Econ 551: Lecture Notes
Endogenous Regressors and Instrumental Variables
Professor John Rust

0. Introduction

These notes introduce students to the problem of endogeneity in linear models and the method
of instrumental variables that under certain circumstances allows consistent estimation of the
structural coefficients of the endogenous regressors in the linear model. Sections 1 and 2 review
the linear model and the method of ordinary least squares (OLS) in the abstract (L?) setting.
and the concrete (RV) setting. The abstract setting allows us to define the “theoretical” re-
gression coefficient to which the sample OLS estimator converges as the sample size N — oc.
Section 3 discusses the issue of non-uniqueness of the OLS coefficients if the regressor matrix
does not have full rank, and describes some ways to handle this. Seftion 4 reviews the two key
asymptotic properties of the OLS estimator, consistency and asymptotic normality. It derives
a heteroscedasticity-consistent covariance matrix estimator for the limiting normal asymptotic
distribution of the standardized OLS estimator. Section 5 introduces the problem of endogeneity,
showing how it can arise in three different contexts. The next three sections demonstrate how the
OLS estimator may not converge to the true coefficient values when we assume that the data are
generated by some “true” underlying structural linear model. Section 6 discusses the problem of
omitted variable bias. Section 7 discusses the problem of measurement error. Section 8 discusses
the problem of simultaneous equations bias. Section 9 introduces the concept of an wnstrumental
variable and proves the optimality of the two stage least squares (2SLS) estimator.



1. The Linear Model and Ordinary Least Squares (OLS) in L?: We consider regression
first in the abstract setting of the Hilbert space L?. It is convenient to start with this infinite-
dimensional space version of regression, since the least squares estimates can be viewed as the
limiting result of doing OLS in RN, as N — oc. In L? it is more transparent that we can do OLS
under very general conditions, without assuming non-stochastic regressors. homoscedasticity,
normally distributed errors, or that the true regression function is linear. Regression is simply
the process of orthogonal projection of a dependent variable §j € L? onto the linear subspace space
spanned by K random variables X = (X, ... ,XK). To be concrete, let § be a 1 x 1 dependent

variable and X is a 1 x K vector of explanatory variables. Then as long as E{X'j} and E{X'X}
exist and are finite, and as long as F{X'X} is a nonsingular matrix, then we have the identity:

27 — X * ot
a2 1><I\'Ix@><1 N (1)

where * is the least squares estimate given by:

B = mygnn E{(j - Xp)*} = [B{X' X} E{X'j}. (2)

Note by construction, the residual term é is orthogonal to the regressor vector X,
E{X'é} =0, (3)

where (7.%Z) = E{§.%} defines the inner product between two random variables in L?. The
orthogonality condition (3) implies the Pythagorean Theorem,

G117 = 1XB717 + llel®. (4)

where ||§]|> = (§. ). From this we define the R? as

S
= xp ©

Conceptually, R? is the cosine of the angle 6 between the vectors § and X(* in L2. The main
point here is that the linear model (1) holds “by construction”, regardless of whether the true
relationship between § and X, the conditional expectation E {7]|X } is a linear or nonlinear func-
tion of X. In fact, the latter is simply the result of projecting ¥ into a larger subspace of L2,
the space of all measurable functions of X. The second point is that definition of 5* insures
the X matrix is “exogenous” in the sense of equation (3), i.e. the error term € is uncorrelated
with the regressors X. In effect. we define 5* in such a way so the regressors X are ezogenous
by construction. It is instructive to repeat the simple mathematics leading up to this second
conclusion. Using the identity (1) and the definition of 5* in (2) we have:

E{X'e} = E{X'(j-Xp")} (6)
= E{X'y} - B{X'X}p" (7)
= B{X'jp} - B{X'X}E{X' X} E{X'y} (8)
= E{X'y} - B{X'y} (9)
= 0. (10)



2. The Linear Model and Ordinary Least Squares (OLS) in R": Consider regression in
the “concrete” setting of the Hilbert space R". The dimension N is the number of observations,
where we assume that these observations are IID realizations of the vector of random variables
(4. X). Define y = (y1,....yn) and X = (X1,..., Xx)', where each y; is 1 x 1 and each z; is
il x K. Note y is now a vector in RN. We can represent the N x K matrix X as K vectors in
RN: X = (X',...,X"), where X7 is the j™" column of X, a vector in RV. Regression is simply
the process of orthogonal projection of the dependent variable y € RN onto the linear subspace
spanned by the K columns of X = (X' ..., XX). This gives us the identity:

~

= X €
Nzil NxKKﬁm T (11)

where ,@ is the least squares estimate given by:

. 1 Z”: , [1 zf‘: ! Z”:
p = argmin — » (yi — Xip)" = l— Xin] [— Xéyi] (12)
s NiH N = N =
and by construction, the N x 1 residual vector € is orthogonal to the N x K matrix of regressors:
1 &
7 2 Xiei =0. (13)
i=1
where (y,z) = Efil yix;/N defines the inner product between two random variables in the

