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Solutions to Problem Set 2

1. Gradient is orthogonal to the indifference curveLet u : RN → R be a differentiable function (for
concreteness you can think of this as a utility function). Let I = {x∈ RN|u(x) = u} be alevel setof the
function (in the utility function case, anindifference curve). Prove that ifx∈ I then〈x,∇u〉 = 0 where
∇u is thegradientof u.

Answer This proposition is not quite correct as stated. The correctstatement is that ifx is
any point in the (shifted)tangent hyperplaneto the indifference curve at a pointx0 ∈ RN then
〈∇u(x0),x〉 = 0. What is the tangent hyperplane? It is the generalization of a tangent linein the
caseN = 2. You can visualize this as a line in the(x1,x2) plane that is tangent to the utility func-
tion indifference curve at a particular pointx0 = (x1,0,x2,0) ∈ R2, i.e. the line both a)touchesthe
indifference curve atx0 and b)has the same slopeas the indifference curve at the pointx0. Notice
that aline is equivalent toR1, which is one dimension less than the dimension of the spaceR2. In
RN a hyperplaneis a linear subspace of dimensionN−1, i.e. one dimension less than the total
dimension of the overall space,N. It can be shown that any hyperplane can be represented as the
set of allx that areorthogonalto some vectora∈ RN, i.e. any hyperplane consists of allx∈ RN

in the setH(a) given by
H(a) = {x∈ RN|〈a,x〉 = 0}. (1)

Sincel(x) = 〈a,x〉 is a linear mapping fromRN to R, the hyperplane is thenull spaceof this linear
mapping (this is a term you would know if you took linear algebra), and so the hyperplane – the
null space — is just the set of allx∈ RN that are orthogonal (perpendicular) to the fixed vector
a∈ RN.

So atangent hyperplaneto a functionu : RN → R will be a set of points on a hyperplane ofRN

that satisfies a) the (shifted) hyperplanetouchesthe functionu(x) atx0, and b) the hyperplane has
thesame slopeasu(x) at the pointx0 (i.e. it is tangent tou(x) at the pointx0).

How do we write the intuition of tangency down mathematically and show that implies that the
gradient ofu at x0 is orthogonal (i.e. perpendicular to) the tangent hyperplane tou at x0? First let
us use a bit more specific notation for the indifference curveto a (differentiable) functionu at a
pointx0 ∈ RN: we will use the notationIu(x0) = {x∈ RN|u(x) = u(x0)} to denote this indifference
curve, which is generally a curved manifold ofRN, i.e. a “surface” inRN that is one dimension
less thanN the dimension of the full spaceRN. Thus whenN = 2, an indifference curve is a
curved linein R2 and whenN = 3 we get anindifference surfacewhich is curved surface inR3

and so forth (note a surface inR3 is “locally” two dimensional, i.e. it is two dimensional instead
of three-dimensional, i.e. not a “solid”).

Now by Taylor’s Theorem, ifu(x) is differentiable at a pointx0 we can form alinear approxima-
tion to the functionu(x) at a pointx0 via thelinear function l(x) given by

l(x) = u(x0)+ 〈∇(x0),(x−x0)〉. (2)

Notice that this linear approximationl(x) satisfies a)l(x0) = u(x0) (i.e. the linear approximation
to u(x) touches uat the pointx0, and b)∇l(x) = ∇u(x0), i.e. theslopeof the linear functionl(x)
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equals the slope of the nonlinear functionu(x) at the pointx0 (which is just the gradient,∇u(x0)).
So now we can define thetangent planeto the functionu(x) at the pointx0 as the indifference
curve for the functionl(x) at the pointx0

Il (x0) = {x∈ RN|l(x) = l(x0) = u(x0)} (3)

Clearly the indifference curve of a linear function will just be a linear space, i.e. ahyperplane,
rather than a curved surface or manifold which is what an indifference curve of anonlinear func-
tion typically is.

So now it just boils down to showing that any pointx in the tangent hyperplane is orthogonal to
the gradient ofu(x) atx0. But by the definition of the tangent hyperplane,x∈ Il (x0) if and only if
we have

l(x) = u(x0)+ 〈∇u(x0),(x−x0)〉= l(x0) = u(x0). (4)

But subtractingu(x0) on each side of the equation above, we see this is equivalent to

〈∇u(x0),(x−x0)〉= 0. (5)

This isalmost the result we want, since equation (5) tells us that the point(x−x0) is orthogonal
(perpendicular) to∇u(x0). But notice that the indifference curveIl (x0) does not generally go
through the origin, i.e. it is generally not the case that 0∈ Il (x0) (make sure you understand why
this is the case). However we can define aparallel shiftof this indifference curve by subtracting
x0 from every point inIl (x0). That is, we can define the tangent hyperplane as aparallel shiftof
the tangent planeIl (x0), so we define this tangent hyperplane byTl (x0) as follows

Tl (x0) = {x∈ RN|x= (y−x0) for somey∈ Il (x0)}. (6)

