Spring 2001 John Rust
Economics 551b 37 Hillhouse, Rm. 27

SOLUTIONS TO FINAL EXAM
April 27, 2001

Part I: 15 minutes, 15 points. Answer all questions below:

1. Suppose {X1,..., Xy} are IID draws from a N (i, 0?) distribution (i.e. a normal distribution
with mean p and variance o2). Consider the estimator 6y defined by:

1 X
Oy = (N Z&) (1)
i=1

Which of the following statements are true and which are false?

To answer this, note that the sample mean of the N IID/ observations { X1, ..., Xn}, Xy is
distributed as N(u,02/N). Then 0y is the square of X y and is thus a non-central x? random
variable. Its expectation is

pio) = (12 + %) @)

and its variance is

(3)

var(fn) = B{0% } — [B{ON}]? = B{Xx} — [B{X 3 })* = (202 4M20—2> :

N2 N

Thus it is clear that converges in probability to 42 and is an upward biased estimator of 2.
These conclusions would follow even if the X;’s were not normally distributed. In that case we
would use the continuous mapping theorem and the fact that 0y is a continuous function (z?)
of the sample mean X y, and thus, Oy converges in probability to u? is a simple application of
the continuous mapping theorem. Also since the function z? is convex, Jensen’s inequality can
be used to show that

E{fn} = B{Xn]’} > [B{Xn}]* = 4*. (4)

From these results the following true and false answers should now be obvious:
A. éN is a consistent estimator of o2. False.

Oy is an unbiased estimator of o2. False.

O is a consistent estimator of u. False.

fx is an unbiased estimator of y. False.

is a consistent estimator of u2. True.

fx is an unbiased estimator of 2. False.

fx is an upward biased estimator of u2. True.

ooeo" o3 YU o a W
>
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fn is a downward biased estimator of p?. False.



2. Consider estimation of the linear model

y=XB+e (5)

based on N IID observations {y;, X;} where X; is a K x 1 vector of independent variables and
y; is a 1 X 1 scalar independent variable. Mark each of the following statements as true or false:

A.

B.

The Gauss-Markov Theorem proves that the ordinary least squares estimator (OLS) it
BLUE (Best Linear Unbiased Estimator). True.

The Gauss-Markov Theorem requires that the error term in the regression € be normally
distributed with mean 0 and variance o2. False.

. The Gauss-Markov Theorem does not apply if the true regression function does not equal

XB, ie. if E{y|X} # XB. True.

. The Gauss-Markov Theorem does not apply if there is heteroscedasticity. True.

E. The Gauss-Markov Theorem does not apply if the error term has a non-normal distribu-

. The OLS estimator of the asymptotic covariance matrix for 8, 62(X'X/N)~! (where &

. The OLS estimator of the asymptotic covariance matrix for 8, 62(X'X/N)~! (where &

tion. False.

. The maximum likelihood estimator of 8 is more efficient than the OLS estimator of .

True.

. The OLS estimator of 8 will be unbiased only if the error terms are distributed indepen-

dently of X and have mean 0. False.

. The maximum likelihood estimator of 3 is the same as OLS only in the case where ¢ is

normally distributed. True.

. The OLS estimator will be a consistent estimator of 8 even if the error term ¢ is not

normal and even if there is heteroscedasticity. True.
2

is the sample variance of the estimated residuals ¢; = y; — X;/3) is a consistent estimator
regardless of whether € is normally distributed or not. True.

2

is the sample variance of the estimated residuals ¢; = y; — X;/3) is a consistent estimator
regardless of whether there is heteroscedasticity in e. False.

. If the distribution of € is double exponential, i.e. if f(e) = exp{—|e|/o}/(20), the maxi-

mum likelihood estimator of 3 is the Least Absolute Deviations estimator and it is asymp-
totically efficient relative to the OLS estimator. True.

. The OLS estimator cannot be used if the regression function is misspecified, i.e. if the

true regression function E{y|X} # X . False.