Hilbert space RVN. The orthogonality condition (13) implies the Pythagorean Theorem
lyll> = 11X 311> + llell”. (14)

where ||y||> = (y.y). From this we define the (uncentered) R? as

a2
g ] . (15)
X5l

Conceptually, R? is the cosine of the angle 8 between the vectors y and X% in RV,

The main point of these first two sections is that the linear model — viewed either as a linear
relationship between a “dependent” random variable y and a 1 x K vector of “independent”
random variables X in L? as in equation (1), or as a linear relationship between a vector-valued
dependent variable y in RY, and K independent variables making up the columns of the N x K
matrix X in equation (11) — both hold “by construction”. That is. regardless of whether the true
relationship between y and X is linear, under very general conditions the Projection Theorem for
Hilbert Spaces guarantees that there exists K X 1 vectors 3* and ,3 such that X3* and X B equal
the orthogonal projections of § and y onto the K-dimensional subspace of L? and R spanned
by the K variables in X and X, respectively. These coefficient vectors a constructed in such a
way as to force the error terms € and € to be orthogonal to X and X, respectively. When we
speak about the problem of endogeneity, we mean a situation where we believe there is a that
there is a “true linear model” § = X By + € relating § to X where the “true coefficient vector” Sy
is not necessarily equal to the least squares value 8*, i.e. the error € = § — X 3 is not necessarily
orthogonal to X. We will provide several examples of how endogeneity can arise after reviewing
the asymptotic properties of the OLS estimator.



3. Note on the Uniqueness of the Least Squares Coefficients

The Projection Theorem guarantees that in any Hilbert space H (including the two special
cases L? and R discussed above), the projection P(y|X) exists, where P(y|X) is the best linear
predictor of an element y € H. More precisely, if X = (Xy,.... Xg) where each X; € H, then
P(y|X) is the element of the smallest closed linear subspace spanned by the elements of X, lin(X)
that is closest to y:

P(y|X) = argmin |ly — §II”. (16)
gelin(x)

It is easy to show that lin(X) is a finite-dimensional linear subspace with dimension J < K. The
projection theorem tells us that P(y|X) is always uniquely defined, even if it can be represented
as different linear combinations of the elements of X. However if X has full rank, the projection
P(y|X) will have a unique representation given by

Py|X) = Xp
= argmin|ly — X’ (17)
BeRK

Definition: We say X has full rank, if J = K, i.e. if the dimension of the linear subspace lin(X)
spanned by the elements of X equals the number of elements in X.

It is straightforward to show that X has full rank if and only if the K elements of X are
linearly independent, which happens if and only if the K x K matrix X'X is invertible. We use
the heuristic notation X’X to denote the matrix whose (z,j) element is (X;. X;). To see the
latter claim, suppose X'X is singular. Then there exists a vector a € R such that a # 0 and
X'Xa = 0, where 0 is the zero vector in R¥. Then we have a/’X'Xa = 0 or in inner product
notation

(Xa.Xa) = || Xa|?=0. (18)

However in a Hilbert space, an element has a norm of 0 iff it equals the 0 element in H. Since
a # 0, we can assume without loss of generality that a; # 0. Then we can rearrange the equation
Xa = 0 and solve for X7 to obtain:

X1 = Xoag + -+ Xag, (19)

where o; = —a;/ay. Thus, if X'X is not invertible then X can’t have full rank, since one of
more elements of X are redundant in the sense that they can be exactly predicted by a linear
combination of the remaining elements of X. Thus, it is just a matter of convention to eliminate
the redundant elements of X to guarantee that it has full rank, which ensures that X’X exists
and the least squares coefficient vector B is uniquely defined by the standard formula

B=[X'X]""X"y. (20)

Notice that the above equation applies to arbitrary Hilbert spaces H and is a shorthand for the
B € RX that solves the following system of linear equations that consistent the normal equations
for least squares:

(v, X1) = (X1, X))+ + (X, X1)Bk

(v. Xr) = (Xi. X))+ +(Xr. XK)Br
(21)



The normal equations follow from the orthogonality conditions (X;,€) = (X;,y — X) = 0, and
can be written more compactly in matrix notation as

X'y=X'Xp (22)

which is easily seen to be equivalent to the formula in equation (20) when X has full rank and
the K x K matrix X'X is invertible.

When X does not have full rank there are multiple solutions to the normal equations, all of
which yield the same best prediction, P(y|X). In this case there are several ways to proceed.
The most common way is to eliminate the redundant elements of X until the resulting reduced
set of regressors has full rank. Alternatively one can compute P(y|X) via stepwise regression by
squentially projecting y on X7, then projecting y — P(y|X1) on Xo — P(X3|X1) and so forth.
Finally, one can single out one of the many 3 vectors that solve the normal equations to compute
P(y|X). One approach is to use the shortest vector  solving the normal equation, and leads to
the following formula

f=[X'X]" X"y (23)
where [X'X]" is the generalized inverse of the square but non-invertible matrix X’'X. The
generalized inverse is computed by calculating the Jordan decomposition of [X’X] into a product
of an orthonormal matrix W (i.e. a matrix satisfying W'W = WW' = I) and a diagonal matrix
D whose diagonal elements are the eigenvalues of [X'X],

[X'X]=WDW'. (24)
Then the generalized inverse is defined by
[X'X]T =wDtW'. (25)

where DV is the diagonal matrix whose ;th diagonal element is 1/D;; if the corresponding diag-
onal element D;; of D is nonzero, and 0 otherwise.

