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Part I: Short Questions
1. Following up on the question raised in class, in the cage@burnot duopoly with a linear demand
function p = a— bg and two firms with equal constant marginal costs of produactibc and no fixed
costs, is overall social surplus (i.e. the sum of consumgslssi plus total profits) higher if the firms
act as ordinary Cournot duopolists or is it higher if firm 1 iStackelberg leader and firm 2 acts as a
Stackelberg follower? Compute the equilibria in the twoesaand show all calculations for full credit.

Answer: As we worked out in class, with a linear demand curve the Caithe Equilibrium (ce)
quantity supplied isice = (a—c)/b (set price = mrginal cost, solving the equatms a+ bgce. Profits
are zero in competitive equilibrium and the total socialbfus equals consumer surplus, which is the
area under the demand curve above the horizontal line ohteighe marginal cost of production) to
the left of the competitive equilibrium quantityse. Using your geometry that the area of a triangle is
1/2 x basex height, we have base gce and height= a— c, whereais the intercept of the demand curve

. . , . . —c)2
(i.e. the price atj= 0). Thus consumer’s surplus (which equals total surpluPj$(a—c) = (azt‘f) .

In the Cournot duopoly caséd) as | showed in class, the Nash equilibrium output of dawhis % of

the CE level, so that the total outpaj,q = %@ In the Cournot case there are positive profits, and

the total profits of the two firms isp,q— C)0cq = é(a_bc)z. Consumer’s surplus is (using the formula

for the area of a triangle of height- p.g = 3(a—c) and basej.qis CS= %# Adding total profits

2 . . .
plus consumer’s surplus to get total surplus, we T8t % which is lower than in the perfectly

competitive case. The difference is due to itnefficiencyof the Cournot equilibrium, which leads to a
deadweight lossequal to the difference between total surplus under comngegquilibrium (which is
the maximum possible surplus) and total surplus under ther@bo-Nash equilibrium.

In the Stackelberg duopoly cagsd) we let firm 1 be th&tackelberg leadeand firm 2 be th&tackelberg
follower. The Stackelberg follower assumes that the Stackelbergiezohprecommitto an outputof;

that is best for it, i.e. the value gf that maximizes firm 1's profits. The Stackelberg leader,keniin

the Cournot case, takes into account firm 2's optimal resptm#s choice ofy;, i.e. it assumes thag,

is not fixed at the Nash equilibrium level (as it is in the Cantroase) but rather firm 1 assumes that
will be a best response to its value@f In class we worked out the best response for firm 2 to a given

output of firm 1: itis
y _a—c—bg
() = b Q)

Thus, taking firm 2’s reaction function given above into agupfirm 1's output is the solution to

a-c G

o= ar%maﬁa— b(d1+02(0n))| G — Cp = [a— b <2—b -5t m)] O — COh 2)
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Taking the derivative of this with respectdg and setting it to zero and solving, we get

a—=cC
) )

v

Thus, the Stackelberg leader chooéem‘ the competitive equilibrium output, which happens to toe t
same output a monopolist would choose. Plugging the Staekgleader’s optimal choice fay into
the Stackelberg follower’s reaction function we get

a-c—bgg a-c

% = G(dh) = —— b (4)
Thus, total output in the Stackelberg duopoly case is
* k) §a_ C
Os =+ () = ;5 ®)

Thus, we see that total output in the Stackelberg ca§m$he competitive equilibrium ouptut, whereas
the Cournot equilibrium total output wéof the CE output. It follows that prices are lower in the
Stackelberg case, and thus consumer’s surplus is higheng tse “5 x basex height formula for a
triangle with heighti— ps = 2a+ 3c—c= 3(a—c) we get

9 (a—c)?
CS= (6)

Total producer’s surplus (profit) is given by

B 1 3a—c 3 (a—¢)?
PS=(ps—Clas= (@)~ =35

2 @)

Since1—36 < % total profits of firms 1 and 2 are less under the Stackelbeugilegum than under the
Cournot equilibrium, although the Stackelberg leaderdits are higher than the profits of each firm in

the Cournot duopoly (the Stackelberg leader’s profits%f?éoc—)2 which are greater than the profits of
each of the Cournot duopolisté%). Total surplus in the Stackelberg case is thus,
15(a—c)?

TS:CS+PS:3—2 — (8)

Since%—g > % it follows that total surplus is higher in the Stackelbeage and thus deadweight loss is

lower. In fact, sinc<—“31i23 is nearly equal to} = %, the deadweight loss in the Stackelberg case is very
low. What the the Stackelberg leader has done is to take &egr&aare of the surplus as profits, but the
competition from firm 2 causes the total output to be largantthe monopoly case, and this lowers the
deadweight loss in the Stackelberg case compared to thepuolyncase even though the Stackelberg
leader produces the monopoly level of output. You can chiegkih the monopoly case the total surplus
is

TS="
5= ©)

which is lower than in the Stackelberg case, but higher thahdé Cournot duopoly case.