. The OLS estimator will be inconsistent if € and X are correlated. True.



O. The OLS estimator will be inconsistent if the dependent variable y is truncated, i.e. if
the dependent variable is actually determined by the relation

y = max[0, X + €] (6)
True.
P. The OLS estimator is inconsistent if € has a Cauchy distribution, i.e. if the density of €
is given by
1
- - 7
0=~ (7
True.

Q. The 2-stage least squares estimator is a better estimator than the OLS estimator because
it has two stages and is therefore twice as efficient. False.

R. If the set of instrumental variables W and the set of regressors X in the linear model
coincide, then 2 stage least squares estimator of S is the same as the OLS estimator of 3.
True.

Part II: 30 minutes, 30 points. Answer 2 of the following 6 questions below.

QUESTION 1 (Probablhty question) Suppose Z is a K x 1 random vector with a multivariate
N(0, 1) distribution, i.e. E{Z} =0 where 0 is a K x 1 vector of zeros and E{ZZ'} = I where I
is the K x K identity matrix. Let M be a K x K idempotent matrix, i.e. a matrix that satisfies

M?=MsxM=M (8)
Show that o
Z'MZ ~ x*(J) (9)

where x?(J) denotes a chi-squared random variable with J degrees of freedom and J = rank(M).
Hint: Use the fact that M has a singular value decomposition, i.e.

M = XDX' (10)

where X’X = I and D is a diagonal matrix whose diagonal elements are equal to either 1 or 0.

Answer: Let X be the K x K orthonormal matrix in the singular value decompostion of the
idempotent matrix M. Since X'X = I, it follows that W = X'Z is N(0,I). Thus, Z'MZ
can be rewritten as (X'Z)'D(X'Z). Since D is a diagonal matrix with J 1’s K — J 0’s on
its main diagonal, it follows that (X'Z)'D(X'Z) = W'DW algebraically the sum of J IDD
N(0,1) random variables and thus has a x?(J) distribution. That is, assuming without loss
of generality that the first J elements of the diagonal of D are 1’s and the remaining K — J
elements are 0’s we have

Z'MZ = (X'Z)'D(X'Z) =W'DW =W, +--- + Wy. (11)
Since the {W;} are IID N(0,1)’s, the result follows.

QUESTION 2 (Markov Processes)



A. (10%) Are Markov processes of any use in econometrics? Describe some examples of how
Markov processes are used in econometrics such as providing models of serially dependent
data, as a framework for establishing convergence of estimators and proving laws of large
numbers, central limit theorems, etc. and as computational tool for doing simulations.

B. (10%) What is a random walk? Is a random walk always a Markov process? If not,
provide a counter-example.

C. (40%) What is the ergodic or invariant distribution of a Markov process? Do all Markov
processes have invariant distributions? If not, provide a counterexample of a Markov
process that doesn’t have an invariant distribution. Can a Markov process have more
than 1 invariant distribution? If so, give an example.

D. (40%) Consider the discrete Markov process {X;} = {1, 2,3} with transition probability

P{Xpn=1X,=1} = - P{Xp=2X=1 =~ P{Xy1=3X,=1}=

| =l =

1
6
1

P{Xt—l—l = 1‘Xt = 2} = P{Xt+1 = 3‘Xt = 2} = P{Xt+1 = 2|Xt = 3} =

N+

4

Does this process have an invariant distribution? If so, find all of them.
ANSWERS:

A. Markov processes play a major role in econometrics, since they it provides one of the sim-
plest yet most general frameworks for modeling temporal dependence. Markov processes
are used extensively in time series econometrics, since there are laws of large numbers
and central limit theorems that apply to very general classes of Markov processes that
satisfy a “geometric ergodicity” condition. Markov processes are also used extensively in
Gibbs Sampling, which is a technique for simulating draws from a posterior distribution
in econometric models where the posterior has no convenient analytical solution.

