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Part I Question 1

a. We are to calculate β̂ = (X ′X)−1X ′y, where

X ′X =

[
24 0
0 2

]
X ′y =

[
1
3

]
.

From the result in a), we know the diagonal matrix X ′X has the simple
inverse matrix given by [

1/24 0
0 1/2

]
.

Therefore, we have

β̂ = (X ′X)−1X ′y =

[
1/24 0

0 1/2

]
×
[

1
3

]
=

[
1/24
3/2

]
.

b. By regressing y on X1 and X2 separately, we get β̂1 = (X ′1X1)−1X ′1y =
(24)−1 · 1 = 1/24 β̂2 = (X ′2X2)−1X

′
2y = (2)−1 · 3 = 3/2 So we have the

same results from this naive estimators as those from the results in b).

c. This näive approach works because the matrix X ′X is diagonal, i.e.,
the two vectors X1 and X2 are orthogonal to each other. We have 0’s
for the off-diagonal elements in X ′X, which enables us to ignore X2

vector when we run our regression of y on X1, and vice versa. The
intuition is simple: if two vectors are orthogonal they have nothing in
common. So each regressor does its own job in explaining the vector y
without taking the place of the other regressor.

d. Suppose we have a nonsingular N×K matrix of regressors X = [X1X2],
where X1 and X2 are N ×K1 and N ×K2 matrices, respectively. Sup-
pose further that we have the following blockwise orthogonality condi-
tion given by X ′1X2 = 0, which implies each column in the submatrix
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X1 is orthogonal to that in the submatrix X2. Then our K × 1 OLS
estimates vector β̂ will be

β̂ = (X ′X)−1X ′y =

[
X
′
1X1 0
0 X2X2

]−1

·
[
X
′
1y

X
′
2y

]
.

But using our results in a), we get

β̂ =

[
(X

′
1X1)−1 0

0 (X2X2)−1

]
·
[
X
′
1y

X
′
2y

]
=

[
(X

′
1X1)−1X1y

(X
′
1X1)−1X1y

]
.

Therefore, the blockwise diagonality condition allows us to treat the
two sets of regressors separately. As a special case, when we have K
regressors all orthogonal to each other as in the pard f) below, we can
estimate each of the K regression coefficients by β̂i = (X

′
iXi)

−1X ′iy, i =
1, . . . , K

e. Our regression equation is given by

yi = β1Di1 + β2Di2 + ...+ βKDiK + ei, i = 1, 2, . . . , N

or in a matrix form,

y =
[
D1 D2 ... DK

] 
β1

β1

. . .
β1

+ e

The mutual exclusiveness of the dummy variables implies D
′
jDk =∑N

i=1 D
′
ijDik = 0, for all 1 ≤ j 6=k ≤ K. Based on this orthogonal-

ity condition, we can apply what we have obtained up to e). Therefore,
we get β̂j = (D

′
jDj)

−1D′jy, j = 1, . . . , K Or in the summation form,

β̂j =
∑N
i=1 Dijyi /

∑N
i=1 D

2
ij =

∑N
i=1 Dijyi /

∑N
i=1 Dij The second equal-

ity above holds because all the possible values of Dij are just one or

zero. Now let’s interpret the meaning of β̂j . Suppose we have S times
of the occurrence of one. Then, the denominator is just S, and the
numerator is the sum of yis over the set of is such that Dij = 1. Hence,

our β̂j can be interpreted as a mean of y over the subpopulation of
individuals with Dij = 1.
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Part I, Question 2

a-1. The value of the inner product of ŷ and ε̂ is zero.

a-2. The algebraic derivation of this is as follows. We know that:

β̂ = (X ′X)−1X ′y

Hence,
ŷ = Xβ̂ = X(X ′X)−1X ′y = My

where
M = X(X ′X)−1X ′

Furthermore,

ε̂ = y − ŷ = y −Xβ̂ = y −X(X ′X)−1X ′y

= y −My = (I −M)y = Py

Then,
ε̂ = Py and ŷ = My.

