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Part I: Short Questions
1. Following up on the question raised in class, in the case ofa Cournot duopoly with a linear demand
function p= a−bq and two firms with equal constant marginal costs of production of c and no fixed
costs, is overall social surplus (i.e. the sum of consumer surplus plus total profits) higher if the firms
act as ordinary Cournot duopolists or is it higher if firm 1 is aStackelberg leader and firm 2 acts as a
Stackelberg follower? Compute the equilibria in the two cases and show all calculations for full credit.

Answer: As we worked out in class, with a linear demand curve the Competitive Equilibrium (ce)
quantity supplied isqce= (a−c)/b (set price = mrginal cost, solving the equationc= a+bqce. Profits
are zero in competitive equilibrium and the total social surplus equals consumer surplus, which is the
area under the demand curve above the horizontal line of height c (the marginal cost of production) to
the left of the competitive equilibrium quantityqce. Using your geometry that the area of a triangle is
1/2×base×height, we have base= qceand height= a−c, wherea is the intercept of the demand curve

(i.e. the price atq= 0). Thus consumer’s surplus (which equals total surplus) is1
2

a−c
b (a−c) = (a−c)2

2b .

In theCournot duopoly case(cd) as I showed in class, the Nash equilibrium output of eachfirm is 1
3 of

the CE level, so that the total output,qcd= 2
3
(a−c)2

b . In the Cournot case there are positive profits, and

the total profits of the two firms is(pcd− c)qcd = 2
9
(a−c)2

b . Consumer’s surplus is (using the formula

for the area of a triangle of heighta− pcd=
1
3(a−c) and baseqcd isCS= 1

9
(a−c)2

b . Adding total profits

plus consumer’s surplus to get total surplus, we getTS= (a−c)2

3b which is lower than in the perfectly
competitive case. The difference is due to theinefficiencyof the Cournot equilibrium, which leads to a
deadweight lossequal to the difference between total surplus under competitive equilibrium (which is
the maximum possible surplus) and total surplus under the Cournot-Nash equilibrium.

In theStackelberg duopoly case(sd) we let firm 1 be theStackelberg leaderand firm 2 be theStackelberg
follower. The Stackelberg follower assumes that the Stackelberg leader canprecommitto an outputq∗1
that is best for it, i.e. the value ofq1 that maximizes firm 1’s profits. The Stackelberg leader, unlike in
the Cournot case, takes into account firm 2’s optimal response to its choice ofq∗1, i.e. it assumes thatq∗2
is not fixed at the Nash equilibrium level (as it is in the Cournot case) but rather firm 1 assumes thatq2

will be a best response to its value ofq1. In class we worked out the best response for firm 2 to a given
output of firm 1: it is

q∗2(q1) =
a−c−bq1

2b
(1)

Thus, taking firm 2’s reaction function given above into account, firm 1’s output is the solution to

q∗1 = argmax
q1

[a−b(q1+q2(q1))]q2−cq2 =

[

a−b

(

a−c
2b

− q1

2
+q1

)]

q1−cq1 (2)
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Taking the derivative of this with respect toq1 and setting it to zero and solving, we get

q∗1 =
a−c
2b

(3)

Thus, the Stackelberg leader chooses1
2 of the competitive equilibrium output, which happens to be the

same output a monopolist would choose. Plugging the Stackelberg leader’s optimal choice forq∗1 into
the Stackelberg follower’s reaction function we get

q∗2 = q∗2(q
∗
1) =

a−c−bq∗1
2b

=
a−c
4b

(4)

Thus, total output in the Stackelberg duopoly case is

qs = q∗1+q∗2(q
∗
1) =

3
4

a−c
b

(5)

Thus, we see that total output in the Stackelberg case is3
4 of the competitive equilibrium ouptut, whereas

the Cournot equilibrium total output was23 of the CE output. It follows that prices are lower in the
Stackelberg case, and thus consumer’s surplus is higher. Using the “1

2 × base× height formula for a
triangle with heighta− ps =

1
4a+ 3

4c−c= 3
4(a−c) we get

CS=
9
32

(a−c)2

b
. (6)

Total producer’s surplus (profit) is given by

PS= (ps−c)qs =
1
4
(a−c)

3
4

a−c
b

=
3
16

(a−c)2

b
. (7)

Since 3
16 < 2

9, total profits of firms 1 and 2 are less under the Stackelberg equilibrium than under the
Cournot equilibrium, although the Stackelberg leader’s profits are higher than the profits of each firm in

the Cournot duopoly (the Stackelberg leader’s profits are1
8
(a−c)2

b which are greater than the profits of

each of the Cournot duopolists,1
9
(a−c)2

b ). Total surplus in the Stackelberg case is thus,

TS=CS+PS=
15
32

(a−c)2

b
. (8)

Since15
32 >

1
3, it follows that total surplus is higher in the Stackelberg case and thus deadweight loss is

lower. In fact, since15
32 is nearly equal to1

2 = 15
30, the deadweight loss in the Stackelberg case is very

low. What the the Stackelberg leader has done is to take a greater share of the surplus as profits, but the
competition from firm 2 causes the total output to be larger than the monopoly case, and this lowers the
deadweight loss in the Stackelberg case compared to the monopoly case even though the Stackelberg
leader produces the monopoly level of output. You can check that in the monopoly case the total surplus
is

TS=
3
8
(a−c)2

b
, (9)

which is lower than in the Stackelberg case, but higher than in the Cournot duopoly case.
2. Suppose Disneyland is trying to decide the profit-maximizing pricing strategy for its Disneyland
theme park. Suppose each ride in the park costsc per ride in terms of electricity and labor and other
costs. If Disney is a monopolist and charges a price per ride and it believes that all consumers have a
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utility function for the number of theme park ridesr and consumption of all other goodsg of u(r,g) =
r .1g.9 and the average income of a consumer isy = 20,000 (20 thousand dollars), then ifc = 1 (i.e.
a marginal cost of $1 per ride), what price per ride should Disney charge if it expects that there is a
market of 100,000 possible consumers who would be coming to the Disney theme park each summer?
What strategy yields higher profits: a) an optimal (linear) monopoly price per ride or b) a two-part tariff
consisting of a fixed entrance feeF and a constant pricep to ride on the rides in the theme park? To get
full credit, calculate the profits under both pricing schemes, a and b, and show which one is higher.