B. A random walk {X;} is a special type of Markov process that is represented as
X = X1+ &, (12)

where {¢:} is an IID process that is independent of {X;}. If E{¢;} > 0 the random walk
has positive drift and if E{¢;} < 0 it has negative drift. A random walk is always a Markov
process, since X; 1 is a sufficient statistic for determining the probability distribution of
X}, and previous values {X;_o, X;_3,..., } are irrelevant. If F' is the CDF for ¢;, then the
Markov transition probability for {X;} is given by

Pr{X; <a'|X; 1 =1z} = F(z' — z). (13)

C. If a Markov Process has a transition probabilty P(z'|z), then its invariant distribution IT
is defined by

H@q:/Pwmmu@. (14)

What this equation says is that if X; ~ II(z) (i.e. X is distributed according to the prob-
ability distribution IT), then Xy, is also distributed according to this same probability



distribution. Not all Markov processes have invariant distributions. A random walk does
not have an invariant distribution, i.e. there is no solution to the equation (14) above. To
see this, note in particular that due to the independence between X;_; and ¢; we have

var(Xy) = var(X;—1 + ) = var(X;—1) + var(e;) > var(X;—1), (15)

so that regardless of what distribution X;_; has, it is impossible for X; to have this same
distribution.

D. The transition probability matrix P for this process is given by the following 3 x 3 matrix

1/2 1/3 1/6
P=1|3/4 0 1/4 (16)
0 1 0

The invariant probability is the solution II to the 3 x 3 system of equations

II=1IP (17)
We can write this out as
_ 1 3
m = 5m + jme + 0m3
9 :%W1+07r2+7r3
Ty = %W1+%7F2+07T3 (18)

You can verify the the unique non-zero solution to the above system of equations is
(my,me,m3) = (1/2,1/3,1/6), i.e. the unique invariant distribution is the same as the first
row of P.

QUESTION 3 (Consistency of M-estimator) Consider an M-estimator defined by:
On = 9).
v = argmax Qn (0)

Suppose following two conditions are given
(i) (Identification) For all ¢ > 0

Q") > sup Q(6)

0¢B(6* )

where B(6%,¢) = {6 € R¥|||0 — 6*|| < €}
(ii) (Uniform Convergence)

sup|Qn (6) — Q(68) 5 0.
fco
Prove consistency of the estimator by showing

P (by ¢ B(6,€)) = 0.



ANSWER Uniform convergence in probability can be stated formally as follows: for any § > 0
we have

lim Pr {sup|QN(0) - Q(9)] < (5} = 1. (19)
N—o0 9cO
Now, given any € > 0, define § by
§=Q(6") — sup Q(6) (20)
9¢B(6* )

The identification assumption implies that § > 0. Now, we want to show that for any € > 0 we
have R

lim Pr {on ¢ B(O",0)} =0. (21)
Notice if Oy ¢ B(6*,¢) then we have

Qn(0") — sup Qn(6) <O. (22)
0¢B(6* &)

So it is sufficient to show that uniform convergence implies that
lim PreQn(0*)— sup Qn(08) <0, =0. (23)
N—o00 0¢ B(6* &)

Using the § defined in equation (20) and the definition of uniform convergence in probability
in equation (19), we have

N—oo

lim Pr {sup\QN(O) — Q) < 5/3} =1. (24)
(<)

Thus, for N sufficiently large, the following inequalities will hold with probability arbitrarily
close to 1,

Qn(0") > Q(0%)—4/3

sup Qn(0) < sup Q(6)+4/3 (25)
0¢ B(6* &) 0¢ B(6* )

Combining the above inequalities, it follows that the following inequality will hold with proba-
bility arbitrarily close to 1 for N sufficiently large:

. . 20 ¢
Qn(6")— sup Qn(0) >Q(67)— sup Q) — 3 =3 (26)
6¢B(0* ) 0¢B(6* )
This implies that
1
lim Pr{QN(H*) — sup Qn(0) > —5} =1. (27)
N—o00 0¢ B(0* ) 3
Since § is arbitrary, this implies that
lim Pr {QN(H*) — sup Qn(0) < O} = 0. (28)
N—o00 0¢ B(8* &)



Since the event that Oy ¢ B(6*,¢) is a subset of the event that Q v (6*) —SUPgg (g~ ) AN (0) <0,

it follows that the limit in equation (19) holds, i.e. fy is a consistent estimator of 6*.

