Fall 2013 John Rust
Economics 425 Georgetown University

Solutions to Problem Set 2

1. Gradient is orthogonal to the indifference curveLet u: RN — R be a differentiable function (for
concreteness you can think of this as a utility function)t ILe {x € RV|u(x) = U} be alevel setof the
function (in the utility function case, andifference curve Prove that ifx € | then(x,Ou) = 0 where
Cu is thegradientof u.

Answer This proposition is not quite correct as stated. The corséatement is that ik is
any point in the (shiftedjangent hyperplan¢o the indifference curve at a poirg € RN then
(Ou(x),x) = 0. What is the tangent hyperplane? It is the generalizatiantangent linein the
caseN = 2. You can visualize this as a line in tfye, x2) plane that is tangent to the utility func-
tion indifference curve at a particular poixg = (x10,%,0) € R?, i.e. the line both ajouchesthe
indifference curve aty and b)has the same slofaes the indifference curve at the poxat Notice
that aline is equivalent taR%, which is one dimension less than the dimension of the SBack
RN ahyperplaneis a linear subspace of dimensidbh- 1, i.e. one dimension less than the total
dimension of the overall spach, It can be shown that any hyperplane can be represented as the
set of allx that areorthogonalto some vectora € RV, i.e. any hyperplane consists of alE R\
in the setH (a) given by

H(a) = {xe RY|(a,x) = 0}. (1)

Sincel (x) = (a,x) is a linear mapping frorRN to R, the hyperplane is theull spaceof this linear
mapping (this is a term you would know if you took linear alggband so the hyperplane — the
null space — is just the set of alle RN that are orthogonal (perpendicular) to the fixed vector
acRV,

So atangent hyperplanéo a functionu : RN — Rwill be a set of points on a hyperplane B
that satisfies a) the (shifted) hyperplanacheghe functionu(x) atxp, and b) the hyperplane has
the same slopasu(x) at the pointxg (i.e. it is tangent tai(x) at the pointxp).

How do we write the intuition of tangency down mathematicalhd show that implies that the
gradient ofu at xg is orthogonal (i.e. perpendicular to) the tangent hypepkau atxy? First let
us use a bit more specific notation for the indifference ctiove (differentiable) functioru at a
pointxo € RN: we will use the notatiomy(xo) = {x € RV|u(x) = u(xo)} to denote this indifference
curve, which is generally a curved manifold R¥, i.e. a “surface” inRN that is one dimension
less thanN the dimension of the full spacEN. Thus whenN = 2, an indifference curve is a
curved linein R? and whenN = 3 we get arindifference surfacevhich is curved surface iR®
and so forth (note a surface R? is “locally” two dimensional, i.e. it is two dimensional iesd
of three-dimensional, i.e. not a “solid”).

Now by Taylor's Theorem, ifi(x) is differentiable at a pointy we can form dinear approxima-
tion to the functionu(x) at a pointxg via thelinear function|(x) given by

1(X) = u(xo) + (O(Xo), (X — Xo))- )

Notice that this linear approximatidrix) satisfies a)(Xp) = u(xo) (i.e. the linear approximation
to u(x) touches wat the pointxy, and b)Ol (x) = Ou(Xp), i.e. theslopeof the linear functior (x)



equals the slope of the nonlinear functigix) at the pointxy (which is just the gradientju(xp)).
So now we can define thangent plango the functionu(x) at the pointx as the indifference
curve for the functiori (x) at the pointxg

(%) = {x& R¥[1(X) =1 (x0) = u(x0)} (3)

Clearly the indifference curve of a linear function will juse a linear space, i.e. lgyperplane,
rather than a curved surface or manifold which is what arfferdince curve of aonlinear func-
tion typically is.

So now it just boils down to showing that any poiin the tangent hyperplane is orthogonal to
the gradient ofi(x) atXop. But by the definition of the tangent hyperplames I (xo) if and only if
we have

1(X) = u(xo) + (Hu(x0), (X—X0)) = | (X0) = u(Xo)- (4)
But subtractingu(xg) on each side of the equation above, we see this is equivalent t
(Ou(xo), (x—x0)) =0. (5)

This isalmost the result we want, since equation (5) tells us that the gaintxg) is orthogonal
(perpendicular) tdJu(xg). But notice that the indifference curtgxg) does not generally go
through the origin, i.e. it is generally not the case thatlQ(xy) (make sure you understand why
this is the case). However we can defingamallel shiftof this indifference curve by subtracting
xo from every point inl;(xp). That is, we can define the tangent hyperplane parallel shift of
the tangent plankg(xp), so we define this tangent hyperplaneTpixy) as follows

