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1 Consumption/Saving for Retiree

Consider a model where there is a single state variable W (wealth) and two choices: how much to consume

c and whether or not to work l. Let l = 1 denote the choice to work and l = 0 denote the choice to

“retire”. We initially assume that retirment is absorbing, although it would be easy to extend the model

to allow “‘unretirement”, i.e. a retired person who has run down his/her wealth can decide to return to

work. Currently we do not include any state dependence (such as making the decision to work harder for

someone who is out of work than for someone who is currently working) and many other elaborations

could be added to the model.

We assume that if someone chooses to work they receive a fixed (non-random) wage y but an age-

dependent additive disutility or cost of working, dt at age t. Another extension of the model would include

a) allowing for an initial random draw ỹw from some initial distribution such as a lognormal to represent

a “permanent wage” of the person, and b) in subsequent time periods random wages would be given

by ỹt = ỹwη̃t where the {η̃t} are IID shocks to wages over time, and c) more flexible specifications for

decisions such as more than two discrete decisions (e.g. full time, part time or not work, etc).

Let the discount factor at age t be β ∈ (0,1). We believe the closed-form solutions provided below

can be extended to the case where β is age-dependent, say βt ∈ (0,1), which could reflect age-variation

due to mortality. We assume that there is a nonstochastic return on savings R̃ > 1. We do not consider

portfolio decisions, but the model could be be extended to allow returns of the form R(µ) which depend

on a parameter µ ∈ (0,1) that can be viewed as a portfolio allocation decision between a riskless security

(Treasury bills) and risky securities (stock portfolio). For now we are focusing on two key decisions: a

discrete {0,1} retirement decision, and an optimal consumption decision during work and retirement.

We consider first the version of the problem where retirement is assumed to be an absorbing state, i.e.

once retired we rule out the possibility of subsequent labor market entry. The value function for a person
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who is age t (with maximum lifespan T ) who has not yet retired is Vt(W,1) (where the 1 indicates the state

of still working and 0 will indicate the absorbing state of retirement) given by

Vt(W,1) = max

[

max
0≤c≤W

u(c)+βVt+1(R̃(W − c),0), max
0≤c≤W

u(c)−dt +βVt+1(R̃(W + y− c),1)

]

(1)

The value function for a retiree is Vt(W,0), given by

Vt(W,0) = max
0≤c≤W

[

u(c)+βVt+1(R̃(W − c),0)
]

. (2)

For the class of constant relative risk averse utility functions, u(c) = (cρ −1)/ρ for ρ ∈ [0,1) (with u(c) =

log(c) when ρ = 0), we have a closed-form solution for VT−t(W,0) where T is the upper bound on lifespan.

We have for ρ ∈ (0,1)

VT−t(W,0) =

[

W ρ

ρ

]

(

t

∑
i=0

Ki

)(1−ρ)

−
1

ρ

(

t

∑
i=0

βi

)

(3)

where

cT−t(W ) =W

(

t

∑
i=0

Ki

)−1

(4)

and

K = (β[R]ρ)1/(1−ρ)
(5)

so K → β as ρ → 0. Further, as ρ → 0 the value function given in equation (3) above converges (pointwise)

to

VT−t(W ) = log(W )

(

t

∑
i=0

βi

)

+At (6)

where

At =

(

t

∑
i=0

iβi

)

[log(R)+ log(β)]− log

(

t

∑
i=0

βi

)(

t

∑
i=0

βi

)

. (7)

Note that equation (6) can be derived by L’Hôpital’s rule from (3) in the limit as ρ ↓ 0. Define the optimal

retirement threshold at age t, wt by the value of w that makes the person indifferent between retiring and

not retiring at that age

Vt(wt ,0) =Vt(wt ,1) (8)

Assuming dt > 0 (there is a positive disutility from working), it will be optimal for a person of age t to

retire if w ≥ wt and work otherwise. We will have a non-convex kink in the value function for working

Vt(W,1) at the point wt since we have

Vt(W,1) = max[Vt(W,0),Vt (W,1)] (9)
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and we can show that in this problem the two functions will only intersect once at wt with Vt(W,1) >

Vt(W,0) for w < wt and Vt(W,1) < Vt(W,0) for w > wt . Let ct(W,0) be the optimal consumption of a

retiree of age t. This function is given by

ct(W,0) = argmax
0≤c≤W

[

u(c)+βVt+1(R̃(W − c),0)
]

(10)

The optimal consumption of a individual who is still working (not yet retired) is ct(W,1) given by

ct(W,1) = argmax
0≤c≤W

[

u(c)−dt +βVt+1(R̃(W +1− c),1)
]