Exercise: Prove that the generalized formula for B given in equation (23) does in fact solve the
normal equations and results in a valid solution for the best linear predictor P(y|X) = X 3. Also,
verify that among all solutions to the normal equations, 3 has the smallest norm.

4. Asymptotics of the OLS estimator. The sample OLS estimator B can be viewed as the
result of applying the “analogy principle”, i.e. replacing the theoretical expectations in (2) with
sample averages in (12). The Strong Law of Large Numbers (SLLN) implies that as N — oc we
have with probability 1,

N
=D~ Xi)’ — B{(5 - XP)’). (26)
i=1

The convergence above can be proven to hold uniformly for 8 in compact subsets of R, This im-
plies a Uniform Strong Law of Large Numbers (USLLN) that implies the consistency of the OLS
estimator (see Rust’s lecture notes on “Proof of the Uniform Law of Large Numbers”). Specifi-
cally. assuming 8* is uniquely identified (i.e. that it is the unique minimizer of E{(j — X3)2}. a
result which holds whenever X has full rank as we saw in section 3), then with probability 1 we
have

p— B (27)



Given that we have a closed-form expression for the OLS estimators 8* in equation (2) and B in
equation (12), consistency can be established more directly by observing that the SLLN implies
that with probability 1 the sample moments

1 & o 1Y N
~ > X!X; — E{X'X} ~ > Xlyi — B{X'}. (28)
i=1 =1

So a direct appeal to Slutsky’s Theorem establishes the consistency of the OLS estimator,
8 — (*. with probability 1.

The asymptotic distribution of the normalized OLS estimator, v/ N ( ,3 — (3%). can be derived by
appealing to the Lindeberg-Levy Central Limit Theorem (CLT) for IID random vectors. That
is we assume that {(y1, X1),..., (yn, Xn)} are IID draws from some joint distribution F'(y, X).

Since y; = X;3* + ¢; where E{X&} = 0 and

var(Xé) = cov(X'e, X'e} = E{’X'X} = Q. (29)
the CLT implies that
1 <
—— > Xjei =4 N(0,Q). (30)

\/N i=1
Then, substituting for y; in the definition of /@ in equation (12) and rearranging we get:

N 1w
VN[p-p] = [i szi] Ly Xle. (31)
p-r]= g XX g

i—1

Appealing to the Slutsky Theorem and the CLT result in equation (30), we have:
VN [B-p] = N(.A), (32)
where the K x K covariance matrix A is given by:
A = [B{X' X} HE{EX' X [B{X'X .. (33)

In finite samples we can form a consistent estimator of A using the heteroscedasticity-consistent
covariance matriz estimator A given by:

| N lry | XN -1
A== xix:| |=Yexix| =Y Xix:| . 34
et REDE .
where €; = y; — Xi;é. Actually, there is a somewhat subtle issue in proving that A — A with
probability 1. We cannot directly appeal to the SLLN to show that

]\‘7
1 o
¥ » EX[X; — E{EX'X}. (35)
=1
since the estimated residuals ¢; = ¢; + XZ(B — (3*) are not IID random variables due to their
common dependence on (3. To establish the result we must appeal to the Uniform Law of Large
Numbers to show that uniformly for 3 in a compact subset of R we have:

]\T
D UIXB — XX — BX (5 - XX ). (36)
=1



Further more we must appeal to the following uniform convergence lemma:

Lemma: If g, — g uniformly with probability 1 for B in a compact set, and if 5, — [~ with
probability 1, then with probability 1 we have:

gn(ﬁn) — q(ﬁ*) (37)
These results enable us to show that
1NA‘)/ 1N2/ 2N A *\1 v/ 1N A *\12 v/
N ZeinXi = N Z € X Xi + N Z[Q‘Xz'(/@ - BN X + N Z[Xi(ﬁ - )] X X
i=1 i=1 i=1 =1
— E{&X'X}+0+0, (38)

where 0 is a K X K matrix of zeros. Notice that we appealed to the ordinary SLLN to show that
the first term on the right hand side of equation (38) converges to E{é’X’X} and the uniform
convergence lemma to show that the remaining two terms converge to 0.

Finally, note that under the assumption of conditional independence, E{E|f( } = 0. and
homoscedasticity, var(é|X} = E{&?|X} = o2, the covariance matrix A simplifies to the usual
textbook formula:

A=o? [B{X'XY] (39)

However since there is no compelling reason to believe the linear model is homoscedastic, it is in
general a better idea to play it safe and use the heteroscedasticity-consistent estimator given in
equation (34).

5. Structural Models and Endogeneity As we noted above, the OLS parameter vector
(" exists under very weak conditions, and the OLS estimator ﬁA converges to it. Further, by
construction the residuals € = y — X3* are orthogonal to X. However there are a number of
cases where we believe there is a linear relationship between y and X,

y=XBo+n (40)

where 3, is not necessarily equal to the OLS vector % and the error term 7 is not necessarily
orthogonal to X. This situation can occur for at least three different reasons:

1. Omitted variable bias
2. Errors in variables

3. Simultaneous equations bias

We will consider omitted variable bias and errors in variables first since they are the easiest
cases to understand how endogeneity problems arise. Then in the next section we will consider
the simultaneous equations problem in more detail.