We also know that the matrices M and P are idempotent, [see exercise
3, part 1 from last year’s midterm] thus,

P = P ′and P = PP

and, analogously,

M = M ′ and M = MM

Given these properties, it’s straightforward to compute the required
inner product, in fact

ŷ′ε̂ = (My)′(Py) = y′M ′Py

= y′M ′(I −M)y = y′M ′y − y′M ′My

but, by idempotency,

M ′ = M and M ′M = MM = M

hence

ŷ′ε̂ = y′My − y′My = 0.
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Some of you invoked the normal equations which is another perfectly
legitimate way to proceed. In fact,

ŷ′ε̂ = (Xβ̂)′ε̂ = β̂′X ′ε̂

but by the least squares normal equations:

X ′ε̂ = 0

so we have:

ŷ′ε̂ = β̂′0

= 0.

Geometric argument: We are working with conventional assump-
tions. If N corresponds to the number of observations (i.e. the di-
mension of y and the number of rows of X), and K corresponds to the
number of regressors (the number of columns of X), then N > K. This
implies that the regressors span a linear subspace of Rn. Let’s call this
subspace L. When we do least-squares we seek to find the vector in
L ⊂ Rn which is closest (in the sense described in class) to the original
vector of dependent observations (∈ Rn). Given a matrix of regressors
X, if the vector of dependent observations is y, the resulting best pre-
dictor of y is ŷ = Xβ̂. It’s apparent that ŷbelongs to L (it’s a linear
combination of the columns of X with weights given by the components
of the vector β̂). Furthermore, ŷ is the orthogonal projection of y on
the space spanned by X. ε̂ is just the “distance” between y and ŷ. In
order for this distance to be minimum, ε̂ has to lay in a subspace of
Rn which is orthogonal to the subspace L spanned by X. Hence, ŷ and
ε̂ are just the two sides of a right angle triangle. Their orthogonality
makes the inner product equal to zero.

a-3. The relationship between ŷ and ε̂ is just another way to assess the
consequences of least-squares regressions. You are used to think in
terms of orthogonality between X and ε̂. You also know that the
previous implies orthogonality between ε̂ and all the vectors laying
on the space spanned by the columns of X. Now, since ŷ belongs to
this space, the orthogonality property applies to it as well as to every
other vector of the type Xa for a generic vector a conformable with
X. Hence, we are just looking at the usual well-known problem from
a different perspective. It follows that the implications of ŷ′ε̂ = 0 for
regression analysis are the same as the implications of X ′ε̂ = 0, namely
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the residuals don’t contain information to improve on the estimates
and so on.

b-1. We know that,
y = ŷ + ε̂

hence,
y′y = (ŷ + ε̂)′(ŷ + ε̂) = ŷ′ŷ + ε̂′ε̂+ 2ŷ′ε̂

We also know that,
ŷ′ε̂ = 0

thus,
y′y = ŷ′ŷ + ε̂′ε̂

But this implies that,

1 = (ŷ′ŷ + ε̂′ε̂)/y′yif y′y 6= 0

and so,
1 ≥ ŷ′ŷ/y′y ≥ 0

given that
ŷ′ŷ, ε̂′ε̂ and y′y ≥ 0.

Alternatively, you could have used the Pythagorean theorem by just
invoking the geometric interpretation you eventually gave in point a. ŷ
and ε̂ are othogonal, hence

||y||2 = ||ŷ||2 + ||ε̂||2

By definition of norm,
||x||2 = x′x

Then,
y′y = ŷ′ŷ + ε̂′ε̂

and, as before
1 = (ŷ′ŷ + ε̂′ε̂)/y′y if y′y 6= 0

and,
1 ≥ ŷ′ŷ/y′y ≥ 0

given that
ŷ′ŷ, ε̂′ε̂ and y′y ≥ 0.
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b-2. c provides a measure of goodness of fit (and it doesn’t coincide with
the R2!). y′y =

∑n
i=1 y

2
i could be interpreted as a measure of variability

of the observations, whereas ŷ′ŷ =
∑n
i=1 ŷ

2
i might represent the disper-

sion of the fitted values. Note that traditional measures of variability
are centered around the mean (i.e., var(x) =

∑n
i=1(xi − x)2) The ra-

tio ŷ′ŷ/y′y can then be seen as the amount of dispersion in the data
explained by the regression. Furthermore,

ε̂ = 0⇒ ε̂′ε̂ = 0⇒ ŷ′ŷ = y′y ⇒ c = 1

and the regression guarantees a perfect fit. If, on the other hand, y is
perpendicular to the space spanned by the columns of X, then ŷ = 0
and

ŷ = 0⇒ ŷ′ŷ = 0⇒ ε̂′ε̂ = y′y ⇒ c = 0

The matrix of covariates doesn’t help explain the dependent variable
and the fit is as bad as it can be.