Notice that sincex0 ∈ Il (x0) (x0 is just the point of tangency), it follows thatx= (x0−x0) = 0∈
Tl (x0), so the tangent hyperplane includes the point 0∈RN, and we say that thetangent hyperplane
passes through the origin.Since any pointy∈ Il (x0) satisfies the condition〈∇u(x0),(y−x0)〉= 0,
it follows that the pointx = (y− x0) ∈ Tl (x0) satisfies〈∇u(x0),x〉 = 0. That is, we have shown
thatany point in the tangent hyperplane to the function u(x) at a point x0 ∈ RN is orthogonal to
the gradient∇u(x0). It should also be clear whyTl (x0) is a hyperplane. As we discussed above,
a hyperplane is any set of points inRN that satisfy〈a,x〉 = 0 for somea∈ RN. But we have just
shown thatTl (x0) is the set of allx∈ RN such that〈∇u(x0),x〉= 0 so lettinga= ∇u(x0) it follows
thatTl (x0) is indeed a hyperplane.

2. Lagrangian saddlepoint solution for constrained optimization problems Consider the following
constrained optimization problem

max
x

u(x) subject to g(x) ≥ 0, and x≥ 0 (7)

whereu : Rn → R is a continuous function andg : Rn → Rm arem constraint functionswhich are also
continuous functions ofx. Define theLagrangian L(x,λ) : R(n+m)→ R by

L(x,λ) = u(x)+λ′g(x) (8)

where

λ′g(x) = 〈λ,g(x)〉 =
m

∑
j=1

λ jg j(x). (9)
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Definition (x∗,λ∗) is asaddlepointof L if and only if

L(x∗,λ∗) ≥ L(x,λ∗) ∀x≥ 0

L(x∗,λ∗) ≤ L(x∗,λ) ∀λ ≥ 0

Theorem If (x∗,λ∗) is a saddlepoint ofL thenx∗ solves the constrained optimization problem (7).
Prove this theorem.Hint: use the method ofproof by contradiction.

Proof I proved this in class, perhaps not in every detail but I used aproof by contradiction to
show that if(x∗,λ∗) is a saddlepoint ofL(x,λ) thenx∗ must solve the constrained optimization
problem (7). The more difficult thing to prove is theconverseto this Theorem, i.e. ifx∗ solves
the the constrained optimization problem (7), then there exists aλ∗ ≥ 0 such that(x∗,λ∗) is a
saddlepoint to the LagrangianL(x,λ). I did not ask you to prove this converse result and it is not
true in general withoutmore assumptions.It can be proven under the stronger assumptions that
{x|g(x)≥ 0} is aconvex setandu(x) is quasiconcave.Then we can appeal to a theorem called the
separating hyperplane theoremto prove the existence of a Lagrange multiplier vectorλ∗ such that
(x∗,λ∗) is a saddlepoint ofL(x,λ). However this is beyond the level of this class and I emphasize
it is not something I asked for or expected any of you to prove.

3. Prove that if x∗ is an interior solutionthat maximizes the consumer’s problem below, the indif-
ference curve atx∗ is tangent to the budget line.

max
x≥0

u(x) subject to 〈p,x〉 ≤ y (10)

whereu : Rn → R is a continuously differentiable utility function andp∈ Rn are positive prices of then
goods entering the consumer’s utility function.

Answer We need a slightly stronger assumption for this result to hold, namely we need to assume
thatmore is always betterwhich is mathematically equivalent to∇u(x)> 0 for anyx≥ 0 (where
the vector inequality∇u(x)> 0 means that each component of∇u(x) is strictly greater than zero,
so that ∂

∂xi
u(x) > 0 for i = 1, . . . ,n). Suppose the conditions to the converse to theorem above

holds, i.e. there exists aλ∗ ≥ 0 such that(x∗,λ∗) is a saddlepoint to the LagrangianL(x,λ). Since
u(x) is differentiable and(x∗,λ∗) is a saddlepoint,x∗ must maximizeL(x,λ∗) in x. Sincex∗ is
interior — i.e. x∗ > 0 — it follows that the the gradient ofL(x,λ∗) with respect tox must be
identically 0 atx= x∗, i.e. we must have

∂
∂x

L(x,λ∗) = ∇u(x∗)−λ∗p= 0, (11)

where 0 is interpreted as the zero vector inRN. Since∇u(x∗)> 0 (by the “more is always better”
assumption) andp> 0, it follows thatλ∗ > 0. Now we already showed in problem 1 above that
the tangent hyperplane to the indifference curve ofu at x∗, Iu(x∗), is perpendicular (orthogonal)
to ∇u(x∗) (i.e. it is the set of allx ∈ RN satisfying 〈∇u(x∗),x〉 = 0). Now we show that the
shifted budget line (the budget hyperplane) is also orthogonal to ∇u(x∗), but if both the tangent
hyperplane to the indifference curve and the shifted budgetline are both orthogonal to∇u(x∗),
then these must be thesame hyperplaneand thusparallel and thus, it follows that the budget line
(or plane) must be tangent to the indifference curveIu(x∗). That is, we can define a shifted version
of the budget line by the linear functionl(x) given by

