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PROBLEM SET 1
Regression Basics

QUESTION 1 This question is designed to help you get a better appreciation for what the
“Projection Theorem” is and how it relates to doing regression in practical situations.

1. Let P (y|X) denote the projection of the vector y onto the subspace X. Define formally
what P (y|X) is.

2. State the Projection Theorem and give a geometrical interpretation of the “orthogonality”
between the projection residual ε = y−P (y|X) and the subspace X onto which y is being
projected.

3. If y ∈ RN and X is the subspace spanned by the N × K matrix of regressors (which I
also denote by X) in a regression, show that

P (y|X) = Xβ̂ = X(X ′X)−1X ′y. (1)

4. Verify by a direct calculation that ε = y−P (y|X) is orthogonal to X for the closed form
expression for P (y|X) given above.

5. Prove that the projection operator satisfies:

P (P (y|X)|X) = P (y|X). (2)

Interpret this condition geometrically, and relate it to the property of idempotence of the
projection matrix X(X ′X)−1X ′.

6. Prove the Law of Iterated Projections i.e. if X and Z are subspaces of a Hilbert space H
and X is a subspace of Z, then for any y ∈ H we have:

P (y|X) = P (P (y|Z)|X). (3)

7. Use the Law of Iterated Projections to show that if you first regress y on the variables in
the matrices X and Z:

y = Xβ1 + Zβ2 + ε (4)

and then you use the fitted ŷ = Xβ̂1 + Zβ̂2 as the dependent variable in the regression

ŷ = Xγ + u (5)

you will get the same numerical estimate of the estimated regression coefficient γ̂ as if
you regressed y on X

y = Xγ + u (6)

However is it generally the case that γ̂ = β̂1? If so, provide a proof, if not, provide a
counterexample where γ̂ 6= β̂1?
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8. Can you state conditions under which you can guarantee that β̂1 = γ̂ in the two regression
in part 4 above?

9. Let H be L2(Ω,F , µ) be the classical L2 space, i.e. the space of all random variables
defined on the probability space (Ω,F , µ) that have finite variance, with inner product
given by

〈X̃, Ỹ 〉 =
∫
X(ω)Y (ω)µ(dω). (7)

Let X denote the subspace spanned by the K random variables (X̃1, . . . , X̃K). Find
a formula for the projection of the random variable ỹ on X, P (ỹ|X), and provide an
interpretation of what it means.

10. Let X be the space of all measurable functions of the random variables (X̃1, . . . , X̃K)
that have finite variance. Show that this is a subspace of L2(Ω,F , µ). Given any ỹ ∈
L2(Ω,F , µ), what is P (ỹ|X)?

11. If instead of L2(Ω,F , µ) we consider the space H = RN , and if X is the space of all
measurable functions of K vectors (X1, . . . , XK) in RN , for any y ∈ RN what is P (y|X)?

QUESTION 2 Consider the “textbook” regression model:

y = Xβ∗ + ε

where X is regarded as a fixed (non-random) N ×K matrix and the error vector ε is a random
vector with a N(0, σ2I) distribution, where 0 is an N × 1 vector of 0’s and I is an N × N
identity matrix, and σ2 > 0 is a constant.

1. Show that OLS is a linear estimator of β∗.

2. Show that an arbitrary linear estimator of β∗ must have the form My for some matrix
M . What are the dimensions of M?

3. What constraints must be placed on M to result in an unbiased estimator of β∗?

4. What is the matrix M for the OLS estimator? Show that for this choice of M the
unbiasedness constraint that you derived above is satisfied.

5. Show that the variance-covariance matrix for a linear estimator of β∗ is given by σ2M ′M .
Does this formula depend on M satisfying the restriction for unbiasedness, or will it hold
even for unbiased estimators of β∗?

6. Derive the covariance matrix for β̂, the OLS estimator.

7. Prove the Gauss Markov Theorem, i.e. show that the OLS estimator is the best, linear,
unbiased estimator of β∗. Hint: for an alternative estimator of the form β̃ = My for
some matrix M , write M as

M = X(x′X)−1X ′ + C (8)

for some matrix C. Figure out what restrictions C needs to satisfy so that β̃ is an unbiased
estimator, and then use this to compute the covariance matrix for β̃ and show that this
exceeds the covariance matrix for β̂ by a positive semi-definite matrix.
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