2. Suppose Disneyland is trying to decide the profit-maximgizoricing strategy for its Disneyland
theme park. Suppose each ride in the park costsr ride in terms of electricity and labor and other
costs. If Disney is a monopolist and charges a price per mdeitabelieves that all consumers have a

2



utility function for the number of theme park ridesand consumption of all other goodf u(r,g) =
r1g® and the average income of a consumey is 20,000 (20 thousand dollars), thendf= 1 (i.e.

a marginal cost of $1 per ride), what price per ride shoulchByscharge if it expects that there is a
market of 100,000 possible consumers who would be cominge®isney theme park each summer?
What strategy yields higher profits: a) an optimal (lineagnwmpoly price per ride or b) a two-part tariff
consisting of a fixed entrance féeand a constant priceto ride on the rides in the theme park? To get
full credit, calculate the profits under both pricing schepgand b, and show which one is higher.

Answer: | screwed up this question a bit and it does not have an ale$pltlear cut answer for reasons
| will explain shortly. If consumers have a Cobb-Dougladitytfunction, they want to consume at least
some Disneyland rides not matter how high the price is sihtteey consume zero rides, they also get
zero utility. Let’s ignore the constraint that one can ontyan an integer-valued number of rides, and
somehow allow people to consume “fractional” Disney Lawmisi (e.g. instead of going on a 10 minute
Space Mountain ride, suppose people could choose somefraifttime to go on it for a pro-rated
price, e.g. ride for 1 minute at 1/10 of the price, then in @ff@e can treat the number of ridesis a
continuous decision.

Now | am not going to repeat the calculation, but as | showeddss and as we covered many times in
the first part of the semester, with a Cobb-Douglas utilityclion, the demand for rides is
oy 2

r(pvy)_? —p (10)

Now, with 100,000 potential identical consumers, Disngytfits from charging a price per ride is
M(p) = 100000 p— c)% (11)

It is easy to see thdil’(p) > 0, so that in effect, Disney should charge an infinite price e to
maximize profits. To be mathematically correct, one shoaldtbat “there is no finite price that max-
imizes profits” and thus technically speaking there is noitgmh to this problem. | gave full credit to
anyone who realized this. However there are several thingscan do to change the problem slightly

so that there is a well-defined solution to the problem, Ongiw#o change the utility function so that
if the price of rides at Disney is too high, nobody wants to g®tsneyland, which seems like a real-
istic assumption. So suppose instead of a Cobb-Douglaty dtihction, we use the following utility
function

u(r,g) =vr+g 12)

Notice now that whem = 0O, utility is no longer zero, but is given hy0,g) = g. Thus, for this utility
function people do not need to go on some small fraction ofi@ ait Disneyland in order to be happy,
no matter what the cost per ride is. If we work out the demandidies in this case, we get

1
r(p,y)=4—

p2
Actually, we see that with this utility function, the persamnts to consume some small fraction of a
ride regardless of how high the price is, just like the Colu@las utility function, but in this case the
demand for rides declines to zero at a faster régtethan in the Cobb-Douglas case where demand goes

to zero at rat%. The reason why the person want to consume some small fnaafia ride no matter

(13)



how high the price is due to the fact that the utility of rides/r and thus the marginal utility goes to
infinity asr | 0, so even at very high prices the consumer finds it optimabtorgsome small fraction
of a ride. Now with this utility function, Disney’s profit maxization problem is given by

1
mF?xI'I (p) = 10000@p—c) a2 (14)

Using calculus and taking the derivativ®(p) and setting it to zero and solving fpr, we getp* = 2c.
Thus, in this case there is a finite optimal price that Disneyld want to charge consumers. Now let’s

consider an alternative way for Disney to charge: it chagyesy customer a fixed entry fdeand once
in, each customer can go on as many rides they want at a pniee tgmarginal costp = ¢. Which
way of pricing gives Disney higher profts? First, we can gkte profits under the optimal monopoly

price calculated above:
o (2c—c) 100000
M(p") = 1000004(2(:)2 T

Now what are Disney’s profits under the fixed fe@ It gets zero profits per each ride a customer takes,
So its total profits are simply

(15)

Map(c,F) = 100006 (16)

wherefll;, denotes profits under a (nonlinear) 2-part tariff &hdlenotes profits under a (linear) optimal
pricing rule. To see which of these two pricing schemes itehetre have to determine what the highest
entry feeF the monopolist could charge. To figure this out, realize thatconsumer always has the
option of not going to Disneyland at all. If they do not go tasBéyland and spend all of their income
on other goodg, their utility will be u(0,g) =y, since with an income oy and the price of other
consumption normalized to 1 we hawé,g) = /r+9g=g=y whenr =0 andg =Y. This level of
utility determines the consumengservation utility: Disney cannot charge an entry fee that is so high
that people’s utility after paying the entry fee is lowerrhte utility they can get by not going to
Disneyland at all. The utility of a consumer who pays theyefdge F and can buy rides at marginal cost,
p = cis given by L

1 1
V(c,y—F):5:4—y—F—4—C:y—F+4—C a7

Now settingF to make the consumer indifferent between paying the fixed/dae F and going on
rides at marginal cogt = ¢ and not going to Disneyland at all, we get

1
y=y-F+_

4c (18)

SOF* = 4% and Disney’s profits under a 2-part tariff is given By,(c, F*) = 100000'4p which is four
times larger than the profits it can earn by charging a lingéin@l monopoly price and no fixed fee.
By allowing its customers to go on rides at a price equal togmat cost, Disney can eliminate the
deadweight loss inherent in linear monopoly price. It iablcapture and convert the deadweight loss
into profits by charging the fixed fde* for admission. In fact, Disney has succeeded in extracting a
of the surplus from the consumers and taking all of the satigdlus for itself as profits.