l(x) = u(x∗)+ 〈λ∗p,(x−x∗)〉 (12)
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Notice that a)l(x) touches the indifference curveIu(x∗) since we havel(x∗) = u(x∗), and b) the
slope ofl(x) is the same as the slope ofu(x) at x∗. To see this latter point, note that the slope of
l(x) is just its gradient, which is∇l(x) = λ∗∇p. However by equation (11) we haveλ∗p=∇u(x∗).
So it follows that the slope (gradient) ofl(x), which is just the slope of the (shifted) budget line,
equals the slope of the indifference curve atu(x∗) which is ∇u(x∗). In other words, the budget
line is tangent to the indifference curve at the optimal bundle x∗.

4. Firm Profit Maximization Problem Consider a firm whose production function has 2 outputs,y1

andy2 and 2 inputs,x1 andx2. Suppose that its production function is given by

[

y2
1+4y2

2

]1/2
=

[

x1
2+x2

2]1/2
(13)

a. Does this production function have increasing, decreasing, or constant returns to scale? (Hint: if
you double both inputsx1 andx2 can you double, more than double, or less than double both of
the outputsy1 andy2?)

Answer: We can write a general production function asF(y,x) ≤ 0. The general definition of constant
returns to scale is that if(y,x) is feasible to produce, i.e. ifF(y,x)≤ 0, then for any positive scalar
λ ≥ 0 we have that it is also feasible to produce(λy,λx), i.e. we need to check thatF(λy,λx)≤ 0.
For this problem it is easy to see that there are constant returns to scale since

F(y,x) =
[

y2
1+4y2

2

]1/2−
[

x1
2+x2

2]1/2
(14)

and it is easy to check that for anyλ ≥ 0 we haveF(λy,λx) ≤ 0.

b. Suppose for a moment that we fix input levels so thatx1 = x2 = 5. Plot theoutput possibility
frontier, i.e. plot (in (y2,y1) space) the set of feasible combinations ofy1 and y2 that can be
produced using inputsx1 = x2 = 5.

Answer: If x1 = x2 = 5 then the production function constraint tells us that the set of feasible outputs
(y1,y2) that can be produced is

P=
{

(y1,y2)|
[

y2
1+4y2

2

]1/2 ≤
√

50, y1 ≥ 0, y2 ≥ 0
}

. (15)

This region is anellipseand the production possibility frontier is the graph of the equationy2
1+

4y2
s =

√
50 and is plotted in figure 1 below. We can rewrite the equationi for the production

possibility frontier as

y2 =

√

50−y2
1

4
. (16)

4



Figure 1: Output Possibility Frontier for inputs x1 = x2 = 5
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c. Continuing the previous question, if the output prices are p1 = 6 for y1 andp2 = 16 for y2, and if
we assume that the inputsx1 andx2 are fixed at 5, what combination of outputs(y∗1,y

∗
2) maximize

the firm’s revenue? If we were to increasex1 by a small amount, on the margin, by how much
would the revenues of the firm increase (i.e. how much does revenue increase for an increase of
amountε, some small positive number, in inputx1)?

Answer: We want to maximize revenues subject to the fixed input constraints thatx1 = x2 = 5. The La-
grangian for this problem is

L(y1,y2,λ) = p1y1+ p2y2+λ
(

√

52+52)1/2−
√

y2
1+4y2

2

)

(17)

I am going to leave it to you to write the first order conditionsand solve them to get the optimal
outputs(y∗1,y

∗
2) which are given by

y∗1 =

√
50

√

1+ p2
2

4p2
1

y∗2 =

√
50

√

4+ 16p2
1

p2
2

(18)

Plugging in the pricesp1 = 6 andp2 = 16 into these formulas, we get

y∗1 = 4.2426

y∗2 = 2.8284 (19)
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and the maximized value of revenue is

R∗ = p1y∗1+ p2y∗2 = 6×4.2426+16×2.8284= 10
√

50= 70.71. (20)

The final part of this question is to compute by how much revenue increases if inputx1 = 5
increases by a small amountε. This can be computed as

∂R∗

∂x1
ε =

[

p1
∂y∗1
∂p1

+ p2
∂y∗2
∂p2

]

ε. (21)

Using equation (18) we can compute the derivatives ofy∗1 andy∗2 with respect tox1 to get:

∂R∗

∂x1
ε =

[

p1
∂y∗1
∂p1

+ p2
∂y∗2
∂p2

]

ε

=
1
10

R∗ε

=
√

50ε
= 7.071ε, (22)

since∂y∗1/∂x1 = ∂y∗2/∂x1 = y∗1x1/50= y∗2x1/50= 1/10 whenx1 = 5. We can also use the Lagrange
multiplier from the Lagrangian to get this. From the first order condition fory∗1 we get

λ∗ =
√

50
p1

y∗1
=

√
50

6
4.2426

= 10.00. (23)