6. Omitted Variable Bias
Suppose that the true model is linear, but that we don’t observe a subset of variables X9
which are known to affect y. Thus, the “true” regression function can be written as:

§= X101 + Xofs + ¢, (41)



where X is 1 x K; and X'AQ is 1 x Ko, and E{X/e} = 0 and E{X}e} = 0. Now if we don’t observe
Xy, the OLS estimator §; = [X!X1]7'X]y based on N observations of the random variables
(g, X1) converges to

b= XX Xy — [B{X{X)] T B{XI3). (42)

However we have: . o o
E{X1y} = B{X1X1}p1 + E{X| X2}p (43)

since E{Xée} = 0 for the “true regression model” when both X; and X are included. Substi-
tuting equation (43) into equation (42) we obtain:

b =— pu+ [BXX0Y] | B{X| X2}, (44)

We can see from this equation that the OLS estimator will generally not converge to the true
parameter vector (31 when there are omitted variables, except in the case where either 59 = 0 or
where E{XlXQ} = 0, i.e. where the omitted variables are orthogonal to the observed included
variables X1. Now consider the “auxiliary regression between X, and X7:

Xy = X1y +¢, (45)

where v = [E{X| X1} 'E{X|X,} is a (K| x K») matrix of regression coefficients, i.e. equation
(45) denotes a system of Ko regressions written in compact matrix notation. Note that by
construction we have E{X|¢} = 0. Substituting equation (45) into equation (44) and simplifying,
we obtain:

Br — B1 + . (46)

In the special case where K1 = K9 = 1, we can characterize the omitted variable bias y3> as
follows:

1. The asymptotic bias is 0 if y =0 or 2 = 0, i.e. if X5 doesn’t enter the regression equation
(B2 = 0), or if Xy is orthogonal to X1 (y = 0). In either case. the restricted regression
Y= X1ﬁ1 + v where v = XgﬁQ + € is a valid regression and /31 is a consistent estimator of

B1.

2. The asymptotic bias is positive if o > 0 and v > 0, or if f2 < 0 and v < 0. In this case,
OLS converges to a distorted parameter 51 + 2 Wthh overestimates 31 in order to soak
up” the part of the unobserved X» variable that is correlated with Xj.

3. The asymptotic bias is negative if Bo > 0 and v < 0., or if o < 0 and v > 0. In this
case, OLS converges to a distorted parameter 5 + ’yﬁg which underestimates 31 in order
to soak up” the part of the unobserved X» variable that is correlated with Xj.

Note that in cases 2. and 3.. the OLS estimator ,31 converges to a biased limit 51 +yf2 to
ensure that the error term 7 = X1 [B1 + vP2] is orthogonal to X;.

Exercise: Using the above equations, show that E{X]7} = 0.



Now consider how a regression that includes both X; and X» automatically “adjusts” to
converge to the true parameter vectors (31 and 2. Note that the normal equations when we have
both X; and X are given by:

BE{X{g} = BE{X{X1}p1+BE{X{X2}p;
E{X5y} = E{X5X1}p1 + E{X5X2}f0. (47)
Solving the first normal equation for 31 we obtain:
p1 = [B{X1 X1 }]7 [B{X19} — B{X]X2}0]. (48)

Thus. the full OLS estimator for (i equals the biased OLS estimator that omits Xo,
[E{X! X1} 'E{X]§}, less a “correction term” [E{X|X;}]"'E{X|{X5}3> that exactly offsets
the asymptotic omitted variable bias 739 of OLS derived above.

Now, substituting the equation for ;1 into the second normal equation and solving for 3 we
obtain:

[B{X3X) — B{SXOBX X)) B{X X)) [B{Keg} - BXS X BLX X0 B{X 3]

(49)
The above formula has a more intuitive interpretation: [y can be obtained by regressing g on 3
where f is the residual from the regression of X5 on Xi:

= [B{E B} (50)

This is just the result of the second step of stepwise regression where the first step regresses y on
X1 and the second step regresses the residuals y — P(y|X1) on Xy — P(X2|X1) where P(X2|X1)
denotes the projection of XQ on X1 i.e. P(X2|X1) = X7 where v is given in equation (46)
above. It is easy to see why this formula is correct. Take the original regression

J=X1p1+ XoB +¢€ (51)
and project both sides on X;. This gives us
P(y]X1) = X181 + P(X2|X1)po. (52)

since P(€|X1) = 0 due to the orthogonality condition E{X|é} = 0. Subtracting equation (52)
from the regression equation (51), we get

§— P(j|X1) = [Xo — P(X2|X1)]Bo + €= B2 + & (53)

This is a valid regression since € is orthogonal to X5 and to X; and hence it must be orthogonal
to the linear combination [Xo — P(X2|X1)].