Answer: I screwed up this question a bit and it does not have an absolutely clear cut answer for reasons
I will explain shortly. If consumers have a Cobb-Douglas utility function, they want to consume at least
some Disneyland rides not matter how high the price is since if they consume zero rides, they also get
zero utility. Let’s ignore the constraint that one can only go on an integer-valued number of rides, and
somehow allow people to consume “fractional” Disney Land rides (e.g. instead of going on a 10 minute
Space Mountain ride, suppose people could choose some fraction of time to go on it for a pro-rated
price, e.g. ride for 1 minute at 1/10 of the price, then in effect we can treat the number of ridesr as a
continuous decision.

Now I am not going to repeat the calculation, but as I showed inclass and as we covered many times in
the first part of the semester, with a Cobb-Douglas utility function, the demand for rides is

r(p,y) =
.1y
p

=
2
p

(10)

Now, with 100,000 potential identical consumers, Disney’sprofits from charging a pricep per ride is

Π(p) = 100000(p−c)
2
p

(11)

It is easy to see thatΠ′(p) > 0, so that in effect, Disney should charge an infinite price per ride to
maximize profits. To be mathematically correct, one should say that “there is no finite price that max-
imizes profits” and thus technically speaking there is no solution to this problem. I gave full credit to
anyone who realized this. However there are several things one can do to change the problem slightly

so that there is a well-defined solution to the problem, One way is to change the utility function so that
if the price of rides at Disney is too high, nobody wants to go to Disneyland, which seems like a real-
istic assumption. So suppose instead of a Cobb-Douglas utility function, we use the following utility
function

u(r,g) =
√

r +g (12)

Notice now that whenr = 0, utility is no longer zero, but is given byu(0,g) = g. Thus, for this utility
function people do not need to go on some small fraction of a ride at Disneyland in order to be happy,
no matter what the cost per ride is. If we work out the demand for rides in this case, we get

r(p,y) =
1

4p2 (13)

Actually, we see that with this utility function, the personwants to consume some small fraction of a
ride regardless of how high the price is, just like the Cobb-Douglas utility function, but in this case the
demand for rides declines to zero at a faster rate,1

p2 , than in the Cobb-Douglas case where demand goes

to zero at rate1
p. The reason why the person want to consume some small fraction of a ride no matter

3



how high the price is due to the fact that the utility of rides is
√

r and thus the marginal utility goes to
infinity as r ↓ 0, so even at very high prices the consumer finds it optimal to go on some small fraction
of a ride. Now with this utility function, Disney’s profit maximization problem is given by

max
p

Π(p) = 100000(p−c)
1

4p2 (14)

Using calculus and taking the derivativeΠ′(p) and setting it to zero and solving forp∗, we getp∗ = 2c.
Thus, in this case there is a finite optimal price that Disney would want to charge consumers. Now let’s

consider an alternative way for Disney to charge: it chargesevery customer a fixed entry feef and once
in, each customer can go on as many rides they want at a price equal to marginal cost:p= c. Which
way of pricing gives Disney higher profts? First, we can calculate profits under the optimal monopoly
price calculated above:

Πl (p
∗) = 100000

(2c−c)
4(2c)2 =

100000
16c

(15)

Now what are Disney’s profits under the fixed feeF? It gets zero profits per each ride a customer takes,
so its total profits are simply

Π2p(c,F) = 100000F (16)

whereΠ2p denotes profits under a (nonlinear) 2-part tariff andΠl denotes profits under a (linear) optimal
pricing rule. To see which of these two pricing schemes is better, we have to determine what the highest
entry feeF the monopolist could charge. To figure this out, realize thatthe consumer always has the
option of not going to Disneyland at all. If they do not go to Disneyland and spend all of their income
on other goodsg, their utility will be u(0,g) = y, since with an income ofy and the price of other
consumption normalized to 1 we haveu(r,g) =

√
r + g = g = y whenr = 0 andg = y. This level of

utility determines the consumers’reservation utility:Disney cannot charge an entry fee that is so high
that people’s utility after paying the entry fee is lower than the utility they can get by not going to
Disneyland at all. The utility of a consumer who pays the entry feeF and can buy rides at marginal cost,
p= c is given by

V(c,y−F) =
1
2c

+y−F − 1
4c

= y−F +
1
4c

(17)

Now settingF to make the consumer indifferent between paying the fixed entry fee F and going on
rides at marginal costp= c and not going to Disneyland at all, we get

y= y−F +
1
4c

(18)

soF∗ = 1
4c and Disney’s profits under a 2-part tariff is given byΠ2p(c,F∗) = 100000/4p which is four

times larger than the profits it can earn by charging a linear optimal monopoly price and no fixed fee.
By allowing its customers to go on rides at a price equal to marginal cost, Disney can eliminate the
deadweight loss inherent in linear monopoly price. It is able to capture and convert the deadweight loss
into profits by charging the fixed feeF∗ for admission. In fact, Disney has succeeded in extracting all
of the surplus from the consumers and taking all of the socialsurplus for itself as profits.