(11)

Let ct(W ) be the optimal consumption function for this individual. It is given by

ct(W ) =







ct(W,1) if wt < wt

ct(W,0) if wt ≥ wt

(12)

We can show that due to the non-convex kink in the value functions that the optimal consumption function

ct(W ) will have a discontinuity at wt , and

ct(wt ,1)> ct(wt ,0). (13)

This result follows from the condition that

V ′
t (wt ,1) <V ′

t (wt ,0) (14)

Since there is a kink at wt , the derivative V ′
t (wt ,1) must be interpreted as a left hand derivative (derivative

from below wt ). It will be an important test of various solution methods to see if the solution methods

can accurately determine the optimal retirment thresholds wt and capture the discontinuity in the optimal

consumption function ct(W ) at these points.

The Bellman equation for value function of retirement Vt(w,0) must be modified when there is a

potential for re-entry into the labor force after retirement (something we refer to as “unretirement”). In

this case Vt(w,0) is given by

Vt(W,0) = max

[

max
0≤c≤W

u(c)+βVt+1(R̃(W − c),0), max
0≤c≤W

u(c)−dt − rt +βVt+1(R̃(W + y− c),1)

]

(15)

Notice the value function for a retiree when there is a possibility of labor market re-entry given above

differs from the value function given in equation (2) above when retirement is assumed to be an absorbing

state by giving the individual an option to return to work, but only by incurring a fixed “labor market
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re-entry cost” rt in addition to the usual disutility of working dt . As rt → ∞ the problem that allows un-

retirement will converge to the problem analyzed above where retirement is assumed to be an absorbing

state, since the labor market re-entry option in equation (15) will converge to −∞ and then Vt(W,0) will

always equal the first term in the max operator in equation (15), which implies that Vt(W,0) will have

the same value as given by equation (2) when the possibility of labor market entry is simply ruled out by

assumption.

In the version of the problem with labor market re-entry from retirement, the optimal strategy will

consist generally of two thresholds, w1,t and w0,t . Further, the consumption decision will depend on the

labor market state, which we denote by ct(W,0) for a retired person, and ct(W,1) for a worker. The first

threshold, w1,t is the optimal retirement threshold for someone who is currently working, and is given by

the value of w that makes a person who is currently working indifferent between retiring and not retiring.

We have

u(ct(w1,t ,1))+βVt+1(R̃(w1,t − ct(w1,t ,1)),0) = u(ct(w1,t ,1))−dt +βVt+1(R̃(w1,t + y− ct(w1,t ,1)),1).

(16)

Similarly, the equation for the optimal threshold for “un-retirement” for a person who is currently retired,

w0,t , is given by

u(ct(w0,t ,0))+βVt+1(R̃(w0,t −ct(w0,t ,0)),0) = u(ct(w0,t ,0))−dt −rt +βVt+1(R̃(w0,t +y−ct(w0,t ,1)),1).

(17)

If rt > 0, it is not difficult to show by comparing equations (16) and (17) that w0,t < w1,t . That is, to avoid

incurring the labor market re-entry costs, it is optimal for a retiree to return to the labor market at a lower

value of wealth w0,t than the value of wealth w1,t that would induce the opposition transition, i.e. for a

worker to retire. However if rt = 0, then it is not hard to see that w0,1 = w1, t, so the two thresholds collapse

to each other.

Thus, Vt(W,1) will have a kink at w1,t whereas Vt(W,0) will have a kink at w0,t . In the case where

retirement was assumed to be an absorbing state, Vt(W,0) had no kinks and when utility is assumed to be

in the CRR class, the formula for this function is given by the close-form solutions above in equation (3)

when ρ > 0 or by equation (6) when ρ = 0. These value functions clearly have no kinks. Thus, the solution

to the retirement problem when we allow the possibility of labor market re-entry (and when rt > 0) is more

challenging to solve in comparison to the problem where retirement is assumed to be an absorbing state.

4



Consider the derivation of the optimal retirement thresholds and consumption functions in the special

case where u(c) = log(c). In this case, it is easy to see that in the last period we have wT = 0 (i.e. it is

optimal for everyone to retire in the last period), and cT (w) = w (it is optimal to consume all remaining

wealth in the last period). Now consider period T −1. There is some threshold wT−1 such that if w < wT−1

it will be optimal for the person to work, otherwise it will be optimal to retire. We want to derive a formula

for wT−1 and show that this is where there will be a discontinuity in the consumption function. If w≥wT−1

it is optimal to retire and so the only decision facing the person is the amount of retirement consumption.

