firm in this case. (Recall that XP(X+ Xj) is strictly concave.) And there is
no incentive to name a lower price, as each firm is selling its full capacity at the equilib-
rium price.

Lewrrrm5. Suppose that either jil > ~z, or that P, = D2and ~z is not named with positive
probability, Then:

(a) fij = P(r(x2) + x,) and the equilibrium revenue of firm 1 is R(x,);
(b) XI > ?’(X~~
(c) 11 = ~, and neither is named with positive probability;
(d) x, > Xz;and
(e) the equilibrium revenue of firm 2 is uniquely determined by (xl, .x*)and is at least

(x*/xl)R(xz)and at most R(xz).

Proof For (a) and (b): Consider the function

E(p) = p“ [rein (xl, max (O,D(p) - x*))].

In words, Z(p) is the revenue accrued by firm 1 if it names p and it is undersold by its
rival. Under the hypothesis of this lemma, firm 1, by naming P], nets precisely Z(n), as
it is certain to be undersold. By naming any price p > ~1, firm 1 will net precisely E(p).
If firm 1 names a price p < El, itwill net at least E(p). Thus, if we have an equilibrium,

E(P) must be maximized at p,.
We must dispose of the case X2 > D(O). Since (by assumption) D(O) > mini ~i,

x2 > D(O)would imply D(0) > xl. Thus, in equilibrium, firm 2 will certainly obtain strictly
positive expected revenue. And, therefore, in equilibrium, jz >0. But then firm 1 must
obtain strictly positive expected revenue. And if X2 z D(0), then z(~l) = 0, That is,

xz z D(O)is incompatible with the hypothesis of this lemma.
In maximizing z(p), one would never choose p such that D(p) – xl > xl or such

that D(p) < x2. Thus, the relevant value of p lies in the interval [P(x1 + X2),P(x2)]. For
each p in this interval, there is a corresponding level of x, namely x(p) = D(p) – x2, such
that Z(p) = x(p)P(x(p) + X2),Note that x(p) runs in the interval [0, xl]. But we know
that

argmax x(p)P(x(p) + XZ)= r(xz) A xl,
X(fx[o>.rl]

by the strict concavity of xP(x + x2).IJ”thecapacity constraint x, is binding (even weakly),
then ~1 = P(x1 + X2),and Lemma 2 implies that we are in the case of Lemma 3, thus
contradicting the hypothesis of this lemma. Hence it must be the case that the constraint
does not bind, or r(xJ) < x, (which is (b)),17,= P(r(xz) + x2), and the equilibrium revenue
of firm 1 is R(xz) (which is (a)).

For (c): Suppose that pj < pj. By naming pi, firm i nets ~i(~~i) A xi). Increasing

this to any level P E (pi, jj) nfis P(D(P) A xi). Thus, we have an equilibrium only if
D(pi) <xi and pi is the-m&opoly price. (By the strict concavity of xP(x), moving from
~i in the directi~n of the monopoly price will increase revenue on the margin,) That is,

Ii= P(@)). But ~i < DI = l’(r(xJ + x2) < P(r(0)), which would be a contradiction. Thus
~1 = p2. We denote this common value by ~ in the sequel. This is the first part of (c).

For the second part of(c), note first that p > P(xI + X2).For if p = P(xI + X2),then
by naming (close to) p, firm 1 would make a~ most P(x[ + X2)X1.~nce xl > r(x~)and
the equilibrium revenfie of firm 1 is R(xt), this is impossible.

Suppose that the firm with (weakly) less capacity named p with positive probability.
Then the firm with higher capacity could, by naming a price ~lightly less than p, strictly—
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increase its expected revenue. (It sells strictly more with positive probability, at a slightly
lower price.) Thus, the firm with weakly less capacity names p with zero probability. Since
p is the infimum of the support of the prices named by the hwer capacity firm, this firm
must therefore name prices arbitrarily close to and above p. But if its rival named p with
positive probability, the smaller capacity firm would do b;tter (since p > P(x, + ~J) to
name a price just below p than it would to name a price just above–p. Hence, neither
firm can name p with po~tive probability.

For (d) an[(e): By (c), the equilibrium revenue of firm i must be p(l)(p) A ,L). We
know that p < ~1= f’(xl + r(x2)), so that D(p)> D(P(x1 + r(x2))) = X2-+r(~z), and thus
D(p) > Xz~Hence, firm 2 certainly gets px2-in equilibrium. Firm 1 gets no more than
px~ so that the bounds in part (e) are es~blished as soon as (d) is shown.

