
Solutions to Problem Set 0
Economics 551, Yale University

Woocheol Kim and John Rust

Question 1 We are asked to compute maximum likelihood estimates of the
parameter vector

�
�; �2; �; �2

�
; in the model given by:

yi = exp
�
�0 + �1xi + �2x

2
i + �3x

4
i

�
+ "i (1)

where we are instructed to believe that (yi; xi) are IID draws from xi � N
�
�; �2

�
and "i � N

�
0; �2

�
. Actually you were mislead: the errors �i are heteroscedastic,

so conditional on xi we have ~�i � N(0; �2(xi)) where �
2(x) = expf�4� :2x2g.

So you will be estimating a misspeci�ed model, and later in Econ 551 we will

discuss test statistics which are capable of detecting this misspeci�cation. In the
meantime your job is to calculate the MLE's of the parameters,

�
�; �2; �; �2

�
.

The �rst step is to write down the likelihood function LN (�) for the data,

f(yi; xi)gNi=1
. In general \brute force" maximization of LN (�) may not be a

good idea: it might be better to try a \divide and conquer" strategy. Note that
the the joint density of (y; x), f(y; xj�), is a product of a conditional likelihood

of y given x, g(yjx; �; �2), times the marginal density of x, h(xj�; �2). It is
easy to see that this factorization or separability in the joint likelihood enables
us to compute the MLEs for the (�; �2) parameters and the (�; �2) parameters

independently. It also implies a block diagonality property which enable us to
show that the asymptotic distributions of these parameters are independent.

LN (�) =
1

N

NX
i=1

ln f
�
yi; xij

�
�; �2; �; �2

��

=
1

N

NX
i=1

ln g
�
yijxi�; �2

�
+

1

N

NX
i=1

lnh
�
xj�; �2

�

=

(
�1

2
ln�2 � 1

2N�2

nX
i=1

[yi � exp (Xi�)]
2

)

+

(
�1

2
ln �2 � 1

2N�2

nX
i=1

[xi � �]
2

)
� 1

2
ln(2�)

= LcN (�; �
2) + LmN (�; �

2);

where LcN denotes the conditional likelihood of the fyig's given the fxig's,
LmN denotes the marginal likelihood of the fxig's, Xi =

�
1; xi; x

2
i ; x

3
i

�
and

� = (�0; �1; �2; �3)
0
. The separability of parameters in the third and forth

equation allows us to break the estimation problem into two subproblems, which
ordinarily makes the programming considerably easier and computations con-
siderably faster:
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(1) calculate the MLE's for
�
�; �2

�
from the conditional likelihood LcN (�; �

2):

max
(�; �2)

LcN (�; �
2) = �1

2
ln�2 � 1

N

NX
i=1

[yi � exp (Xi�)]
2

2�2
; (2)

with FOC's

@LcN
@�

(�; �2) =
1

N�2

NX
i=1

[yi � exp (Xi�)] exp (Xi�)X
0
i = 0

@LcN
@�2

(�; �2) =
�1
2�2

+
1

2N�4

NX
i=1

[yi � exp (Xi�)]
2
= 0;

Note that there is further separability in this �rst subproblem: the FOC

for � is the same as the FOC for nonlinear least squares (NLS) estimation
of � in equation (2) above, ignoring �2 since it doesn't a�ect the solution

for �̂. Once we have computed the NLS estimate of �̂, we use the second
equation to compute �̂2 as the sample variance of the estimated NLS

residuals.

(2) calculate the MLE's for
�
�; �2

�
from the marginal likelihood

max
( �; �2)

LmN (�; �
2) � 1

2
ln �2 � 1

2N�2

NX
i=1

[xi � �]
2
; (3)

with FOC's:

@

@�
LmN (�; �

2) =
1

N�2

nX
i=1

[xi � �] = 0

@

@�
LmN (�; �

2) = � 1

2�2
+

1

2N�4

nX
i=1

[xi � �]
2
= 0

respectively. Using attached Gauss code nlreg.gpr for computing NLS
estimates (the sum of squared errors, derivatives and hessian are coded

in the eval.g procedure) we are able to numerically solve for a vector b�
that sets the FOC for � given in equation (2) above to zero. There are
closed-form expressions for the MLEs for the remaining parameters:

b�2 =
1

N

NX
i=1

h
yi � exp

�
Xi�̂

�i2
;

b� =
1

N

NX
i=1

xi

b�2 =
1

N

NX
i=1

[xi � b�]2 :
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Table 1: Maximum Likelihood Estimates of � using data1.asc