7. Errors in Variables
Endogeneity problems can also arise when there are errors in variables. Consider the regres-
sion model

Yy =az"F+e (54)



where Exz*e = 0 and the stars denote the true values of the underlying variables. Suppose that
we do not observe (y*, z*) but instead we observe noisy versions of these variables given by:

y = y +v
= z*+u, (55)

where E{v} = E{u} = 0. E{eu} = E{ev} =0, and E{z*v} = E{z*u} = E{y*u} = E{y*v} =
E{vu} = 0. That is, we assume that the measurement error is unbiased and uncorrelated with
the disturbances € in the regression equation, and the measurement errors in y* and z* are
uncorrelated. Now the regression we actually do is based on the noisy observed values (y. )
instead of the underlying true values (y*,z*). Substituting for y*z and z* in the regression
equation (54), we obtain:

y=af+e—pPutv. (56)

Now observe that the mismeasured regression equation (56) has a composite error term 7 =
€ — Bu + v that is not orthogonal to the mismeasured independent variable . To see this. note
that the above assumptions imply that

E{zn} = E{z(e — fu+ v} = —fo>. (57)

This negative covariance between = and e implies that the OLS estimator of 3 is asymptotically
downward biased when there are errors in variables in the independent variable z*. Indeed we
have:

5 - N Zisi (@ +u) (B +e) BE{z?}
ﬁ = 1 N * 2 *2 2 < ﬁ (58)
N 2i=1(#] +u) [E{z**} + il
Now consider the possibility of identifying 8 by the method of moments. We can consistently
estimate the three moments og . 02 and agy using the observed noisy measures (y,z). However
we have
oy = BBE{z} 40!
o2 = E{z"?} +0°
o2, = cov(z.y) = BE{z"}. (59)

Unfortunately we have 3 equations in 4 unknowns, (3,02, 02. E{z*?}). If we try to use higher

moments of (y,z) to identify 3, we find that we always have more unknowns that equations.

8. Simultaneous Equations Bias
Consider the simple supply/demand example from chapter 16 of Greene. We have:

Qd = Q1p+ a2y +e€g
g = Pip+ €s
9 = s (60)

where y denotes income, p denotes price, and we assume that E{e;} = E{es} = E{eqes} =
E{eqy} = E{esy} = 0. Solving gq = g5 we can write the reduced-form which expresses the
endogenous variables (p,q) in terms of the exogenous variable y:

ay €d — €s

p = + =Ty +v1
Bi—ar Br—ar
« €] — (X1€
. = Brany +ﬁ1d 1 ot (61)
B1 —aq B1— i

10



By the assumption that y is exogenous in the structural equations (60), it follows that the two
linear equations in the reduced form, (61), are valid regression equations; i.e. E{yv;} = E{yvs} =
0. However p is not an exogenous regressor in either the supply or demand equations in (60)

since
2
o
cov(p.eq) = —21—>0
' B —aq
—g2
cov(p,e;) = —=— <0. 62
R (62)

Thus, the endogeneity of p means that OLS estimation of the demand equation (i.e. a regression
of ¢ on p and y) will result in an overestimated (upward biased) price coefficient. We would
expect that OLS estimation of the supply equation (i.e. a regression of ¢ on p only) will result
in an underestimated (downward biased) price coeflicient, however it is not possible to sign the
bias in general.

Exercise: Show that the OLS estimate of o converges to

a1 — waq + (1 — w),@l, (63)
where
0.2
= % 64
@ o2 + ogd (64)

Since #1 > 0, it follows from the above result that OLS estimator is upward biased. It is
possible that when w is sufficiently small and 3 is sufficiently large that the OLS estimate will
converge to a positive value, i.e. it would lead us to incorrectly infer that the demand equation
slopes upwards (Giffen good?) instead of down.

Exercise: Derive the probability limit for the OLS estimator of (31 in the supply equation (i.e.
a regression of ¢ on p only). Show by example that this probability limit can be either higher or
lower than (.

Exercise: Show that we can identify (31 from the reduced-form coefficients (71, o). Which other
structural coefficients (o, ao, agd, O';')s) are identified?

9. Instrumental Variables We have provided three examples where we are interested in
estimating the coefficients of a linear “structural” model, but where OLS estimates will produce
misleading estimates due to a failure of the orthogonality condition E{X’e} = 0 in the linear
structural relationship

§=Xpo+é. (65)
where [y is the “true” vector of structural coefficients. If X is endogenous, then E{X'E} # 0,
then By # * = [E{X'X}]7'E{X'y}, and the OLS estimator of the structural coefficients 3y in
equation (65) will be inconsistent. Is it possible to consistently estimate 5y when X is endoge-

nous? In this section we will show that the answer is yes provided we have access to a sufficient
number of instrumental variables.

11



Definition: Given a linear structural relationship (65), we say the 1 x K vector of regressors X
is endogenous if E{X'é} # 0, where é = §— X 3y, and 3 is the “true” structural coefficient vector.