Part I, Question 3

We are given the regression model y = Z1β1 + Z2β2 + ε where

Z ′1 = ( 2 0 0 ), Z ′1 = ( 0 2 0 ), and y′ = ( 3 2 3 ).

a. The model may be written in the form of

y = Xβ + ε

where

y

3× 1
=

 3
2
3

 , X

3× 2
=

 2 0
0 2
0 0

 , β =

[
β1

β2

]
and ε =

 ε1
ε2
ε3

 .
b.

X ′X =

[
4 0
0 4

]
.

Since X ′X is diagonal we have,

(X ′X)
−1

=

[
1
4

0
0 1

4

]
and X ′X (X ′X)

−1
= I.
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c. The OLS estimate of β

β̂ = (X ′X)
−1
X ′y =

[
1
4

0
0 1

4

] [
6
4

]
=

[
3
2

1

]

Hence the predicted value of y

ŷ = Xβ̂ =

 2 0
0 2
0 0

 [ 3
2

1

]
=

 3
2
0


d. See diagram below.

e. The vector of residuals is:

ε̂ = y −Xβ̂ =

 0
0
3


1. So we have:

i′ε̂ =
[

1 1 1
]  0

0
3

 = 3 6= 0

This nonzero value to the inner product 〈i′ε̂〉 suggest that the 2
vectors are not orthogonal to each other. Given that the model
does not contain a constant term, it suggest that i is not the
subspace spanned by the matrix of regressors. 〈i′ε̂〉 also happens
to be the sum of the residuals of the regression, its non zeros
value suggest that the sum of residuals is zero only in regressions
containing a constant term.

2. However we have

Z ′1ε̂ =
[

2 0 0
]  0

0
3

 = 0

The value of this inner product is zero as expected given that the
residuals by construction is orthogonal to the subspace spanned
by the regressors, of which Z1 is one of them.
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f. To calculate and Py verify that Py = ŷ

P = X(X ′X)−1X ′

=

 2 0
0 2
0 0

 [ 1
4

0
0 1

4

] [
2 0 0
0 2 0

]

=

 1 0 0
0 1 0
0 0 0


Hence

Py =

 1 0 0
0 1 0
0 0 0


 3

2
3

 =

 3
2
0

 = ŷ

Notice that P = X(X ′X)−1X ′ is a projection matrix into the subspace
spanned by the matrix X. A projection matrix maps points into a
subspace and every point in that subspace into itself.P projects every
point in the n dimensional space into a subspace of dimension k, the
number of columns in the regressor matrix X.

g. It turns out that the rank of P is 2. It does not have full column rank
and is hence singular.

Part I, Question 4

Answers given in section 3 of Rust’s lecture notes, Endogenous Regressors
and Instrumental Variables.

Part II, Question 0

Answers given in section 9 of Rust’s lecture notes, Endogenous Regressors
and Instrumental Variables.

Part II, Question 1

a. (X ′RX)/49 = 22.262857. The quantity X ′RX can’t be negative since
the matrix R is semidefinite positive. Let’s assume R is a square matrix
with dimension N , then

c′Rc ≥ 0 for every c ∈ Rn
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Let’s now prove that Ris postivie semidefinite. We know from question
1, part I, that R is idempotent, thus

R = R′

and

R = RR

Then, from 2)
c′Rc = c′RRc

and, from 1)
c′RRc = c′R′Rc = (Rc)′(Rc)

Hence,
c′Rc = (Rc)′(Rc) = z′z

with z = Rc and

c′Rc = z′z =
n∑
i=1

z2
i ≥ 0 for every

In general, idempotent matrices are semidefinite positive as we just
proved.