The other way to get an answer to this problem using the Catloglas utility function is to assume
that either Disney faces a competitor (e.g. Great Amerltat)¢harges a pricg, or there is government
regulation that prevents it from charging a price highentpa- c. In either of these cases, Disney, if
it operates with linear pricing, will want to charge the heghprice it can get away with, which 5 |



leave it as an exercise for you to show that with the Cobb-[asugtility function (or indeed with any
strictly convex utility function) Disney would get more fits by charging a fixed entry felé and let
consumers go on rides at marginal cosather than charge the prige> ¢ per ride and no entry fee.
(Note: This question could show up on the final exam, so it is@lgdea for you to try to work this out,
at least for the Cobb-Douglas, but ideally you should be ab#how this more generally for all strictly
convex utility functions.)

5. Consider the following two player game. The game startis &an initial “kitty” of $100. Player 1 can
take any part of this kitty for him/herself. Whatever theygladoes not take gets passed on to player 2
in the next round, but the amount passed aiogbled. Then player 2 decides how much of the kitty, if
any, is passed on for player 1 at the next round. Whatever anmpassed on in each round is doubled.
The game runs for a total of 4 rounds. Thus, an example of osslge “play” of the game is for player

1 to pass the entire $100 to player 2 in the first round. Thiswaris then doubled to $200 for player
2 in the second round. If player 2 takes $50 for him/hersdifigtstage and passes on $150 to player 1
in round 3, then the $150 is doubled to $300 and player 1 detide much of this to take in round 3.

If player 1 takes $200 in round 3, the remainder, $100, is mylgiving player 2 a total of $200 in the
4th and final round. In this final stage player 2 could take thtee2$200 for him/herself, or give part
of it to player 1. If player 2 takes all of the $200 in this exdephen player 2 gets a total of $250 ($50
taken in round 2 and the $200 in round 4) and player 1 gets bab&200 from the $200 he/she took
in round 3. Suppose this game is played by two complete strangho are kept in separate rooms and
cannot communicate or collude in any way. If both playersratienal and they don’t only care about
maximizing the amount they personally can earn from thiseyhut they give some weight to how much
their opponent will earn (even if the opponent is a complétnger!), describe the Nash equilibrium
outcome of this game. (Hint: the utility function for playieis u (P, P_;) = /P + 3./P— whereR is
playeri’s monetary payoff (in total) ang_; is their opponent’s payoff. Use backward induction, starti
from player 2's optimal decision in round 4 of the game).

Answer: We solved a “selfish” version of this problem on the practigdterm exam. Now we solve an
“altruistic” version of this game, where each player getstaltutility equal to their own utility function
(which is the square root of their total dollar payoff fronethame) plus 1/2 of their “perceived” utility
of the other player (i.e. the perceived utility of the othkayer is the square root of the opponent’s total
payoff). Note that the perceived utility of the other plaigenot the same as the actual payoff, since each
player cares about each other. If we required that eachifgageal utility is their own utility plus 1/2 of
theactual utility of their opponent, we would seem to have a much hatfileed point” or “circularity”
problem, since the opponent’'s actual utility includes 1f2he actual utility of their opponent, etc.
However if we actually figure this out, the utility functios basically still the same. To see this, let
U1(p1, p2) be the “actual” utility function of player 1, ang (p;) be the “subutility function” that player

1 gets from his/her own payoffy. In this case we haves(p1) = /p1. Similarly letUz(py, p2) be the
“actual” utility function of player 2, and leti;(p2) be player 2's “subutility” for player 2's own payoff,
i.e. uz(p2) = /P2 Now we have

1
Ui(p,p2) = U1(D1)+§U2(I01,p2)

Uapr.p2) = ta(p2) + 3Us(ps,Po) (19

This is a system of two equations in two unknowns. We can stilieto get the “reduced-form”



representation of the actual utility functions as

Ur(p, p2) = g(ul(pl)Jr%Uz(pz))
Ua(prope) = 5 (ape) + 3un(p)) (20)

Thus, we see that the “actual” utility function is just a pivei scalar multiple of the “perceived” utility
function, so we will get the same results regardless of waraile analyze the problem using the actual
or preceived utility functions of the two players in the gansence the perceived utility functions are
simpler (they don't have the ext@factor), let's use them, i.e. we use the utility functions

1
Ui(p1,p2) = \/p1+§\/pz
1
Ux(p1,p2) = VP2t 5v/PL (21)

Now, let’s work out the Nash equilibrium of this 4 stage, aitging move game between the two players.
I will use “P1” to identify player 1 and “P2” to identify playe as a shorthand. Do not confuse P1 with
P21’s payoff,which is p1, and similarly for P2.

As usual we analyze this game by backward induction. Sineeatternating moves take place
quickly, we ignore any discounting and assume that the fgyafand p, are thetotal payoffs that P1
and P2 get from playing this game, respectively. The totgbffdor P1 is the sum of 3 payments: the
amount P1 takes out of the “kitty” for him/herself in roundxd, the amount P1 takes out of the kitty
for him/herself in round 3x3, and the “terminal payoff” that P2 will leave to P1 in the lestind of the
game. The total payoff for P2 is the sum of two payments: theuarnP2 takes out of the kitty in round
2, X2, plus the amount that P2 takes away for him/herself in ther¢dasd of the gamexy.