Howeverλ∗ measures the effect of relaxing the constraint,K
√

50, but we are interested in mea-
suring the effect of increasingx1 by ε. Using the chain rule,

∂
√

x2
1+x2

2

∂x1
=

x1
√

x2
1+x2

2

=
5√
50

(24)

when x1 = x2 = 5. Thus, the effect of an increase ofε in x1 on revenues using the Lagrange
multiplier is

∂R∗

∂x1
= λ∗

∂
√

x2
1+x2

2

∂x1
=

λ∗5√
50

=
√

50= 7.071. (25)

So we get the same answer regardless of which route we take to computing it. That’s reassurring!

d. Now consider what the optimal level of inputs should be in order to produce the(y∗1,y
∗
2) combi-

nation that you computed in part c. If the price of the inputs are w1 = 4 for x1 andw2 = 6 for
x2, what is the cost-minimizing level of inputs that can produce (y∗1,y

∗
2)? (Hint: recall that when

x1 = x2 = 5 we have[x1
2 + x2

2]1/2 =
√

50. So you need to minimize total costsw1x1 +w2x2

subject to the constraint that[x1
2+x2

2]1/2 =
√

50). If we needed to increase outputy1 by a small
amount, say by.1, approximately how much would it cost the firm to do this?

Answer: This answer is the same as the answer to problem 6: given that the input isoquants are concave
rather than convex to the origin, the optimal policy is to usethe cheaper of the two inputs. Thus,
let w denote the cheaper of the two input prices and letx= denote the quantity of the cheaper input
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that was used to produce the goods. In this case good 1 is cheaper since its price isp1 = 4 and
good 2’s price isp2 = 6. So the level ofx1 used isx1 =

√
50= 7.071. To compute the additional

cost of increasingy1 by a small amount we need to consider the different ways we could increase
y1. One way would be to decrease the production ofy2 to increase the production ofy1, leaving
the input requirementx unchanged. The other way is to assume that we increase the level of input
1, x. But this results in joint production of not onlyy1 but alsoy2. To measure the incremental cost
properly, we have to deduct the increased revenues resulting from the use of the addition inputs.
Computing the incremental cost the first way (i.e. holdingx constant and treating the cost as the
opportunity cost of lost sales of good 2). Totally differentiating the production function constraint
we bet

y1dy1
√

y2
1+4y2

2

+
4y2dy2

√

y2
1+y2

2

= 0. (26)

and solving fordy2/dy1 we get
dy2

dy1
=− y1

4y2
(27)

so the opportunity cost in terms of lost output ofy2 from increasingy1 by a small amountε is ε/4
of the ratioy1/y2. If the firm is maximizing revenues, then we saw above that theoptimaly∗1 and
y∗2 are produced in the ratio of 4p1/p2. With p1 = 6 andp2 = 16, then we have

dy2

dy1
=− y∗1

4y∗2
=− p1

p2
=− 6

16
. (28)

Since the price of good 2 isp2 = 16, the cost to the firm of increasingy1 by ε units is

p2
dy∗2
dy∗1

ε =−6ε. (29)

You should show that the incremental cost will be the same if the firm decides to produce more
of y1 by increasing its input levelx. However be careful to deduct the extra revenue from sales of
increased amount of output of good 2 from the cost of the extrainputs!

e. Now step back and look at the firm overall. Is the productionplan(y∗1,y
∗
2,x

∗
1,x

∗
2) that you computed

in parts c and d above a profit maximizing production plan for this firm? Why or why not?

Answer: Since the firm’s production function has constant returns toscale, the profit maximizing scale of
operations is not well-defined: if the firm can make positive profits at a given scale of operations,
then it could increase profits without bounds by scaling up its levels of inputs and outputs simul-
taneously. If the prices are such that the firm earns zero profits at one scale of operation, then it is
not hard to show that it will earn zero profits at any other scale of operations, so in either case, the
scale of the firm is not well defined. So the only thing we can do is to determine the optimal com-
bination of outputs for any arbitrarily fixed scale of operations. We can fix the scale by setting the
cheaper of the two inputs,x to a given level such asx=

√
50. With this (arbitrary normalization),

the optimal outputs computed in part a. are optimal, and thuspart of a profit maximizing plan,
provided profits are positive. Profit is

Π∗ = p1y∗1+ p2y∗2−wx= R∗−wx= 10
√

50−w
√

10. (30)

Thus as long asw≤
√

50= 7.071 the firm makes positive profits, and if it could, it would want to
expand its scale of operations without bound to drive its profits to ∞. If w=

√
50 the firm makes
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0 profits regardless of its scale of operations. Ifw<
√

50 then the firm would make a loss at any
scale of operations, so its best course of action is to shut down.