QUESTION 4 (Time series question) Suppose {X;} is an ARMA(p,q) process, i.e.
A(L)X; = B(L)e
where A(L) is a qth order lag-polynomial
A(L) = ag + a1 L+ apL? + -+ - + ay L1
and B(L) is a pth order lag-polynomial
B(L) = o+ B1L+ BoL? + - -+ + B, LP
and the lag-operator L* is defined by
LFX, = X s
and {e;} is a white-noise process, F{e;} =0 and (cov(e, e5)= 0 if t # s, = 0% if t = ).
A. (30%) Write down the autocovariance and spectral density functions for this process.

B. (30%) Show that if p = 0 an autoregression of X; on ¢ lags of itself provides a consistent
estimate of (ag/0,...,a4/0). Is the autoregression still consistent if p > 07

C. (40%) Assume that a central limit theorem holds, i.e. the distribution of normalized
sums of {X;} to converge in distribution to a normal random variable. Write down an
expression for the variance of the limiting normal distribution.

ANSWERS

A. The answer to this question is very complicated if you attempt to proceed via direct
calculation (although it can be done), but it much easier if you use the concept of a z-
transform and the covariance generating function G(z) of the scalar process {X;}. The
answer is that spectral density function f(A) for the {X;} process is given by

f) = o=z (29)

provided the characteristic polynomial A(z) = 0 has no roots on the unit circle. The
autocovariances of the {X;} process can then be derived from the spectral density via the
formula

1 qm .
cov (X, Xik) = = 5 /_ FO)eMdn. (30)

Answering this question presumes a basic familiarity with Fourier transform technology.
I repeat the basics of this below.



Given a sequence of real numbers {t;} where k ranges from —oo, ..., 00 the z-transform
G(z) is defined by

Glz)= > " (31)
k=—00

where z is a complex variable satisfying 7—! < |z| < r for some r > 1. The autocovariance
generating function is then just the z-transform of the autocovariance sequence {~}:

o
G(z) = Z Yzt (32)
k=—o0
where v, = cov(Xy, Xypvk) = E{X¢Xi1r}. Thus, if we can find a representation for
G(z), we can pick off the autocovariances -y, as the coefficient of z* of the power series
representation for G(z). Alternatively we can define the spectral density f(X) for the {X;}
process by
w .
FA) = D e ™ (33)
k=—o00
where 1 = v/—1. Note that for by the standard properties of Fourier series, we can uncover
the autocovariance v, by the formula:

=g [ M (34)

This is due to the fact that the sequence of complex valued functions {e***} mapping
[, 7] to the unit circle in the complex plane are an orthogonal sequence under the
complex inner product for complex-valued functions mapping [—m, 7] — C defined by:

m

(ho9) = [ Fg)x, (35)
where g()) is the complex conjugate of g()\). Since the complex conjugate of e*** is e~k

we have . .
(€N kY = / eMe RGN = / M=k g, (36)

—T —T

Clearly if 7 = k then we have
(€ My — / ) = o, (37)
—m

but if j # k we have, using the identity e** = cos(\) + isin(}),
. . . Tr
(M| kY = / cos(A(j — k)) +isin(A(j — k))dX = 0. (38)
—T
since sin(kA) and cos(kA) are periodic functions for any non-zero integer k, their integrals
over the interval [, 7] are zero. Thus, since {e***} is an orthogonal family, v is essen-
tially the Eth regression coefficient if we “regress” the spectral density function against
the sequence of orthonormal basis functions {e***},