Thus, to do the dynamic programming correctly, we have toupethe right “state” variable to
represent the history of the game at the beginning of roundhdnwP2 makes the decision about how
muchxy to take away for him/herself, and how much to leave for P1. &kearthis decision, P2 needs
to figure out the total payoffs that P1 and P2 will get,and p,, so that P2 can evaluate his/her utility
function Uz (p1, p2). So the required information that P2 needs is: 1) the sizéekitty V5 that P1
passed on to P2 to divide in the last round of the game, 2) tteuati, that P2 took for him/herself
in round 2 of the game, and 3) the amouxrisandxz that P1 took for him/herself in rounds 1 and 3
of the game. Thus the “state variable” in round 4\f5, X3, X2, X1) whereVs is the size of the kitty, and
(x3,X%2,X1) is the history of payments taken out of the kitty in the pregi@ stages of the game that have
been played so far. With this information we can compute #yoffs to players 1 and 2. For P2, his/her
payoff p, is given by

P2(X4,V3, X2, X1) = X4+ Xo. (22)

For P1, his/her payoff is given by
P1(Xa,V3,%3,%2,X1) = 2(V3 — Xa) + X3+ X1. (23)

To see this, if the kitty available for P2 to divide in round dsiV; dollars in it, then if P2 takey of
these dollars for him/herself, then the remaining amount; x4, is doubled and given to P1. This is
P1’s “terminal payoff”. But P1'¢otal payoff p is the sum of this terminal payoff plus the amounts P1
took out of the kitty for him/herself in rounds 1 and 3 (whenhdl the chance to take money out of the
kitty).



So with the payoffs determined, P2 must solve the followirgpfem

1
X4(V3,%3,%2,X1) = argmaxuz(pl(x4,V3,x3,X2,x1))+zul(pz(x4,V3,x3,x2,x1))
0<x4<V3
1
= \/X4+X2+§¢2(V3—X4)+X3+X1 (24)

Taking the derivative of P2’s payoff function on the righinldaside of the equation above with respect
to x4, setting it to zero, and then solving for the optimawe get

X4(V3,X3,%2,X1) = %V3+X1+X3—X2 (25)
This tells us that the more that P2 took out of the kitty for fierself back in round 2, the less
P2 will take out in the final round. Why? It is because P2 isugdtic and cares about not only P2's
own “subutility” ,/p2 but P2 also put% weight on P1’s subutility,/pr as well. From the formula for
X4(V3,X3,X%2,X1) we can now deduce P1’s terminal payoffV2— x4) = %Vg — 2X1 — 2X3+ 2%o. We see
that if P1 is “greedy” by taking out more from the kitty in syl and 3 when P1 can do so, P1 will be
penalized by P2 in the last stage of the game by getting a Ies@inal payoff, and for each dollar that
P1 tries to take out of the game for him/herself “early” Plésalized by a 2 dollar reduction in his/her
terminal payoff by P2. This will be important to unerstandatvill happen earlier in this game.

Now go back to round 3. At this stage it is P1’s turn to decide bo split the kitty. The “state”
of the system at round 3 i%:,%2,x1), i.€. V» is the amount of the kitty that P2 passed on (after being
doubled, according to the rules), axgdis the amount of the kitty taken out by P2 in round 2, ands
the amount of the kitty taken out by P1 in round 1. In round 3jsdeciding abouks, the amount of
the kitty to take out at round 3. ¥ is taken out by P1, thewl, — x3 is the amount that is passed on to
round 3. This amount is doubled, according to the rules, shave

V3 = 2(V2 — X3) (26)
So P1’s decision problem is
1
x3(V2,X%2,X1) = grgmsml(p1(><4(V3,X3,Xz,xl),V3,X3,Xz,xl)) + zuz(pz(x4(v3ax3aX27X1)7V37X3aX27X1))
<x3<V2

2 1 2
= \/X3+X1+:—3[2(V2—X3)]—2X1—2X3+2X2+§\/X2+:—3[2(V2—X3)]+X1-|—X3+X1—X2
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We see that the right hand side of the last equation abadecieasingn xs, so it follows immediately
thatxz(V2,%2,%1) = 0, i.e. it is always optimal for P1 to pass on the entire kitty to P2d arust that P2
will divide it “fairly” in round 4 of the game.The trust that P1 has is “credible trust”, i.e. P1 correctly
perceives that P2 cares not only about him/herself, butatdeot P1's welfare, and so P2 will in fact
give P1 a share of the kitty. When we also account for the faatt the kitty doubles when P1 passes
it on to P2 in round 4, we see thah the margin, each dollar that P1 passes on to P2 in round # wil
effectively be doubled and come back to P1 as a terminal patyatehe end of the gamé&hus, being
a rational player, P1 chooses to trust P2 and pass on the &ittyrto P2 to split in round 4.

We can continue to work backward and although the algebriéttiegedious, you can show that the
optimal solutions foix; andx, are also 0. That is, in this game, the optimal solution realtp “pay it
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forward” since by doing so, the kitty keeps doubling and ha#yers make out better in the end. Thus,
the outcome of the game is that the initial kitty\@f= 100 is passed on to round 2 in its entirety by P1,
where it doubles t&; = 200. Then P2 passes on this entire amount to round 3, wheyahtes again to
V, = 400. P1 then passes this amount on in its entirety in rounch@reupon it doubles again to $800.
Since this is the last round, then P2 takes an ammy(800,0,0,0) = 2800= 53333 and passes the
remainder, $266.66, to P1. But this amount passed on is alsoled, so that P1 actually walks away
with $533.33. Thus, both players walk away with $533.33.ifait forward has turned out to be very
profitable indeed!