Ti(x0) = {x € RN|x = (y— o) for somey € || (x0)}. (6)

Notice that sinceg € I (Xg) (Xo is just the point of tangency), it follows that= (g — Xg) =0 €

Ti (%), so the tangent hyperplane includes the poiat®', and we say that thiangent hyperplane
passes through the origirsince any poiny € |;(Xp) satisfies the conditiofiJu(x), (y—Xp)) =0,

it follows that the pointx = (y — Xg) € Ti(Xo) satisfies(Cu(xp),x) = 0. That is, we have shown
thatany point in the tangent hyperplane to the functigw)uat a point % € R\ is orthogonal to
the gradientTu(Xp). It should also be clear whyj (Xo) is a hyperplane. As we discussed above,
a hyperplane is any set of pointsRY that satisfy(a,x) = 0 for somea € RN. But we have just
shown thafl; (xo) is the set of alk € RN such that/ Ju(Xg),x) = 0 so lettinga = Du(Xo) it follows
that T, (xo) is indeed a hyperplane.

2. Lagrangian saddlepoint solution for constrained optimizdion problems Consider the following
constrained optimization problem

m)?xu(x) subjectto g(x) >0, and x>0 @)

whereu : R" — Ris a continuous function angi: R” — R™ arem constraint functionsvhich are also
continuous functions of. Define theLagrangian £(x,A) : Rin+m) — Rby

LX) = u(x) +Ng(x) ®)

where

Ng0) = (.g00) = 3 gy ©
2
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Definition (x*,A*) is asaddlepointof £ if and only if
L(X*,\")
L(X",\")

LKA ¥X>0

>
< L(X,\) VA>0

Theorem If (x*,A\*) is a saddlepoint of thenx* solves the constrained optimization problem (7).
Prove this theorenHint: use the method gdroof by contradiction.

Proof | proved this in class, perhaps not in every detail but | usedoaf by contradiction to
show that if(x*,A*) is a saddlepoint of.(x,A) thenx* must solve the constrained optimization
problem (7). The more difficult thing to prove is tkenverseto this Theorem, i.e. ik* solves

the the constrained optimization problem (7), then theist&aA* > 0 such thatx*,A*) is a
saddlepoint to the Lagrangiai(x,A). | did not ask you to prove this converse result and it is not
true in general withouinore assumptiondt can be proven under the stronger assumptions that
{X|g(x) > 0} is aconvex seandu(x) is quasiconcaveThen we can appeal to a theorem called the
separating hyperplane theoretmprove the existence of a Lagrange multiplier veatosuch that
(x*,\*) is a saddlepoint of (x,A). However this is beyond the level of this class and | empleasiz
it is not something | asked for or expected any of you to prove.

3. Prove that if x* is aninterior solutionthat maximizes the consumer’s problem below, the indif-
ference curve atx* is tangent to the budget line.

m>a(1)xu(x) subjectto (p,x) <y (10)
X2

whereu: R" — Ris a continuously differentiable utility function anme R" are positive prices of the
goods entering the consumer’s utility function.

Answer We need a slightly stronger assumption for this result td hwhmely we need to assume
thatmore is always bettewhich is mathematically equivalent fau(x) > 0 for anyx > 0 (where

the vector inequalityJu(x) > 0 means that each componentaf(x) is strictly greater than zero,

SO that%u(x) >0 fori=1,...,n). Suppose the conditions to the converse to theorem above
holds, i.e. there existsX > 0 such thatx*,A\*) is a saddlepoint to the Lagrangiarix,A). Since

u(x) is differentiable andx*,A*) is a saddlepointx* must maximizeL(x,A*) in x. Sincex" is
interior — i.e. x* > 0 — it follows that the the gradient of (x,A*) with respect tax must be
identically 0 atx = x*, i.e. we must have

%L(x,)\*) =[u(X") —A"p=0, (11)

where 0 is interpreted as the zero vectoRh Since(u(x*) > 0 (by the “more is always better”
assumption) ang > 0, it follows thatA* > 0. Now we already showed in problem 1 above that
the tangent hyperplane to the indifference curve at x*, 1,(x*), is perpendicular (orthogonal)
to Du(x*) (i.e. it is the set of alk € RV satisfying (Ou(x*),x) = 0). Now we show that the
shifted budget line (the budget hyperplane) is also orthagto Ou(x*), but if both the tangent
hyperplane to the indifference curve and the shifted butigetare both orthogonal talu(x*),
then these must be tlsame hyperplanand thugparallel and thus, it follows that the budget line
(or plane) must be tangent to the indifference cupy®*). That is, we can define a shifted version
of the budget line by the linear functidix) given by

1) = u(x’) + (A"p, (x= X)) (12)
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Notice that a) (x) touches the indifference curig(x*) since we haveé(x") = u(x*), and b) the
slope ofl (x) is the same as the slope ufx) atx*. To see this latter point, note that the slope of
| (x) is just its gradient, which i8ll (x) = A*0p. However by equation (11) we haxép = Ou(x*).