Parameter �0 �1 �2 �3 �2 � �2

True Value �3:000 2:000 �4:000 �0:010 0:015 0:000 1:000

MLE �3:259 2:228 �2:571 �0:971 0:015 �0:047 0:974
Std. Dev. 0:194 0:809 0:836 0:304 :00055 0:025 0:036

Figures 1 and 2 below plot the true and estimated regression functions for this

problem. Figure 1 plots the data points also: we see that both the true and
estimated regression functions are generally quite close to each other and both

go through the middle of the \data cloud". However we see that the MLE gives
a substantially downward biased estimate of ��3 and this causes the estimated
regression function to make big divergences from the true regression function at

extreme high and low values of x, say jxj > 4. However since there are very few
high or low values of x in the sample, the NLS and MLE are not able to \penal-

ize" this divergence: the MLE sets �̂3 = �:97 since it helps �t the data around
x = 0 where most of the data points are. Figure 2 provides a blow up of Figure

1 without the data points to show you how the estimated regression function
diverges from the truth near x = 0. Overall, despite the misspeci�cation of the
heteroscedasticity, the MLE and NLS estimators seem to do a pretty good job

of uncovering the true regression function, at least for those x's where we have
su�cient data. Note that the data plot indicates heteroscedasticity, since the

variance of the data around the regression function is bigger in the middle of
the graph (near x = 0) than at large positive or negative values of x.

Figure 1: Plot of data1.asc and true and estimated regression functions

3



Figure 2: Blow up of true and estimated regression functions

Since the true model used to generate data1.asc has heteroscedastic and not

homoscedastic error terms f�ig as assumed here, it is easy to show that the
MLE �̂2 of the misspeci�ed model converges to the expectation of �2(x) =
expf�4� :2x2g. We can calculate Ef�2(~x)g as follows:

Ef�2(x)g =
1p
2�

Z +1

�1

expf�4� :2x2g expf�x2

2
gdx

=
expf�4gp

1:4

p
1:4p
2�

Z +1

�1

expf�
p
1:4x2

2
gdx

=
expf�4gp

1:4
= :015479540:

We leave it to you to show that even though the model is misspeci�ed, the

MLE �̂2 converges to Ef�2(~x)g as N ! 1. Indeed in this case we �nd that
�̂2 = 0:015, which happens to be almost exactly equal to the \true" value.

Recall that the asymptotic distribution of the standardized MLE estimator is
given by: p

N
�b� � ��

�
=)

d

N
�
0;H (��)

�1 I (��)H (��)
�1
�
; (4)

whereH (��) is the Hessian and I (��) is the information matrix (both evaluated
at ��). However the likelihood is misspeci�ed in this case (due to heteroscedas-

ticity), and it is easy to verify that the equality of I (��) = �H (��) does not
hold, so the correct asymptotic covariance matrix is given by the White \mis-

speci�cation consistent" formula in equation (4) rather than by the inverse of
the information matrix I (��) : For example, consider the (�; �) block of I(��),
or I��(��):

I��(��) = E

�
�2(x) expfX��gXX 0

�4

�
6= �E

�
�expf2X��gXX 0

�2

�
= �H��(�

�)
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We see that a su�cient condition for the two expressions above to equal each
other is �2(x) = �2 for all x, i.e. for the model to be homoscedastic as you were

asked to assume. The failure of this equality can be a basis for a speci�cation
test statistic that can detect model misspeci�cation which we will discuss in
more detail below. Note that even despite the misspeci�cation, the separability

property implies that the Hessian is a block diagonal matrix:

E

2
4 @2 ln g(yjx; (�; �2))