Suppose that x?> x,. Then D(p) > x,, and firm 1’sequilibrium revenue is pxl. We
already know that it is also R(X2),–S0that we would have p = R(x2)/xl, and-firm 2
nets R(x1)x2/x,. By naming price P(r(xl) + xl) (>pl = P(r(;z) + Xz)),firm 2 will net
l?(xl). We shall have a contradiction, therefore, if we show that xl > r(x2) implies
X,~(X, ) > X2R(X2).

Let o(x) = xR(x) = xr(x)P(r(x) + x), We have

0’(x) = r(x)P(r(x) + x) + xr’(x)P(r(x) + x) + xr(x)P’(r(x) + x)(r’(x) + 1)

= (r(x) - x)P(r(x) + x) + x(r’(x) + 1)(1’(r(x)+ x) + r(x)P’(r(x) + x)).

The last term is zero by the definition of r(x), so that we have

~(x) = (r(x) - x)P(r(x) + x).

Thus X2R(XZ)- XIR(X1)= e(xz) – e(xl) = ~~ (r(x) – x)P(r(x) + x)~x. The integrand

is positive for x < x* and strictly negative for x > x*. We would like to show that the
integral is negative, so that the worst case (in terms of our objective) is that in which
xl < x* and X2is as small as possible. Since xl > r(xz), for every xl < x* the worst case
is where Xzis just a bit larger than r- ‘(xl). We shall thus have achieved our objective (of
contradicting X2> xl, by showing that the integral above is strictly negative) if we show
that for all x < x*, 9(x) – El(r”’(x)) >0.

But O(x) – O(r-’(x)) = xr(x)P(x + r(x)) – r-’(x)xP(r-l(x) + x). This is nonnegative
if and only if r(x)f’(x + r(x)) – r- ‘(x)P(r-l(x) + x) >0, which is certainly true, since r(x)
is the best response to x.

Lemma 6. If xl > X2and xl > r(xz), there is a (mixed strategy) equilibrium for the
subgame in which all the conditions and conclusions of Lemma 5 hold. Moreover, this
equilibrium has the following properties. Each firm names prices according to continuous
and strictly increasing distribution functions over an (coincident) interval, except that
firm 1 names the uppermost price with positive probability whenever .xI > X2. And if
we let T,(p) be the probability distribution function for the strategy of firm i, then
VI(J)s ‘1’2(p):firm 1’sstrategy stochastically dominates the strategy of firm 2, with strict
inequality if xl > X2.

Remarks. The astute reader will note that the first sentence is actually a corollary to the
previous lemmas and to the (as yet unproven) assertion that every subgame has an equi-
librium. The actual construction of an equilibrium is unnecessary for our later analysis,
and the casual reader may wish to omit it on first reading. It is, however, of sufficient
independent interest to warrant presentation. In the course of thk construction, we obtain
the second part of the lemma, which is also noteworthy. At firstglance, it might bethought
that firm 1, having the larger capacity, would profit more by undemelling its rival, and
therefore it would name the (stochastically) lower prices. But (as is usual with equilibrium
logic) this is backwards Each firm randomizes in a way that keeps the other firm indifferent
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among its strategies. Because firm I has the larger capacity, firm 2 is more “at risk” in
terms of being undersold, and thus firm 1 must be “less aggressive.”

Prooj Refer to Figure 2. There are five functions depicted there: @(p), I@(p) – X2),

AD(P) – XI),PXI, and PX2.Note that
(i) pxl = p(D(p) - x,) and px, = p(D@) - x,) at the same point, namely

F’(X,+ X2).
(ii) px, = pD(p) at the point where @(p) - x,) vanishes, and similarly for 2.
(iii) The first three functions are maximized at I’(r(O)), P(T(X2) + X2), and

P(r(xl) + xl), respectively.
(iv) Because P is concave, the first three functions are strictly concave on the range

where they are positive. And every ray from the origin of the form p.x crosses each of
these three functions at most once. (The latter is a simple consequence of the fact that
D(p) is decreasing.)

Now find the value p = P(r(xz) + X2),This is P,. Follow the horizontal dashed line
back to the function p(D(p) A xl). We have drawn this intersection at a point p where
D@) > x,, but we have no guarantee that this will happen. In any event, the level of p

at this intersection is p. Follow the vertical dashed line down to the ray px2. The height
pxz will be the equilfinum revenue of firm 2. Note that even if the first intersection
bccurred at a point where xl > D(p), this second intersection would be at a level p where
D(p) > x2, since X2= D(p) at P(xz), which is to the right of P(r(x2) + Xz).Also, n~te that
the~e intersections occur to the right of P(xI + Xz),since R(x2) > XIP(X1+ Xz).