The other way to get an answer to this problem using the Cobb-Douglas utility function is to assume
that either Disney faces a competitor (e.g. Great America) that charges a pricep, or there is government
regulation that prevents it from charging a price higher than p> c. In either of these cases, Disney, if
it operates with linear pricing, will want to charge the highest price it can get away with, which isp. I
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leave it as an exercise for you to show that with the Cobb-Douglas utility function (or indeed with any
strictly convex utility function) Disney would get more profits by charging a fixed entry feeF and let
consumers go on rides at marginal costc rather than charge the pricep> c per ride and no entry fee.
(Note: This question could show up on the final exam, so it is a good idea for you to try to work this out,
at least for the Cobb-Douglas, but ideally you should be ableto show this more generally for all strictly
convex utility functions.)

5. Consider the following two player game. The game starts with an initial “kitty” of $100. Player 1 can
take any part of this kitty for him/herself. Whatever the player does not take gets passed on to player 2
in the next round, but the amount passed on isdoubled.Then player 2 decides how much of the kitty, if
any, is passed on for player 1 at the next round. Whatever amount is passed on in each round is doubled.
The game runs for a total of 4 rounds. Thus, an example of one possible “play” of the game is for player
1 to pass the entire $100 to player 2 in the first round. This amount is then doubled to $200 for player
2 in the second round. If player 2 takes $50 for him/herself atthis stage and passes on $150 to player 1
in round 3, then the $150 is doubled to $300 and player 1 decides how much of this to take in round 3.
If player 1 takes $200 in round 3, the remainder, $100, is doubled, giving player 2 a total of $200 in the
4th and final round. In this final stage player 2 could take the entire $200 for him/herself, or give part
of it to player 1. If player 2 takes all of the $200 in this example, then player 2 gets a total of $250 ($50
taken in round 2 and the $200 in round 4) and player 1 gets a total of $200 from the $200 he/she took
in round 3. Suppose this game is played by two complete strangers who are kept in separate rooms and
cannot communicate or collude in any way. If both players arerational and they don’t only care about
maximizing the amount they personally can earn from this game but they give some weight to how much
their opponent will earn (even if the opponent is a complete stranger!), describe the Nash equilibrium
outcome of this game. (Hint: the utility function for playeri is ui(Pi,P−i) =

√
Pi +

1
2

√
P−i wherePi is

playeri’s monetary payoff (in total) andP−i is their opponent’s payoff. Use backward induction, starting
from player 2’s optimal decision in round 4 of the game).

Answer: We solved a “selfish” version of this problem on the practice midterm exam. Now we solve an
“altruistic” version of this game, where each player gets a total utility equal to their own utility function
(which is the square root of their total dollar payoff from the game) plus 1/2 of their “perceived” utility
of the other player (i.e. the perceived utility of the other player is the square root of the opponent’s total
payoff). Note that the perceived utility of the other playeris not the same as the actual payoff, since each
player cares about each other. If we required that each player’s total utility is their own utility plus 1/2 of
theactualutility of their opponent, we would seem to have a much harder“fixed point” or “circularity”
problem, since the opponent’s actual utility includes 1/2 of the actual utility of their opponent, etc.
However if we actually figure this out, the utility function is basically still the same. To see this, let
U1(p1, p2) be the “actual” utility function of player 1, andu1(p1) be the “subutility function” that player
1 gets from his/her own payoff,p1. In this case we haveu1(p1) =

√
p1. Similarly letU2(p1, p2) be the

“actual” utility function of player 2, and letu2(p2) be player 2’s “subutility” for player 2’s own payoff,
i.e. u2(p2) =

√
p2. Now we have

U1(p1, p2) = u1(p1)+
1
2
U2(p1, p2)

U2(p1, p2) = u2(p2)+
1
2
U1(p1, p2) (19)

This is a system of two equations in two unknowns. We can solvethis to get the “reduced-form”
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representation of the actual utility functions as

U1(p1, p2) =
4
3

(

u1(p1)+
1
2

u2(p2)

)

U2(p1, p2) =
4
3

(

u2(p2)+
1
2

u1(p1)

)

(20)

Thus, we see that the “actual” utility function is just a positive scalar multiple of the “perceived” utility
function, so we will get the same results regardless of whether we analyze the problem using the actual
or preceived utility functions of the two players in the game. Since the perceived utility functions are
simpler (they don’t have the extra43 factor), let’s use them, i.e. we use the utility functions

U1(p1, p2) =
√

p1+
1
2
√

p2

U2(p1, p2) =
√

p2+
1
2
√

p1. (21)

Now, let’s work out the Nash equilibrium of this 4 stage, alternating move game between the two players.
I will use “P1” to identify player 1 and “P2” to identify player 2 as a shorthand. Do not confuse P1 with
P1’spayoff,which is p1, and similarly for P2.

As usual we analyze this game by backward induction. Since the alternating moves take place
quickly, we ignore any discounting and assume that the payoffs p1 andp2 are thetotal payoffs that P1
and P2 get from playing this game, respectively. The total payoff for P1 is the sum of 3 payments: the
amount P1 takes out of the “kitty” for him/herself in round 1,x1, the amount P1 takes out of the kitty
for him/herself in round 3,x3, and the “terminal payoff” that P2 will leave to P1 in the lastround of the
game. The total payoff for P2 is the sum of two payments: the amount P2 takes out of the kitty in round
2, x2, plus the amount that P2 takes away for him/herself in the last round of the game,x4.