Another way to solve this problem is to write down the Lagrangian to the firm’s full profit maxi-
mization problem. The Lagrangian is

L(y1,y2,x1,x2,λ) = p1y1+ p2y2−w1x1−w2x2+λ
(

√

w2
1+w2

2−
√

y2
1+4y2

2

)

(31)

Actually the algebra becomes alot easier if we square both sides of the production function
constraint and write it as

y2
1+4y2

2 = x1
2+x2

2 (32)

This is equivalent to the original production function constraint and the Lagrangian for the profit
maximization problem with this simpler but equivalent version of the constraint is

L(y1,y2,x1,x2,λ) = p1y1+ p2y2−w1x1−w2x2+λ
(

x2
1+x2

2−y2
1−4y2

2

)

. (33)

Now, recall that we want to maximize the Lagrangian over the variables(y1,y2,x1,x2) but tomin-
imizeit over theλ variable. The first order conditions for the maximization ofL(y1,y2,x1,x2,λ)
with respect to(y1,y2,x1,x2) are

∂
∂y1

L(y1,y2,x1,x2,λ) = p1−2λy1 ≤ 0

∂
∂y2

L(y1,y2,x1,x2,λ) = p2−8λy2 ≤ 0

∂
∂x1

L(y1,y2,x1,x2,λ) = w1+2λx1 ≤ 0

∂
∂x2

L(y1,y2,x1,x2,λ) = w2+2λx2 ≤ 0. (34)

I have written the first order conditions asinequalitiesin equation (34) to account for the possi-
bility of corner solutions.We have already been alerted to this possibility in part b above, where
we plotted the isoquants in(x1,x2) space and showed they wereconcaveand thus the input cost-
minimizing bundle would be to let eitherx1 = 0 or x2 = 0 depending on which of the two inputs
is more expensive. Whenw1 6= w2 we can see from the first order conditions for the Lagrangian
in (34) above that it is impossible to have aninterior solution in (x1,x2) (i.e. wherex1 > 0 and
x2 > 0 simultaneously). To see this, if there was an interior solution, then we would be able to
take a second derivative of the Lagrangian to check thesecond order conditions.We would find
the following:

∂2

∂2y1
L(y1,y2,x1,x2,λ) = −2λ ≤ 0

∂
∂y2

L(y1,y2,x1,x2,λ) = −8λ ≤ 0

∂
∂x1

L(y1,y2,x1,x2,λ) = 2λ ≥ 0

∂
∂x2

L(y1,y2,x1,x2,λ) = 2λ ≥ 0. (35)
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The second order conditions tell us that while there can be aninterior solution for(y1,y2) (since
the second derivative of the Lagrangian with respect toy1 andy2 are both negative ifλ > 0), there
cannot be an interior solution for(x1,x2) whenλ > 0 since then the second order conditions for
x1 andx2 arepositiveindicating that these would constitute alocal minimumof the Lagrangian,
but we are looking forx1 andx2 thatmaximizethe Lagrangian. So we conclude that ifλ > 0 then
the only possible solution is forx1 = x2 = 0 and the first does not produce anything and earns zero
profit. However it is also possible thatλ = 0. In this case the second order condition in equation
(35) above would be zero, which is not necessarily any contradiction, but the first order conditions
in equation (34) will no longer hold.

So this is a very tricky problem where the Lagrangian approach is not that useful. To see what
the general solution is we need to take another tack, which isto use the insight from part b above
that the firm will setx2 = 0 if w2 > w1 and setx1 = 0 if w1 > w2. Let x denote the amount of the
cheaper input that the firm uses and letw= min[w1,w2]. For a fixed level of inputs we can solve
aconditional profit maximization problemnamely

max
y1,y2

p1y1+ p2y2−wx subject to: x2 = y2
1+4y2

2 (36)

Call the solution to this problemΠ(p1, p2,w|x) the conditional profit functionsince it is con-
ditional on the firm restricting its inputs to the levelx. What we want to do now is solve this
conditional profit maximization problem and find an expression for Π(p1, p2,w|x). Then we can
do asecond stage optimizationto find the optimal level of the inputx to maximize profits. The
Lagrangian for the first stage conditional profit maximization problem is

L(y1,y2,λ) = p1y1+ p2y2−wx+λ
(

x2−y2
1−4y2

2

)

. (37)

The first order conditions are

∂
∂y1

L(y1,y2,x1,x2,λ) = p1−2λy1 = 0

∂
∂y2

L(y1,y2,x1,x2,λ) = p2−8λy2 = 0. (38)

Now we can solve these equations to gety1 = p1/2λ andy2 = p2/8λ. We can substitute these
into the production function constraintx2 = y2

1+4y2
2 to solve forλ

x2 =

[

( p1

2λ

)2
+
( p2

8λ

)2
]

(39)

Solving forλ we get

λ =

√

p2
1+ p2

2/4

2x
. (40)

Substituting this equation forλ into the equations fory1 andy2 above we get

y1 =
xp1

√

p2
1+ p2

2/4

y2 =
xp2

4
√

p2
1+ p2

2/4
. (41)
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Now, substituting these formulas for the optimal outputs results in the following formula for the
conditional profit functionΠ(p1, p2,w|x)

Π(p1, p2,w|x) = x

[

√

p2
2+ p2

2/4−w

]

. (42)

Now, if the term in brackets in equation (42) is strictly positive, the firm would want to increase
production without bound, and drive the input levelx to infinity. But infinite inputs and infinite
profits is not a legitimate solution. If the term in brackets is zero, then the firm makes zero profits
regardless of the scale of productionx and it does not care what valuex would be, and technically
there are acontinuumof profit maximizing solutions in this case. If the term in brackets in
equation (42) is negative, then the firm wants to setx= 0 and so it does not produce anything and
makes zero profits.

f. Super bonus question:If you answered in part e that the production plan(y∗1,y
∗
2,x

∗
1,x

∗
2) computed

in parts c and d is not a profit maximizing plan, then find the profit maximizing production plan.

