next up previous
Next: About this document

Econ 551b Econometrics II
Problem Set 3

Prof. John Rust

Due: March 3, 1999

QUESTION 1 Suppose you want to estimate the regression model

displaymath66

where X is tex2html_wrap_inline76 , using the set of instruments Z that is tex2html_wrap_inline80 .

When J>=K, the generalized IV estimator is give by:

displaymath67

where F is a tex2html_wrap_inline86 weighting matrix.

  1. Find the optimal weighting matrix that minimizes variance of the estimator. The estimator using this optimal matrix is the two-stage least squares estimator.
  2. Prove the consistency of the two-stage least squares estimator, and find its asymptotic distribution.
  3. Show that when J=K, the two-stage least squares estimator reduces to the simple IV estimator:

    displaymath68

QUESTION 2 Suppose regression model

displaymath66

(where y, tex2html_wrap_inline92 are tex2html_wrap_inline94 , X is tex2html_wrap_inline98 , and tex2html_wrap_inline100 is tex2html_wrap_inline102 ) with normality assumption on disturbance, tex2html_wrap_inline104 . Derive the maximum likelihood estimator (MLE) of tex2html_wrap_inline100 when tex2html_wrap_inline108 is known, and show that MLE is identical to the GLS estimator, tex2html_wrap_inline110 .

QUESTION 3 Show that the Cramer-Rao lower bound, tex2html_wrap_inline112 , corresponds to the GLS covariance matrix, tex2html_wrap_inline114 , in Question 2.

QUESTION 4 Let tex2html_wrap_inline116 be IID draws from a multinomial distribution with density

displaymath118

where tex2html_wrap_inline120 , the K-1-dimensional simplex (i.e. the set of tex2html_wrap_inline124 satisfying tex2html_wrap_inline126 and tex2html_wrap_inline128 ).

1.
Derive the maximum likelihood estimator for tex2html_wrap_inline130 .

2.
Is the maximum likelihood estimator biased or unbiased?

3.
Derive the covariance matrix for tex2html_wrap_inline130 .

4.
Derive the information matrix.

5.
Is the maximum likelihood estimator efficient? If not, find a more efficient estimator for tex2html_wrap_inline130 .

Hint: In parts 2 and 3 you might find the following matrix result useful: let the tex2html_wrap_inline136 matrix tex2html_wrap_inline138 be given by:

displaymath140

where the tex2html_wrap_inline142 are positive numbers satisfying

displaymath144

Then verify that tex2html_wrap_inline138 is invertible with inverse given by:

displaymath148




next up previous
Next: About this document

econ551
Mon Feb 22 10:48:24 EST 1999