Now suppose we have access to a J x 1 vector of instruments, i.e. a random vector Z satisfying:

Al)  E{Z'& =0
A2)  E{Z'X}#0. (66)

9.1 The exactly indentified case and the simple IV estimator. Consider first the ezactly
tdentified case where J = K, i.e. we have just as many instruments as endogenous regressors in
the structural equation (65). Multiply both sides of the structural equation (65) by Z' and take
expectations. Using A2) we obtain:

Zly = Z'Xpy+ Z'e
E{Z'§} = E{Z'X}py+ E{Z'¢}
= E{Z'X}p. (67)

If we assume that the K x K matrix E{Z'X} is invertible, we can solve the above equation for
the K x 1 vector Bgry:

Bsiv = [E{Z' X} E{Z'}}. (68)

However plugging in B{Z'j} from equation (67) we obtain:
Bsrv = [E{Z' X} E{Z'g} = [B{Z'X}]7 B{Z' X} = Bo. (69)

The fact that Bg;y = By motivates the definition of the simple IV estimator BSIV as the
sample analog of B¢y in equation (68). Thus, suppose we have a random sample consist-
ing of N IID observations of the random vectors {QXZ} i.e. our data set consists of
{(y1.X1.Z1), ..., (yn. Xn. Zn)} which can be represented in matrix form by the N x 1 vec-
tor ¢, and the N x K matrices Z and X.

Definition: Assume that the K x K matrix Z’X exists. Then the simple IV estimator BSIV is
the sample analog of B¢y given by:

—1 ,

. B 1 &
Bsiy = [Z' X712y = lﬁ > Z;yi] . (70)

i=1

1 N

!
72 1: Z/X;
N &

Similar to the OLS estimator, we can appeal to the SLLN and Slutsky’s Theorem to show that
with probability 1 we have:

]\7

TES PRS-
SIV | 77 PRy -~ Yi
N i—1 N =1

We can appeal to the CLT to show that

= [BE{Z' X} 'E{Z'j} = . (71)

4 B [1 N / -|_1 1 XN /
VN[Bsiv = fo] = [N§ ZiXZ-J l—\/NE Ziei| — N(0.9), (72)
i—1 i=1
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where o o o

Q= [E{Z' X}|"'E{&Z' Z}[E{X'Z}]", (73)
where we use the result that [A™1]' = [4/]7! for any invertible matrix A. The covariance matrix
Q can be consistently estimated by its sample analog;:
-1

L -1 LN L
A ! ~2 7! /
0= [N;ZiXi] [ﬁ;ei Z.7; WZ:IXZZ'] (74)

where €Z2 = (y; — XiBSIV)2- We can show that the estimator (74) is consistent using the same
argument we used to establish the consistency of the heteroscedasticity-consistent covariance
matrix estimator (34) in the OLS case. Finally, consider the form of € in the homoscedastic case.

Definition: We say the error terms € in the structural model in equation (65) are homoscedastic
if there exists a nonnegative constant o for which:

B{&7'Z) = c’E{Z'Z} (75)

A sufficient condition for homoscedasticity to hold is E{é|Z} = 0 and var{é|Z} = ¢2. Under
homoscedasticity the asymptotic covariance matrix for the simple IV estimator becomes:

Q= [B{Z' X" E{Z' Z}[E{X'Z}]7}, (76)

and if the above two sufficient conditions hold, it can be consistently estimated by its sample

analog;:
-1 -1

N N N
O =25 [lzngi] [iZZsz] [iZXEZi] (77)
N =1 N i=1 N i=1

2 is consistently estimated by:

where &

]\7

b 1 .

6% = N > (yi — XiBsiv )™ (78)
=1

As in the case of OLS, we recommend using the heteroscedasticity consistent covariance matrix
estimator (74) which will be consistent regardless of whether the true model (65) is homoscedas-
tic or heteroscedastic rather than the estimator (78) which will be inconsistent if the true model
is heteroscedastic.

9.2 The overidentified case and two stage least squares. Now consider the overidentified
case, i.e. when we have more instruments than endogenous regressors, i.e. when J > K. Then
the matrix E{Z'X} is not square, and the simple IV estimator B¢y is not defined. However we
can always choose a subset W consisting of a 1 x K subvector of the 1 x J random vector Z so
that E{W’ X } is square and invertible. More generally we could construct instruments by taking
linear combinations of the full list of instrumental variables Z, where v is a J x K matrix.

W = Z’y. (79)

Example 1. Suppose we want our instrument vector W to consist of the first K compo-
nents of Z. Then we set v = (I]0)’ where the I is a K X K identity matrix and 0 is a K x J
matrix of zeros, and | denotes the horizontal concatenation operator.
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Example 2. Consider the instruments given by W* = Zy* where v* = [E{Z'Z}]"'E{Z' X }.
It is straightforward to verify that this is a J x K matrix. We can interpret ~* as the ma-
trix of regression coefficents from regressing X on Z. Thus W* = X|Z) Z~* is the
projection of the endogenous variables X* onto the instruments Z. Since X is a vector of
random variables, v actually represents the horizontal concatenation of K separate J x 1
regression coeflicient vectors. We can write all the regressions compactly in vector form as

X =P(X|Z)+n= 27 +1. (80)

where 77 is 1 X K vector of error terms for each of the K regression equations. Thus, by
definition of least squares, each component of 77 must be orthogonal to the regressors Z. i.e.

