
Solutions to Problem Set 1
Economics 551, Yale University

Professor John Rust

Question 1 The choice probability for the general case when�
�0

�1

�
� N(�;�);

where

� =

�
�0

�1

�
� =

�
�11 �12
�12 �22

�
:

The choice probability is given by:

Pr(1jx; �; �;�) = Pr fu(1; x; �) + �1 � u(0; x; �) + �0g
= Pr f�1 � �0 � u(0; x; �)� u(1; x; �)g

= �

�
u(1; x; �)� u(0; x; �) + �1 � �0p

�11 � 2�12 + �22

�
; (1)

where we use the fact that �1 � �0 � N(�1 � �0; �11 � 2�12 + �22), so we
standardized �1 � �0 by subtracting �1 � �0 from both sides of the inequality in

the probability in the second line of the above equation and divided both sides
by its standard deviation, allowing us to use the standard normal CDF �(x) in
the last line. Note that when �1 = �0 = 0 and �11 = 1=2 = �22 and �12 = 0,

this equation reduces to

Pr(1jx; �; �;�) = Pr fu(1; x; �) + �1 � u(0; x; �) + �0g
= �(u(1; x; �)� u(0; x; �)) : (2)

We note that we must make identifying normalizations of the � and � pa-

rameters of this model, since there are in�nitely many di�erent combinations
of the 5 free parameters in � and � that yield the same conditional proba-

bility in equation (1), and are thus observationally equivalent . For example,
let �0 = �1 = � 6= 0 and let �11, �12 and �22 be any parameters satisfying

1) � is positive semide�nite, and 2)
p
�11 � 2�12 + �22 = 1 (one example is

�11 = 1:5 = �22 and �12 = �1). This model has the same choice probability
as the model in equation (2) where �0 = �1 = 0, and �11 = �22 = :5 and

�12 = 0. Therefore we need to impose arbitrary identifying normalizations in
order to estimate the model. One common normalization is that �0 = �1 = 0

and �11 = 1=2 = �22 and �12 = 0. An alternative identifying normalization is
�0 = �1 = 0 and �11 = 1 = �22 and �12 a free parameter to be estimated. How-
ever whether it is possible to identify the covariance term �12 depends on the
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speci�cation of the utilities u(i; x; �), i = 0; 1. We will generally need to impose
additional identifying normalizations to estimate the parameters of the utilities,

u(i; x; �), i = 0; 1. For example if the utility function is linear in parameters,
i.e. u(i; x; �) = x�i, i = 0; 1 with � = (�0; �1), then it is easy to see that without
further restrictions it is not possible to identify � and �12 simultaneously, even

with the normalization that �11 = �22 = 1. To see this, note that for the linear
in parameters speci�cation we have:

Pr(1jx; �; �;�) = Pr fu(1; x; �) + �1 � u(0; x; �) + �0g

= �

�
u(1; x; �)� u(0; x; �)p

2 + 2�12

�
= �

�
x(�1 � �0)p
2� 2�12

�

It should be clear that any combination of (�0; �1; �12) such that

(�1 � �0)p
2� 2�12

= �;

for a �xed vector � are observationally equivalent, and that there are in�nitely
many such combinations. Therefore we must make a further normalization of

the � coe�cients. A typical normalization is that �0 = 0 and that one of the
components of �1 is normalized to 1. Since we are free to choose di�erent

normalizations, when interpreting the estimation results from the probit model
we need to keep the underlying normalization in mind. For the rest of this

problem set we will use the normalization �11 = 1=2 = �22 and �12 = 0, and
�0 = 0. Under this normalization the choice probability is given by 	(x; �) =
Prf1jx; �g = �(x�), so the estimated value of � is interpreted as the impact of

an additional unit of x on the incremental utility of choosing alternative 1, i.e.

� =
@

@x
[u(1; x; �)� u(0; x; �)]:

Question 2 See answer to questions 7 and 8 of 1997 Econ 551 problem set

3.