b. The standard deviation is σ = 4.7183, and the variance σ2 = 22.262857.
Basically everybody got this part right.

c. The answers to a. and b. are the same. In order to assess this result,
let’s look at the quadratic form X ′RX more closely. We already proved
that, by idempotency of the matrix R, we can write

X ′RX = (RX)′(RX)

Let’s now examine the bloc RX. We know that R = I−i(i′i)−1i′ Hence,

RX = X − i(i′i)−1i′X

= X − i(i′i)−1Xn

and

(i′X)/n = (
n∑
i=1

xi)/n = X
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and also
(i′i)−1 = 1/n

Then,

RX = X − i(i′i)−1Xn

= X − i(1/n)Xn

= X − iX

It is now clear that, given a generic vector X, the matrix R computes
the difference between the original vector and a vector with components
equal to the empirical mean of the vector itself. Thus,

X ′RX = (RX)′(RX) = (X − iX)′(X − iX)

=
n∑
i=1

(xi − x)2

But this is the numerator of the empirical variance, σ̂2. Hence,

X ′RX/49 = (
n∑
i=1

(xi − x)2)/49 = σ̂2.

and this value coincides with the value delivered by Gauss when we
square the standard deviation. Let’s look at the same problem some-
what differently. Let’s assume we are seeking to find a statistics ca-
pable of summarizing the information contained in the vector X =
(x1, x2, ...., xn). The model we have in mind can be set-up as follows

X =~iβ + ε

where ~i = (1, 1, . . . , 1), ε = (ε1, ε2, . . . , εn) and β is a scalar coeffi-
cient. The model says that the information in the vector X can be
approximated by using a vector ~iβ with constant components equal to
β. We know what the formula for the least squares estimator of β, β̂,
is, namely

β̂ = (i′i)−1i′X

But, as we saw before,

β̂ = (i′i)−1i′X =
1

n

n∑
i=1

xi = X
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Hence, the vector which best approximates X is a vector with com-
ponents equal to the empirical mean of X. Let’s now go back to the
original problem in order to examine RXagain.

RX = X − i(i′i)−1i′X

= X − iβ̂
= X − X̂
= X − iX

and also

= ε̂

where ε̂ is the error term of the model we just outlined. Then,

X ′RX = (RX)′(RX) = ε̂′ε̂ = SSE of the model

Part II, Question 2

The linear regression model is as following;

Y = β1 ×~i+ β2X2 + β3X3 + ε

where~i =



1
1
1
1
1
1
1
1
1
1
1



X2 =



1
2
3
4
5
6
7
8
9
10
11



X3 =



1
3
5
7
9
11
13
15
17
19
21


This model can be written in a simpler way;

Y = Xβ + ε

where X = (~i,X2, X3) and β = (β1, β2, β3)′.
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a. No, we can not compute OLS estimates of the three unknowns (β1, β2, β3)
because X ′X is singular and is not invertible. The columns of matrix
X is linearly dependent because we can perfectly predict X3 from i and
X2(i.e. 2X2 − i = X3.) Note that Gauss shows the inverse of X ′X,
even though it is not invertible. This is because Gauss computes it by
some approximation.

b. Yes, there is a multicollinearity problem in this regression such as 2X2−
i = X3.

c. We have two possible cases for this part. First, if you eliminate X3, the
linear regression model is

Y = β1 × i+ β2X2 + ε⇒ Y = Xβ + ε

where X = ( i X2) and β = ( β1 β2)′

then by OLS formula, β̂ = (X ′X)−1X ′Y , we can get β̂1 = −12, β̂2 = 2.
Next, we have to find out R2. By the definition, R2 = 1− SSE

SST
where

SSE =
∑
i(yi−ŷi)2 and here yi = ŷi for i = 1, ..11. Therefore, SSE = 0

and R2 = 1 − 0
SST

= 1. It means that the model fits to the data
perfectly. Second, if you eliminate X2, the linear regression model is