Note that this Nash equilibrium solution et the one that maximizes ttetal payoff to the two
players. That solution would be to pass everything on atyestage, including the last, so that P1 would
have a total terminal payment of $1600. In setting up the lprabl assumed that no “collusion” or
ex posttransfers could occur (i.e. transfers between the two ptagifter the experiment). | have in
mind here a situation where the two “subjects” in the experitrare unknown to each other and would
have no way of contacting each other after the experimenowaisand the payments were divided up.
However if this is not the case, then another possibilithé P2 should pass the entire kitty to P1, so it
becomes $1600 and trust P1 to divide up this kitty after thpegment was over. If P1 and P2 could do
this and communicate and get together and divide up the $a860the experiment was over, would
P2 want to do this? You can assume that P1 “owns” the moneythéia end of the experiment and that
P2 cannot threaten P1 with harm, nor can they write any kegailding contract prior to the experiment
specifying how to divide up the proceeds after the experim#rthis is the case, would it be a good
idea for P1 to trust P1's altruism and pass the entire amaoupLt and then trust that P1 will give some
of the $1600 back to P2 after the experiment is over?

5. What is the output supply function for a competitive firmRo® that if the price of output, p;,
increases, then the production of gdogh, cannot fall, but must stay the same or increase. (Hint: use
Hotelling’s Lemma and the convexity of the profit functionlvhat can you say in general about the
“output substitution effectdy; /dp;, i.e. the effect on the production of goddf an increase in the price

of output j, holding all other things equal? Can you say that this is gdy@ositive or negative? Using
an example production function

V2t 4% = [x2+ %% ? (28)
Computedy; /0p and see what the “output substitution effect” is for thiscsglecase.

Answer: As | discussed in class, even though we know that the “owrepaftect”dy; /0 p; is positive
for outputs and negative for inputs, we cannot unambigosajythat “cross price effectdy;/dp; are
positive or negative: it depends on the case. If outpaisd j arecomplementshendy;/dp; could be
positive (if price of good goes up you want to make more of gopdnd the complementary godd If
outputsi and j aresubstitutesthendy; /dp; could be negative (if price of goofigoes up, then want to
substitute more production towards increasing output ofigosubstituting away from subsitute output
i).

For this production function we have (using reasoning thifithe repeated in problem 7 below)
“concave” isoquants for the inpuks andx,. This means that we will either specializing in using only
inputx; to producey; andys,, or only inputx,, depending on which one is cheaper. kéke the cheaper
of these 2 inputs and I&t be its price. Then the profit maximization problem can betemitis

Max £(y1,Y2,X,A) = Prya+ PaYz — WX+ A(x— i — 4y3) (29)

whereA is the Lagrange multiplier for the production function cwamt. Taking first order conditions



we get

0
0 = 5 -LOnY2XA)=Pp1—2\y1
Y1
0
0 = a_[“(ylvy2>x7)\):p2_8)\y2
Y2
0
0 = a_XL(ybyZvX?)\):_W—i_)\ (30)

Solving the last equation we gkt = w and

PN
P2 4y,

SinceA* =w > 0 the production function constraint is binding, so we camthe first two equations of
the first order conditions in equation (30) above to deriwsput demand function:

(31)

X" = X(P1, P2,W) = Yi(P1, p2,W)* + 4y5(p1, P2, W)* =~ 4 2. (32)

Then using this input demand function combined with the brsler condition fory; in equation (30)
above we get the followingutput supply functionfor y; (pz, p2, w):

X Y 7W 2 + 1602

2 2
p; P2
1+ (&%) 1+ ()

Using this formula, we can now compudg; /0p, and see if we can determine if it is positive or negative
(i.e. if outputsy; andy, are complements or substitutes). By doing some algebraly($@m not going

to type this here going through the calculus in all detait, dsian outline of how | did this calculation
note that we can write

N

V1= D (34)

whereN denotes the numerator term in equation (33) Braknotes the denominator term. But numer-
ator and denominator terms are functionspef p, andw, of course, but lettindN’ denote the partial
derivative of the numerator term with respectgoand lettingD’ similarly denote the derivative of the
denominator with respect §m, then by calculus we have

dy; N ND
a D D (35)
and using the rule for derivative of square root function tinechain rule of calculus, we have

D — oD _ k1
ap2 16p2 D
oN P2 1
27 =

"= op2 16w2 N (36)



Substituting these equations into the equatiord§gyop, given in equation (35) above and doing some
algebraic simplification, we get

di _ P2 1  p2 N

op,  16w2DN 16p? D3

D |16w? N2 16p2 D2

1 1
= Yyip [ — ]>O. (37)
W lapZ+pd 1602+ 13

From the final expression faly; /dp, we can see this derivative is positive (iyg.andy, are comple-
mentary outputs) since the denominator of the first termeridlt bracketed expression in equation (37)
is smaller than the denominator in the second term in thekbtac