Thus, to do the dynamic programming correctly, we have to setup the right “state” variable to
represent the history of the game at the beginning of round 4 when P2 makes the decision about how
muchx4 to take away for him/herself, and how much to leave for P1. To make this decision, P2 needs
to figure out the total payoffs that P1 and P2 will get,p1 and p2, so that P2 can evaluate his/her utility
functionU2(p1, p2). So the required information that P2 needs is: 1) the size of the kitty V3 that P1
passed on to P2 to divide in the last round of the game, 2) the amount x2 that P2 took for him/herself
in round 2 of the game, and 3) the amountsx1 andx3 that P1 took for him/herself in rounds 1 and 3
of the game. Thus the “state variable” in round 4 is(V3,x3,x2,x1) whereV3 is the size of the kitty, and
(x3,x2,x1) is the history of payments taken out of the kitty in the previous 3 stages of the game that have
been played so far. With this information we can compute the payoffs to players 1 and 2. For P2, his/her
payoff p2 is given by

p2(x4,V3,x2,x1) = x4+x2. (22)

For P1, his/her payoff is given by

p1(x4,V3,x3,x2,x1) = 2(V3−x4)+x3+x1. (23)

To see this, if the kitty available for P2 to divide in round 4 hasV3 dollars in it, then if P2 takex4 of
these dollars for him/herself, then the remaining amount,V3− x4, is doubled and given to P1. This is
P1’s “terminal payoff”. But P1’stotal payoff p1 is the sum of this terminal payoff plus the amounts P1
took out of the kitty for him/herself in rounds 1 and 3 (when P1had the chance to take money out of the
kitty).
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So with the payoffs determined, P2 must solve the following problem

x4(V3,x3,x2,x1) = argmax
0≤x4≤V3

u2(p1(x4,V3,x3,x2,x1))+
1
2

u1(p2(x4,V3,x3,x2,x1))

=
√

x4+x2+
1
2

√

2(V3−x4)+x3+x1 (24)

Taking the derivative of P2’s payoff function on the right hand side of the equation above with respect
to x4, setting it to zero, and then solving for the optimalx4 we get

x4(V3,x3,x2,x1) =
2
3
V3+x1+x3−x2 (25)

This tells us that the more that P2 took out of the kitty for him/herself back in round 2,x2, the less
P2 will take out in the final round. Why? It is because P2 is altruistic and cares about not only P2’s
own “subutility”

√
p2 but P2 also puts12 weight on P1’s subutility

√
p1 as well. From the formula for

x4(V3,x3,x2,x1) we can now deduce P1’s terminal payoff: 2(V3− x4) =
2
3V3−2x1−2x3+2x2. We see

that if P1 is “greedy” by taking out more from the kitty in stages 1 and 3 when P1 can do so, P1 will be
penalized by P2 in the last stage of the game by getting a lowerterminal payoff, and for each dollar that
P1 tries to take out of the game for him/herself “early” P1 is penalized by a 2 dollar reduction in his/her
terminal payoff by P2. This will be important to unerstand what will happen earlier in this game.

Now go back to round 3. At this stage it is P1’s turn to decide how to split the kitty. The “state”
of the system at round 3 is(V2,x2,x1), i.e. V2 is the amount of the kitty that P2 passed on (after being
doubled, according to the rules), andx2 is the amount of the kitty taken out by P2 in round 2, andx1 is
the amount of the kitty taken out by P1 in round 1. In round 3, P1is deciding aboutx3, the amount of
the kitty to take out at round 3. Ifx3 is taken out by P1, thenV2−x3 is the amount that is passed on to
round 3. This amount is doubled, according to the rules, so wehave

V3 = 2(V2−x3) (26)

So P1’s decision problem is

x3(V2,x2,x1) = argmax
0≤x3≤V2

u1(p1(x4(V3,x3,x2,x1),V3,x3,x2,x1))+
1
2

u2(p2(x4(V3,x3,x2,x1),V3,x3,x2,x1))

=

√

x3+x1+
2
3
[2(V2−x3)]−2x1−2x3+2x2+

1
2

√

x2+
2
3
[2(V2−x3)]+x1+x3+x1−x2

=

√

4
3
V2−

7
3

x3−x1+2x2+
1
2

√

4
3
V2−

1
3

x3+x1 (27)

We see that the right hand side of the last equation above isdecreasingin x3, so it follows immediately
thatx3(V2,x2,x1) = 0, i.e. it is always optimal for P1 to pass on the entire kitty to P2, and trust that P2
will divide it “fairly” in round 4 of the game.The trust that P1 has is “credible trust”, i.e. P1 correctly
perceives that P2 cares not only about him/herself, but alsoabout P1’s welfare, and so P2 will in fact
give P1 a share of the kitty. When we also account for the fact that the kitty doubles when P1 passes
it on to P2 in round 4, we see thaton the margin, each dollar that P1 passes on to P2 in round 4 will
effectively be doubled and come back to P1 as a terminal payment at the end of the game.Thus, being
a rational player, P1 chooses to trust P2 and pass on the entire kitty to P2 to split in round 4.

We can continue to work backward and although the algebra is alittle tedious, you can show that the
optimal solutions forx1 andx2 are also 0. That is, in this game, the optimal solution reallyis to “pay it
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forward” since by doing so, the kitty keeps doubling and bothplayers make out better in the end. Thus,
the outcome of the game is that the initial kitty ofV0 = 100 is passed on to round 2 in its entirety by P1,
where it doubles toV1 = 200. Then P2 passes on this entire amount to round 3, where it doubles again to
V2 = 400. P1 then passes this amount on in its entirety in round 3, whereupon it doubles again to $800.
Since this is the last round, then P2 takes an amountx4(800,0,0,0) = 2

3800= 533.33 and passes the
remainder, $266.66, to P1. But this amount passed on is also doubled, so that P1 actually walks away
with $533.33. Thus, both players walk away with $533.33. Paying it forward has turned out to be very
profitable indeed!