Question 3 The \true model" used to generate the data in model 3 was a
probit model. Table 1 below presents the true � coe�cients and the logit and

probit estimates of these values which were estimated using the shell program
estimate.gpr using two procedures, log mle.g and prb mle.g that compute

the log-likelihood, gradients and hessians for the logit and probit speci�cations,
respectively. Both log-likelihoods have the following general form:

LN(�) =
1

N

NX
i=1

Ifyi = 1g ln [	(xij�)] + Ifyi = 0g ln [1�	(xij�)] : (3)
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Table 1: Maximum Likelihood Estimates of � using data3.asc

Parameter �0 �1 �2 �3
True Value 0:500 0:200 0:100 �0:050
Probit MLE 0:543 0:173 0:083 �0:038
Std. Dev. 0:031 0:040 0:020 0:011
Logit MLE 0:877 0:295 0:144 �0:065
Std. Dev. 0:051 0:068 0:034 0:019

Notice that the logit parameter estimates are \further" from the true param-

eters than the probit estimates. One \metric" for measuring this distance is
the Wald test statistic Ŵ of the hypothesis that the estimated logit parameters
equals the true parameters

Ŵ = N(�̂N � ��)0�̂�1

N (�̂N � ��);

where �̂N is the estimated misspeci�cation-consistent covariance matrix forp
N (�̂N � ��):

�̂N = H�1

N (�̂N)IN (�̂N)H�1

N (�̂N);

where HN (�) and IN (�) are the sample analogs of the hessian and informa-

tion matrix of the log-likelihood, respectively. Computing the Wald statistic
for the misspeci�ed logit model we have Ŵ = 102:15, which corresponds to a
marginal signi�cance level of 3:4 � 10�21 given that under the null hypothesis

Ŵ =) �2(4), a Chi-squared random variable with 4 degrees of freedom. The
Wald test statistic that the estimated probit parameters equals the true values

is Ŵ = 2:788, which corresponds to a marginal signi�cance level of 0:594. Thus
we can clearly reject the hypothesis that the logit model is correctly speci�ed,
but we do not reject the hypothesis that the probit model is correctly speci�ed.

However our ability to compute this statistic requires prior knowledge the true

parameters ��. Of course in nearly all \real" applications we do not know �� so

this type of Wald test is infeasible.

Later in Econ 551 we will consider general speci�cation tests, such as White's
(1982) Econometrica Information matrix test statistic (which is not necessarily
a consistent test), or Bieren's (1990) Econometrica speci�cation test statistic of

functional form (which is a consistent test). These allow us to test whether the
parametric model 	(x; �) is correctly speci�ed (i.e. whether there exists a ��

such that 	(x; ��) = Prfy = 1jxg, where Prfy = 1jxg is the true conditional
choice probability) without any prior knowledge of �� or, indeed, without any
prior information about what the true model really is.

However the estimation results suggest that the power of these \omnibus"

speci�cation test statistics may be low, even with samples as large as N = 3000.
To see how hard it might be to test this hypothesis, consider �gure 1 below. For

example comparing �HN (�̂N) and IN (�̂N) we �nd that they are very close in
both the probit and logit speci�cations. Tables 2 and 3 present the estimated
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values of �HN (�̂N ) and IN (�̂N ) for the probit and logit speci�cations, respec-
tively.

Table 2: Estimates of �HN (�̂N ) and IN (�̂N) for Probit Model

IN (�̂N) =
1643:540 �14:797 1529:713 141:053
�14:797 1529:713 141:053 4344:458

1529:713 141:053 4344:458 1556:723
141:053 4344:458 1556:723 20823:807

�HN (�̂N) =

1643:599 �17:351 1516:827 134:246
�17:351 1516:827 134:246 4258:982
1516:827 134:246 4258:982 1998:199

134:246 4258:982 1998:199 20659:827

Table 3: Estimates of �HN (�̂N ) and IN (�̂N) for Logit Model

IN (�̂N) =
581:582 �18:152 514:050 41:983
�18:152 514:050 41:983 1401:355

514:050 41:983 1401:355 627:199
41:983 1401:355 627:199 6622:895

�HN (�̂N) =

581:619 �18:848 513:331 37:097
�18:848 513:331 37:097 1404:316

513:331 37:097 1404:316 664:932
37:097 1404:316 664:932 6756:945

Figure 1 below plots the true conditional choice probability Prfy = 1jxg =
�(x��), i.e. the probit model evaluated at the true parameters and at the
(sorted) x values in the data �le data3.asc, the estimated probit and logit
models, and the logit model evaluated at the true parameter values ��. We see