Suppose that firm 1 charges a price p E [p, ~l]. If we assume that firm 2 does not
charge this price p with positive probability, th;n the expected revenue to firm 1 is

E,(p) = @*(~)P(D(p)– XZ)+ (1 - @2(p))p(D(p)A X,),

where @jis the distribution function of firm 2’s strategy. A similar calculation for firm
2 yields

E~(p) = !l,(p)p[max (D(p) – xl, O)]+(1 – @l(p))pxJ.

(Note that for p ~ [p, ~1],we know that D(p) - x, > O.)
Solve the equat~ons EL(p) = R(x1) (=p(D(p) A xl)) and Ez(p) = pxz in @j(p) and

@l(p), calling the solutions W2(p)and Wl(fi, re@ectively. Note that -
(v) Both functions are continuous and begin at level zero.

FIGURE2

DETERMININGTHESUBGAMEEQUILIBRIUM
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(vi) The function Wz(p) is strictly increasing and has value one at ~[. To see this,
note that p(D(p) – X2) is getting closer to, and p(D(p) A xl) is getting further from, R(x2)
asp increases. And R(x2) = ~l(D(~l) – X2),

(vii) The function V](p) is strictly increasing, everywhere less than or equal to one,
and strictly less than one if xl > X2.(If x1 = X2,then it is identical to V2(p).) To see this,
note first that for p > P(xl), V,(p) = 1 – p/p, And for values of p in the range
p s p < P(xl), we have R(x2) = px[, and, thus:—

(p - P)X2
T,(p) =

p(D(p) – X, – X2)‘

and
(P - Pkl

‘Y*(p) =
p(D(p) -x, - XJ “

That is, for p between p and P(xl), Y1 = x2V2/xl. Noting step (vi), the result is obvious.
(viii) W,(p) s ~z(~) for all p. This is immediate from the argument above for p in

the range p s p < I’(xl). For p > P(xl), note that pD(p) is receding from R(x2) more
quickly th=n pxz is receding from pxj [since p(D(p) – X2) is still increasing], and
p(ll(p) - Xz) is increasing, hence afiroaching R(x2) more quickly than the consiant
function zero is approaching ~x2.

(ix) px2 > R(xl). To see this, note first that pxl z R(x,). Thus 2X2> x2R(xz)/xl. To
get the de~iredresult, then, it sufficesto show that~(xl)s x2R(x2)/xl, or XIR(XI)< XZR(XJ
(with strict inequality if x, > X2.)Recall that xl > x,. If x2 > x*, then the result follows
easily from the formula XIR(XI)– X2R(X2)= ~~;(r(x) – x)P(r(x) + x)dx. If x2 < x*, then

X2> r(xl ) (since (xl > r(x2)), and the argument from the previous lemma applies,
Putting all these points together, we see that we have an equilibrium of the desired

type if firm 1 names prices according to the distribution V,, and firm 2 names them
according to ‘Z2. Each firm is (by construction) indifferent among those strategies that

FIGURE 3

THE DIFFERENT TYPES OF SUBGAME EQUILIBRIA
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are in the support of their (respective) distribution functions, The levels of ~1 and p are
selected so that firm 1 has no incentive to name a price above the first or belofi the
second. Since firm 2 gets no more than R(xl), it has no incentive to go above El; neither
(by construction) will it gain by naming a price below p.

Since the construction of the equilibrium took us rather far afield of our main ob
jective, we end this section by compiling the results established above that are important
to subsequent analysis

Proposition 1. (Refer to Figure 3.) In terms of the subgame equilibria, therd are three
regions of interest.

(a) If xis r(xj) for both i = 1 and i = 2 (which is labelled as region 1 in Figtme 3), the
unique equilibrium has both firms naming price I’(x1 + XZ)with certainty. The equilibrium
revenues are, therefore, xiP(xl + X2)for firm i.
(b) If x, > X2and xl > r(x*) (labelled region 11Ain Figure 3), then, in equilibrium, fi~
1has expected revenue R(x2),and firm 2 has expected revenue determined by (xl, X2)and
somewhere between R(xl) and x#(xl)/xl. If xz < D(O),the equilibrium is the randomized
one constructed in Lemma 6; if X2> D(0), both firms net zero and name pncq zero with
certainty.
(c) If X2> xl and X2> r(x,) (labelled region IIB in Figure 3), then, in equilibrium, fImI
2 has expected revenue R(xj), and firm 1 has expected revenue dete~ined by (XI,x2) and
somewhere between R(xl) and xlR(xl)/x2. Similar remarks apply concerning xl S D(O)as
appear in (b).
(d) The expected revenue functions are continuous functions of x, and xl.

