Eubank, R.L. (1988) Spline Smoothing and Nonparametric
Regression New York, Marcel Dekker.
Nonparametric Estimation
via Sieves, Series, Neural Nets other ``Flexible Functional Forms''
7
Grenander, U. (1981) Abstract Inference Wiley.
8
Geman, S. and C. Hwang (1982) ``Nonparametric Maximum Likelihood
Estimation by the Method of Sieves'' Annals of Statistics10 401-414.
9
Severini, T.A. and W.H. Wong (1987) ``On Maximum Likelihood Estimation
in Infinite-Dimensional Parameter Spaces'' Annals of
Statistics19 603-632.
10
Shen, X. and W.H. Wong (1994) ``Convergence Rates for
Sieve Estimates'' Annals of Statistics22 580-615.
11
White, H. and Wooldridge, J.A. (1991) ``Some Results on Sieve
Estimators with Dependent Observations'' in W.A. Barnett,
J.L. Powell, G. Tauchen (eds.) Nonparametric and
Semiparametric Methods in Econometrics and Statistics. Cambridge
University Press.
12
Gallant, A.R. (1987) ``Identification and Consistency in
Seminonparametric Regression'' in
T. Bewley (ed.) Advances in Econometrics
Proceedings of the 5th World Congress of the Econometric
Society, Cambridge University Press.
13
Eastwood, B.J. and Gallant, A.R. (1990) ``Adaptive Rules
for Seminnonparametric Estimators that Achieve Asymptotic
Normality'', manuscript, North Carolina State University.
14
Andrews, D.W.K. (1991) ``Asymptotic Normality of Series Estimators
for Nonparametric and Semiparametric Regression Models''
Econometrica59 307-345.
15
Gallant, A.R. (1981) ``On the Bias in Flexible Functional Forms
and an Essentially Unbiased Form: The Fourier Flexible Form''
Journal of Econometrics15 211-245.
16
Gallant, A. R. and D.W. Nychka (1989) ``Seminonparametric
Maximum Likelihood Estimation'' Econometrica55,
363-390.
17
Gallant, A.R. and H. White (1992) ``On Learning the Derivatives
of an Unknown Mapping with Multilayer Feedforward Networks''
Neural Networks5 129-138.
18
Gallant, A.R. and H. White (1988) ``The Exists a Neural Network
that Does Not Make Avoidable Mistakes'' Proceedings of the
Second Annual IEEE Conference on Neural Networks New York
IEEE Press, 657-664.
19
White, H. (1990) ``Connectionist Nonparametric Regression: Multilayer
Feedforward Networks Can Learn Arbitrary Mappings''
Neural Networks3 535-549.
20
Hornik, K. Stinchcombe, M. and H. White (1989) ``Multilayer
Feedforward Networks are Universal Approximators'' Neural
Networks3 551-560.
21
Yukich, J.E. M.B. Stinchcombe and H. White (1994) ``Sup Norm
Approximation Bounds for Networks through Probabilistic
Methods'' manuscript, University of California, San Diego.