6. Consider a firm selling mufflers. Each day there is a prdibalp that exactly 1 customer will
come to the store to buy a muffler. Suppose the retail prichefuffler (the price the firm can sell
to the customer) i, and the wholesale price of a muffler (the price the firm can bugflars from
the manufacturer at) ipy. Naturally we assume thad, > py so the firm makes profits from selling
mufflers. Suppose that each time the firm orders more mufitersglenish its inventory, it incurs a
fixed transport cosK regardless of how many mufflers it buys from the manufactiBeappose there
is also a storage/holding cost of mufflers and if the firm gasufflers in its inventory, it costs per
muffler to store them. Suppose the firm is an infinite-horizasfipmaximizer and its discount factor is
Be(0,1).

a. What is the profit maximizing inventory strategy for thisn? Write down the Bellman equation
for the firm’s optimization problem and characterize thaurabf the solution for full credit.

answer Let g be the (integer-valued) inventory of mufflers. We write thellBan equation for
V(q) the optimal value (expected present discounted value ditgrdor the muffler company.
Forg > 0 we have

V(@) = maxVa(a),Vo(a)], (38)
whererV,(q) is the value of not ordering more mufflers awgq) is the value of ordering more
mufflers, given by

Va(@) = [pxpr—ca+B(pV(d—1)+(1-p)V(a))]
Vo(d) = maxyso[p*pr—cq—K—pud +B(pV(a+d — 1)+ (1—-pV(q+d))]. (39)

and forg = 0 we have

V(0) = max|BV(0), ;pgg[—K —pwd +B(PV(d -1+ (1-pV(d))] |- (40)

There is a slightly different version of the Bellman equatiehenq = 0 since whemg = 0 the firm

is “stocked out” so it cannot sell anything if a customenaasi Thus, in the Bellman equation for
V(0) there is no ternp« p; for the expected sales revenue, since the firm has no inyeatat
thus it is unable to sell a muffler to any customer who arritesther, the inventory holding cost
cqis also zero in this case.
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Besides writing the Bellman equation, | looked to see if yoavjgled an equation characterizing
the optimal ordering strategy (optimal decision rule fadering inventory)d(q). As | discussed
in class, under certain conditions the optimal orderingtsgly can be of the(S, s)” form, that is,
there are two integelS> s > such that

| S—q ifg<s
d(@) _{ 0 otherwise
What this means is that if inventory on hand falls below tivedpthresholds then it is optimal to

order a quantityd(q) = S— q that is sufficient to return total inventogx d(q) back to the “target
level” S

(41)

If fact, as you might have discovered from solving this pesblnumerically, the optimal decision
rule is not of the simple(S's) form in this case. In this problem | have assumed (via the way |
wrote the Bellman equation) that when the firm orders muffigrsre is eone day delivery lag,
so any new mufflers the firm ordexs, will arrive thenext day.

Alternatively, | could have assumed that there@sdelivery lag,.e. when the firm orders new
mufflers, the new mufflersurive the same day, in the morning before any customer estiv
Under thisinstantaneous delivery assumptithrere is a slightly modified Bellman equation given
below. The basic equation (38) still holds, but the equatfonV,(q) andV,(q) need to be slightly
modified as follows

V(@) = [pxpr—ca+B[pV(a—1)+(1-p)V(a),
Vo(q) = gﬂgg[p*pr—C(qw’)—K—pwq’+B(pV(q+q’—l)+(l—p)V(q+q’))}-(42)

The equations above cover all valuejgfO.

V(0) = max BV(O),gjgg[p*pr—K—pwq’—Cd+B(pV(q’—l)+(l—p)V(q’))} . (43)

This equation differs from equation (40) (in the case whbeed is a 1 day delivery lag) because
the firm can guarantee there is never any unserved customestqckouts) when it has instanta-
neous delivery of new mufflers. Thus, eveq i 0 at the start of the business day, with immediate
delivery, the firm can order a muffler and have it availabledib sy the time the shop opens, to
any customer who might show up.

Since | did not specify in the problem whether you should essimmediate delivery or delivery
with a one day lag, | accepted either formulation of the Balinequation given above. When
there is a delivery lag, the optimal decision rule is no largfehe (S s) form. Instead it is of the
“(S,S s) form”, i.e. the decision rule is given by

S ifg=0
d(q=¢ S—q f0<g<s (44)
0 otherwise
Thus, the firm sets a potentially different optimal invegtbarget, S, if it is ordering “from
scratch” (i.e. withg = 0) compared to when it i-orderingwhen it has a postive inventory level
already,q > 0. In the latter case the target inventory leveBigather thans,. | did not expect
you toprove mathematicallythat this is the case, but rather to see from the numericatisnb
that this is what form the solutions take. From the numemcdlitions, it is possible to develop
general mathematical proofthat the optimal decision rule is of th& s) form when there is
immediate delivery, and of thg&, S,s) form when there is a one day delivery lag.
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b. Suppose thdd =.99,c=0.1, py = 100, p; = 150, andK = 100. Calculate the optimal policy for
the firm numerically, using a computer and report the predisgbunted value of the firms profits
assuming it has in inventory= 5 mufflers.