that even thought the estimated parameter values �̂N for the logit and probit
models are signi�cantly di�erent from each other, the estimated choice proba-

bilities are nearly identical for each x in the sample. Indeed the estimated logit
and probit choice probabilities are visually virtually indistinguishable. Max-

imum likelihood is doing its best (in the presence of noise) to try to �t the
true choice probability Prfy = 1jxg = �(x��), and we see that both the logit
and probit models are su�ciently 
exible functional forms that we can approx-

imate the data about equally well with either speci�cation. As a result the
maximized value of the log-likelihood is almost identical for both models, i.e.

LN (�̂N) = �:5751 for both the probit and logit speci�cations. Recalling the
discussion of neural networks in our presentation of non-parametric estimation

methods, both the logit and probit models can be regarded as simpli�ed neural
networks with a single hidden unit and the logistic and normal cdf's as \squash-
ing functions." Given that neural networks can approximate a wide variety of
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functions, it isn't so surprising that the logit and probit choice probabilities can
approximate each other very well, with each yielding virtually the same overall

�t. Thus, one can imagine it would be very hard for an omnibus speci�cation
test statistic to discern which of these models is the true model generating the
data.

Figure 1: Comparison of True and Estimated Choice Probabilities

Figure 1 also plots the predicted logit choice probabilities that result from
evaluating the logit model at the true parameter values ��. We can see that

in this case the choice probabilities of the logit model are quite di�erent from
the choice probabilities of the true probit model. However the logit maximum
likelihood estimates are not converging to �� when the model is misspeci�ed.

Instead, the misspeci�ed maximum likelihood estimator is converging to the
parameter vector �0 which minimizes the Kullback-Liebler distance between

the chosen parametric speci�cation and the true choice probability:

�0 = argmin
�2R4

Z
x

Z
y

ln

�
g(y; x)

f(y; xj�)

�
g(y; x)dydx

= argmin
�2R4

Z
x

�
ln

�
�(x��)

	(xj�)

�
�(x��) + ln

�
1��(x��)

1� 	(xj�)

�
(1� �(x��))

�
�(x)dx;

where �(x) is the standard normal density, the marginal density of the x vari-
ables used to generate the data in this problem. Given the 
exibility of the

logit speci�cation, we �nd that 	(xj�0) = expfx�0)=(1 + exp(x�0)) is almost
identical to the true probit speci�cation �(x��) even though �0 and �� are fairly
di�erent parameter vectors.

Question 4 We can also use nonlinear least squares to consistently estimate

��, assuming the speci�cation of the choice probability is correct, since by de�-
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nition of the conditional choice probability we have:

Efyjxg = 1� Prfy = 1jxg+ 0� Prfy = 0jxg = Prfy = 1jxg = �(x��):

Thus, �(x��) is the true conditional expectation function, so even though the
dependent variable y only takes on the values f0; 1g we still have a valid regres-
sion equation:

y = �(x��) + �;

where the error term also takes on two possible values f��(x��); 1 � �(x��)g,
but satis�es Ef�jxg = 0 by construction. By the general uniform consistency

arguments presented in class, it is easy to show that the nonlinear least squares
estimator �̂N de�ned by:

�̂N = argmin
�2R4

SSRN (�) �
1

2N

NX
i=1

[yi �	(xij�)]2 ; (4)

will be a consistent estimator of �� if the model is correctly speci�ed, i.e. if
	 = �, where � is the standard normal CDF, but if the choice probability is
misspeci�ed, then with probability 1 we have �̂N ! �0 where �0 is given by:

�0 = argmin
�2R4

E
�
[	(xj�)� Prfy = 1jxg]2

	
:

Question 5 Table 4 presents the NLS estimates of � for the logit and probit
speci�cations of Prfy = 1jxg using the estimation program estimate.gpr and

the procedures log nls.g and prb nls.g respectively.