This is given by

cT−1(w,0) = argmax
0≤c≤w

[log(c)+β log(R(w− c))] (18)

and the solution to this is easily seen from the formulas above to be given by

cT−1(w,0) =
w

(1+β)
. (19)

Now consider the consumption decision for a worker (i.e. someone with w < wT−1)

cT−1(w,1) = argmax
0≤c≤w

[log(c)−dT−1 +β log(R(w− c)+ y)] (20)

and the solution to this is given by

cT−1(w,1) =







w if w < y/Rβ

(w+ y/R)/(1+β) if y/β ≤ w ≤ wT−1

(21)

The value function for a worker is

VT−1(w,1) =







log(w)−dT−1 +β log(y) if w < y/Rβ

log((w+ y/R)/(1+β))−dT−1 +β log(βR(w+ y/R)/(1+β)) if y/Rβ ≤ w ≤ wT−1

(22)

and the value function for a retiree is

VT−1(w,0) = log(w/(1+β))+β log(βRw/(1+β)). (23)

Equating the values of work and retirement and solving (assuming that wT−1 > y/Rβ) results in the fol-

lowing equation for the optimal retirement threshold wT−1:

VT−1(wT−1,0) =VT−1(wT−1,1), (24)

5



and the solution is given by

wT−1 =
(y/R)exp{−dT−1/(1+β)}

1− exp{−dT−1/(1+β)}
, (25)

provided this is greater than y/Rβ (the threshold below which the consumer is liquidity constrained),

otherwise

wT−1 = [y/(Rβ)](1+β)
(1+β)

β exp{−dT−1/β}. (26)

Note that as the disutility of working dT−1 → ∞ we have wT−1 → 0, and as dT−1 → 0, then wT−1 → ∞, i.e.

if there is no disutility of working, the person would never choose to retire.

Note also that at wT−1 there is a kink in the value function: this is a “convex kink” as the max of two

concave functions VT−1(w,0) and VT−1(w,1), and this kink in the value function results in a discontinuity

in the optimal consumption function cT−1(w). There is a drop in consumption equal to (y/R)/(1+β) at

wT−1, and with two remaining periods in their life, a retiree has a “marginal propensity to consume” out of

wealth equal to 1/(1+β) the same as a worker. The discontinuous drop in consumption that occurs when

the consumer just exceeds the retirement threshold wT−1 can be seen as their realization that, since they

are no longer working in period T −1 they will experience a drop in “wealth” equal to the present value of

their earnings, y/R, and thus the retiree will rationally cut back on consumption by (y/R)/(1+β) which

equals the drop in wealth times the marginal propensity to consume out of wealth.

To summarize the solution we found at T −1, the optimal retirement threshold is wT−1 given in equa-

tion (25) or (26) depending on the parameter values, and the consumption function is given by

cT−1(w) =



















w if w < y/Rβ

(w+ y/R)/(1+β) if y/Rβ ≤ w ≤ wT−1

w/(1+β) if w > wT−1

(27)

and the value function is given by

VT−1(w) =



















log(w)−dT−1 +β log(y) if w < y/Rβ

log((w+ y/R)/(1+β))−dT−1 +β log(βR(w+ y/R)/(1+β)) if y/Rβ ≤ w ≤ wT−1

log(w/(1+β))+β log(βRw/(1+β)) if w > wT−1

(28)

Now consider going back one more time period in the backward recursion, to T −2. We want to illustrate

the possibility of secondary kinks/discontinuities in the consumption function for a worker cT−2(w,1)

caused by the kinks in VT−1(w). Let wT−2 denote the primary kink due to the retirement threshold at T −2
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and let w
r j

T−2 denote the secondary kinks, where j = 1, . . . ,NT−2 and NT−t is the number of secondary

kinks t periods before the end of life at period T .

To see how these secondary kinks arise, consider how the T −2 consumption function is determined,

as the solution to

cT−2(w,1) = argmax
0≤c≤w

[log(c)−dT−2 +βVT−1(R(w− c)+ y)] . (29)

As we showed in formula (28), VT−1(w) has two kinks: one at w = y/Rβ where the liquidity constraint

stops being binding, and the other at wT−1 where the worker retires. Assume that the initial wealth of

the worker at the start of period T − 1 is low enough so that the worker will be liquidity constrained in

period T −1. This implies that R(w− c)+ y < y/Rβ. Then substituting the liquidity-constrained formula

for VT−1(w) from (28) into the period T −2 optimization (29), we find that optimal consumption is given

by ct−2(w,1) = (w+ y/R)/(1+ β). However imposing the liquidity constraint, we must also have (w+

y/R)/(1 + β) ≤ w which implies that w ≤ y/Rβ, and it is easy to verify that for wealth satisfying this

constraint, the worker will be liquidity constrained both in period T −2 and in period T −1 as well.