Y = β1 × i+ β3X3 + ε⇒ Y = Xβ + ε

where X = ( i X3) and β = ( β1 β3)′

then by β̂ = (X ′X)−1XY , we haveβ̂1 = −11, β̂3 = 1. Like the first
case, we have that SSE = 0 and thus R2 = 1(perfect fit). Note that we
should not eliminate i because if we eliminate i, we can not depend on
R2 when you compare the model. This is because R2 of the regression
included a constant term may be higher or lower than that excluded a
constant term regardless of the truth of the model.

d. First, for (-6,-10,6) the regression model becomes Y = −6×i+−10X2+
6X3 +υ. Then, υ = 0, SSE = 0, and thus R2 = 1. Second, for(-10,-2,2)
the regression model becomes Y = −10× i +−2X2 + 2X3 + υ. Then,
υ = 0, SSE = 0, and thus R2 = 1. Therefore, both answers fit to the
data perfectly. We can not judge which estimate fits better to the data
in terms of the R2. Since we have 2X2 − i = X3, we can rewrite the
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original model as the following;

Y = β1 × i+ β2X2 + β3X3 + ε = β1 × i+ β2X2 + β3(2X2 − i) + ε

= (β1 + β3)× i+ (β2 + 2β3)X2 + ε

= γ1 × i+ γ2X2 + ε

where we let γ1 = β1 + β3 and γ2 = β2 + 2β3. From the first part
of (c), we have γ̂1 = −12 and γ̂2 = 2 (i.e. ̂β1 + β3 = −12 (1) and̂β2 + 2β3 = 2 (2)) Here, we have two restrictions, (1) and (2), but three
unknowns (β1, β2, β3) because of the multicollinearity. We are unable to

find β̂1, β̂2 and β̂3 separately, but we can find only ̂β1 + β3 and ̂β2 + 2β3.
Therefore we can’t exactly identify the three unknown parameters, and
thus there are infinite number of possible parameter vectors. Jim’s and
Tom’s estimators are examples of many possible values. As a result,
three unknown parameters are unidentified. When there is a problem
of the multicollinearity, we have the identification problem.

Part II, Question 3.

a. I do not expect students to quote any particular theories here: a good
common sense answer received full credit. Here is a slightly more “the-
oretical” explanation. There are theories of money holdings that derive
the optimal holdings of real money balances for transactions purposes,
accounting for the “transactions costs” of going to the bank to switch
funds from a checking account or interest bearing time deposit account
into cash. See for example, J. Tobin (1956) “The Interest-Elasticity of
Transactions Demand for Cash” Quarterly Journal of Economics and
J.A. Frenkel and B. Jovanovic (1980) “On Transactions and Precau-
tionary Demand for Money” Quarterly Journal of Economics (warning:
these articles make use of advanced probability theory and may not be
easy reading, but by the end of Econ 161 you should be able to at
least get the general point of these articles after reading them.) The
optimal policy in these theories takes the form of an (s, S) rule: when
cash balances decumulate to the lower limit s the individual goes to
the bank and withdraws cash. When cash balances accumulate to the
upper limit S the individual goes to the bank to deposit the cash in the
checking or time deposit account. The higher the rate of spending and
income, the more often one needs to go to the bank, so to economize on
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transactions costs the theory predicts that higher money balances are
held. In terms of the regression equation, the theoretical prediction for
β1 is positive. When the interest rate is higher the opportunity cost of
holding cash balances is higher, so all other things equal the individual
chooses to hold less cash. Thus the theoretical prediction for β2 is nega-
tive. There is no theoretical prediction for β0 at this level of generality,
but note that β0 does determine the average level of cash balances and
is a complicated function of the (s, S) rule and other aspects of the
problem.

b. Do the regression with the following Gauss commands:

load gnp,cpi,r_3mo,m2;

m=log(m2./cpi);

y=log(gnp./cpi);

x=ones(rows(m),1)~y~r_3mo;

beta=inv(x’x)*x’m;

beta’;

-0.76819 1.20619 -0.01538

Thus, the coefficient estimates of β2 and β3 are consistent with the
theoretical predictions. Note: some students used the natural log, ln
instead of the base 10 log above. The coefficient estimates are β̂ =
(−.3336, 1.20619,−.00668). Either answer is equally correct. Note: for
some reason the ascii version of CPI is different than the Gauss fmt bi-
nary version and lead to different regression results: β̂ = (−.66429, 1.1428,−0.013)
with natural log and β̂ = (−.2885, 1.1428,−0.005) with base 10 logs.
Again I gave full credit for correct answers based on the ascii data or
the binary Gauss data.