Table 4: Nonlinear Least Squares Estimates of � using data3.asc

Parameter �0 �1 �2 �3
True Value 0:500 0:200 0:100 �0:050
Probit NLS 0:542 0:174 0:085 �0:038
Std. Dev. 0:030 0:040 0:020 0:011
Logit NLS 0:876 0:295 0:145 �0:064
Std. Dev. 0:051 0:068 0:034 0:019

Comparing Tables 1 and 4 we see that the MLE and NLS estimates of �� are

virtually identical for each speci�cation. The standard errors are virtually the
same in this case as well. In general the NLS estimator is less e�cient than

the MLE since the latter attains the Cramer-Rao lower bound when the model
is correctly speci�ed. In this case the MLE and NLS estimates happen to be
amazingly close to each other, and the standard errors of the NLS estimates

are actually minutely smaller than the standard errors of the MLE estimates
(for example for the MLE estimator of �1 we have std(�̂1) = :030680 whereas

for the NLS estimator we have std(�̂1) = :030548). This anomaly is probably
not due to a programming error on my part (since running the gradient and
hessian check options in estimate.gpr reveals that the analytic formulas I
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programmed match the numerical values quite closely), but probably due to to
a combination of roundo� error and estimation noise. Although the Cramer-

Rao lower bound holds asymptotically, it need not hold in �nite samples for
the sample analog estimates of the covariance matrix, which can be potentially
quite noisy estimates of the asymptotic covariance matrix. It is straightforward

to show that for the NLS has asymptotic covariance matrix �nls given by:

�nls = [�H(��)]�1I(��)[�H(��)]�1 (5)

where

�H(��) = E

�
@

@�
�(x��)

@

@�0
�(x��)

�
;

and

I(��) = E

�
�(x��)[1��(x��)]

@

@�
�(x��)

@

@�0
�(x��)

�
;

whereas for the correctly speci�ed probit model the Cramer-Rao lower bound,

�mle, is given by

�mle = E

(
@
@�
�(x��) @

@�0
�(x��)

�(x��)[1��(x��)]

)�1

(6)

Thus we have �nls � �mle unless the model is homoscedastic, i.e. when
�2(x) = �(x��)[1��(x��)] = �2 for all x, which implies that �(x��) is a con-

stant for all x, which is almost never the case in any \interesting" application.
We conclude that the MLE estimator of �� is necessarily more e�cient than the
NLS estimator, and the only reason why the NLS has slightly smaller estimated

standard errors in this example is due to round-o� and estimation error. For
other sample sizes, say N = 500, we do �nd that the estimated standard devi-

ations of the MLE estimator are smaller than the NLS estimator. For example
when N = 500 the NLS estimator of ��2 = 0:1 is �̂1 = 0:095360 and its standard
error is std(�̂2) = 0:102891, whereas the MLE estimator is �̂2 = 0:096739 and its

standard error is std(�̂2) = 0:094864. Thus, while we do see an e�ciency gain
to doing maximum likelihood, it is far from overwhelming in this particular case.

Question 6 It is easy to see that the errors f�ig in the regression formu-

lation of the binary choice model, yi = 	(xij��) + �i are heteroscedastic with
conditional variance �2(xi) given by:

�2(xi) = 	(xij��)[1� 	(xij��)];

(Too see this, note that the conditional variance of �i and yi given xi are the

same, and the latter is a Bernoulli random variable that takes on the value
yi = 1 with probability p = �(xij��). As is well known, a Bernoulli random

variable has variance p(1� p)). Thus, we have a case where heteroscedasticity
has a known functional form and we can make use of it to compute feasible
generalized least squares (FGLS) estimates of ��. In the �rst stage we compute
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the NLS estimates of �� and using these estimates, call them �̂1N , we compute
estimated conditional variance �̂2(xi) given by the formula above but with the

�rst stage NLS estimates �1N in place of ��. Then in the second stage we compute

the FGLS estimates �̂2N as the solution to the following weighted least squares

problem:

�̂N = argmin
�2R4

WSSRN (�) �
1

N

NX
i=1

[yi � 	(xij�)]2
2	(xij�1N )[1� 	(xij�1N )]

(7)

The FGLS estimates of ��, computed by log fgls and prb fgls.g in the logit
and probit cases, respectively, are virtually identical to the NLS estimates of

��, which are in turn virtually identical to the maximum likelihood estimates
in the logit and probit speci�cations presented in Table 1 so I didn't bother to
present them here.