4. Equilibria in the full game

■ We can now show that in the full game there is a unique equilibrium outcome. We
state this formally:

Propo.rilion2. In the two-stage game, there is a unique equilibrium outcome, namely the
Cournot outcome: x, =X2 = x*(b), and pi = p2 = Wx”(b)).

Proof The proposition is established in four steps.

Step 1:pre{iminarief. Consider any equilibrium. As part of this equilibrium firm i chooses
capacity according to some probability measure K,with support S, s R. Letus denote
by @j(x,, x2) the (possibly mixed) strategy used by firm i in the (x,, x2) subgame. Except
for a p, X p2 null subset of S1 X S2, @i(xl,Xz)must be an optimal response to @j(xl, xJ.

That is, t2i = {(xl, X2] @i(xl, X2) k an optimal response to @j(xl, X2)}is such that

(~1 X m)(fh n Oz)= 1. (For subgame perfect equilibria ~, rl t12= R2, but we do not wish
to restrict attention to such equilibria.) In particular, if E(x,) = {X1:(-XI,x2) E Q n fh}
and It = {xi E S,:pl(E(Xi)) = 1}, then ~i(x,) = 1. Let ~i denote the expected profit of

firm i in this equilibrium and ~i(xi) the expected profit when capacity Xi is built. If
X, = {Xi c /Yi:~l(xi) = ~i}, then again ~i(~i) = 1. I-d ii and Xidenote the supremum and
infimum of A’i.Because the subgame equilibrium revenue functions are continuous in
xl and X2,and because revenues are bounded in any event, .iI and XImust yield expected
profit Ti if firm j uses its equilibrium quantity strategy ~, and fiTITISsubsequently use
subgame equilibrium price strategies.

Assume (without loss of generality) that ~i > .iz.

Slep 2: il z r&). Suppose contrariwise that i, < r&z). For every X! < i,, the subgame
equilibrium revenue of firm 2, if it installs capacity Iz, is 32P(x, + x2). That is,

X2=
J-

“ (&~(X, + x2) - bbz))p,(dx,).
z)
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If firm 2 increases its capacity slightly, to say, X2 + t, where it remains true that

~1 < rh(x2 + {), then the worst that can happen to firm 2 (for each level of XI) is that

firm 2 will net @2 + 6)P(xI + X2 + t)– b(z2 + t). Since for all xl < ~1, X2 + E< rh(xl),
it follows that (X2+ t)p(x, + X2 + C) – /i& + C) > X2E’(X1 + 32) – b(32), and this
variation will raise firm 2’s profi~s above T2. This is a c&tradiction.

step ~ ~, s rb(iz). Suppose contrariwise that ~1 > rb(~2). By building ~1, firm 1 nets

revenue (as a function of X2)R(x2) if ~1 > r(x2) and ~l~(.il + X2)if .iI < r(x2), assuming
that a subgame equilibrium ensues. That is,

~, = J (R(X2)- b(i,))~,((ix,) + J~A2,r_,(y,)1(i,P(i, + X2)- b(i,))p@2). (5)
(r-1(.t,),x~]

Consider what happens to firm 1‘s expected profits if it lowers its capacity from ~1
to just a bit less—say, to ~1 – c, where fl – c > rb(~2). Then the worst that can happen

to firm 1 is that firm 2 (after installing capacity according to p2) names price zero. This

would leave firm 1 with residual demand D(p) – X2 (where X2s ~2), Firm 1 can still
accrue revenue R(x2) if i, – c > r(xz) and (~1 – C)p(X2 + i, – t) otherwise. Thus, the
expected profits of firm 1 in this variation are at least

J (R(x,) - b(i, - C))~2(dx,)
[r- l(.YI-,),X1]

We shall complete this step by showing that for small enough c, (6) exceeds (5), thereby
contradicting the assumption.

The difference (6) minus (5) can be analyzed by breaking the integrals into three
intervals [r-’(j, – ~),S2], [Zj, r-’(jl)], and (r-’(.il), r-’(jl – ~)).Over the first interval,
the difference in integrands is

(R(x2) - b(~[)) - (~(xJ - b(i, - ())= ~b’(i{) + o(~).