c. The second regression is basically the same as the first regression but
in nominal rather than real amounts. To the extent that there is no
“money illusion”, theory predicts that the results from the second re-
gression should be basically the same as the first regression. Since
Y = GNP/CPI, we have log(Y ) = log(GNP/CPI) = log(GNP) − log(CPI),
and similarly for log(M). Working through the algebra, we see that
if there is no money illusion we should have the parameter restriction
β3 = (1− β1) holding in the second money demand equation since this
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restriction guarantees that the second regression equation is equivalent
to the first:

log(Mt) = β0 + β1 log(Yt) + β2rt + β3 log(Pt) + εt

log(Mt) = β0 + β1 log(Yt) + β2rt + (1− β1) log(Pt) + εt

log(Mt)− log(Pt) = β0 + β1 (log(Yt)− log(Pt)) + β2rt + (1− β1) log(Pt) + εt

log(mt) = β0 + β1 log(yt) + β2rt + εt

d. Do the second regression with the following Gauss commands:

x=ones(rows(m),1)~log(gnp)~r_3mo~log(cpi);

beta=inv(x’x)*x’log(m2);

beta’;

-0.33583 1.2001 -0.00675 -0.19640

-0.77329 1.2001 -0.15555 -0.19640 /* if ln is used instead of log */

-0.74465 1.1119 -0.01547 -0.07839 /* if ln is used with ascii data */

-0.32340 1.1119 -0.00672 -0.07839 /* if log is used with ascii data */

We see that although the signs of β̂1 and β̂2 are consistent with the
theoretically predicted signs, the restriction that β̂3 = (1 − β1) does
not hold exactly, but seems to be very close to holding: β̂3 = −.1964 in
the second regression versus (1 − β̂1) = −.20619 in the second regres-
sion. The difference might just be due to random estimation “noise”.
(However note that different CPI indices in the binary vs. ascii ver-
sion of the data set seem to have had a big effect on the results and
restriction doesn’t hold as closely when the ascii version of the CPI is
used). Later in Econ 161 we will show how to test the hypothesis that
the “true coefficients” satisfy the restriction β3 = (1 − β1). However
without doing a formal hypothesis test (which I didn’t expect anyone
to do), it seems reasonable to conclude that the empirical evidence is
consistent with the hypothesis that there is no money illusion.

e. The plausibility of the estimated coefficients has already been discussed
above. The R2 for the first regression is computed using the following
Gauss commands:
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e=m-x*inv(x’x)*x’m;

rsqr=1-e’e/(sumc((m-meanc(m))^2);

rsqr;

0.99392

The R2 for the second regression is computed similarly and it has an
R2 = .99945, slightly higher than the first regression. This is to be
expected since the second regression has an extra coefficient β3 and
this takes away one degreee of freedom improving the regression fit.

f. The Gauss commands for computing the marginal propensity to con-
sume are:

load gnp,c;

x=ones(rows(gnp),1)~gnp;

beta=inv(x’x)*x’c;

beta’;

-19.842 0.6435

so the estimated aggregate marginal propensity to consume is 64.35
cents out of each dollar of GNP.

g. The Gauss commands to compute the serial correlation coefficient of
the residuals from the consumption function regression are as follows:

ec=c-x*inv(x’x)*x’c;

ecl=ec[1:23]; /* Lagged errors at t-1 */

ecf=ec[2:24]; /* Current errors at t */

stdl=sqrt(meanc((ecl-meanc(ecl))^2));

stdf=sqrt(meanc((ecf-meanc(ecf))^2));

rho=meanc((ecf-meanc(ecf)).*(ecl-meanc(ecl)))/(stdl*stdf);

rho;

0.5654

Note: the Gauss stdc command divides by T − 1 instead of T . If you
used stdc instead of the direct commands above (which divide by T
to compute variance), you would get ρ = .5408. I did not take off any
points for this calculation, although it is technically incorrect. Thus,
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the residuals of the consumption function equation are positively seri-
ally correlated. This is a common occurrence in time series regression
problems and could indicate the presence of other omitted serially cor-
related variables affecting consumption. However the presence of serial
correlation does not contradict the normal equations for least squares,
which only require the error vector to be orthogonal (i.e. uncorrelated
with) the constant term and GNP.