E{Z'i} =0, (81)

where 0 is a J x K matrix of zeros. We will shortly formalize the sense in which W* =
Z~* are the “optimal instruments” within the class of instruments formed from linear
combinations of Z in equation ( 79). Intuitively, the optimal instruments should be the best
linear predictors of the endogenous regressors X, and clearly, the instruments W* = Z'y

from the first stage regression (80) are the best linear predictors of the endogenous X
variables.

Definition: Assume that [E'{I/T/"X}]_1 exists where W = Z~. Then we define Sy by
Brv = [B{W' X" E{W'y} = [B{y/ Z'X}] "' E{y Z'j}. (82)
Definition: Assume that [E{W*'W*}]~! exists where W* = Z~* and v* = [E{Z' Z}]7'E{Z'§}.
Then we define Bogrg by
Pasrs = [B{W" XY 'E{W"g}
- i R T - .
[B{X'ZVE{Z 27 BE{Z'X}|  B{X'Z}[B{Z' Z}]" B{Z'}}

[BPX12)PXI2)Y] " BP(X|2)3). (53

Clearly f(agrs is a special case of By when v = v* = [E{Z’Z}]_lE{Z’X} We refer to it as two
stage least squares since fBagr s can be computed in two stages:

Stage 1: Regress the endogenous variables X on the instruments Z to get the linear
projections P(X|Z) = Z~* as in equation (80).

Stage 2: Regress y on P( X|Z) instead of on Z as shown in equation (83). The projections
P(X|Z) essentially “strip off” the endogenous components 7 of X. resulting in a valid
regression equation for Jy.

We can get some more intuition into the latter statement by rewriting the original structural
equation (65) as:

j = Xfo+e
= P(X|Z)po+[X — P(X|Z)]Bo + €
= P(X|Z)Bo+1ifo+¢
= P(X|Z2)Bo+ 1. (84)



where 9 = 73 + €. Notice that E{Z'9} = E{Z'(nBy + é)} = 0 as a consequence of equations
(66) and (81). It follows from the projection theorem that equation (84) is a valid regression,
i.e. that fBagrs = By. Alternatively, we can simply use the same straightforward reasoning as
we did for B¢y, substituting equation (65) for g and simplifying equations (82) and (83) to see
that Bry = Bosrs = Po. This motivates the definitions of BIV and Bg sr.s as the sample analogs
of Brv and Bosrs:

Definition: Assume W = Z7y where Z is N X J and v is J x K, and W'X is invertible (this
implies that J > K). Then the instrumental variables estimator By is the sample analog of 3y
defined in equation (82):

-1

N N
A _ 1
prv = WX]'W'y= [ﬁZW{Xi] l ZWI ]
i—1
1 N -1 N
= WZX]'WZy= [NZ“/ZZ{XZ} l 27 Z’ull : (85)
i—1

Definition: Assume that the J x J matrix Z’Z and the K x K matrix W'W are invertible,
where W = Z4 and 4 = [Z’Z]_lZ'X. The two-stage least squares estimator Ba5rs is the sample
analog of Bosr¢ defined in equation (83):

Posrs = [WX] "Wy
—1
= X212 217 2 X7 X272 2y
= [P(X]2)P(X|2)] ' P(X|2)'y
= [X'P,X]7' X' Pyy. (36)
where Py is the N x N projection matrix
P, =2(7'71'7. (87)

Using exactly the same arguments that we used to prove the consistency and asymptotic
normality of the simple IV estimator, it is straightforward to show that Sy — Bp and VN [Brv —
P

ﬁo]?N(O, Q), where Q is the K x K matrix given by:
= [E{X'WY T B{EW WY E{W' X}~ = [B{X' 27} B{&Y/ Z' 2} [E(Y ZX}]!. ()

Now we have a whole family of IV estimators depending on how we choose the J x K matrix
’y What is the optimal choice for 47 As we suggested earlier, the optimal choice should be

= [E{Z'Z}] 'E{Z'X} since this results in a linear combination of instruments W* = Zy*
that is the best linear predictor of the endogenous regressors X.

Theorem: Assume that the error term € in the structural model (65) is homoscedastic. Then

the optimal IV estimator is 25LS, i.e. it has the smallest asymptotic covariance matriz among
all 1V estimators.
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Proof: Under homoscedasticity, the asymptotic covariance matrix for the IV estimator is equal
to

Q= [B{X'W T E{WWHE{W' X}~ = o’ [E{XZ}]" ' E{y'Z' Z}[E{yZ'X}]"".  (89)
We now show this covariance matrix is minimized when vy = v*, i.e. we show that
Q>0 (90)

where ~Q* is the asymptotic covariance matrix for 2SLS which is obtained by substituting v =
[E{Z'Z})"'E{Z' X} into the formula above. Since A > B if and only A~! < B~!, it is sufficient
to show that Q1 < Q* 1 or

E{W' X} E{WW}| 'E{X'W} < E{Z'X}|E{Z'Z}| *E{X'Z}. (91)

Note that Q~! = E{P(X|W)'P(X|W)} and @*~! = E{P(X|Z)' P(X|Z)}. so our task reduces
to showing that o o o o
BP(X W) P(X|W)} < B{P(X|2) P(X|2)}. (92)