@(�;�2)@(�;�2)0
0

0
@2 lnh(x; ( �; �2))
@(�;�2)@(�;�2)0

3
5

=

2
664

1
�2
E (ZiXi) 0 0 0

0 � 1
2�4

0 0

0 0 � 1
�2

0

0 0 0 � 1
2�4

3
775 ;

where Zi � [yi � 2 exp (Xi�)] exp (Xi�)X
0
i. It is also easy to verify that de-

spite the misspeci�cation of the heteroscedasicity, the information matrix I(��)
is still block diagonal. Block diagonality of I(��) and H(��) implies that the

covariance matrix of
p
N (�̂ � ��) is block diagonal. One can see further block

diagonality between � and �2 and between � and �2. This block diagonality is

not just a consequence of the separability in both the marginal and conditional
likelihood in the parameters describing the mean or conditional mean (� and �,

respectively) and the variance parameters (�2 and �2, respectively). You should
verify through direct calculation that this block diagonality is a result of the
symmetry of the normal distribution, which implies that Ef�3g = 0, where the

conditional distribution of � = (y� expfX�g) given X is N(0; �2(x)), and simi-
larly, the distribution of � = (x���) � N(0; �2), which implies that Ef�kg = 0

for any positive odd integer k. If the normal distribution were not symmetric
the block diagonality property wouldn't hold.

Using the block diagonality property, it is easy to compute the standard
errors of the full parameter vector, �̂. The covariance matrix of �̂ is given by

1=N times the upper (�; �) block of H(��)�1I(��)H(��)�1 and it is easy to
verify that this is the same as the covariance matrix for the nonlinear least

squares estimator for �� (which is also numerically identical to the MLE) that
is output from the nlreg.gpr program. By working with equation (4), you can
show that the estimated variance of �2 is given by var(�̂2) = [�̂4� �̂4]=N where

�̂4 is the sample analog of the fourth central moment of ~X:

�̂r =
1

N

NX
i=1

(xi � �̂)4:

There is a similar formula for the estimated variance of �̂2. We have var(�̂2) =

1:948=1500, so the estimated standard error of �̂2 is 0:036. The estimated stan-
dard error of �̂2 is std(�̂2) = 0:0005499.
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Question 2. If the model is correctly speci�ed, we know that the information
equality will hold which implies that:

H (��)
�1 I (��)H (��)

�1
= I�1 (��) : (5)

We compare White's misspeci�cation consistent estimate to the inverse of in-
formation:

bH �b�ML

��1 bI �b�ML

� bH �b�ML

��1

=

2
664

0:0374 �0:0872 0:0255 0:0157

�0:0872 0:6543 �0:5643 �0:2215
0:0255 �0:5643 0:6998 0:2518

0:0157 �0:2215 0:2518 0:0923

3
775

bI�1
�b�ML

�
=

2
664

114:9 �254:7 9:0 95:8
�254:7 2155:5 �2045:8 �810:5
9:0 �2045:8 3765:1 6:2
95:8 �810:5 6:2 1721:5

3
775 ;

where all the estimates are given from the results of eval.g. Following White

(\MaximumLikelihood Estimation of Misspeci�ed Models"Econometrica 1982)
we can construct a formal hypothesis test statistic using the di�erence between

the estimates of the upper diagonal elements of H(��) and the corresponding
elements of I(��). This statistic should be small if the null hypothesis of correct
speci�cation is true (since �H(��) = I(��) in that case), and large if the model

is misspeci�ed (since it is not necessarily true that �H(��) = I(��) is the
model is misspeci�ed). The large di�erence in the two di�erence estimates of

the covariance matrix for �̂ suggests that �H(��) and I(��) are di�erent, and
hence that the model is misspeci�ed. However we did not actually compute the

actual test statistic to see at what level of signi�cance null would actually be
rejected (i.e. to compute the marginal sign�cance level of the test statistic) since
we didn't expect you to know about this particular speci�cation test statistic

at this stage of the course.

Question 3. If the true model were log-linear , i.e. if

yi = expfXi�g expf�ig

where �i � N(0; �2), then it is easy to see that the fyig are conditionally

lognormally distributed so it is valid to take log transformation and estimate
(�; �2) by OLS:

ln(yi) = Xi� + �i

. It would not di�cult to show that the OLS estimates of the log-linearized
model are actually the maximum likelihood estimates of the original lognormal

speci�cation (make sure you understand this by writing down the lognormal
likelihood function and verifying what we just said is true)! However the error

term for the speci�cation of Model I in question 1 is additive and not multi-
plicative, and so the log transformation is generally not valid. Indeed, there is
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a positive probability of observing negative realizations of yi, something that
has zero probability under the lognormal speci�cation. Thus, to even do OLS

one must screen out all (yi; xi) pairs where yi is negative, something that is
generally not a good idea. When one does OLS on this nonrandomly selected
subsample, it is not surprising that the estimates are highly biased:

Table 2: Comparison of MLE and OLS estimates of �

Parameter b�0 b�1 b�2 b�3
True values �3:000 2:000 �4:000 �0:010
Model I (MLE) �3:259 2:228 �2:570 �0:971
Model II (OLS) �2:543 0:118 �0:152 �0:033

We can show analytically why the OLS estimates for Model II will be inconsis-
tent when the true model is Model I with additive normal errors rather than

multiplicative lognormal errors. After screening out negative y's, the OLS esti-
mator solves:

b�OLS = argmin
�2R4

1

N

NX
i=1

[ln(yi)�Xi�]
2
I fyi > 0g : (6)

As N ! 1, we can show that the right hand side of the above equation con-
verges uniformly to

E
n
[ln(y)�X�]

2
Ify > 0g

o
:

In general the � that minimizes the expression above is not the same as the �
that minimizes

Ef[y � exp(X�)]
2g;

which is the true �� when the conditional mean function expfX�g is correctly
speci�ed. Therefore, we conclude that the probability limits for b�'s from the

two di�erent models( Model I and Model II) are not the same.

Question 4 Figure 3 below plots the squared residuals �̂2i = (yi�expfXi�̂g)2
from the MLE/NLS estimation results in Question 1. The �gure also plots the

results of the following nonlinear regression:

�̂2i = expfXi
g+ �i; (7)

where as before Xi = (1; xi; x
2
i ; x

3
i ) and 
 is a conformable 4 � 1 parameter

vector. We see substantial evidence of heteroscedasticity, con�rming our earlier
visual impression in looking at the data in �gure 1. The estimated conditional
variance function looks concave and symmetric w.r.t. y-axis, almost like a nor-

mal density. Table 3 summarizes the estimation results. According to table
3, the regression coe�cient for the quadratic term is signi�cant and seems to

dominate the form of the heteroscedasticity plotted in �gure 3. Figure 4 does a
blow up, plotting the estimated and true conditional variance functions.
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Figure 3: Estimated Squared Residuals and True vs. Estimated �2(x) Functions

Figure 4: Comparison of True, NLS, and OLS Estimates of �2(x) Functions

Table 3: NLS Estimates of 
 using squared residuals from �rst stage as data

Parameter 
0 
1 
2 
3
True Value �4:0 0:0 �0:2 0:0
NLS estimate �4:022 0:006 �0:240 0:002

Standard Deviation 0:050 0:069 0:039 0:025

Some students may have used simple OLS, estimating a speci�cation like

�̂2i = Xi
 + �i (8)
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rather than the exponential speci�cation in equation (7). This is also OK since
we weren't speci�c about what type of tool to use to check for heteroscedastic-

ity. The only disadvantage of the OLS speci�cation in (8) over the exponential
speci�cation in (7) is that the latter doesn't guarantee that �̂2(x) � 0 for all
x. However we �nd that even in the linear speci�cation most of the predicted

�̂2(xi) values are indeed positive. Figure 4 compares the predicted values of
�2(x) using both speci�cations, and we can see that the negative predicted val-

ues of �2(x) occur at the extreme high and low values of the observed x's.

Question 5. Now we consider full information maximum likelihood (FIML)

estimation of Model III, which is the same as model I, but with an exponential
speci�cation for conditional heteroscedasticity. Thus the joint density for (y; x)

is given by:
yi = exp

�
�0 + �1xi + �2x

2
i + �3x

3
i

�
+ "i (9)

where "i � N
�
0; exp

�

0 + 
1xi + 
2x

2
i

��
, and xi � N

�
�; �2

�
. We want to con-

sider simultaneous or \full informationmaximum likelihood" (FIML) estimation
of the parameter vector � = (�; 
; �; �2). The log-likelihood function LN (�) is

given by:

LN(�) =
1

N

NX
i=1

ln f (yi; xi; (�; 
))

=
1

N

NX
i=1

ln g (yjx; (�; 
)) + 1

N

NX
i=1

lnh
�
xj(�; �2)

�

=

(
�1
2N

NX
i=1

Xi
 �
1

2N

NX
i=1

[yi � exp (Xi�)]
2

exp (Xi
)

)

+

(
�N

2
ln �2 � 1

2�2

NX
i=1

[xi � �]
2

)
� ln(2�)

� LcN(�; 
) + LmN(�; �
2):

where Xi =
�
1; xi; x

2
i ; x

3
i

�
and 
 = (
0; 
1; 
2; 
3)

0
: The gradients of LN (�) with

respect to ( �; 
) are:

@

@�
LcN (�; 
) = � 1

N

NX
i=1

[yi � exp (Xi�)] exp (Xi�)X
0
i

exp (Xi
)

@

@

LcN (�; 
) = � 1

2N

NX
i=1

X 0
i +

1

2N

NX
i=1

[yi � exp (Xi�)]
2

exp (Xi
)
X 0
i:

The gradients for LN with respect to
�
�; �2

�
are the same as in Question 1.