Note that this Nash equilibrium solution isnot the one that maximizes thetotal payoff to the two
players. That solution would be to pass everything on at every stage, including the last, so that P1 would
have a total terminal payment of $1600. In setting up the problem, I assumed that no “collusion” or
ex posttransfers could occur (i.e. transfers between the two players after the experiment). I have in
mind here a situation where the two “subjects” in the experiment are unknown to each other and would
have no way of contacting each other after the experiment wasover and the payments were divided up.
However if this is not the case, then another possibility is that P2 should pass the entire kitty to P1, so it
becomes $1600 and trust P1 to divide up this kitty after the experiment was over. If P1 and P2 could do
this and communicate and get together and divide up the $1600after the experiment was over, would
P2 want to do this? You can assume that P1 “owns” the money after then end of the experiment and that
P2 cannot threaten P1 with harm, nor can they write any legally binding contract prior to the experiment
specifying how to divide up the proceeds after the experiment. If this is the case, would it be a good
idea for P1 to trust P1’s altruism and pass the entire amount to P1, and then trust that P1 will give some
of the $1600 back to P2 after the experiment is over?
5. What is the output supply function for a competitive firm? Show that if the price of outputi, pi ,
increases, then the production of goodi, yi, cannot fall, but must stay the same or increase. (Hint: use
Hotelling’s Lemma and the convexity of the profit function).What can you say in general about the
“output substitution effect”∂yi/∂p j , i.e. the effect on the production of goodi of an increase in the price
of output j, holding all other things equal? Can you say that this is always positive or negative? Using
an example production function

y2
1+4y2

2 =
[

x1
2+x2

2]1/2
(28)

Compute∂y1/∂p2 and see what the “output substitution effect” is for this special case.

Answer: As I discussed in class, even though we know that the “own price effect” ∂yi/∂pi is positive
for outputs and negative for inputs, we cannot unambigouslysay that “cross price effects”∂yi/∂p j are
positive or negative: it depends on the case. If outputsi and j arecomplementsthen∂yi/∂p j could be
positive (if price of goodj goes up you want to make more of goodj and the complementary goodi). If
outputsi and j aresubstitutesthen∂yi/∂p j could be negative (if price of goodj goes up, then want to
substitute more production towards increasing output of good j substituting away from subsitute output
i).

For this production function we have (using reasoning that will be repeated in problem 7 below)
“concave” isoquants for the inputsx1 andx2. This means that we will either specializing in using only
input x1 to producey1 andy2, or only inputx2, depending on which one is cheaper. Letx be the cheaper
of these 2 inputs and letw be its price. Then the profit maximization problem can be written as

max
y1,y2,x

L(y1,y2,x,λ) ≡ p1y1+ p2y2−wx+λ(x−y2
1−4y2

2) (29)

whereλ is the Lagrange multiplier for the production function constraint. Taking first order conditions
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we get

0 =
∂

∂y1
L(y1,y2,x,λ) = p1−2λy1

0 =
∂

∂y2
L(y1,y2,x,λ) = p2−8λy2

0 =
∂
∂x

L(y1,y2,x,λ) =−w+λ (30)

Solving the last equation we getλ∗ = w and

p1

p2
=

y∗1
4y∗2

. (31)

Sinceλ∗ = w> 0 the production function constraint is binding, so we can use the first two equations of
the first order conditions in equation (30) above to derive the input demand function:

x∗ = x(p1, p2,w) = y∗1(p1, p2,w)2+4y∗2(p1, p2,w)
2 =

p2
1

4w2 +
p2

2

16w2 . (32)

Then using this input demand function combined with the firstorder condition fory∗1 in equation (30)
above we get the followingoutput supply function:for y1(p1, p2,w):

y∗1 = y1(p1, p2,w) =

√

x(p1, p2,w)
√

1+
(

p2
4p1

)2
=

√

p2
1

4w2 +
p2

2
16w2

√

1+
(

p2
4p1

)2
(33)

Using this formula, we can now compute∂y∗1/∂p2 and see if we can determine if it is positive or negative
(i.e. if outputsy1 andy2 are complements or substitutes). By doing some algebral (sorry, I am not going
to type this here going through the calculus in all detail, but as an outline of how I did this calculation
note that we can write

y∗1 =
N
D

(34)

whereN denotes the numerator term in equation (33) andD denotes the denominator term. But numer-
ator and denominator terms are functions ofp1, p2 andw, of course, but lettingN′ denote the partial
derivative of the numerator term with respect top2 and lettingD′ similarly denote the derivative of the
denominator with respect top2, then by calculus we have

∂y∗1
∂p2

=
N′

D
− ND′

D2 (35)

and using the rule for derivative of square root function andthe chain rule of calculus, we have

D′ =
∂D
∂p2

=
p2

16p2
1

1
D

N′ =
∂N
∂p2

=
p2

16w2

1
N

(36)
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Substituting these equations into the equation for∂y∗1/∂p2 given in equation (35) above and doing some
algebraic simplification, we get

∂y∗1
∂p2

=
p2

16w2

1
DN

− p2

16p2
1

N
D3

=
N
D

[

p2

16w2

1
N2 −

p2

16p2
1

1
D2

]

= y∗1p2

[

1

4p2
1+ p2

2

− 1

16p2
1+ p2

2

]

> 0. (37)

From the final expression for∂y∗1/∂p2 we can see this derivative is positive (i.e.y1 andy2 are comple-
mentary outputs) since the denominator of the first term in the last bracketed expression in equation (37)
is smaller than the denominator in the second term in the brackets.