Answer: I described the profit maxmizing plan and showed that the optimal revenue-maximizing output
combination from part c. is profit maximizing providedw is below

√
50. If w =

√
50 then the

firm gets zero profits as any scale of production also yields 0 profits. However ifw is strictly less
than

√
50 then as I showed above, the firm would want to expand its scale without bound, so then

the answer in part c is not optimal. Ifw<
√

50 then the firm would make 0 profits at any positive
scale of production, so its best course of action is to shut down.

5. Bertrand Duopoly Problem Consider those regions in the Washington DC area where households
have a choice between two cable tv/internet providers: Comcast and Starpower. Assume that these com-
panies do not engage in price discrimination, but rather provide cable/internet using a simple single per
month pricing scheme. Assume also that there are no switching or hookup costs, so that customers can
switch from Starpower to Comcast or vice versa (or to not havecable) at zero cost. We now consider
the pricing problem faced by these two competing customers,treating their services as imperfect substi-
tutes in the minds of the consumers in the Washington DC area.Thus, a household in this area has the
following television “mode” choices:

1. No pay TV (i.e. watch broadcast TV, or don’t watch TV or use broadband)

2. cable TV/broadband (via Comcast)

3. cable TV/broadband (via Starpower)

Of course, it is possible for some households to subscribe toboth Starpower and Comcast simultane-
ously, but I assume that this is too expensive relative to theincremental value of having both hooked up,
so that virtually no households would subscribe to both at the same time. Thus, I have limited house-
holds to the 3 possible choices given above, which I assume are mutually exclusive and exhaustive
(having ruleed out the possibility of subcribing to both Comcast and Starpower).

Assume that Starpower and Comcast choose their prices independently and without any collusion as
part of a Nash equilibrium in which each tries to maximize itsprofits, treating the price of its opponent
as given. Initially I ignore the presence of explicit or implicit regulatory constraints. I assume that in
the DC area where these two companies provide overlapping coverage there areN households. Let
Pc(pc, ps) denote the fraction of theseN households who choose Comcast, andPs(pc, ps) be the fraction
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who choose Starpower. The remaining fraction, 1−Pc(pc, ps)−Ps(pc, ps) either watch broadcast TV
(which has a price of $0 per month), or do not watch TV or need broadband internet at all (god forbid!). It
is convenient to start with a simple logit representation for the market shares for Comcast and Starpower:

Pc(pc, ps) =
exp{ac+bcpc}

1+exp{ac+bcpc}+exp{as+bsps}

Ps(ps, ps) =
exp{as+bsps}

1+exp{ac+bcpc}+exp{as+bsps}
(43)

A more advanced approach would derive these market shares from a household level demand study,
using micro data to estimate the consumer choices and accounting for other demographic variables,
including household incomey, and the characteristics of the “outside alternative”, i.e. the characteristics
of free to air TV. I assume these market shares are “reduced forms” consistent with the results of a micro
level study. This initial “reduced form” approach requiresspecification of 7 pieces of information in
order to predict the prices, profits, and market shares for Comcast and Starpower:

1. the number of householdsN in the “overlap region” served by both Comcast and Starpower,

2. the 4 market share coefficients(ao,bo,af ,bf )

3. the 2 marginal cost parameters(kc,ks)

Given suggested values for these 7 parameters, your job is tocompute the Bertrand Nash equilibruium
outcome, i.e. the prices that Comcast and Starpower will charge, their profits, and their equilibrium
market shares.

Let kc andks denote the marginal costs (i.e. costs which depend on the number of their subscribers)
of providing their cable service. Then the Nash equilibrium, profit maximization conditions determining
the prices(p∗c, p

∗
s) (where the∗ superscripts denote their Nash equilibrium values) are given by

p∗c = argmax
pc

(pc−kc)NPc(pc, p
∗
s)

p∗s = argmax
ps

(ps−ks)NPs(p
∗
c, ps) (44)

Note that I have treated the cost of the programming content that Comcast and Starpower purchase as
fixed costs,Fc andFs that do not depend on the number of customers and thus do not enter into the
determination of the the equilibrium prices(p∗o, p

∗
f ). This would change if Comcast and Starpower paid

per subscriber royalty fees to HBO, ESPN, and the other providers of their programming content. These
fees would then be embodied in the marginal cost parameters(kc,ks).