answer | omitted a key parameter heng,the probability that a customer arrives. Clearly the level
of inventory that should be ordered will also depend on thimmeter. It should be clear that the
orders will be the highest whem= 1, since then the firm will periodically “stock up” to meet
demand for a period of days before reordering. The firm isrizathg the fixed cost of placing
an orderK = 100 against the inventory holding cost per mufferWith immediate delivery, it
should be clear that = 0, the firm waits until it is stocked out before ordering morefihers.
When mufflers arrrive with a one day lag, the firm will order wtiehas one muffler lefts = 1,
since otherwise it would risk a “stock out” and not have anyfflars to sell when a customer
arrived. Whenp = 1 the optimal policy is to orde® = 13 mufflers wherg = 0 = swhen there is
immediate delivery. When there is a delivery lag, the optipmdicy is to orderS = 13 mufflers
when the firm is stocked out, ai®E= 13 mufflers when it hag = 1 = s mufflers in inventry. This
means that if no customer arrives on the day it orders wheasit| k= 1 muffler left in stock, then

it will have a total of 14= S+ 1 mufflers on the next day, whereas if it hga= 0 mufflers, it
would orderS = 13 mufflers and have 13 mufflers at the start of the next busidag. So there
is a slight difference in the optimal strategy depending tiether there is immediate delivery or
not.

| wrote the Matlab programset up. mbel | man. mandsuccapp. mto calculate the optimal policy.
set up. mjust sets up the parameters and global variables needelyéaise problembel | man. m

is a Matlab function that calculates the Bellman operater, it evaluates equation (38) above
given any input valu¥, i.e. it evaluate$ (V) wherer is the “Bellman operator” and the Bellman
eguation amounts to a fixed point of the Bellman operator

V=r(y) (45)

In this case the “state space” is the level of invenipgnd it takes integer values=0,1,2,... so
we can treaV as a vector in some finite dimensional Euclidean spicgince we can guess that
the firm will not want to keep more than a finite numbeof mufflers in stock at any time. We
will guess thanh = 20 is an upper bound on the number of mufflers that the firm wewd want
to order or have on hand (if this is too small and we find &t n then we can increaseand
resolve until we have a value af> S so we are confident that our arbitrary guess about what
is does not impinge on the solution of the problem).

Now recall the method cfuccessive approximatiots solve for the unique fixed poit =T (V).
We make an initial gues# = 0, i.e. a vector of zeros iR". Then we stick this intial guess into
the Bellman operator to get

Vi=T (Vo) (46)

which is an updated guess of the value function. We keep dbisgresulting in a sequences of
value functions{\4 } given by
Vira =T (M) (47)

and we stop these iterations whigvi, 1 — V|| < € for some small convergence tolerareceThe
programsuccapp. mis a Matlab program that carries out this successive appations algo-
rithm using the Bellman operator as programmedcbélyl man. m | set a convergence tolerance
€ = 0.000001. At this small tolerance | have “almost” solved thdiilBan equation and from the
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Bellman equation | can uncover the optimal decision d{ig). The Matlab program notation for
the value function iz and the optimal decision rule @& . By inspecting these you can deter-
mine the optimal inventory ordering rule. You can download aun these programs to get the
numerical answers below.

Figure 1 plots the value function, the approximate solutiorihe Bellman equation (38) and
approximate fixed point =T (V) for the case of instantaneous delivery of orders when tleaarr
probability isp = 1. In this case, the policy is of th&, s) form with s= 0 andS= 13.

Figure 1. Valuefunction for inventory problem with instantaneous delivery when p=1
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In particular, the expected discounted value of future fgdfir the company when = 5 is
V(5) = 320895.

Figure 2 plots the optimal order quantiBas a function of the customer arrival rgg@nd it is an
increasing function op as expected. We see that wher- 1 thenS= 13. The smallest arrival
probability p where it makes sense for the firm to re-order mufflens 45.1309. For any arrival
probability less than this, it is optimal for the firm to shuiwh and sell off any mufflers it has in
stock but never reorder any more. psises above this threshold the smallest valuSisfS=5
until the arrival probability reachp = .175 whenSincreases t&= 6, and so forth in a series of
steps until it reacheS= 13 whenp > .902.

Figure 2: Optimal order quantity, S asafunction of arrival probability p
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c. Suppose there are occasional opportunities to buy mafites lower wholesale price thamy, =
100. Suppose with probabilitye (0, 1) the firm can buy as many mufflers as it wants at a price of
pw = 75. Write the Bellman equation in this case. What are the statiables for this problem?
What are the decision (control) variables? How does thereatiithe solution change compared
with the solution you characterized in part a above?

answer Let g denote the quantity of mufflers in inventory as before, bw aold an additional
state variable to indicate whether the firm can buy mufflers at the lower poc®75 per muffler
(compared to the normal price of $100 per muffler). ThusO denotes the case where there is
no sale on mufflers, so the company faces the high wholesale gy = 100, andx = 1 denotes
the case where there is a sale on mufflers so the company cahdmyat the lower wholesale
price of py = 75. Then the value function ¥4(g,x) and is given by

V(q>X) = max[Vn(q,x),Vo(q,x)] ) (48)

where, as abovey,(q,X) is the value of not ordering, and,(q,x) is the value of placing the
(optimally sized) order for more mufflers. These values arergby

Vn(Q,X) = pxpr—co+
Bla(pv(a—1,1)+(1-p)V(9,1)) + (1—-a) (pV(d—1,0)+ (1 - p)V(q,0))]
Vo(a,X) = maxyso[p*pr—cq—K—pu(X)d +Bq[pV(q+q — 1)+ (1-pV(q+q)]
+B(1-9g) [pV(a+qd —1)+ (1-pV(q+d)]]. (49)

In this Bellman equatiompy(X) denotes the (state-dependent) wholesale price of mufiers,
pw(0) = 100 andpy (1) = 75. The Bellman equation above is for the case of a one dayedgli
lag. With instantaneous delivery the Bellman equation cambdified similar to our discussion
in the answer to part a above, and the Bellman equationg(fax) can be derived similarly.

