next up previous
Next: About this document

Suggested Solution to Problem Set 3

Prof. John Rust

Econ 551b, Spring 1999

QUESTION 1 Answers given in section 9 of Rust's lecture notes, Endogenous Regressors and Instrumental Variables.

QUESTION 2 Since

displaymath430

log likelihood function for tex2html_wrap_inline464 can be written as

displaymath431

MLE of tex2html_wrap_inline464 , tex2html_wrap_inline468 , satisfies

displaymath432

Therefore

displaymath433

QUESTION 3

eqnarray36

Therefore

displaymath434

QUESTION 4 Let tex2html_wrap_inline470 be the number of times which outcome k occured in all sample.

displaymath435

With

displaymath436

the joint distribution of tex2html_wrap_inline474 can be written as

displaymath437

1. Since log likelihood function is

eqnarray85

MLE tex2html_wrap_inline476 (for tex2html_wrap_inline478 ) can be derived from

displaymath438

The solution to this system is

displaymath439

2.Since

displaymath440

displaymath441

Therefore tex2html_wrap_inline476 is an unbiased estimator.

3.

eqnarray140

displaymath442

eqnarray173

For tex2html_wrap_inline482

eqnarray195

Note tex2html_wrap_inline484 since at least one of tex2html_wrap_inline486 and tex2html_wrap_inline488 must be zero.

displaymath443

eqnarray238

Therefore

displaymath444

4.

For k=l

displaymath445

eqnarray299

For tex2html_wrap_inline482

displaymath446

eqnarray327

eqnarray341

5. MLE can be proved to be efficient if it has a variance equal to Cramer-Rao lower bound. You can easily show tex2html_wrap_inline494 by verifying tex2html_wrap_inline496 .




econ551
Mon Mar 22 10:32:39 EST 1999