) T X L
f)eMdx = / > e MM = 27y (39)
n

j=—o0

(e = [

-



Solving the above equation for 7 results in the Fourier inversion formula in equation (34)
above. Note also that the spectral density is related to the covariance generating function
by the identity

F) =Gle™), (40)
so the problem reduces to finding an expression for the covariance generating function for
an ARMA (p, q) process. Assume that the characteristic polynomial A(z) has no roots on
the unit circle, i.e. there is no complex number z with |z| = 2Z = 1 such that A(z) = 0.
In this case it can be show (see Theorem 3.1.3 of Brockwell and Davis, 1991), that the
ARMA process {X;} has an infinite moving average representation:

Xe= ) vie—j, (41)

j=—o0

where 1); is the jth coefficient in the power series representation of the z-transform of the
{%;} sequence, where the z-transform ¥(z) is given by

TU(z) = B(2)A(2)~L. (42)

However covariance generating function for an infinite MA process (41) can be derived as
follows:

o
Yo = cov(Xppk, Xi) =0 D it (43)
j=-o00
Thus, the autocovariance generating function is given by

o

Gz) = Y wu

k=—00
o0 o0

= a® Y Y v

k=—00j=—00

= o2 l STi > Y hi(F +27)

j=—00 k=1j=—
o (50) (009
j=—00 k=—00

= o2U(2)T(z7)). (44)

However using the fact that ¥(z) = B(z)A(z)~! it follows that

(45)

Substituting z = e~** we obtain

2 B(e)B(e™™) _ 5|B(e™)|?

FO) = G = e = AP

since A(e™) = A(e™) and thus A(e**)A(e~*) = |A(e~™)|? and similarly for B.



B. When ¢ = 0 we can write the ARMA representation for {X;} in autoregressive form:

Xt = %Xt—l + e %Xt_q + @6} (4.7)
@ @ Qo

Since {e;} is serially uncorrelated, and since X;_; depends only on lagged values
(€t—js€t—j—1,---), it follows that cov(es, X¢—;) = 0 so the coefficients ¢ /g and the error
variance (3502 /a3 in the above equation can be consistently estimated by OLS. We cannot
identify all the parameters unless we make an identifying normalization on the variance
of the white noise process such as o? = 1, or normalize 8y = 1. Suppose we make the
latter normalization. Then the variance of the estimated residuals provides a consistent
estimator of 02 /ag, and then dividing the estimated regression coefficient for the jth lag
of X; in the above autoregression by the square root of the estimated variance of the
residuals provides a consistent estimator of a;/ap.

C. Since E{X;} = 0 then under suitable mixing conditions a central limit theorem will hold,
ie.

T
:%fz;ag-j.NaLQ) (48)

where (2 is the long run variance given by

Q= 53 Y (49)

j==o0

where v; = cov(Xy, X¢4;) is the autocovariance at lag j, which can be derived from the
spectral density function computed in part A.

QUESTION 5 (Empirical question) Assume that shoppers always choose only a single brand of
canned tuna fish from the available selection of K alternative brands of tuna fish each time they
go shopping at a supermarket. Assume initially that the (true) probability that the decision-
maker chooses brand £ is the same for everybody and is given by 0}, k = 1,..., K. Marketing
researchers would like to learn more about these choice probabilities, 8* = (67,...,60%) and
spend a great deal of money sampling shoppers’ actual tuna fish choices in order to try to
estimate these probabilities. Suppose the Chicken of the Sea Tuna company undertook a
survey of N shoppers and for each shopper shopping at a particular supermarket with a fixed
set of K brands of tuna fish, recorded the brand b; chosen by shopper i, 2 = 1,..., N. Thus,
b1 = 2 denotes the observation that consumer 1 chose tuna brand 2, and by = K denotes the
observation that consumer 4 chose tuna brand K, etc.