In the case of instantaneous delivery, the optimal ordesingtegy can be shown to take the
form of ageneralized S, s) rule. In a generalizedsS,s) rule the valuesS ands are functions of
the state variable, and so can be written d§(x),s(x)). This result can be proven using the
argument in Hall and Rust (200Bconomic TheoryHowevr | did not expect you to have seen
(or even guessed) that there might be a generalization g&tBeinventory strategy that might be
applicable here. | mainly wanted to see that you could wiakerdthe correct Bellman equation.

d. Calculate the optimal strategy for the firm numericallingsa computer for the modified version
of the problem in part ¢, assumirng= 0.05.

answer | wrote Matlab programsel | man2. m and succapp2. mto solve this problem using
the successive approximations strategy described in theearto part b above. The function
bel | man2. mimplements the Bellman operator in this two-dimensionabfgm. The value func-
tion V can be stored asmatrix of dimensionn x 2 where the two columns &f represent the
value in the casg = 0 andx = 1 respectively. Similarly the optimal decision rulég, x) is stored
in then x 2 matrixdr 2 which is returned implicitly byel | man2. mas a global variable.

Figure 3 below plots the optimal decision raég, s) for the case of instantaneous delivery with
p = 0.35 (i.e. there is an 35% probability that customer arrivelup a muffler every day). We
see that whes = 0 (the wholesale price of mufflers is higp, = 100) that it is never optimal to
order mufflers. Instead the firm only orders mufflers when teyon sale, i.e. whex= 1. In
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that case we havg(1) = 14 ands(1) = 6. Thus, when mufflers are on sale, the firm will not order
unlessq < s(1) = 6, and when it does order, it orders enough to reach the tamgsttory level
S(1) = 14. Note thatS(0) = s(0) = 0, so that the firm does not order new mufflers whenever the
wholesale price is high, i.e. wheamx,(0) = 100.

Figure 3: Optimal order quantity, S asafunction of arrival probability p
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However when we increase the arrival probability, saypte- 0.8 we get a different optimal
generalized'S s) strategy. Now we hav&(1) = 24 ands(1) = 11 andS(0) = 8 ands(0) = 0.
This implies the possibility that it is optimal for the firm tcasionally stock out of mufflers,
even if it can get them delivered instantly. For example sgpghe firm initially has a stock of 24
mufflers purchased at the low muffler pricemf(1) = 75. Suppose the price returns back to the
high price, so that the state beconxes O for a long stretch of time. When= 1 it is not optimal
for the firm to reorder mufflers untd = 0 = s(0) and then it orders onl$(0) = 8 mufflers. That

is the firm experiences a stock out and only orders relatfesiymufflers to tide it over (and avoid
losing opportunities to sell mufflers to customers) whilis ivaiting for another reduction in the
wholesale price of mufflers when it would be optimal for it touy big” and purchase enough
mufflers to reach the target lev8{1) = 24. Then as the firm starts to sell off this inventory of
mufflers purchased at the low wholesale price, it will reoralgain ifq < 11 and there happens
to be a sale going on (i.e. Xf= 1). Otherwise it will continue to sell off its inventory of rfilers
until all of them are sold and then it will only order the smealuantityS(0) = 8 to tide it over
until another low price opportunity comes along.

7. Consider a seller trying to sell a painting at an auctionp@®se that there afé buyers who will
participate in an auction if the seller holds one. Suppoat (fmormalized to millions) that the seller
knows that the valuations of buyers are random draws frorstalalition on thg0, 1] interval (where 1
now denotes $1 million dollars, and the cumulative distidoufunction of the values is

F(v) =Pr{i<v} =V (50)

a. What is the expected amount a single buyer would be witbngay for this painting?

answer This question can be answered following the discussion ifetiyire notes on auctions
and | will not take the trouble to provide a complete answeehe
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. Write a formula for the bidding function that the biddersuld use in a symmetric Bayesian Nash
equilibrium of afirst price auctionfor the painting. What is the probability that the paintingl w
be sold, and what is the expected price that the seller wiktive for the painting if there are
N =5 bidders participating in the auction?

. Suppose instead that the seller rurseeond price auctionWhat is the value that the seller can
expect to receive for the painting when there ldre: 5 bidders participating in this auction?

. Suppose there am¢ = 3 bidders with valuation for the painting equalwp= .2, v» = .8 and
vz = .5. What price will the seller receive if a) she adopts a firetgpauction for the painting, b)
she adopts a second price auction for the painting, or c)dbgtsarall pay auction?

. Suppose that the seller adopts a second price auctiosetsudreservation pricedor the painting
of r =.2. That is, the seller will not sell the painting unless thghlaist bid is at least = .2
($200,000). Describe how the use of the reservation prieetafthe buyers’ bidding strategies
in this auction, if at all? What is the probability that thdleewill sell the painting when there
is a population ofN = 5 potential bidders whose true values for the painting avergby a
probability distribution with cumulative distribution fiction F (v) = v2? Can you calculate the
expected revenue the seller will receive? If so, which isdodor the seller, to have no reservation
price, or to set a reservation pricerof 2?
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