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This course applies the probabilistic and limit-theoretic tools (WLLN, SLLN, CLT, etc.) pre-
sented in Economics 551-A to conduct inference in a wide class of econometric models. The
course will focus on applications of econometric methods to substantive problems, although we
will discuss a number general “philosophical” issues at various points in the course.

The first issue is whether one ought to use of Bayesian or Classical methods of inference. 1
will briefly cover Bayesian methods which have been revitalized given recent developments in
monte carlo simulation and numerical integration. Nevertheless, Bayesian methods are still com-
putationally burdensome and heavily linked to particular parametric functional forms, limiting
their applicability to semi- and nonparametric problems (discussed further below). The primary
focus of this course is on classical statistical inference using large-sample asymptotics to derive
approximate sampling distributions of various estimators.

The second issue is whether one ought to use parametric, semi-parametric, or non-parametric
estimation methods. The issue is best framed as a trade-off between efficient estimation under
strong a priori assumptions about the underlying probabilistic structure (with a consequent risk
that the estimator will be inconsistent if these assumptions are violated) versus consistent es-
timation under weak a priori assumptions (at the cost of slower rates of convergence and/or
less efficient estimation of any particular probabilistic structure). I argue that we do not face
an “all or nothing” choice between parametric and nonparametric methods, rather the problem
is to select an appropriate method from an “estimation possibility” frontier depending on the
strength of the prior assumptions we are willing to impose in any particular problem. A conve-
nient way to trace out this frontier is via parametric “flexible functional forms” that are capable
of approximating general probabilistic structures arbitrarily well as the number of parameters in-
creases. Nonlinear regression using series approximations, neural networks with variable numbers
of “hidden units”, and “seive” methods where the parameter space increases at an appropriate
rate with sample size such as maximum likelihood estimation based on Hermite series expansions
about a Gaussian kernel are examples of this approach. In fact, we will show that these “flexible”
methods are generally the only feasible way to go about non-parametric estimation since direct
estimation by optimizing an estimation criterion over an infinite-dimensional space is generally
an “ill-posed” problem.

Nearly all of the “well-posed” methods rely on rules fixing the rate at which the dimension
of the parameter space increases with sample size (or in the case of kernels and other smoothing
methods, the rate at which “bandwidths” and other smoothing parameters tend to zero with sam-
ple size) or various penalty functions or other data-driven procedures for determining how many
parameters to include in the estimation in order to avoid “overfitting” the data. In some sense
these procedures are semi-automated methods for “specification searching”, a procedure that has
been discredited by Bayesian econometricians such as Edward Leamer. Paradoxically, it turns
out that these sorts of specification searching procedures consistently identify the true model,
whereas Bayesian methods run into serious difficulties in semi- and nonparametric contexts.
Specifically, if the parameter space is infinite-dimensional the prior can completely overwhelm



the data in the sense that the posterior distribution is not guaranteed to converge to a point
mass at the true parameter value as the number of observations tends to infinity.

The final issue is whether one ought to be doing structural or reduced-form estimation of
econometric models. I review the Haavelmo-Koopmans-Marschak-Lucas arguments for the use
of structural econometric models that either have been derived from, or are consistent with, an
underlying economic theory. These arguments show that structural models can be used to pre-
dict the effects of hypothetical policy or environmental changes, whereas reduced-form models
are generally only capable of summarizing responses to existing or historical policy or environ-
mental changes. On the other hand, structural models typically depend on strong, typically
parametric a priori identifying assumptions whereas reduced-form models can employ semi and
non-parametric estimation methods that require much weaker assumptions about the underlying
structure. I discuss the identification problem and show that many commonly analyzed structural
models are “non-parametrically unidentified” which implies that one generally cannot estimate
structural models using fully non-parametric methods (although there are many cases where
flexible parametric and semi-parametric methods can be used to estimate the structure). Where
nonparametric methods can be useful is in specification testing, i.e. comparing the reduced-form
of the structural model a nonparametric estimate of the reduced form. One possible way to
resolve the identification problem is by integrating experimental and survey data. I will discuss
this issue in the context of comparing structural vs. experimental predictions of the impact of
job training programs.

I use Manski’s (1988) “analogy principle” as an intuitive unifying concept motivating the
main “classical” estimation methods. Examples of the approach include estimation of the popu-
lation mean by the sample mean, or estimation of the population CDF by the sample CDF. The
analogy principle is the best way to understand the seemingly bewildering array of econometric
estimators most of which can be classified as extremum or M-estimators such as linear and non-
linear least squares, maximum likelihood, generalized method of moments, minimum distance,
minimum chi-square, etc.