A. (10%) Without doing any estimation, are there any general restrictions that you can place
on the K x 1 parameter vector 6*7

Answer: we must have 7 > 0 and 25{21 07 =1.

B. (10%) Is it reasonable to suppose that 8} is the same for everyone? Describe several factors
that could lead different people to have different probabilities of purchasing different
brands of tuna. If you were a consultant to Chicken of the Sea, what additional data
would you recommend that they collect in order to better predict the probabilities that
consumers buy various brands of tuna? Describe how you would use this data once it was
collected.

10



Answer: no, it is quite unreasonable to assume that everyone has the same purchase
probability. People of different ages, income levels, ethnic backgrounds and so forth are
likely to have different tastes for tuna. Also, Chicken of the Sea is just one of many different
brands of tuna and the prices of the competing brands and observed characteristics of the
competing brands (such as whether the tuna is packed in oil or water, the consistency of
the tuna, and other characteristics) affects the probability a given consumer will choose
Chicken of the Sea. Let the vector of observed characteristics for the K brands be given by
the Lx K matrix Z = (Z1,...,Zk) (i-e. there are L observed characteristics for each of the
K different brands). Let the characteristics of the jth household be denoted by the M x 1
vector X;. Then a model that reflects observed heterogeneity and the competing brand
characteristics would result in the following general form of the conditional probability that
household j will choose brand k from the set of competing tuna brands offered in the store
at time of purchase, Pr(k|X;, Z). An example of a model of consumer choice behavior
that results in a specific functional form for Pr(k|X;, Z) is the multinomial logit model.
This is a model derived from a model of utility maximization where the utility of choosing
brand k is given by u(Xj, Zy,6) + €, where (e1,...,€x) are unobserved factors affecting
household j’s decision, and are assumed to have a Type III extreme value distribution.
In this case, the implied formula for Pr(k| X}, Z) is given by

exp{u(Xj, Zy,0)/o}
Sh—1 exp{u(X;, Zy,0)/c}

where o is the scale parameter in the marginal distribution of €¢;. Thus, given data
(X1,...,Xn) on the characteristics of N consumers, and their choices of tuna (dy,...,dy)
and the observed characteristics Z, we could estimate the parameter vector # by maximum
likelihood using the log-likelihood function Ly (6) given by

Pr(k|X;, Z,0,0) = (50)

N
L (8) = ~ 3 log (Pr(d;|X;, Z,6,0)) (51)
N
7j=1

and the estimated model could be used to predict how the probabilities of purchasing
different brands of tuna (and the predicted aggregate market shares) change in response
to changes in prices or observed characteristics of the different brands of tuna.

. (20%) Using the observations {b1,...,bx} on the observed brand choices of the sample of
N shoppers, write down an estimator for * (under the assumption that the “true” brand
choice probabilities * are the same for everyone). Is your estimator unbiased?

Answer: In the simpler case where there are no characteristics X; or product attributes
7, the the choice probability can be represented by a single parameter, Pr(k| X}, Z, §) = 6.
These 6 are also the observed market shares since everyone is homogeneous. The market
share for brand k can be estimated in this sample as the fraction of the N people who
choose brand k,

1 N
=1

Thus if s is the observed market share for product %, then we can estimate 85 by 0, = sg.

11



D. (20%) What is the maximum likelihood estimator of *? Is the maximum likelihood

estimator unbiased?
Answer: The likelihood function in this case can be written as
1 N K
Ly(0) = ¥ 3> I{b; = k}log(6y). (53)
j=1k=1

subject to the constraint that 1 = 6; + --- + 0. Introducing a lagrange multiplier A for
this constraint, the lagrangian for the likelihood function is

K
L Z Z I{b; = k}log (k) + A(1 Z (54)
] 1k=1 k=1
The first order conditions are
1 XL 1{b; =k}
— —— —A=0. 55
DI (55)

Solving this for ék and substituting this into the constraint, we can solve for A, obtaining
A = 1. The resulting estimator is the same as the intuitive market share estimator given
above, i.e.