6. Consider a firm selling mufflers. Each day there is a probability p that exactly 1 customer will
come to the store to buy a muffler. Suppose the retail price of the muffler (the price the firm can sell
to the customer) ispr and the wholesale price of a muffler (the price the firm can buy mufflers from
the manufacturer at) ispw. Naturally we assume thatpr > pw so the firm makes profits from selling
mufflers. Suppose that each time the firm orders more mufflers to replenish its inventory, it incurs a
fixed transport costK regardless of how many mufflers it buys from the manufacturer. Suppose there
is also a storage/holding cost of mufflers and if the firm hasq mufflers in its inventory, it costsc per
muffler to store them. Suppose the firm is an infinite-horizon profit maximizer and its discount factor is
β ∈ (0,1).

a. What is the profit maximizing inventory strategy for this firm? Write down the Bellman equation
for the firm’s optimization problem and characterize the nature of the solution for full credit.

answer Let q be the (integer-valued) inventory of mufflers. We write the Bellman equation for
V(q) the optimal value (expected present discounted value of profits) for the muffler company.
For q> 0 we have

V(q) = max[Vn(q),Vo(q)] , (38)

whererVn(q) is the value of not ordering more mufflers andVo(q) is the value of ordering more
mufflers, given by

Vn(q) = [p∗ pr −cq+β(pV(q−1)+ (1− p)V(q))]

Vo(q) = maxq′>0
[

p∗ pr −cq−K− pwq′+β
(

pV(q+q′−1)+ (1− p)V(q+q′)
)]

. (39)

and forq= 0 we have

V(0) = max

[

βV(0),max
q′>0

[

−K− pwq′+β
(

pV(q′−1)+ (1− p)V(q′)
)]

]

. (40)

There is a slightly different version of the Bellman equation whenq= 0 since whenq= 0 the firm
is “stocked out” so it cannot sell anything if a customer arrives. Thus, in the Bellman equation for
V(0) there is no termp∗ pr for the expected sales revenue, since the firm has no inventory and
thus it is unable to sell a muffler to any customer who arrives.Further, the inventory holding cost
cq is also zero in this case.
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Besides writing the Bellman equation, I looked to see if you provided an equation characterizing
the optimal ordering strategy (optimal decision rule for ordering inventory)d(q). As I discussed
in class, under certain conditions the optimal ordering strategy can be of the “(S,s)” form, that is,
there are two integersS≥ s≥ such that

d(q) =

{

S−q if q≤ s
0 otherwise

(41)

What this means is that if inventory on hand falls below the lower thresholds then it is optimal to
order a quantityd(q) = S−q that is sufficient to return total inventoryq+d(q) back to the “target
level” S.

If fact, as you might have discovered from solving this problem numerically, the optimal decision
rule isnot of the simple(S,s) form in this case. In this problem I have assumed (via the way I
wrote the Bellman equation) that when the firm orders mufflers, there is aone day delivery lag,
so any new mufflers the firm orders,q′, will arrive thenext day.

Alternatively, I could have assumed that there isno delivery lag,i.e. when the firm orders new
mufflers, the new mufflersarrive the same day, in the morning before any customer arrives.
Under thisinstantaneous delivery assumptionthere is a slightly modified Bellman equation given
below. The basic equation (38) still holds, but the equations forVo(q) andVn(q) need to be slightly
modified as follows

Vn(q) = [p∗ pr −cq+β [pV(q−1)+ (1− p)V(q)] ,

Vo(q) = max
q′>0

[

p∗ pr −c(q+q′)−K− pwq′+β
(

pV(q+q′−1)+ (1− p)V(q+q′)
)]

.(42)

The equations above cover all values ofq¿ 0.

V(0) = max

[

βV(0),max
q′>0

[

p∗ pr −K− pwq′−cq′+β
(

pV(q′−1)+ (1− p)V(q′)
)]

]

. (43)

This equation differs from equation (40) (in the case where there is a 1 day delivery lag) because
the firm can guarantee there is never any unserved customer (no stockouts) when it has instanta-
neous delivery of new mufflers. Thus, even ifq= 0 at the start of the business day, with immediate
delivery, the firm can order a muffler and have it available to sell by the time the shop opens, to
any customer who might show up.

Since I did not specify in the problem whether you should assume immediate delivery or delivery
with a one day lag, I accepted either formulation of the Bellman equation given above. When
there is a delivery lag, the optimal decision rule is no longer of the(S,s) form. Instead it is of the
“(S0,S,s) form”, i.e. the decision rule is given by

d(q) =







S0 if q= 0
S−q if 0 < q≤ s
0 otherwise

(44)

Thus, the firm sets a potentially different optimal inventory target,S0, if it is ordering “from
scratch” (i.e. withq= 0) compared to when it isre-orderingwhen it has a postive inventory level
already,q > 0. In the latter case the target inventory level isS rather thanS0. I did not expect
you toprove mathematicallythat this is the case, but rather to see from the numerical solutions
that this is what form the solutions take. From the numericalsolutions, it is possible to develop
general mathematical proofsthat the optimal decision rule is of the(S,s) form when there is
immediate delivery, and of the(S0,S,s) form when there is a one day delivery lag.
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b. Suppose thatβ = .99,c= 0.1, pw = 100,pr = 150, andK = 100. Calculate the optimal policy for
the firm numerically, using a computer and report the presentdiscounted value of the firms profits
assuming it has in inventoryq= 5 mufflers.