However for wealth above y/Rβ the worker is no longer liquidity constrained in period T − 2 but

our derivation of the worker’s consumption in period T − 2 is still contingent on the assumption that the

worker is liquidity constrained in period T − 1. This will be true provided that the savings and earnings

the worker brings to the start of period T −1, Rβ(w+ y/R)/(1+β), is less than y/Rβ, which is equivalent

to the inequality that w ≤ [y/(Rβ)2](1+β−β2). It is not hard to show that when R = 1 we have y/β <

(y/β2)(1+ β− β2) so the interval for which the consumer will consume (w+ y)/(1 + β) is non-empty

when R = 1. For R > 1 if it holds that y/(Rβ) < [y/(Rβ)2](1+β−β2), then this interval will also exist,

otherwise the interval is empty and the consumer goes from consuming cT−2(w,1) = w to consuming an

amount we derive below.

In this next region, wealth is sufficiently high in period T − 2 so the consumer is not liquidity con-

strained at T −2 and the saving and earning will keep the consumer out of the liquidity constrained region

at T −1, but the worker’s wealth is not high enough to retire at T −1. The relevant expression for VT−1(w)

in this case is given by the middle expression in equation (28). This implies an optimal consumption level

equal to cT−2(w,1) = (w+ y(1/R+1/R2))/(1+β+β2).

As wealth grows even larger, there will come a point where the consumer can save enough in period

T − 2 to retire in period T − 1, i.e. savings will exceed the wT−1 threshold. Thus, there is some wealth

level wr
T−2 at which the the relevant expression for the worker’s period T − 1 value function VT−1(w) is
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given by the last, retirement, formula in (28). The optimal consumption in this region is cT−2(w,1) =

(w+ y/R)/(1+β+β2). It is important to carefully check values of c such that savings, w+ y− c is in the

“convex region” of VT−1(w) around the T −1 retirement threshold, wT−1. In this region there will be two

local optima for c, one involving the higher consumption (w+ y(1/R+1/R2))/(1+β+β2) and the other

involving the lower consumption (w+ y/R)/(1+β+β2) that enables the worker to retire at T −1.

These two solutions are reflected in the two possible solutions to the first order condition for optimal

consumption is given by

0 =
1

c
−







(β+β2)/(w− c+ y(1/R+1/R2)) if R(w− c)+ y < wT−1

(β+β2)/(w− c+ y/R) if R(w− c)+ y ≥ wT−1

(30)

For w<wr
T−2 the global optimum will be cT−2(w,1) = (w+y(1/R+1/R2))/(1+β+β2) and the consumer

will be working in both periods T − 2 and T − 1. However for w > wr
T−2 the consumer will still work at

T − 2 (provided w < wT−2, the primary kink point at T − 2, the wealth threshold at which the consumer

retires at T −2) but will have enough savings to retire at T −1. The optimal consumption in this case will

be cT−2(w,1) = (w+ y/R)/(1+β+β2). It is not hard to show that if w ≤ [y/(Rβ)2](1+β−Rβ2), then

the quantity R(w− cT−2(w,1))+ y ≤ y/Rβ, i.e. the consumer will indeed be in the liquidity constrained

region w ≤ y/Rβ at the start of T − 1 as we assumed would be the case. We also have that y/Rβ <

[y/(Rβ)2](1+β−Rβ2) provided that Rβ≤ 1, which we assume to be the case. Otherwise this region would

be empty and the optimal consumption would be given by cT−2(w,1) = (w+y(1/R+1/R2))/(1+β+β2)

as derived above. We can check that this consumption function, which is also derived under the assumption

that the consumer will not be liquidity constrained at period T −1, will result in total savings at T −1 that

satisfies R(w− c)+ y ≥ y/Rβ (so the consumer is not liquidity constrained at T −1) for wealth at T −2 at

the lower end of this interval (i.e. at w = y/Rβ) provided that R ≤ 1/β.

However, at w = wr
T−2 the consumer will be indifferent between consuming the larger amount (w+

y(1/R + 1/R2))/(1 + β + β2) knowing they will not retire at T − 1 and consuming the lower amount

(w+y/R)/(1+β+β2) and knowing they will retire at T −1. We find wr
T−2 as the solution to the following

equation

log
(

(w+ y(1/R+1/R2))/(1+β+β2)
)

+βVT−1

(

(y+R(w− (w+ y(1/R+1/R2)))/(1+β+β2))
)

= log
(

(w+ y/R)/(1+β+β2)
)

+βVT−1

(

y+R(w− (w+ y/R))/(1+β+β2)
)

.