0 = sy, (56)

If the data {bi,...,bn} are really IID and the “representative consumer” model is really
correct, then 6y is an unbiased estimator of 6} since

By} = %gﬂ’{f{bi —k}} =6 (57)

since the random variable I{b; = k} is a bernoulli random variable which equals 1 with
probability #; and 0 with probability 1 — 6;.

. (40%) Suppose Chicken of the Sea Tuna company also collected data on the prices
{p1,...,pK} that the supermarket charged for each of the K different brands of tuna
fish. Suppose someone proposed that the probability of buying brand j was a function of
the prices of all the various brands of tuna, 0;(p1,...,pKx), given by:

exp {B; + ap,}
ZkK:1 exp { Bk + apy}

ej(pl’apK) =

Describe in general terms how to estimate the parameters («, 51, ..,8k). If @ > 0, does
an increase in p; decrease or increase the probability that a shopper would buy brand ;7

Answer: This answer was already discussed in the answer to part B. The model is a
special case of the more general multinomial logit model discussed in the answer to part B.
In this case the implicit utility function only depends on the single characteristic of brand
k, namely its price p; and the other characteristics of the brand are implicitly captured

12



in the brand-specific dummy variable B;. Since now consumer-level characteristics enter
the model, the utility function is given by

u(XJ’ Zka 0) = /Bk + apyg (58)

where 6 = (B1,...,BKk,a). If @ > 0 then the utility of brand & increases in the price of the
brand k, an economically counter-intuitive result. This sugggests that the probability of
purchasing brand & is an increasing function of p; and this can be verified by computing

OPr
Opk

(k‘pla"' apKae) = aPI‘(k‘pl,... apKae)[l - Pr(klpla--- apKae)] > 0. (59)

QUESTION 6 (Regression question) Let (y;, z;) be IID observations from a regression model
Yt = BTt + €

where vy, z;, and ¢; are all scalars. Suppose that €; is normally distributed with E{e;|z:} = 0,
but var(e;|z;) = o%|z;|’. Consider the following two estimators for 5*:

B Zt 1Yt
=
Etzl Tt

A2 Zt 1 TtYt
pr =
Y @t

A. (20%) Are these two estimators consistent estimators of 4*? Which estimator is more
efficient when: 1) if we know a priori that 8* = 0, and 2) we don’t know 6*? Explain
your reasoning for full credit.

Answer: Both estimators are consistent estimators of 8*. To see this note that by
dividing the numerator and denominator of 8} and applying the Law of Large Numbers

we obtain .
- E{y} _ B"E{z}
L E{z}  FE{z}
The second estimator is the OLS estimator and it is also a consistent estimator of 3

g Pyl _ B E{z?}
T E{a:Q} E{z?}

=p" (60)

— g~ (61)

When 6* = 0 the Gauss-Markov Theorem applies and the OLS estimator is the best linear
unbiased estimator of #*. It is also the maximum likelihood estimator when the errors
are normally distributed, and so is asymptotically efficient in the class of all (potentlally
nonhnear) regular estimators of 8*. We can derive the asymptotic efficiency of ﬁT relative
to ﬁT through a simple application of the central limit theorem. We have

Z € 7 o?
VT(Br - B*) = ‘TFE;;: - E{$}~N(0, W) (62)

13



where Z ~ N(0,02). Similarly, the asymptotic distribution of the OLS estimator B% is
given by

1 T -
. 7 2t=1 Tt w o?
VT(32 — ) = YL — ~N ([0, -2 . (63)
' Prfiat ¢ Bla} Bz}
where W ~ N (0,02 E{z?}). If the variance of Z is positive we have
var(Z) = E{z’}-E{z}>>0
= E{z?} > E{z}% (64)