Note well that b’(~l) is strictly positive. Over the second interval, the difference in inte-
grands is

((i, - E)P(i, - t + x2) -W, - t)) - (i,P(i, + X2)- b(i,))

= [(b’(,f,) – ~fq,fJ – P(i, + X2))+ 0(6).

Here the ten-n premultiplied by t is strictly positive except possibly at the lower boundary
(where it is nonnegative), since by step 2,2, > rb(~2)> Y~(xJ.Over the third intervaf, the
difference in the integrands is no more than O(c), because of the continuity of
XP(X+ X2)– b(x). Thus as ~goes to zero, the integral over the first interval will be strictly
positive O(C)if PZ puts any mass on (r-i(iI), iz]. The integral over the second interval
will be strictly positive O(c)if y2 puts any mass on (r; ‘(,il), r- ‘(iI)]. The integral over the
third interval must be ~c), since it is the integral of a term 0(~) integrated over a vanishing
interval. The hypothesis .iI > r&t2) implies that p2 puts positive mass on either
(rj’(.i,), r-’(j,)] or on (r-’(.il), ~2] (or both). Hence for small enough C,the difference
between (6) and (5) will be strictly positive, This is the desired contradiction,

S~ep4. The rest is easy. Steps 2 and 3 imply that ~1 = rb(i2) = r&2), and hence that firm
2 uses a pure strategy in the first round. But then firm 1’sbest response in the first round
is the pure strategy rb(xz),And firm 2’s strategy, which must be a best response to this,
SlluSt satisfy xz = rb(xl) = rb(rb(xj)). This implies that X2 = x*(/r), and, therefore,

xl = rb(x*(b)) = x*(b), Finally, the two firms will each name price F(2x*(b)) in the second
round (as long as both firms produce x$(b) in the first round, which they will do with
probability one); this follows immediately from Step 1 and Proposition 1.
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5. The case b = O

■ When b = Oitiseasy to check that the Coumot outcome is an equilibrium. In this
case, however, there are other equilibria as well. If imperfect equilibria are counted, then
one equilibrium has xl = xz = D(0) (or anything larger) and PI = PZ= 0. Note well that
each firm names price zero regardless of what capacities are installed. This is clearly an
equilibrium, but it is imperfect, because if, say, firm 1 installed a small capacity and the
subgame equilibrium ensued, each would make positive profits.

There are also other perfect equilibria, although it takes a bit more work to establish

them. Let xl ~ D(O). If firm 2 installs capacity greater than D(0), it will net zero profits
(assuming a subgame equilibrium follows). If it installs xl < D(0), then its profits
(in a perfect equilibrium) are P(XZ)X2,where P(xZ) s P(O) solves the equation
P(x2)D(P(xZ))= R(xz). Hence, in ~ny perfect equilibrium where X, z D(0), X2must be
~elected-to maximize p(x2)xt = R(x2)xj/D(p(xj)). The numerator in the last expression
is increasing for X2s ~* and is decreasing ~hereafter. (See the proof of Lemma 5.) And
as P(x2) decreases in XI, the denominator increases in X2,Thus, the maximizing X2is less
th{n x*. But as long as firm 2 chooses capacity less than x*, the best revenue (in any
subgame equilibrium) that firm 1 can hope to achieve is R(xt), which it achieves with
any xl > D(0). Thus, we have a perfect subgame equilibrium in which frrtn 1 chooses
xl > D(O)and firm 2 chooses X2to maximize P(XZ)XZ.

6. When both capacity andproduction are costly

■ Inaslightly more complimted vertion ofthisgame, bothcapacity (which is installed
before prices are named and demand is realized) and production (which takes place after
demand is realized) would be costly. Assuming that each of these activities has a convex
cost structure and that our assumptions on demand are met, it is easy to modify our

analysis to show that the unique equilibrium outcome is the Coumot outcome computed

by using the sum of the two cost functions. (This requires that capacity is costly on the

margin, Otherwise, imperfect equilibria of all sorts and perfect equilibria of the sort given

above will also appear.) It is notable that the cost of capacity need not be very high relative
to production cost the only requirement is that it be nonzero on the margin, Thus,
situations where “most” of the cost is incurred subsequent to the realization of demand
(situations that will “look” very Bertrand-like) will still give the Coumot outcome. (A
reasonable conjecture, suggested to us by many colleagues, is that “noise” in the demand
function will change this dramatically. Confirmation or rejection of this conjecture must
await another paper, )
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