However since W = Zvy fopr some J x K matrix v, it follows that the elements of W must
span a subspace of the linear subspace spanned by the elements of Z. Then the law of Iterated
Projections implies that

P(X|W) = P(P(X|2)[W). (93)
This implies that there exists a 1 x K vector of error terms & satisfying
P(X|Z) = P(X|W) +¢, (94)
where é satisfy the orthogonality relation
E{P(X|W)'¢} =0, (95)
where 0 is an K X K matrix of zeros. Then using the identity (94) we have
E{P(X|2)P(X|2)} = E{P(X|W)'P(X|W)}+ E{{P(X|W)}+ B{P(X|W)¢} + B{£'¢}
E{P(X|W)'P(X|W)} + E{{'¢}
> BIPX|W) P(X|W)}. (96)

We conclude that Q=1 < Q*~1, and hence Q > Q*, i.e. 2SLS has the smallest asymptotic covari-
ance matrix among all IV estimators. e

There is an alternative algebraic proof that Q*~! > Q~!. Given a square symmetric positive
semidefinite matrix A with Jordan decomposition A = WDW' (where W is an orthonormal
matrix and D is a diagonal matrix with diagonal elements equal to the eigenvalues of A) we can
define its square root A/? as

AY? = wD\Pw! (97)

where D'/? is a diagonal matrix whose diagonal elements equal the square roots of the diagonal
elements of D. It is easy to verify that A'/?A'/? = A. Similarly if A is invertible we define
A7/? as the matrix WD~Y?W’ where D~'/? is a diagonal matrix whos diagonal elements
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are the inverses of the square roots of the diagonal element of D. It is easy to verify that
A~12A=1/? = A=, Using these facts about matrix square roots, we can write

QL — Q7 = B{X'Z}E{Z' Z}|7VPM|E{Z' Z}| 72 E{Z' X}, (98)
where M is the K x K matrix given by
M =1 - [B{Z' 2}yl [B{Z' Z}) A Y |B{Z 237 . (99)

It is straightforward to verify that M is idempotent, which implies that the right hand side of
equation (98) is positive semidefinite. o

It follows that in terms of the asymptotics it is always better to use all available instruments
Z. However the chapter in Davidson and MacKinnon shows that in terms of the finite sample
performance of the IV estimator, using more instruments may not always be a good thing. It
is easy to see that when the number of instruments J gets sufficient large. the IV estimator
converges to the OLS estimator.

Exercise: Show that when J = N and the columns of Z are linearly independent that
Pasrs = PoLs-

Exercise: Show that when J = K and the columns of Z are linearly independent that
Basrs = PBsiv .

However there is a tension here, since using fewer instruments worsens the finite sample
properties of the 2SLS estimator. A result due to Kinal Econometrica 1980 shows that the Mth
moment of the 2SLS estimator exists if and only if

M<J-—K+1. (100)

Thus, if J = K 2SLS (which coincides with the SIV estimator by the exercise above) will not even
have a finite mean. If we would like the 2SLS estimator to have a finite mean and variance we
should have at least 2 more instruments than endogenous regressors. See section 7.5 of Davidson
and MacKinnon for further discussion and monte carlo evidence.

Exercise: Assume that the errors are homoscedastic. Is it the case that in finite samples that
the 2SLS estimator dominates the IV estimator in terms of the size of its estimated covariance
matrix?

Hint: Note that under homoscedasticity, the inverse of the sample analog estimators of the
covariance matrix for Ory and Bagpg are is given by:

N -1 1
[Qrv] = = [X’PWX],
Trv
N -1 1
[Qas1s] = 5—[X'P;X]. (101)
Ta8Ls

If we assume that 6%, = 634, ¢, then the relative finite sample covariance matrices for IV and
2S5LS depend on the difference

X'PyX — X'PyX = X'"(Py — Pz)X. (102)
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Show that if W = Zv for some J X K matrix v that Py Pz = Pz Py = Py and this implies that
the difference (Py — Py) is idempotent.

Now consider a structural equation of the form
§=X1p1 + XoBs + & (103)

where the 1 x K1 random vector X is known to be exogenous (i.e. E{X}é} = 0), but the 1 x K
random vector Xs is suspected of being endogenous. It follows that X; can serve as instrumental
variables for the X9 variables.

Exercise: Is it possible to identify the 8 coefficients using only X as instrumental variables?
If not. show why.

The answer to the exercise is clearly no: for example 2SLS based on X; alone will result in
a first stage regression P(X2|X1) that is a linear function of Xl, so the second stage of 2SLS
would encounter multicollinearity. This shows that in order to identify £ we need additional
instruments W that are ezcluded from the structural equation (103). This results in a full
instrument list Z = (W, X;) of size J = (J — K;) + K;. The discussion above suggest that in
order to identity 2 we need J > K9 and J > Kj. otherwise we have a multicollinearity problem
in the second stage. In summary, to do instrumental variables we need instruments Z which are:

1. Uncorrelated with the error term € in the structural equation (103),
2. Correlated with the included endogenous variables X,

3. Contain components W which are ezcluded from the structural equation (103).
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