Thus, at w = wr
T−2 the consumer is indifferent between consuming the larger amount (w + y(1/R +
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1/R2))/(1 + β+ β2) or consuming the smaller amount (w+ y/R)/(1 + β + β2) that provides the addi-

tional savings necessary to enable the consumer to retire at T −1.

Now we can express the period T −2 consumption function as the following piece-wise linear function:

cT−2(w,1) =































w if w < y/Rβ

(w+ y/R)/(1+β) if y/Rβ ≤ w ≤ [y/(Rβ)2](1+β−Rβ2)

(w+ y(1/R+1/R2))/(1+β+β2) if [y/(Rβ)2](1+β−Rβ2)≤ w ≤ wr
T−2

(w+ y/R)/(1+β+β2) if wr
T−2 < w < wT−2

(31)

To derive the time T − 2 retirement threshold wT−2 we solve for the value of w that makes the consumer

indifferent between retiring at T −2 and working (but with enough wealth so that the person is above the

secondary kink wr
T−2 where their consumption is given by cT−2(w,1) = (w+ y/R)/(1+β+β2))

log(w)(1+β+β2)+A2 = log((w+ y/R)/(1+β+β2))−dT−2 +A2 (32)

where A2 is defined in equation (7) above. Note that the right hand side of (32) is the value function

for a consumer who does not have enough wealth to retire at T − 2, but since w > wr
T−2 (the secondary

kink point, i.e. the saving threshold that will cause the consumer to retire at T − 1), it follows that the

appropriate formula for VT−1(w) will be the one where w > wT−1 in equation (28) above. The solution to

this equation is wT−2 given by

wT−2 =
(y/R)e−K

(1− e−K)
(33)

where K is given by

K =
dT−2

(1+β+β2)
. (34)

Notice that if dT−1 ≥ dT−2, then formulas (33) and (25) imply that wT−1 < wT−2, i.e. the wealth threshold

for retirement decreases as one approaches the end of life, T .

To summarize the solution we found at T −2, the optimal retirement threshold wT−2 is the solution to

equation (32), and the optimal consumption function is given by

cT−2(w) =











































w if w < y/Rβ

(w+ y/R)/(1+β) if y/Rβ ≤ w ≤ [y/(Rβ)2](1+β−Rβ2)

(w+ y(1/R+1/R2))/(1+β+β2) if [y/(Rβ)2](1+β−Rβ2)≤ w ≤ wr
T−2

(w+ y/R)/(1+β+β2) if wr
T−2 < w ≤ wT−2

w/(1+β+β2) if w > wT−2

(35)
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The optimal consumption function at T − 2 has one kink at w = y/Rβ (the level of wealth at which the

consumer is no longer liquidity-constrained), and three discontinuities: one at [y/(Rβ)2](1 + β−Rβ2),

one at the secondary kink point wr
T−2 where consumption drops by (y/R2)/(1 + β+ β2), and the other

at the retirement threshold wT−2 where consumption drops by another (y/R)/(1+β+β2). Note that the

secondary kink point wr
T−2 is precisely the amount of wealth where, while the consumer does not yet

retire at T − 2, they know they will have enough to retire at T − 1. Thus, the drop in consumption at this

secondary kink point can be regarded as saving at T −2 for their anticipated retirement at time T −1.

The value function at T −2 can be expressed this way:

VT−2(w) =







log(cT−2(w))−dT−2 +βVT−1(R(w− cT−2(w))+ y) if w < wT−2

log(w)(1+β+β2)+A2 if w ≥ wT−2

(36)

Thus, depending on whether the person’s wealth at T −2 is above or below the secondary kink point wr
T−2,

they will know whether they will have enough (with their T − 2 earnings y) to retire at T − 1 or not, and

will save/consume accordingly.

Now consider solving the problem at t = T − 3, three periods before the end of life. Now the con-

sumption will have one kink at the level of w where the liquidity constraint no longer binds, and five

discontinuities, two more discontinuities than cT−2(w), with the two new discontinuities in cT−3(w) corre-

sponding to the two additional kink points in VT−2(w) relative to VT−1(w). One of the new discontinuities

in cT−3(w) is added above the end point [y/(Rβ)2](1+β−Rβ2) of the first linear segment of cT−2(2). We

refer to this as a “liquidity constraint related discontinuity.” The other new discontinuity corresponds to

the secondary kink point wr
T−2 and we refer to this as a “retirement related discontinuity.”