So it follows that the slope (gradient) bfx), which is just the slope of the (shifted) budget line,
equals the slope of the indifference curveugét*) which is Ou(x*). In other words, the budget
line is tangent to the indifference curve at the optimal beixd.

4. Firm Profit Maximization Problem Consider a firm whose production function has 2 outpyits,
andy, and 2 inputsx; andx,. Suppose that its production function is given by

a.

Answer:

Answer:

V2 + 4372 = [x2+ %2V (13)

Does this production function have increasing, deangasir constant returns to scale? (Hint: if
you double both inputg; andx, can you double, more than double, or less than double both of
the outputsy; andy,?)

We can write a general production function R§/,x) < 0. The general definition of constant
returns to scale is that {f/, x) is feasible to produce, i.e. F(y,x) < 0, then for any positive scalar
A > 0 we have that it is also feasible to prodyag, Ax), i.e. we need to check th&fAy,Ax) < 0.
For this problem it is easy to see that there are constarmnseta scale since

1/2 1/2
Fx) = [ +43]"" = pa?+%2" (14)
and it is easy to check that for aay> 0 we have- (Ay,Ax) < 0.

Suppose for a moment that we fix input levels so that x, = 5. Plot theoutput possibility
frontier, i.e. plot (in (y2,y1) space) the set of feasible combinationsypfandy, that can be
produced using inputg, = X, = 5.

If X3 = %o = 5 then the production function constraint tells us that theaf feasible outputs
(y1,Y2) that can be produced is

P={(yuy2)l i +43]"* < VB0, y1 2 0,y > 0} (15)

This region is arellipseand the production possibility frontier is the graph of tlygiationy? +
4y? = /50 and is plotted in figure 1 below. We can rewrite the equationthe production

possibility frontier as
50—
oy 20 (16)



C.

Answer:

Figure 1: Output Possibility Frontier for inputs x; =X, =5

Production Possibility Frontier for Problem 7-b
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Continuing the previous question, if the output pricesmr= 6 fory; andp, = 16 forys,, and if
we assume that the inputs andx; are fixed at 5, what combination of outpitg, y;) maximize
the firm’s revenue? If we were to increaseby a small amount, on the margin, by how much
would the revenues of the firm increase (i.e. how much doesnteyincrease for an increase of
amounte, some small positive number, in inpxt)?

We want to maximize revenues subject to the fixed input caimts thatx; = x, = 5. The La-
grangian for this problem is

L(Y1,Y2,A) = pry1+ p2y2 +A (\/ 52 4 52)Y/2 \/ Y§+4y§) (17)

| am going to leave it to you to write the first order conditiargl solve them to get the optimal
outputs(yj, ;) which are given by

V50

p2
1+
V/50
o= as)
4+ %

3

yi =

Plugging in the pricep; = 6 andp, = 16 into these formulas, we get

v, = 4.2426
y; = 28284 (19)



Answer:

and the maximized value of revenue is
R* = p1y; + p2y5; = 6 x 4.2426+ 16 x 2.8284= 10v/50= 70.71 (20)

The final part of this question is to compute by how much reeeimgreases if inpuk; = 5
increases by a small amountThis can be computed as

orR" [ oy; [
axle {p ap + P2 ap £ (21)
Using equation (18) we can compute the derivativeg, @ndy; with respect to; to get:
orR oy; oy;
T [p 9ps | P2ap, | &
1
= Rt
10
= /50
= 7.07k, (22)

sincedy; /0x; = 0y5/0x1 = Y; X1/50=Yy;x1/50=1/10 whenx; = 5. We can also use the Lagrange
multiplier from the Lagrangian to get this. From the first@rdondition fory; we get

x_ P1 _
A _\/ﬁJ \/_0742426 10.00. (23)

However\* measures the effect of relaxing the constrait/50, but we are interested in mea-
suring the effect of increasing by €. Using the chain rule,

6\,x§+x§_ X1 . 5 (24)

0 212 V50

whenx; = X = 5. Thus, the effect of an increase ©in x; on revenues using the Lagrange
multiplier is

R O\EHXE 5
=\* = =+v50=7.071 25
0Xy 0X1 v/50 (25)

So we get the same answer regardless of which route we takenjouting it. That’s reassurring!