Figure 1 shows an illustrative Bertrand-Nash equilibrium calculated for a particular choice of the 5
parameters given above. Notice that the number of households N is just a multiplicative constant in the
profit functions for Comcast and Starpower and thus, in actuality, the equilibrium is fully determined by
the 6 parameters(ac,bc,as,bs,kc,ks).

Your job is to try to calculate the equilibrium, writing the necessary programs to calculate the equi-
librium in your favorite programming language. Once you calculate the equilibrium, prepare a plot of
the equilibrium as done above and determine whether or not the equilibrium appears to be unique (inthe
diagram above, it is clear that there is a unique “stable” equilibrium).

Also, I want you to compare the Bertrand-Nash duopoly outcome with the two possible monopoly
outcomes:
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1. Comcast has a monopoly in the DC area

2. Starpower has a monopoly in the DC area

Figure 1: Example of a Bertrand-Nash Equilibrium

Under the monopoly scenario, customers have only two options: 1) watch broadcast TV (or dont’
watch), 2) subscribe to cable. If Comcast is the monopolist,assume that the share of the DC households
it could obtain if it charged pricepc is given by

Pc(pc) =
exp{ac+bcpc}

1+exp{ac+bcpc}
(45)

and if Starpower is the monopolist and charged priceps it would get the following share of DC house-
holds

Ps(ps) =
exp{as+bsps}

1+exp{as+bsps}
(46)

Thus, I assume that the same set of market share or “demand” coefficients(ac,bc) and(as,bs) hold in
the monopoly case as in the duopoly case.

Your job is to compute the monopoly and duopoly outcomes, andpredict by how much cable prices
would go up in the DC area if Comcast or Starpower gained monopoly control of this market.

To get you started I have provided a Gauss filesetup.gpr that contains parameter values that
you can use to compute the duopoly and monopoly outcomes, anda Gauss procedure,br c.g, which
computes the “best response function” for Comcast, i.e.

pc = brc(ps) = argmax
p

(p−kc)NPc(p, ps) (47)
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which is Comcast’s optimal price given that Starpower charges a price ofps. With this hint you should
be able to program the other pieces and compute the solution to this problem. You do not need to do
your programming in Gauss: I have used Gauss only as an illustration to get you started.

Answer Using Matlab files that I have posted along with these answerson the Econ 425 web site,
I obtain the following solutions. For the Bertrand duopoly,the Matlab functionequil.m calculates
Bertrand duopoly prices ofpc = 173.89 andps = 346.30. Comcast achieves a market share of 21.82%
and Starpower has a market share of 71.12% and 0.76% of the people in this market do not use either
Comcast or Starpower. The profits for Comcast are $4.888 million and the profits for Starpower are
$24.630 million.

If Starpower is the only cable company, it would charge a price of $632.72 and would earn $53.27
million in profits. It would serve 84.2% of the households, but due to the high monopoly price, 15.8%
of the households go without cable.

In the case where Comcast is the only cable company, it would charge a price of $490.78 and earn
profits of $36.578 million. It would serve 74.5% of the market. Because of the perceived lower quality of
Comcast’s servicea, it cannot manage to charge as high of a monopoly price as Starpower can, and more
consumers decide to go without cable when Comcast is the monopolist compared to when Starpower is
the monopolist.

In the Bertrand case, the higher quality of service that Starpower provides it customers enables
it to charge a significantly higher price and obtain a significantly larger market share than Comcast
can obtain. However the competition between the two firms drives dow the prices to consumers by a
significant amount, and the lower prices induces virtually all households to subscribe to cable.

6. Intertemporal utility maximization with certain lifetime s. Suppose a person has an additively
separate, discounted utility function of the form

V(c1, . . . ,cT) =
T

∑
t=1

βt
su(ct) (48)

whereβs is a subjective discount factor andu(ct) is an increasing utility function of consumptionct in
periodt. Let the market discount factor isβm = 1/(1+ r) wherer is the market interest rate.

a. If βs = βm show that the optimal consumption plan in a market where there are no borrowing
constraints (i.e. the consumer has unlimited ability to borrow and lend subject to an intertemporal
budget constraint) is to have a constant consumption streamover time, i.e.c1 = c2 = · · · = ct =
ct+1 = · · ·= cT .

b. If βs < βm will the optimal consumption stream be flat, increasing overtime, or decreasing over
time, or can’t you tell from the information given?

c. How does your answer to part b change if I tell you that the utility function u(c) is convex inc?