Note the pattern here: cT−1(w) has one kink and one discontinuity, cT−2(w) has one kink and three

discontinuities, and cT−3(w) will have one kink and five discontinuities — two more than cT−2(w). The

two new discontinuities in cT−3(w) correspond to the two additional discontinuities present in cT−2(w)

which are two more than the single discontinuity in cT−1(w). The important additional point to notice is

that cT−1, cT−2 and as we show shortly, cT−3, are all piecewise linear.

It will be helpful to distinguish the points marking the sequence of linear segments of the consumption

function relating to emerging from the liquidity constrained region [0,y/Rβ] from those at higher levels of

wealth that related to retirement decisions — both current retirement and anticipated future retirements.

Label the first set of liquidity constraint related discontinuities as w
l j

T−t and the latter set of retirement

related discontinuities as w
r j

T−t . Then for t = 1 cT−1(w) has no liquidity constraint related kinks but one

10



retirement kink, wT−1, and at t = 2 cT−2(w) has 1 liquidity constraint related kink w
l1
T−2 at [y/(Rβ)2](1+

β−Rβ2) and two retirement related discontinuities w
r1

T−2 and wT−2, where wT−2 is the retirement threshold

at period T −2 and w
r1

T−2 = is the point we referred to above as the “secondary kink” wr
T−2. Thus w

r1

T−2 is

the level of wealth that leads the worker to discontinuously reduce consumption at T −2 in order to have

enough savings to retire at T −1.

In period T −3 there will be a total of five discontinuities in cT−3(w). The last discontinuity occurs at

the retirement threshold wT−3, but there will be two additional discontinuities at the secondary kink points

in the value function VT−2. These are denoted w
r1

T−3 and w
r2

T−3. We have the ordering wT−3 >w
r2

T−3 >w
r1

T−3.

The highest secondary kink point w
r2

T−3 is the level of wealth that leads the consumer to save an amount

(including current period wage earnings) of wT−2, which is the retirement threshold at period T −2. Thus

at wealth levels that just exceed w
r2

T−3 the consumer works in period T − 3 but discontinuously reduces

consumption in order to have enough resources to retire in period T − 2. At wealth levels that are just

below this w
r2

T−3, the consumer works in both periods T −3 and T −2, and retires only in period T −1.

Similarly, the secondary kink point w
r1

T−3 is th level of wealth in period T −3 that leads the consumer

to save an amount wr
T−2, which is the secondary kink in the value function at time T − 2, i.e the level of

wealth just beyond which the consumer will have enough saving by period T −1 to retire. Thus, in period

T −3, a consumer who has wealth slightly above w
r1

T−3 will work in periods T −3 and T −2, but retire in

period T −1, whereas a consumer with wealth just below w
r1

T−3 will work in all three periods, T −3, T −2

and T −1 and only retires in the last period of life, T .

The consumption function cT−3(w) will also have two liquidity constraint related discontinuities w
l1
T−3

and w
l2
T−3, in addition to the liquidity constraint induced kink point at w= y/Rβ. The first discontinuity will

be w
l1
T−3 = [y/(Rβ)2](1+β−Rβ2), the level of wealth at which the switches from consuming according the

2nd linear segment of cT−3(w) = (w+ y/R)/(1+β) to consuming on the third linear segment cT−3(w) =

(w+ y(1/R+1/R2))/(1+β+β2). Note at the wealth threshold w
l1
T−3, the implied savings exceeds y/Rβ

so that the consumer will be out of the liquidity constrained region in period T −2.

At the second liquidity constraint related kink point w
l2
T−3 the worker switches from consuming on the

third segement of cT−3(w) = (w+ y(1/R+ 1/R2))/(1+ β+ β2) to the fourth segment which is the first

of the segments created by the retirement related kink points w
r j

T−3. Thus for wealth that exceeds w
l2
T−3

consumption switches to cT−3(w) = (w+ y(1/R+1/R2 +1/R3))/(1+β+β2 +β3). Then for still higher

levels of wealth the worker consumes according to the various piecewise linear segments demarcated
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by the successive retirement related kink points w
r j

T−3, j = 1,2,3 where w
r3

T−3 = wT−3 is the retirement

threshold at period T −3.

Note that the marginal propensity to consume out of wealth is also piecewise linear but also monoton-

ically decreasing in w. In the liquidity constrained region the marginal propensity to consume is 1, and in

the first of the liquidity constrained related consumption segements it is 1/(1+β), and in the second liquid-

ity constrained related segment it is 1/(1+β+β2). Then in the remaining retirement related consumption

segments, the marginal propensity to consume out of wealth is constant and equal to 1/(1+β+β2 +β3).