The hessian matrix for LcN with respect to ( �; 
) is given by:

@2

@�@�0
LcN (�; 
) =

1

N

NX
i=1

[yi � 2 exp (Xi�)] expfXi(� � 
)gX 0
iXi
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@2

@�
0
LcN (�; 
) = � 1

N

NX
i=1

[yi � exp(Xi�)] expfXi(� � 
)gX 0
iXi

@2

@
@
0
LcN (�; 
) = � 1

N

NX
i=1

[yi � exp (Xi�)]
2

2 exp (Xi
)
X 0
iXi:

It is easy to verify (using the law of iterated expectations) that when (�; 
) =

(��; 
�), the expectation of @2LcN (�; 
)=@�@

0 = 0, i.e. we have block diagonal-

ity between the � and 
 parameters (assuming the model is correctly speci�ed).
Similarly one can verify that the (�; 
) block of the information matrix I is zero.

This implies that the asymptotic covariance between the maximum likelihood
estimates �̂ and 
̂ is zero, so they are asymptotically independently distributed.

This independence suggests the following 2-step procedure to obtain initial con-
sistent estimates of (��; 
�): 1) estimate � by NLS (see attached Gauss code
eval nls.g and shell program nlreg.gpr), 2) use the estimated squared resid-

uals �2i to estimate the 
 parameters by NLS using the exponential speci�cation
in equation (7). We did this using the same eval nls.g procedure we used for

step 1, with a slight modi�cation of nlreg.gpr to substitute f�̂2i g instead of
fyig as the dependent variable in the regression.

However we can do even better than this. We can do a 3rd step, weighted NLS
or feasible generalized least squares (FGLS) estimation of � using the estimated

conditional variance �̂2(xi) = expfXi
̂g from step 2 as weights. The procedure
eval fgls.g provides the code to do the FGLS estimation. Due to the block

diagonality property, it is not hard to show that the FGLS estimates of ��

have the same asymptotic distribution as the MLE: i.e. FGLS is asymptotically
e�cient in this case. To see this, note that the gradient and hessian of LcN (�; 
)

with respect to � is the same as the gradient and hessian for the following FGLS
criterion function:

�̂fgls = argmax

�2R4

� 1

N

NX
i=1

[yi � expfXi�g]2
expfXi
̂g

(10)

We know that the block diagonality property implies that as long as 
̂ is any
consistent estimator of 
� that a solution �̂ to the FOC @LcN (�; 
̂)=@� = 0

is asymptotically e�cient. But since this is also the FOC for the FGLS esti-
mator (10), it follows that �̂fgls is also an asymptotically e�cient estimator,

i.e. it attains not only the Chamberlain e�ciency bound for condition moment

restrictions, but the Cramer-Rao lower bound as well. It is not hard to show
that these two bounds coincide in this case: make sure you understand this by
verifying the equality yourself.

It is not apparent that the 
̂ obtained from the 4th step of our estimation

procedure which regresses the squared residuals from the FGLS estimation in
step 3 on expfXi
g will be asymptotically e�cient since the �rst order con-

dition for 
 from maximizing LcN (�̂; 
) with respect to 
 does not appear to
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be the same as the FOC for 
 from the nonlinear regression in step 4 of our
suggested estimation procedure. So to get fully e�cient estimates, we can use

(�̂fgls; 
̂fgls) as starting values for direct FIML estimation of the full parame-

ter vector (��; 
�) using LcN (�; 
). The procedure eval fiml.g and the shell
program mle.gpr implement full maximum likelihood estimation of Model III

(note we have also provided the procedure hesschk.g to allow you to compare
numerical and analytically calculated values of the hessian matrix, verifying
that the analytic formulas for the hessian matrix given above are correct). This

full model is rather delicate and we were unable to get it to converge starting
from (�; 
) = 0. However we had no problems with convergence starting from

(�̂fgls; 
̂fgls). Table 4 below compares the FGLS and MLE estimates.