. Now consider what the optimal level of inputs should beritteo to produce théy;,y;) combi-

nation that you computed in part c. If the price of the inputsvey = 4 for x; andw, = 6 for
X2, what is the cost- minimizing level of inputs that can proelgg;,y;)? (Hint: recall that when
X1 = X2 = 5 we have[x? + X ]1/2 v/50. So you need to minimize total costgx; + WoXo
subject to the constraint thht 2 + x, ]1/2 v/50). If we needed to increase outputoy a small
amount, say byl, approximately how much would it cost the firm to do this?

This answer is the same as the answer to problem 6: givenh@anput isoquants are concave
rather than convex to the origin, the optimal policy is to theecheaper of the two inputs. Thus,
letw denote the cheaper of the two input prices and {etdenote the quantity of the cheaper input



Answer:

that was used to produce the goods. In this case good 1 isaehsiape its price i$, = 4 and
good 2’s price igp, = 6. So the level ok, used isx; = v/50= 7.071. To compute the additional
cost of increasing; by a small amount we need to consider the different ways wiléocrease
y1. One way would be to decrease the production,db increase the production gf, leaving
the input requirementunchanged. The other way is to assume that we increase tHefaaput

1, x. But this results in joint production of not onjy but alsoy,. To measure the incremental cost
properly, we have to deduct the increased revenues ragiitom the use of the addition inputs.
Computing the incremental cost the first way (i.e. holdingpnstant and treating the cost as the
opportunity cost of lost sales of good 2). Totally diffeliating the production function constraint

we bet
y1dyr n 4y>dy,

=0. (26)
VR V¥
and solving fordy,/dy; we get
dy, Y1
e _ 20 27
dyi 4y, @7

so the opportunity cost in terms of lost outputyaffrom increasingy;, by a small amourt is €/4
of the ratioys /y». If the firm is maximizing revenues, then we saw above thabfitemaly; and
y; are produced in the ratio ofp4/pz. With p; = 6 andp, = 16, then we have

dy _ n_ p_ 6

=21 _ =——. 28
dyr 4y, P2 16 (28)
Since the price of good 2 is; = 16, the cost to the firm of increasiyg by € units is
dy;
——£g = —6E. 29
pzdy{ (29)

You should show that the incremental cost will be the samliesiffirm decides to produce more
of y; by increasing its input leved. However be careful to deduct the extra revenue from sales of
increased amount of output of good 2 from the cost of the énfrats!

. Now step back and look at the firm overall. Is the produgtian (y;, 5, X;,X5) that you computed

in parts c and d above a profit maximizing production plan ligg firm? Why or why not?

Since the firm’'s production function has constant returrsctde, the profit maximizing scale of
operations is not well-defined: if the firm can make positivefips at a given scale of operations,
then it could increase profits without bounds by scaling sipeitels of inputs and outputs simul-
taneously. If the prices are such that the firm earns zerotpaifone scale of operation, then it is
not hard to show that it will earn zero profits at any otherscdloperations, so in either case, the
scale of the firm is not well defined. So the only thing we cansdo determine the optimal com-
bination of outputs for any arbitrarily fixed scale of op&as. We can fix the scale by setting the
cheaper of the two inputs,to a given level such as= /50. With this (arbitrary normalization),
the optimal outputs computed in part a. are optimal, and gausof a profit maximizing plan,
provided profits are positive. Profit is

M* = pay; + Pays — wx= R* —wx = 10v'50— wv/10. (30)

Thus as long aw < v/50= 7.071 the firm makes positive profits, and if it could, it wouldn/éo
expand its scale of operations without bound to drive itdifsréo co. If w= /50 the firm makes
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0 profits regardless of its scale of operationsw K. /50 then the firm would make a loss at any
scale of operations, so its best course of action is to shwmhdo

Another way to solve this problem is to write down the Lagiango the firm’s full profit maxi-
mization problem. The Lagrangian is

L(y1,Y2,X1,%2,A) = Pry1+ PaY2 — WiX1 — WoXo + A <\/W§+W§_ \/ﬁ+4y§> (31)

Actually the algebra becomeslat easierif we square both sides of the production function
constraint and write it as

V2 4+ 4Ay3 = X2 + xo? (32)

This is equivalent to the original production function ctvast and the Lagrangian for the profit
maximization problem with this simpler but equivalent wensof the constraint is

L(Y1,Y2,%X1,%2,A) = Pry1+ PaYa — WXy — WoXo + A (X5 + X5 — Y2 — 4y3) . (33)