In summary, the consumption function cT−3(w) is given by

cT−3(w) =



































































w if w < y/Rβ

(w+ y/R)/(1+β) if y/Rβ ≤ w ≤ w
l1
T−3

(w+ y(1/R+1/R2))/(1+β+β2) if w
l1
T−3 ≤ w ≤ w

l2
T−3

(w+ y(1/R+1/R2 +1/R3))/(1+β+β2 +β3) if w
l2
T−3 ≤ w ≤ w

r1

T−3

(w+ y(1/R+1/R2))/(1+β+β2 +β3) if w
r1

T−3 ≤ w < w
r2

T−3

(w+ y/R)/(1+β+β2+β3) if w
r2

T−3 ≤ w < wT−3

w/(1+β+β2+β3) if wT−3 < w

(37)

The retirement threshold wT−3 is given by

wT−3 =
(y/R)e−K

(1− e−K)
(38)

where

K =
dT−3

(1+β+β2+β3)
. (39)

We solve for the secondary kinks {w
li
T−3,w

r j

T−3}, i = 1,2 and j = 1,2 in the same way as we did for

the period T − 2 secondary kink: we solve for the level of a wealth that makes the consumer indifferent

between consuming the higher level of consumption to the “left” of the kink point (more precisely the limit

of consumption for wealth approaching the kink point from below) and the lower level of consumption to

the “right” of the discontinuity (the limit of consumption for wealth approaching the kink point from

above). We do this for each of the discontinuities below the final discontinuity at the optimal retirement

threshold wT−3. So in period T − 3 there will be four such discontinuities, corresponding to the total of

four kinks in the value function at T −2.
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Finally, the value function is given by

VT−3(w) =







log(cT−3(w))−dT−3 +βVT−2(R(w− cT−3(w))+ y) if w < wT−3

log(w)(1+β+β2+β3)+A3 if w ≥ wT−3

(40)

Due to the monotonicity of the saving function, the fact that wT−2 > wr
T−2 implies that w

l1
T−3 > w

l2
T−3 >

w
r1

T−3 > w
r2

T−3. Similarly, if dT−3 ≤ dT−2, then using formulas (33) and (38), it is not hard to show that

wT−3 > wT−2.

Having solved for the consumption function explicitly by doing backward induction for 3 periods,

it is easy to see the general pattern. At t periods before the end of life at T , i.e. at period T − t, the

consumption function cT−t(w) will have a total of 2t − 1 discontinuities and 2t + 1 linear segments. Of

the 2t − 1 discontinuities, t of them will be retirement related discontinuities and t − 1 will be liquidity

constraint related discontinuities. For every period T − t, t ≥ 1 there will be a kink in the consumption

function at w = y/Rβ corresponding to the end of the liquidity constrained region, [0,y/Rβ].

Notationally, we denote the last of the retirement related discontinuities by wT−t , and the t − 1 addi-

tional retirement related discontinuities as w
r j

T−t , for j = 1, . . . , t −1. The t −1 liquidity constraint related

discontinuities are denoted by w
l j

T−t , for j = 1, . . . , t −1. The first of the liquidity constrained related kink

points is always at the same value of w,

w
l1
T−t = [y/(Rβ)2](1+β−Rβ2) for t ≥ 2 (41)

The discontinuities in cT−t(w) are ordered as follows

y/Rβ < w
l1
T−t < w

l2
T−t < · · ·< w

lt−1

T−t < w
r1

T−t < w
r2

T−t < · · ·< w
rt−1

T−t < wT−t (42)

where wT−t is given by

wT−t =
(y/R)e−K

(1− e−K)
, (43)

where K is given by

K =
dT−t

(∑t
i=0 βi)

. (44)

The values of the last t − 2 liquidity constraint related secondary kink points w
l j

T−t , j = 2, . . . , t − 1 and

the first t −2 retirement related secondary kink points w
r j

T−t , j = 1, . . . , t −2 are determined by the values

of wealth that make the consumer indifferent between consuming according to the linear segments of the

consumption function on either side of each of these kink points as described above.
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The value function VT−t(w) can be expressed recursively in terms of the already defined value function

VT−t+1(w) one period ahead:

VT−t(w) =







log(cT−t(w))−dT−t +βVT−t+1(R(w− cT−t(w))+ y) if w < wT−t

log(w)
(

∑t
i=0 βi

)

+At if w ≥ wT−t

(45)

where At was defined in equation (7) above.