Should we conclude from this that there isn't much heteroscedasticity in this

problem? Figure 2 below plots �2(x) for this problem and we see that there is
indeed substantial heteroscedasticity, with fairly large variation in the e�ective

weighting of the observations. However by plotting the relative contribution of
the terms in the weighted and unweighted sum of squared residuals, you will
�nd that except for a small number of observations with the lowest values of xi
which the FGLS estimator assigns very high weights to, the relative sizes of the
vast majority of the true squared residuals in both the FGLS and NLS estima-

tors are very similar. This explains why the FGLS and NLS estimators are not
very di�erent even though there appears to be substantial heteroscedasticity in
this problem.

Figure 2: Conditional Heteroscedasticity in the Probit Model
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Question 7 The FGLS estimator is asymptotically equivalent to the max-
imum likelihood estimator, a result suggested by the fact that the likelihood

function and the weighted sum of squared residuals happen to have the same
�rst order conditions:

0 =
@

@�
LN (�)

=
1

N

NX
i=1

�
Ifyi = 1g
	(xij�)

� Ifyi = 0g
1�	(xij�)

�
@

@�
	(xij�)

=
1

N

NX
i=1

yi � 	(xij�)
	(xij�)[1�	(xij�)]

@

@�
	(xij�)

=
@

@�
WSSRN (�):

Actually, the �rst order conditions are only identical for the continuously up-

dated version of the FGLS estimator, where instead of using a �rst stage NLS
estimate �̂1N to make an estimated correction for heteroscedasticity, we contin-

ually update our estimate of the heteroscedasticity as � changes, so the same �
appears in the numerator and denominator terms in the third equation above
whereas in the FGLS estimator �̂1N appears in the denominator terms. However

recalling the logic of the \Amemiya correction" we need to consider whether
it is necessary to account for the estimation noise in the �rst stage estimates

�̂1N in deriving the asymptotic distribution of the FGLS estimator, �̂2N . It will
turn out that there is a form of \block diagonality" here which enables the
FGLS estimator to be \adaptive" in the sense that the asymptotic distribution

of the FGLS estimator �̂2N does not depend on whether we use the noisy �rst
stage NLS estimator to compute a noisy estimate of the conditional variance

�̂2(x) = �(x�̂1N)[1��(x�̂1N)] to use as weights, or if we use the true conditional
variance �2(x) = �(x��)[1��(x��)].

Before we show this, we �rst show that if we did use the true conditional
variance as the weights in the FGLS estimator, it would be as e�cient as maxi-

mum likelihood: i.e. the FGLS estimator attains the Cramer-Rao lower bound.
To see this do a Taylor-series expansion of the �rst order condition for the FGLS

estimator about ��:

0 =
1

N

NX
i=1

yi ��(xi�̂
2

N )

�(xi��)[1��(xi��)]

@

@�
�(xi�̂

2

N )

=
1

N

NX
i=1

yi ��(xi�
�)

�(xi��)[1��(xi��)]

@

@�
�(xi�

�) +HN (~�
2

N)[�̂ � ��] (8)
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where ~�2N is on the line segment between �̂2N and �� and

HN (�) =
1

N

NX
i=1

�@�(xi�)=@� @�(xi�)=@�0 + [yi � �(xi�)]@
2�(xi�)=@�@�

0

�(xi��)[1��(xi��)]
:

(9)

By the uniform Strong Law of Large Numbers, we have that kHN(�)�H(�)k!
0 with probability 1 where

H(�) = E

��@�(x�)=@� @�(x�)=@�0 + [y � �(x�)]@2�(x�)=@�@�0

�(x��)[1��(x��)]

�
: (10)

Since ~�2N ! �� with probability 1, it follows that HN (~�
2

N )! H(��) with prob-
ability 1. Using the law of iterated expectations we can show that the second

term in the above expectation is zero when � = �� so that

H(��) = E

��@�(x��)=@� @�(x��)=@�0
�(x��)[1��(x��)]

�
: (11)

The Central Limit Theorem implies that

1p
N

NX
i=1

yi �	(xij��)
	(xij��)[1�	(xij��)]

@

@�
	(xij��) =) N(0;I(��)); (12)

where it is easy to see that I(��) = �H(��). Combining all results in equations
(8); : : : ; (12) we see that the asymptotic distribution of the FGLS estimator is
given by:
p
N (�̂2N � ��) =) N

�
0; [�H(��)]�1I(��)[�H(��)]�1

�
= N

�
0;I�1(��)

�
: (13)

Thus the asymptotic covariance matrix of the FGLS estimator is the inverse of

the information matrix (see equation 6), so it is asymptotically e�cient.