Now, recall that we want to maximize the Lagrangian over gugables(ys, y»,X1,X2) but tomin-
imizeit over theA variable. The first order conditions for the maximizationzdfy,, y2, x1,X%2,\)
with respect tdyi, y2,X1,X2) are

d
a—L(yl,yz,xl,Xz,A) = p1—2Ay1 <0
Y1

0
_L(y17y27X17X27)\) - p2—8)\y2 < 0

0y2
— L(Y1,Y2,X1,%2,A) = Wi1+2Ax; <0
aX]_
0
&L(YL)/Z,XLXZ,}\) - W2+2)\X2 S 0. (34)
2

| have written the first order conditions asequalitiesin equation (34) to account for the possi-
bility of corner solutionsWe have already been alerted to this possibility in part vapahere

we plotted the isoquants ix;, %) space and showed they werencaveand thus the input cost-
minimizing bundle would be to let eithet = 0 or x, = 0 depending on which of the two inputs
is more expensive. Whem; # w, we can see from the first order conditions for the Lagrangian
in (34) above that it is impossible to have iaterior solutionin (x1,x2) (i.e. wherex; > 0 and

X2 > 0 simultaneously To see this, if there was an interior solution, then we wd# able to
take a second derivative of the Lagrangian to checksdwmnd order conditionsNVe would find

the following:

62
_ — <
azylL(yLyZle»XZa)\) 2\ <0
iL(yLyZqu?XZu)\) == _8)\ S 0
Y2

0
a_L(y]JyZqu?XZu)\) = 2>\ 2 0
X1

0
a_L(y]JyZqu?XZu)\) = 2>\ 2 0 (35)
X2
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The second order conditions tell us that while there can hatarior solution for(ys,y.) (since

the second derivative of the Lagrangian with respegt andy, are both negative X > 0), there
cannot be an interior solution f@ky,x>) whenA > 0 since then the second order conditions for
X1 andx, arepositiveindicating that these would constitutdaeal minimumof the Lagrangian,

but we are looking fox; andx, thatmaximizethe Lagrangian. So we conclude thakif- 0 then

the only possible solution is fo, = X, = 0 and the first does not produce anything and earns zero
profit. However it is also possible that= 0. In this case the second order condition in equation
(35) above would be zero, which is not necessarily any cdidtian, but the first order conditions

in equation (34) will no longer hold.

So this is a very tricky problem where the Lagrangian apgraaaot that useful. To see what
the general solution is we need to take another tack, whithuse the insight from part b above
that the firm will setx, = 0 if w, > wj and setx; = 0 if w; > w,. Let x denote the amount of the
cheaper input that the firm uses andvet min[wy, w»]. For a fixed level of inputs we can solve
aconditional profit maximization problemamely

Maxpry: + P2y —Wx subject to: X% = y2 + 4y3 (36)
1,2

Call the solution to this probleril(ps, p2,w|x) the conditional profit functionsince it is con-
ditional on the firm restricting its inputs to the lewel What we want to do now is solve this
conditional profit maximization problem and find an expresdior M (pz, p2,w|X). Then we can
do asecond stage optimizatido find the optimal level of the input to maximize profits. The
Lagrangian for the first stage conditional profit maximiaatproblem is

L(Y1,Y2,\) = P11+ PaYa — Wx+A (X —y§ — 4y3) . (37)

The first order conditions are

0
a L(ylay27xlax27)\) = pl—Z)\Y1 =0
Y1

0
a_L(y17y27X17X27}\) = p2—8)\)/2 = O (38)
Y2

Now we can solve these equations to get p1/2\ andy, = p2/8\. We can substitute these
into the production function constrairt = y2 + 4y to solve fork

e[y (2] =

\_ VPR 10
X (0

Substituting this equation for into the equations foy; andy, above we get

XPy

yp o= ——=
\/ P2+ p3/4
X

P
R —
4,/ pi+p3/4

9

Solving forA we get

(41)



Now, substituting these formulas for the optimal outpusihes in the following formula for the
conditional profit functiorm(py, p2, w|x)

M(py, pz,w|x):x[\/p§+ p§/4—w]. (42)

Now, if the term in brackets in equation (42) is strictly gg, the firm would want to increase
production without bound, and drive the input lexdi infinity. But infinite inputs and infinite
profits is not a legitimate solution. If the term in bracketzero, then the firm makes zero profits
regardless of the scale of productiwand it does not care what valdavould be, and technically
there are acontinuumof profit maximizing solutions in this case. If the term in tkats in
equation (42) is negative, then the firm wants toxsetO and so it does not produce anything and
makes zero profits.

f. Super bonus questionf you answered in part e that the production plgfy;, X3, X5) computed
in parts c and d is not a profit maximizing plan, then find thdiprmaximizing production plan.