We begin the course by reviewing the theory of parametric estimation and the fundamental
efficiency bounds for unbiased least squares and maximum likelihood estimators, namely the
Gauss-Markov and Cramer-Rao lower bounds. We also present extensions of the C-R bound
to asymptotically-unbiased LAN estimators, Hajek’s (1972) asymptotic local minimax bound,
and briefly discuss Bahadur’s (1960,1967) “large deviation” bounds. I then review results on
the asymptotic equivalence of a number of different nonlinear estimators including method of
moments, maximum likelihood, minimum distance, and minimum chi-square in the special case
of multinomial distributions. Since multinomial distributions are dense in the space of all distri-
butions, these results can be applied to derive Chamberlain’s (1987,1992) efficiency bounds for
semi-parametric estimators based on conditional moment restrictions. I complete the review of
parametric estimation methods with a survey model specification tests including the standard
“Holy Trinity”, Chi-square, information-matrix, Hausman-Wu, and conditional moment tests.
I briefly discuss issues of optimality and power of these tests, and the more difficult issues of
sequential testing, model revision, and model selection. The literature on “model selection”
serves as a bridge in moving from parametric to semi-parametric and non-parametric estimation
methods. We cover several papers showing that there exist “automatic” rules for “specification
searching” over an appropriately expanding family of parametric models will result in sequence



of selected models that converges to an underlying “true” data generating process.

The second part of the course focuses on nonparametric estimation of density and regres-
sion functions using kernels, nearest neighbor methods, and various “sieve” estimation methods
including splines, series approximations, and neural networks. I then turn to semiparametric
models and flexible “seminonparametric” models that represent the middle ground between para-
metric and non-parametric estimation methods. Some of the semiparametric estimation methods
are versions of L-estimates (linear combinations of order statistics) and R-estimates (estimates
dervied from rank tests). In addition, some recent semi-parametric estimators are functionals
of U-statistics, so I briefly review the relevant LLN’s, CLT’s, and the concept of projections of
a U-statistic. In order to compare the relative efficiency of the various methods, I present the
Begun-Hwang-Hall-Wellner generalized version of the Cramer-Rao lower bound for semipara-
metric models, and applications of this result to a variety of models. In certain problems the
prior assumptions are so weak (such as the median independence assumption underlying Man-
ski’s maximum score estimator) that information for the parameteric component of the model is
zero. This implies that a v/N-consistent estimator does not exist. I review rate of convergence
results for other non-parametric and semi-paramteric estimators delineating problems for which
standard v/N rates are achievable, versus problems where convergence occurs at slower rates. In
certain cases one can smooth discontinuous semi-parametric objective functions in such a way to
guarantee consistency while still retaining v/N (or arbitrarily close to v/N) convergence rates.
Examples include Powell’s (1984), (1986) work on LAD and quantile estimation of the censored
regression model, and Horowitz’s (1992) smoothed maximum score estimator.

The final methodological module focuses on simulation estimation, which has proven very
useful for avoiding the computational burden of numerical integration that previoulsy prevented
insurmountable obstacles to estimation of a number of econometric models. I review several
different types of simulation estimators for discrete choice problems (where simulation is used to
avoid high-dimensional numerical integrations required to compute choice probabilities with many
alternatives) and macro/time-series applications. The simulation estimators include simulated
maximum likelihood (SML), method of simulated momemts (MSM), and method of simulated
scores (MSS), and the semi-parametric minimum distance estimator of Gallant and Tauchen. We
review various types of simulators including crude frequency sampling as well as various types
of “smoothed” probability estimators such as the Geweke-Hajivassiliou-Keane (GHK) method
that has the advantage of yielding objective functions that are smooth functions of the model’s
parameters. We will also discuss the use of antithetic variates, acceptance/rejection, importance
sampling, and Gibbs sampling methods (borrowed from the literature on Bayesian pattern recog-
nition) to reduce noise and accelerate convergence of monte carlo methods.

The methodological principles outlined above will be illustrated in a variety of applied con-
texts:

e standard linear models, including models with censoring and truncation
e panel data and transition/duration models

e static and dynamic discrete/continuous choice models



GRADES:

The goal of this class is to introduce students to state-of-the art methods as well as unsolved
problems at the frontiers of current research in econometrics. My philosophy is that the best
way to learn these methods and to appreciate their problems and limitations is via “hands-on”
applications. Thus, grades in this course will be based on: 1) periodic take home problems as-
signed during lectures (20% of grade), 2) a midterm exam (20% of grade) 3) a final exam (20%
of grade) and 3) an original research paper (30 pages maximum) due at the scheduled final exam
period for this course and a 15-30 minute in-class presentation describing the topic, the data, and
the econometric methods to be used (40% of grade). Most students will choose applied topics
involving actual estimation of a particular econometric model, although theoretically oriented
papers are also welcome.
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