answer I omitted a key parameter here,p, the probability that a customer arrives. Clearly the level
of inventory that should be ordered will also depend on this parameter. It should be clear that the
orders will be the highest whenp = 1, since then the firm will periodically “stock up” to meet
demand for a period of days before reordering. The firm is balancing the fixed cost of placing
an order,K = 100 against the inventory holding cost per muffler,c. With immediate delivery, it
should be clear thats= 0, the firm waits until it is stocked out before ordering more mufflers.
When mufflers arrrive with a one day lag, the firm will order when it has one muffler left,s= 1,
since otherwise it would risk a “stock out” and not have any mufflers to sell when a customer
arrived. Whenp= 1 the optimal policy is to orderS= 13 mufflers whenq= 0= swhen there is
immediate delivery. When there is a delivery lag, the optimal policy is to orderS0 = 13 mufflers
when the firm is stocked out, andS= 13 mufflers when it hasq= 1= smufflers in inventry. This
means that if no customer arrives on the day it orders when it hasq= 1 muffler left in stock, then
it will have a total of 14= S+ 1 mufflers on the next day, whereas if it hadq = 0 mufflers, it
would orderS0 = 13 mufflers and have 13 mufflers at the start of the next business day. So there
is a slight difference in the optimal strategy depending on whether there is immediate delivery or
not.

I wrote the Matlab programssetup.m bellman.m andsuccapp.m to calculate the optimal policy.
setup.m just sets up the parameters and global variables needed to solve the problem.bellman.m
is a Matlab function that calculates the Bellman operator, i.e. it evaluates equation (38) above
given any input valueV, i.e. it evaluatesΓ(V) whereΓ is the “Bellman operator” and the Bellman
equation amounts to a fixed point of the Bellman operator

V = Γ(V) (45)

In this case the “state space” is the level of inventoryq and it takes integer valuesq= 0,1,2, . . . so
we can treatV as a vector in some finite dimensional Euclidean spaceRn since we can guess that
the firm will not want to keep more than a finite numbern of mufflers in stock at any time. We
will guess thatn= 20 is an upper bound on the number of mufflers that the firm wouldever want
to order or have on hand (if this is too small and we find thatS≥ n then we can increasen and
resolve until we have a value ofn> S, so we are confident that our arbitrary guess about whatn
is does not impinge on the solution of the problem).

Now recall the method ofsuccessive approximationsto solve for the unique fixed pointV =Γ(V).
We make an initial guessV0 = 0, i.e. a vector of zeros inRn. Then we stick this intial guess into
the Bellman operator to get

V1 = Γ(V0) (46)

which is an updated guess of the value function. We keep doingthis, resulting in a sequences of
value functions{Vt} given by

Vt+1 = Γ(Vt) (47)

and we stop these iterations when‖Vt+1−Vt‖ < ε for some small convergence toleranceε. The
programsuccapp.m is a Matlab program that carries out this successive approximations algo-
rithm using the Bellman operator as programmed bybellman.m. I set a convergence tolerance
ε = 0.000001. At this small tolerance I have “almost” solved the Bellman equation and from the
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Bellman equation I can uncover the optimal decision ruled(q). The Matlab program notation for
the value function isv and the optimal decision rule isdr. By inspecting these you can deter-
mine the optimal inventory ordering rule. You can download and run these programs to get the
numerical answers below.

Figure 1 plots the value function, the approximate solutionto the Bellman equation (38) and
approximate fixed pointV =Γ(V) for the case of instantaneous delivery of orders when the arrival
probability isp= 1. In this case, the policy is of the(S,s) form with s= 0 andS= 13.

Figure 1: Value function for inventory problem with instantaneous delivery when p= 1
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In particular, the expected discounted value of future profits for the company whenq = 5 is
V(5) = 3208.95.

Figure 2 plots the optimal order quantitySas a function of the customer arrival ratep and it is an
increasing function ofp as expected. We see that whenp= 1 thenS= 13. The smallest arrival
probability p where it makes sense for the firm to re-order mufflers isp= .1309. For any arrival
probability less than this, it is optimal for the firm to shut down and sell off any mufflers it has in
stock but never reorder any more. Asp rises above this threshold the smallest value ofS is S= 5
until the arrival probability reachsp= .175 whenS increases toS= 6, and so forth in a series of
steps until it reachesS= 13 whenp> .902.

Figure 2: Optimal order quantity, S, as a function of arrival probability p
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c. Suppose there are occasional opportunities to buy mufflers at a lower wholesale price thanpw =
100. Suppose with probabilityq∈ (0,1) the firm can buy as many mufflers as it wants at a price of
pwl = 75. Write the Bellman equation in this case. What are the state variables for this problem?
What are the decision (control) variables? How does the nature of the solution change compared
with the solution you characterized in part a above?

answer Let q denote the quantity of mufflers in inventory as before, but now add an additional
state variablex to indicate whether the firm can buy mufflers at the lower priceof $75 per muffler
(compared to the normal price of $100 per muffler). Thusx= 0 denotes the case where there is
no sale on mufflers, so the company faces the high wholesale price pw = 100, andx= 1 denotes
the case where there is a sale on mufflers so the company can buythem at the lower wholesale
price of pw = 75. Then the value function isV(q,x) and is given by

V(q,x) = max[Vn(q,x),Vo(q,x)] , (48)

where, as above,Vn(q,x) is the value of not ordering, andVo(q,x) is the value of placing the
(optimally sized) order for more mufflers. These values are given by

Vn(q,x) = p∗ pr −cq+

β [q(pV(q−1,1)+ (1− p)V(q,1))+ (1−q)(pV(q−1,0)+ (1− p)V(q,0))]

Vo(q,x) = maxq′>0
[

p∗ pr −cq−K− pw(x)q
′+βq

[

pV(q+q′−1)+ (1− p)V(q+q′)
]

+β(1−q)
[

pV(q+q′−1)+ (1− p)V(q+q′)
]]

. (49)

In this Bellman equationpw(x) denotes the (state-dependent) wholesale price of mufflers,so
pw(0) = 100 andpw(1) = 75. The Bellman equation above is for the case of a one day delivery
lag. With instantaneous delivery the Bellman equation can be modified similar to our discussion
in the answer to part a above, and the Bellman equations forV(0,x) can be derived similarly.