Answer: | described the profit maxmizing plan and showed that then@itrevenue-maximizing output
combination from part c. is profit maximizing providedis below+/50. If w = +/50 then the
firm gets zero profits as any scale of production also yieldsfite. However ifw is strictly less
than+/50 then as | showed above, the firm would want to expand ite sagthout bound, so then
the answer in part ¢ is not optimal. W < +/50 then the firm would make 0 profits at any positive
scale of production, so its best course of action is to shwindo

5. Bertrand Duopoly Problem Consider those regions in the Washington DC area where holgse
have a choice between two cable tv/internet providers: @Gatrand Starpower. Assume that these com-
panies do not engage in price discrimination, but rathevideocable/internet using a simple single per
month pricing scheme. Assume also that there are no switarimookup costs, so that customers can
switch from Starpower to Comcast or vice versa (or to not lealde) at zero cost. We now consider
the pricing problem faced by these two competing custontigrating their services as imperfect substi-
tutes in the minds of the consumers in the Washington DC dreas, a household in this area has the
following television “mode” choices:

1. Nopay TV (i.e. watch broadcast TV, or don’t watch TV or usedalband)
2. cable TV/broadband (via Comcast)

3. cable TV/broadband (via Starpower)

Of course, itis possible for some households to subscribettoStarpower and Comcast simultane-
ously, but | assume that this is too expensive relative tartiemental value of having both hooked up,
so that virtually no households would subscribe to both atsthime time. Thus, | have limited house-
holds to the 3 possible choices given above, which | assumenatually exclusive and exhaustive
(having ruleed out the possibility of subcribing to both Gast and Starpower).

Assume that Starpower and Comcast choose their priceséndeptly and without any collusion as
part of a Nash equilibrium in which each tries to maximizepitsfits, treating the price of its opponent
as given. Initially | ignore the presence of explicit or inggl regulatory constraints. | assume that in
the DC area where these two companies provide overlappingrage there ar®l households. Let
P:(pc, ps) denote the fraction of the$¢ households who choose Comcast, &g, ps) be the fraction
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who choose Starpower. The remaining fractior; B:(pc, ps) — Ps(Pc, Ps) either watch broadcast TV
(which has a price of $0 per month), or do not watch TV or needdband internet at all (god forbid!). It
is convenient to start with a simple logit representatiarttie market shares for Comcast and Starpower:

Po(Pe,Ps) = exp{ac + bcpc}
erers 1+exp{ac+ bepc} + exp{as+ bsps}
ex +b
(e, o) P2 + bohs} (43)

1+ exp{ac + bepc} + exp{as+ bsps}

A more advanced approach would derive these market shamesarhousehold level demand study,
using micro data to estimate the consumer choices and abeguor other demographic variables,
including household incomg and the characteristics of the “outside alternative’,the characteristics
of free to air TV. | assume these market shares are “reducetsfaconsistent with the results of a micro
level study. This initial “reduced form” approach requiggecification of 7 pieces of information in
order to predict the prices, profits, and market shares foncast and Starpower:

1. the number of householdéin the “overlap region” served by both Comcast and Starppwer
2. the 4 market share coefficier{&,, b, as, br)
3. the 2 marginal cost parametéks, ks)

Given suggested values for these 7 parameters, your jolcmntpute the Bertrand Nash equilibruium
outcome, i.e. the prices that Comcast and Starpower willgeghaheir profits, and their equilibrium
market shares.

Let k. andks denote the marginal costs (i.e. costs which depend on thé&uaof their subscribers)
of providing their cable service. Then the Nash equilibrjymofit maximization conditions determining
the priceq pg, p;) (where thex superscripts denote their Nash equilibrium values) arergiy

P = argpma)(pc_kc)NPc(pCa Ps)

ps = argmaxps— ks)NPRs(pg, ps) (44)
Ps

Note that | have treated the cost of the programming contettGomcast and Starpower purchase as
fixed costs,F. and Fs that do not depend on the number of customers and thus do testieto the
determination of the the equilibrium pricégj, p;). This would change if Comcast and Starpower paid
per subscriber royalty fees to HBO, ESPN, and the other gessiof their programming content. These
fees would then be embodied in the marginal cost paramétgls).

Figure 1 shows an illustrative Bertrand-Nash equilibrivstcalated for a particular choice of the 5
parameters given above. Notice that the number of houseNoisl just a multiplicative constant in the
profit functions for Comcast and Starpower and thus, in ditgutne equilibrium is fully determined by
the 6 parameter&, b, as, bs, ke, ks).

Your job is to try to calculate the equilibrium, writing theecessary programs to calculate the equi-
librium in your favorite programming language. Once youwakdte the equilibrium, prepare a plot of
the equilibrium as done above and determine whether or radhilibrium appears to be unique (inthe
diagram above, it is clear that there is a unique “stableilibdgium).