Part II, Question 4.

a. Demand curves should ordinarily be downward sloping (unless we have
a Giffen good) so β1 should be negative. Also, if soybeans are a normal
good we should have β2 > 0. There is litte one can say about the
constant term except that it should be sufficient large positive number
so that quantity demanded is not negative.

b. Supply curves should be upward sloping so α1 should be positive. More
rainful should lead to higher production (unless there is excessive rain-
fall) so α2 should also be positive. There is little we can say about the
constant term except that it should be sufficient large positive number
so that quantity demanded is not negative.

c. The program sdchk.gpr was used to load in the soy.asc data and do
OLS regressions for the supply and demand curves. The section of the
code that does the regression is as follows:

load data[200,4]=soy.asc;

p=data[.,1];

q=data[.,2];

d_shocks=data[.,3];

s_shocks=data[.,4];

n=rows(data);

xd=ones(n,1)~p~d_shocks;

beta=inv(xd’xd)*xd’q;

beta’;

1.733 .267 .359

The OLS estimates lead to the counterintuitive finding that the demand
for soybeans is positively sloped. Is this because Soybeans are a Giffen
good? No! Read on.
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The results for the OLS regression of the supply curve parameters are:

xs=ones(n,1)~p~s_shocks;

alpha=inv(xs’xs)*xs’q;

alpha’;

8.039 .353 .625

The OLS estimates lead to the intuitively plausible finding that the
supply curve for soybeans is positively sloped.

e. If there is only a single positively sloped supply curve, then obviously
all of the equilibrium (p, q) must lie on this curve as demand shifts up
and down due to variations in y. If one tries to estimate the demand
curve by OLS, it is intuitively obvious that the estimated demand curve
will be upward sloping: essentially you are not estimating the demand
curve but the supply curve in this case. This is the essence of the
problem of simultaneous equations bias that is an aspect studied in
more advanced econometrics courses. Simultaneous equation bias is a
special case of endogeneity in which one or more of the X variables in
a regression is correlated with the error term. In this case the price
variable p in the regression is correlated with the demand error εd since
it is easy to verify that the equilibrium value of p that sets supply equal
to demand is given by:

p =
β0 − α0 + β2y − α2r + εd − εs

α1 − β1

and since p contains εd, it will be positively correlated with the error
term εd if α1 > β1, and negatively correlated otherwise. Presumably
the true α1 is positive and the true β1 is negative, so that p is positively
correlated with εd. One can show that this leads to a problem where
the OLS estimate β̂1 is upward biased. In some cases this upward bias
can be so strong that the estimated value of β̂1 can be positive even if
the true β1 is negative. Is this what is happening in this case? Is there
any way to get around the problem of simultaneous equations bias?
Yes! Read on.

The method of 2-stage least squares is one way to get around the prob-
lem of simultaneous equations bias. It is an example of an instrumental
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variables estimator (IV). The idea is to project the endogenous vari-
able p in the demand regression on exogenous variables (also known as
instrumental variables which are known not to be correlated with the
error term εd.

f. In this case it seems plausible that the variables y and r could serve
as suitable instrumental variables. Indeed, from the way I constructed
them they are in fact exogenous variables since they are independent
of (and therefore uncorrelated with) εd and εs. In addition ~e, the N ×1
vector of 1’s is also a suitable exogenous variable. Below is the Gauss
code that I used to compute the 2SLS estimates

z=ones(n,1)~d_shocks~s_shocks;

xhat=z*inv(z’z)*z’x;

yhat=z*inv(z’z)*z’y;

beta2sls=inv(xhat’xhat)*xhat’yhat;

beta2sls’;

8.554 -1.635 .354

So the 2SLS estimate of β1 is now negative, as we would expect. You
can use similar methods to compute 2SLS estimate of α. In general
you can see that the 2SLS estimates of β are much closer to the true
values that I used to generate the artificial data in this problem than
the OLS estimates.
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