In the case of instantaneous delivery, the optimal orderingstrategy can be shown to take the
form of ageneralized(S,s) rule. In a generalized(S,s) rule the valuesSands are functions of
the state variablex, and so can be written as(S(x),s(x)). This result can be proven using the
argument in Hall and Rust (2007)Economic Theory.Howevr I did not expect you to have seen
(or even guessed) that there might be a generalization of the(S,s) inventory strategy that might be
applicable here. I mainly wanted to see that you could write down the correct Bellman equation.

d. Calculate the optimal strategy for the firm numerically using a computer for the modified version
of the problem in part c, assumingq= 0.05.

answer I wrote Matlab programsbellman2.m and succapp2.m to solve this problem using
the successive approximations strategy described in the answer to part b above. The function
bellman2.m implements the Bellman operator in this two-dimensional problem. The value func-
tion V can be stored as amatrix of dimensionn× 2 where the two columns ofV represent the
value in the casex= 0 andx= 1 respectively. Similarly the optimal decision ruled(q,x) is stored
in then×2 matrixdr2 which is returned implicitly bybellman2.m as a global variable.

Figure 3 below plots the optimal decision ruled(q,s) for the case of instantaneous delivery with
p= 0.35 (i.e. there is an 35% probability that customer arrives tobuy a muffler every day). We
see that whens= 0 (the wholesale price of mufflers is high,pw = 100) that it is never optimal to
order mufflers. Instead the firm only orders mufflers when theyare on sale, i.e. whenx= 1. In
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that case we haveS(1) = 14 ands(1) = 6. Thus, when mufflers are on sale, the firm will not order
unlessq< s(1) = 6, and when it does order, it orders enough to reach the targetinventory level
S(1) = 14. Note thatS(0) = s(0) = 0, so that the firm does not order new mufflers whenever the
wholesale price is high, i.e. whenpw(0) = 100.

Figure 3: Optimal order quantity, S, as a function of arrival probability p
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However when we increase the arrival probability, say top = 0.8 we get a different optimal
generalized(S,s) strategy. Now we haveS(1) = 24 ands(1) = 11 andS(0) = 8 ands(0) = 0.
This implies the possibility that it is optimal for the firm tooccasionally stock out of mufflers,
even if it can get them delivered instantly. For example suppose the firm initially has a stock of 24
mufflers purchased at the low muffler price ofpw(1) = 75. Suppose the price returns back to the
high price, so that the state becomesx= 0 for a long stretch of time. Whenx= 1 it is not optimal
for the firm to reorder mufflers untilq= 0= s(0) and then it orders onlyS(0) = 8 mufflers. That
is the firm experiences a stock out and only orders relativelyfew mufflers to tide it over (and avoid
losing opportunities to sell mufflers to customers) while itis waiting for another reduction in the
wholesale price of mufflers when it would be optimal for it to “buy big” and purchase enough
mufflers to reach the target levelS(1) = 24. Then as the firm starts to sell off this inventory of
mufflers purchased at the low wholesale price, it will reorder again ifq< 11 and there happens
to be a sale going on (i.e. ifx= 1). Otherwise it will continue to sell off its inventory of mufflers
until all of them are sold and then it will only order the smaller quantityS(0) = 8 to tide it over
until another low price opportunity comes along.

7. Consider a seller trying to sell a painting at an auction. Suppose that there areN buyers who will
participate in an auction if the seller holds one. Suppose that (normalized to millions) that the seller
knows that the valuations of buyers are random draws from a distribution on the[0,1] interval (where 1
now denotes $1 million dollars, and the cumulative distribution function of the values is

F(v) = Pr{ṽ≤ v}= v2 (50)

a. What is the expected amount a single buyer would be willingto pay for this painting?

answer This question can be answered following the discussion in mylecture notes on auctions
and I will not take the trouble to provide a complete answer here.
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b. Write a formula for the bidding function that the bidders would use in a symmetric Bayesian Nash
equilibrium of afirst price auctionfor the painting. What is the probability that the painting will
be sold, and what is the expected price that the seller will receive for the painting if there are
N = 5 bidders participating in the auction?

c. Suppose instead that the seller runs asecond price auction.What is the value that the seller can
expect to receive for the painting when there areN = 5 bidders participating in this auction?

d. Suppose there areN = 3 bidders with valuation for the painting equal tov1 = .2, v2 = .8 and
v3 = .5. What price will the seller receive if a) she adopts a first price auction for the painting, b)
she adopts a second price auction for the painting, or c) she adopts anall pay auction?

e. Suppose that the seller adopts a second price auction, butsets areservation pricefor the painting
of r = .2. That is, the seller will not sell the painting unless the highest bid is at leastr = .2
($200,000). Describe how the use of the reservation price affects the buyers’ bidding strategies
in this auction, if at all? What is the probability that the seller will sell the painting when there
is a population ofN = 5 potential bidders whose true values for the painting are given by a
probability distribution with cumulative distribution function F(v) = v2? Can you calculate the
expected revenue the seller will receive? If so, which is better for the seller, to have no reservation
price, or to set a reservation price ofr = 2?
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