Also, | want you to compare the Bertrand-Nash duopoly outeavith the two possible monopoly
outcomes:
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1. Comcast has a monopoly in the DC area
2. Starpower has a monopoly in the DC area

Figure 1. Example of a Bertrand-Nash Equilibrium

Nash Equilibria to Duopoly Pricing Game

50 100 150 200 250 300 350 400 450 500

Price of Starpower (best response”™2)

0 50 100 200 300 400 500

0

Price of Starpower

Under the monopoly scenario, customers have only two ogtighpwatch broadcast TV (or dont’
watch), 2) subscribe to cable. If Comcast is the monopa@stume that the share of the DC households
it could obtain if it charged pric@c is given by

~exp{ac+bcpc}
PC(pC) - 1+exp{ac+bcpc} (45)

and if Starpower is the monopolist and charged ppgé would get the following share of DC house-
holds
exp{as+ bsps}

1+ exp{as+ bsps}

Thus, | assume that the same set of market share or “demastiictents(ac, b;) and(as,bs) hold in
the monopoly case as in the duopoly case.

Your job is to compute the monopoly and duopoly outcomes,padict by how much cable prices
would go up in the DC area if Comcast or Starpower gained malgagontrol of this market.

To get you started | have provided a Gauss $é¢up. gpr that contains parameter values that
you can use to compute the duopoly and monopoly outcomesa &uliss procedurér _c. g, which
computes the “best response function” for Comcast, i.e.

Ps(ps) = (46)

Pc = bre(ps) = arggnaxp— ke)NP(p, ps) (47)
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which is Comcast’s optimal price given that Starpower charg price ofps. With this hint you should
be able to program the other pieces and compute the solutitiist problem. You do not need to do
your programming in Gauss: | have used Gauss only as arrdtigst to get you started.

Answer Using Matlab files that | have posted along with these answerthe Econ 425 web site,

| obtain the following solutions. For the Bertrand duopdlye Matlab functionequi | . m calculates
Bertrand duopoly prices gf. = 17389 andps = 346.30. Comcast achieves a market share of 21.82%
and Starpower has a market share of 71.12% and 0.76% of tipdepgachis market do not use either
Comcast or Starpower. The profits for Comcast are $4.888omilind the profits for Starpower are
$24.630 million.

If Starpower is the only cable company, it would charge agpat£$632.72 and would earn $53.27
million in profits. It would serve 84.2% of the householdst tue to the high monopoly price, 15.8%
of the households go without cable.

In the case where Comcast is the only cable company, it wdwddye a price of $490.78 and earn
profits of $36.578 million. It would serve 74.5% of the markeecause of the perceived lower quality of
Comcast’s servicea, it cannot manage to charge as high ohapoty price as Starpower can, and more
consumers decide to go without cable when Comcast is the patisbcompared to when Starpower is
the monopolist.

In the Bertrand case, the higher quality of service thatpdtaer provides it customers enables
it to charge a significantly higher price and obtain a sigaifity larger market share than Comcast
can obtain. However the competition between the two firmgedrdow the prices to consumers by a
significant amount, and the lower prices induces virtudllfi@useholds to subscribe to cable.

6. Intertemporal utility maximization with certain lifetime s. Suppose a person has an additively
separate, discounted utility function of the form

;
V(cr,....cr) = 3 BL 48
(C1,..-,Cr) t;B u(c) (48)

where[s is a subjective discount factor amlc) is an increasing utility function of consumpti@nin
periodt. Let the market discount factor &, = 1/(1+r) wherer is the market interest rate.

a. If Bs = Bm show that the optimal consumption plan in a market whereetlage no borrowing
constraints (i.e. the consumer has unlimited ability taderand lend subject to an intertemporal
budget constraint) is to have a constant consumption stos@mtime, i.e.c; =C,=---=¢ =

CGy1=-=Cr.

b. If Bs < Bm will the optimal consumption stream be flat, increasing dirae, or decreasing over
time, or can't you tell from the information given?

c. How does your answer to part b change if | tell you that tilgyufunction u(c) is convex inc?