Now we need to show that if we computed the FGLS estimator using the
(inverse of) the estimated conditional variance �̂2(x) = �(x�̂1N)[1 � �(x�̂1N)]

instead of the true conditional variance as weights, the asymptotic distribution
is still the same as that given in (13) above. We do this using the same logic as
for the general derivation of the \`Amemiya correction", Taylor expanding the

FGLS FOC in both variables �̂1N and �̂2N about their limiting value ��. That is,
if we de�ne the function FN (�; �) by

FN (�; �) =
1

N

NX
i=1

yi � �(xi�)

�(xi�)[1��(xi�)]

@

@�
�(xi�) (14)

then we have the following joint Taylor series expansion for FN (�̂
1

N ; �̂
2

N ) about

FN (�
�; ��)

FN (�̂
1

N ; �̂
2

N ) = FN (�
�; ��)+

@

@�
FN(~�

1

N ;
~�2N )(�̂

1

N � ��) +
@

@�
FN(~�

1

N ;
~�2N )(�̂

2

N � ��)

(15)
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We know that the NLS estimator is asymptotically normal, so
p
N [�̂1N � ��] =

Op(1), i.e. it is bounded in probability. Thus, the FGLS estimator that uses

estimated conditional variance as weights will have the same asymptotic distri-
bution as the (infeasible) FGLS estimator that of the true conditional variance
as weights if we can show that with probability 1 we have:

@

@�
FN(~�

1

N ;
~�2N ) ! 0

@

@�
FN(~�

1

N ;
~�2N ) ! H(��)

But this follows from the USLLN and the consistency of �̂1N and �̂2N .

Question 8 Figure 3 presents a comparison of the true choice probability

and nonparametric estimates of this probability using both kernel and series
estimators from the program kernel.gpr.

Figure 3: True vs. Nonparametric Estimates of Choice Probabilities

The series estimator seems to provide a better estimator of the true choice
probability than the kernel density estimator in this case. The series estimator
is just the predicted ŷi value from a simple OLS regression of the fyig on a

constant and the �rst 3 powers of xi:

yi = �0 + �1xi + �2x
2

i + �3x
3

i + �i

and the kernel estimator is the standard Nadaraya-Watson estimator

b	(x) = PN

i=1Kh (xi � x) yiPN

i=1Kh (xi � x)
;
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where Kh (xi � x) = 1

h
K
�
xi�x
h

�
and K (�) is de�ned to be a Gaussian den-

sity function. For the choice of a bandwidth parameter, h; a rule of thumb is

used: bh = c � std(x) � n� 1

5 ; with c 2 [0:5; 2:5]: In this case the automatically

chosen bandwith turned out to be ĥ = :3037. The series estimator is much
faster to compute than the kernel estimator, since the above summations must

be carried out for each of the N = 3000 observations in the sample in order
to plot the estimated choice probability for each observation. Comparing the

�t of the parametric and nonparametric models in �gures 1 and 2, we see that
even though the logit and probit models are \parametric", they have su�cient

exibility to enable them to provide a better �t than either the kernel density

or series estimators. This conclusion is obviously speci�c to this example where
the true conditional choice probability was generated by a probit model, and

as we saw from �gure 1, one can adjust the parameters to make the predicted
probabilities of the logit and probit models quite close to each other.

Figure 4 plots the estimated choice probabilities produced by both the probit
and logit maximum likelihood estimates and the kernel and series nonparametric

estimates. We see that except for the \hump" in the kernel density estimate, all
the estimates are very close to each other. It would appear to be quite di�cult to

say which estimate was the \correct" one: instead we conclude that 4 di�erent
ways of estimating the conditional choice probability give approximately the
same results.

Figure 4: True vs. Nonparametric Estimates of Choice Probabilities
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