Table 4: Comparison of MLE and FGLS Estimates of Model III

Parameter Truth MLE Std. Error FGLS Std. Error
�0 �3:000 �3:256 0:190 �3:256 0:190
�1 2:000 2:209 0:777 2:200 0:789

�2 �4:000 �2:558 0:819 �2:548 0:833
�3 �0:010 �0:966 0:295 �0:962 0:300


0 �4:000 �4:012 0:044 �4:022 0:050

1 0:000 0:030 0:053 0:006 0:069


2 �0:200 �0:254 0:026 �0:239 0:039

3 0:000 �0:010 0:014 0:002 0:025

We see that the FIML and FGLS estimates of � are very close to each other and

the standard errors are nearly identical, as we would expect from the theoreti-
cal result shown above that the FGLS estimator of � is asymptotically e�cient.
There are more signi�cant di�erences in the FIML and FGLS estimates of 
.

In particular the standard errors of the FGLS estimates are signi�cantly larger
than the FIML estimates of 
, which suggests that the FGLS estimates are not

asymptotically e�cient. Students should be able to verify that this is the case
by deriving analytic formulas for the asymptotic covariance matrix for the MLE

and FGLS estimators of 
.

Question 6 The Nadaraya-Watson estimator is used to provide a nonpara-

metric estimation of y = f (x) + " :

bf(x) = PN

i=1Kh (xi � x) yiPN

i=1
Kh (xi � x)

; (11)

where Kh (xi � x) = 1
h
K
�
xi�x
h

�
and K (�) is de�ned to be a Gaussian den-

sity function. For the choice of a bandwidth parameter, h; a rule of thumb is

used: bh = c � std(x) � n� 1

5 ; with c 2 [0:5; 2:5]: The Gauss program that com-
puted these estimates is kernel.gpr. You should experiment with di�erent
bandwidths, showing that when h is much less than the automatically chosen

value of h = :34 the �tted regression tends to be too wiggly, and too smooth

11



when h is substantially greater than h = 0:34, so in this case the automatically
chosen bandwidth seems like the best compromise. There are more sophisticated

ways to choose bandwidths such as \least squares cross validation" described
in class. The simple rule given above does almost as well and is much simpler
to compute. The kernel.gpr program also includes two types of polynomial

series estimation, ordinary polynomials and nonlinear least squares using the
exponential speci�cation considered in problem 4. Figures 5 and 6 compare

the di�erent estimators for the data in data1.asc and data2.asc, respectively.
We can see that all of the estimators give similar answers in the region of the
x-space where most of the data points lie, i.e. around x = 0.

Figure 5: Nonparametric Estimates of Conditional Expectation Using data1.asc

Figure 6: Nonparametric Estimates of Conditional Mean Expectation Using data2.asc
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Questions 7 and 8 To explore the form of heteroscedasticity, we repeat
the procedures described above, but using the squared residuals from Question

6 as dependent variable. Figure 7, which plots true and estimated conditional
variance functions �̂2(x), shows that similar to the results on estimation of the
conditional expectation in part 6, all of the di�erent parametric and nonpara-

metric estimation methods give similar answers in the region of the x-space
where most of the data points lie, i.e. around x = 0. Note particularly that the

parametric exponential speci�cation of �2(x) and the nonparametric kernel den-
sity estimate of �2(x) are quite close to each other except at extreme values of
x. The same story also emerges in Figure 8, which plots the estimated squared

residuals from the �rst stage NLS estimates of the exponential speci�cation of
the conditional expectation function. We didn't plot estimates of �̂2(x) from

the exponential speci�cation, �2(x) = exp(x
) since we were unable to get the
nlreg.gpr program to converge, even when we started the estimation from the

true values of 
�. This problem is probably a result of the large values chosen for
the 
� components, 
� = (3:0;�4:0;�8:0; 10), especially under the polynomial
speci�cation at extreme values of x where the computer runs into under
ow

or over
ow problems. With some \playing around" one might be able to coax
nlreg.gpr into convergence, but here is a case where the parameter estimates

from the exponential speci�cation seems rather fragile and non-robust.

Figure 7: Nonparametric Estimates of Conditional Variance Using data1.asc
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Figure 8: Nonparametric Estimates of Conditional Variance Using data2.asc
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