Answers: The answer to this question is in my lecture notes. See pages 23 onward in the lecture notes
on intertemporal choice. For part c, note that if the utilityfunction is convex, thenu′′(c) > 0 and the
answers to parts b is reversed, ivβs < βm, then optimal consumption will beincreasingover time,
the opposite of the case if utility is concave (diminishing marginal utility), in which case consumption
would bedecreasingover time.
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7. Consumption and TaxesSuppose a consumer has a utility functionu(x1,x2) = log(x1)+ log(x2) and
an income ofy= 100 and the prices of the two goods arep1 = 2 andp2 = 3.

a. In a world with no sales or income taxes, tell me how much of goodsx1 andx2 this consumer will
purchase.

answer Notice that the utility function is a monotonic transformation of a Cobb-Douglas utility function
l(x1,x2) = x1/2

1 x1/2
2 , so demands arex1(p1, p2,y) = y/2p1 andx2(p1, p2,y) = y/2p2. With these,

it is very easy to answer this question.x1 = 100/(2∗2) = 25 andx2 = 100/(2∗3) = 16.66667.

b. Now suppose there is a 10% a sales tax on good 1. That is, for every unit of good 1 the person
buys, he/she has to pay a price ofp1(1+ .1) = 2.2, where the 10% of the price, or 20 cents, goes
to the government as sales tax. How much of goods 1 and 2 does this person buy now?

answer With the tax in place, the price of good 1 increases to 2.2 so quantities demanded arex1 = 100/(2∗
2.2) = 22.727273 andx2 = 100/(2∗3) = 16.66667. The total taxes the person pays are.2x1 =
.2100/(2∗2.2) = 4.54.

c. Suppose instead there is a 5% income tax, so that the consumer must pay 5% of his/her income
to the government. If there is no sales tax but a 5% income tax,how much of goods 1 and 2 will
the consumer consume?

answer With a 5% income tax, the consumer has after-tax income equalto $95 (100(1−τ) whereτ= .05).
So the consumption of goods 1 and 2 is given byx1 = 95/(2∗2) = 23.75 andx2 = 95/(2∗3) =
15.8333.

d. Which would the consumer prefer, a 10% sales tax on good 1, or a 5% income tax? Explain your
reasoning for full credit.

answer With the sales tax, the consumer consumes less of good 1 and more of good 2, and pays less
in tax overall. With the income tax the consumer consumes more of good 1 but less of good 2
and pays more overall in tax ($5.00 versus $4.54). But the only way to see which alternative
the consumer prefers is to plug the consumption bundles intohis/her utility function and see
which one give more utility. The utility under the sales tax is log(22.727273)+ log(16.66667) =
5.93699764. The consumer’s utility under the income tax is log(23.75)+ log(15.8333) = 5.9297
so the consumer prefers the sales tax to the income tax.

e. How big would the sales tax on good 1 have to be for the government to get the same revenue
as a 5% income tax? Which of the two taxes would the consumer prefer in this case, or is the
consumer indifferent because the consumer has to pay a totaltax of $5 (5% of $100) in either
case?

answer Now we want to set the sale tax rateα so that we raise tax revenue of $5, the same revenue that
we collect under an income tax of 5%. The equation for the necessary tax rate is

5= α
100

2(2+α)
(49)

Solving this forα we getα = 2/9= .22222. Under this tax rate, consumption of good 1 falls to
x1 =

100
2(2+α) = 22.5 and the tax revenue collected is 22.5∗2/9= 5. Now the person’s utility under

the sales tax is log(22.5)+ log(16.66667) = 5.926926, so that now, the consumer slightly prefers
to have the income tax over the sales tax.
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8. Supply and Demand ProblemThe supply for corn is given by

S= 10+5p+ .05R (50)

whereR is the amount of rainfall. The demand for corn is given by

D = 5Y.2p−.5 (51)

whereY is the per capita income.

a. What is the equation for the equilibrium price of corn, assuming this is a competitive market?

answer We find the price that sets supply equal to demand. Equilvalently, we seek a pricep that sets
Excess demand E(p) = D(p)−S(p) to zero, where

E(p) = 5Y.2p−.5− (10+5p+ .05R) (52)

b. Solve for the equilibrium price and quantity in this market, using numerical methods (e.g. New-
ton’s method) if necessary, or by any means possible to get numerical answers.

answer Suppose we setY = 1000 andR= 20. Then the equation we want to solve is

E(p) = 5
[

1000.2p−.5]−10−5p−1= 0. (53)

I programmed this function in Matlab as the fileed.m which is posted on the Econ 625 website
along with these answers. You can use Newton’s method to solve this equation. I was a bit lazy
and instead used the Matlabfsolve command to solve this equation, that is, I didfsolve(@ed,2)
(so that my initial guess for a solutions wasp= 2). fsolve returned the solutionp= 1.2964 and
checking,ed(1.2964)= 1.4087e−10.

c. Derive a formula fordp/dR, i.e. the effect of an increase in rainfall on the price of corn.

Answer This is an exercise in the use of the implicit function theorem. See my lecture notes on this posted
on the Econ 425 website. But the answer is

dp
dR

=− .05
2.5y.2p−1.5+5

< 0. (54)

d. Derive a formula fordp/dY, i.e. the effect of an increase in per capita income on the price of
corn.

Answer Using the implicit function theorem again,

dp
dy

=−
∂
∂yE(p,y)
∂

∂pE(p,y)
=

y−.8p−.5

2.5y.2p−1.5+5
> 0. (55)
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