Answers: The answer to this question is in my lecture notes. See pa&yesward in the lecture notes
on intertemporal choice. For part ¢, note that if the utifityction is convex, then”(c) > 0 and the
answers to parts b is reversed, [y < Bm, then optimal consumption will baacreasingover time,
the opposite of the case if utility is concave (diminishingrginal utility), in which case consumption
would bedecreasingver time.
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7. Consumption and TaxesSuppose a consumer has a utility functigry , x;) = log(x; ) +log(xz) and
an income ofy = 100 and the prices of the two goods g@re= 2 andp, = 3.

a. In a world with no sales or income taxes, tell me how muchooldgx; andx, this consumer will
purchase.

answer Notice that the utility function is a monotonic transforimoat of a Cobb-Douglas utility function
|(x1, %) = 7' %;'?, s0 demands ave (s, p2.y) = y/2p1 andxe(py, P2.y) = y/2p2. With these,

it is very easy to answer this question.= 100/(2x2) = 25 andx; = 100/(2x 3) = 16.66667.

b. Now suppose there is a 10% a sales tax on good 1. That isydoy anit of good 1 the person
buys, he/she has to pay a pricemf{1+.1) = 2.2, where the 10% of the price, or 20 cents, goes
to the government as sales tax. How much of goods 1 and 2 diggsetison buy now?

answer With the tax in place, the price of good 1 increases.fosd quantities demanded ate= 100/ (2x
2.2) = 22727273 and, = 100/(2x 3) = 16.66667. The total taxes the person pays.arg =
.2100/(2%2.2) = 4.54.

c. Suppose instead there is a 5% income tax, so that the censuust pay 5% of his/her income
to the government. If there is no sales tax but a 5% incomehtax,much of goods 1 and 2 will
the consumer consume?

answer With a 5% income tax, the consumer has after-tax income eq$85 (1001 —1) wheret = .05).
So the consumption of goods 1 and 2 is giverxby= 95/(2x2) = 23.75 andx, = 95/(2x3) =
15.8333.

d. Which would the consumer prefer, a 10% sales tax on gooda 586 income tax? Explain your
reasoning for full credit.

answer With the sales tax, the consumer consumes less of good 1 arel ghgood 2, and pays less
in tax overall. With the income tax the consumer consumesmbigood 1 but less of good 2
and pays more overall in tax ($5.00 versus $4.54). But thg waly to see which alternative
the consumer prefers is to plug the consumption bundleshisither utility function and see
which one give more utility. The utility under the sales taxdg(22.727273 + log(16.66667) =
5.93699764. The consumer’s utility under the income tax i$28¢y5) +10g(15.8333 = 5.9297
so the consumer prefers the sales tax to the income tax.

e. How big would the sales tax on good 1 have to be for the gavent to get the same revenue
as a 5% income tax? Which of the two taxes would the consunederpin this case, or is the
consumer indifferent because the consumer has to pay atdataf $5 (5% of $100) in either
case?

answer Now we want to set the sale tax raieso that we raise tax revenue of $5, the same revenue that
we collect under an income tax of 5%. The equation for the sszug tax rate is

100
=0— 4
=9 (49)
Solving this fora we geta = 2/9 = .22222. Under this tax rate, consumption of good 1 falls to
X1 = 2(%—300() = 225 and the tax revenue collected is222/9 = 5. Now the person'’s utility under
the sales tax is l10@2.5) +109(16.66667 = 5.926926, so that now, the consumer slightly prefers

to have the income tax over the sales tax.
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8. Supply and Demand ProblemThe supply for corn is given by
S=10+5p+.05R (50)
whereR is the amount of rainfall. The demand for corn is given by
D =5Y%p ® (51)
whereY is the per capita income.
a. What is the equation for the equilibrium price of cornuasimg this is a competitive market?

answer We find the price that sets supply equal to demand. Equiltiglene seek a pricep that sets
Excess demand () = D(p) — S(p) to zero, where

E(p) = 5Y2?p °— (10+5p+ .05R) (52)

b. Solve for the equilibrium price and quantity in this mdrkesing numerical methods (e.g. New-
ton’s method) if necessary, or by any means possible to geerioal answers.

answer Suppose we sét = 1000 andRr = 20. Then the equation we want to solve is
E(p) =5[1000°p °] — 10— 5p—1=0. (53)

| programmed this function in Matlab as the fdd. mwhich is posted on the Econ 625 website
along with these answers. You can use Newton's method t@ sbis equation. | was a bit lazy
and instead used the Matlabol ve command to solve this equation, that is, | tigbl ve( @d, 2)

(so that my initial guess for a solutions was= 2). f sol ve returned the solutiop = 1.2964 and
checking,ed( 1. 2964) = 1.4087% 1°,

c. Derive a formula fod p/dR, i.e. the effect of an increase in rainfall on the price ofrcor

Answer This is an exercise in the use of the implicit function theer&ee my lecture notes on this posted
on the Econ 425 website. But the answer is
dp .05

dR~  25y2p 1545 0 (54)

d. Derive a formula fodp/dY, i.e. the effect of an increase in per capita income on theepof
corn.

Answer Using the implicit function theorem again,

(55)
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