The expression for the piecewise linear consumption function cT−t(w) is given by:

cT−t(w) =


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

























w if w ≤ y/Rβ

[w+ y/R]/(1+β) if y/Rβ ≤ w ≤ w
l1
T−t

[w+ y(1/R+1/R2)]/(1+β+β2) if w
l1
T−t ≤ w ≤ w

l2
T−t

· · · · · · · · ·
[

w+ y
(

∑
t−1
i=1 R−i

)](

∑
t−1
i=0 βi

)−1
if w

lt−2

T−t ≤ w ≤ w
lt−1

T−t
(

w+
(

∑t
i=1 R−i

))(

∑t
i=0 βi

)−1
if w

lt−1

T−t ≤ w ≤ w
r1

T−t
[

w+
(

∑t−1
i=1 R−i

)](

∑t
i=0 βi

)−1
if w

r1

T−t ≤ w ≤ w
r2

T−t

· · · · · · · · ·

[w+ y(1/R+1/R2)]
(

∑t
i=0 βi

)−1
if w

rt−2

T−t ≤ w ≤ w
rt−1

T−t

[w+ y/R]
(

∑t
i=0 βi

)−1
if w

rt−1

T−t ≤ w ≤ wT−t

w
(

∑t
i=0 βi

)−1
if wT−t < w

(46)

Figure 1 above illustrates optimal consumption functions in a problem where T = 20, β = 0.98, y = 20

and the disutility of work is dt = 1 for t = 1, . . . ,T . Though the consumption functions are indeed piecewise

linear, the jumps in the linear segments for w ≤ w
l36

20 (the last of the “liquidity constrained” secondary kink

points) are sufficiently small that they appear in the graph to join together in the apparently “curved”

segments of the consumption functions before they start to “break up” for larger values of wealth in the

“retirement region” where the discontinuities at the retirement related kink points {w
r j

T−t} and wT−t appear.

This simple example indicates the complexity caused by the combination of the discrete retire-

ment/work decision and the continuous optimal consumption decision, and how multiple discontinuities

can arise in the optimal consumption function. Further, these discontinuities can propogate was we con-

tinue the backward induction solution of the consumer’s life cycle problem. Thus, at age T −3 there can

be three discontinuities in the optimal consumption function, corresponding to the primary discontinuity

at the retirement threshold wT−3 plus two additional secondary discontinuities that are inherited from the

two discontinuities in cT−2(w) that we derived above, and so on.
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Figure 1: Consumption functions for a T = 20, dt = 1, y = 20, β = 0.98 and R = 1
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2 Optimal Replacement Problem

Recall the Bellman equation for the replacement problem is given by

V (x) = min

[

c(0)+K +β

∫ ∞

0
V (y)λe−λydy, c(x)+β

∫ ∞

0
V (x+ y)λe−λydy.

]

(47)

Via a change of variables we can rewrite this as

V (x) = min

[

c(0)+K +β

∫ ∞

0
V (y)λe−λydy, c(x)+β

∫ ∞

x
V (y)λe−λ(y−x)dy.

]

(48)

Notice that the value of not replacing (the first expression in the min in equation ??) is a constant, inde-

pendent of x. We will show that if c′(x) > 0, then the value of not replacing (the second expression in the

min in equation ??) is also increasing in x. Since we also assume that K > 0, it follows that there is a γ > 0

satisfying

c(0)+K +β

∫ ∞

0
V (y)λe−λydy = c(γ)+β

∫ ∞

γ
V (y)e−λ(y−γ)dy (49)

So the optimal replacement strategy is to keep the asset (or not replace the bus engine) if x ∈ [0,γ] and

trade (or replace the bus engine) otherwise. We refer to the interval [0,γ] as the continuation region and

in the continuation region you can differentiate on both sides of the Bellman equation (??) to derive the

following first order differential equation for V (x) given by

V ′(x) =−c′(x)+λc(x)+λ(1−β)V (x) (50)
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This ODE is referred to as a free boundary value problem because the boundary condition

V (γ) = K +V (0) =−c(γ)+βV (γ) =
−c(γ)

1−β
(51)

is determined endogenously (i.e. it depends on V , the solution to the ODE). The solution to the free

boundary value problem is given by

V (x) = max

[

−c(γ)/(1−β),−c(γ)/(1−β)+

∫ γ

x

[

c′(y)

(1−β)

]

[

1−βeλ(1−β)y
]

dy

]

. (52)

and γ is the unique solution to

K =
∫ γ

0

[

c′(y)

(1−β)

]

[

1−βe−λ(1−β)y
]

dy. (53)
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