This implies that the asymptotic variance of Br} is greater than the asymptotic variance
of B2.
In the case where we don’t know 6 we can repeat the calculations given above, but the

asymptotic distributions of the two estimators will depend on the unknown parameter 6*.
In particular, when 6* # 0 the unconditional variance of ¢; is given by

var(e;) = E{var(e;|z;)} = o2 E{|z|?"}. (65)

This implies that

. N DR Z o? B|z|”
VI3 - ) = fz;il oy E{Zx} ~ N (O’ %) ' o

since with heteroscedasticity, the random variable Z, the asymptotic distribution of
1/NT Y, €, is N(0,02E{|z|?"}) instead of N(0,0?). Similarly we have

N LETZ L€t w *E{®|z|”
2wy _ VT ~t=1 _ ~ Lm}
VT (2 — %) = T 2 @ B{aY) N (0, [E{z2}]2 ) : (67)

In this case, which of the two estimators B} or B% is more efficient depends on the value

of 6*.

. (20%) Write down an asymptotically optimal estimator for 8* if we know the value of 6*
ymp y
a priori.

Answer: If we know 6* we can do maximum likelihood using the conditional density of
1y given z given by

(68)

) 1 —(y — zp)?
f(y',’],‘,ﬂ,g ) = \/2_7TO".Z'|9*/2 €xXp { |.T‘9* } .

The maximum likeihood estimator in this case can be easily shown to be a form of weighted
least squares:

T 2
5 , (yt — x4 8)
= argmin E e 69
6T /BgeR Pt |-Tt|6 ( )

. (20%) Write down an asymptotically optimal estimator for (5*,6*) if we don’t know the
value of 8* a priori.
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Answer: If we don’t know 6* a priori we can still use the likelihood function given in
part B to estimate (3, 0) jointly. The maximum likelihood estimator for 8 can also be cast
as a weighted least squares estimator, but in the case where 8* is not known we replace
0* in formula (69) by 6(f3), where this is the unique solution to

ilogﬂﬂﬂt\) — i (yt - xt/B)Q 10g(|wt|) . (70)
t=1

t=1

The maximum likelihood estimator for @ is then given by 8(37) where Sr is the weighted
least squares estimator given above.

. (20%) Describe the feasible GLS estimator for (5*,6*). Is the feasible GLS estimator
asymptotically efficient?

Answer: The feasible GLS estimator is based on an initial inefficient estimator BT of
B* which is used to construct estimated residuals é; = (y; — a:tBT) and from these an
estimator for 6*. If we could observe the true residuals we could estimate 6* via the
following nonlinear regression of €7 on z;

6% = 0'2|.’13t|0* + Ut (71)
where E{u¢|z;} = 0. This suggests that it should be possible to estimate §* using the
estimated residuals {¢;} as follows

T
Op = argmin Z(ég — o?)z|%)2. (72)
0ER,62>0 1

It can be shown that if the initial estimator BT is v/T-consistent, then the nonlinear least
squares estimator for 8* given above will also be v/T-consistent, and that the following
three step, feasible GLS estimator for 8* will be asymptotically efficient:

T _ 2
7f~ = argmin ) _ M (73)
Ber = |mlfr
. (20%) How would your answers to parts A to D change if you didn’t know the distribution
of ¢; was normal?

Answer: The answer to part A is unchanged. However if we don’t know the form of the
conditional distribution of ¢; given x;, we can’t write down a likelihood function that will
determine the asymptotically optimal estimator for 8*, regardless of whether we know 6*
or not. Thus, there is no immediate answer to parts B and C. In part D we can still do the
same feasible GLS estimator, and while it is possible to show that this is asymptotically
efficient relative to OLS, it is not clear that it is asymptotically optimal. There is a
possibility of doing adaptive estimation, i.e. of using a first stage inefficient estimator of
B* to construct estimated residuals €; and then using these estimated residuals to try to
estimate the conditional density f(e|z) non-parametrically. Then using this nonparamtric
distribution we could do maximum likelihood. Unfortunately the known results for this
sort of adaptive estimation procedure requires that the error term ¢; be independent
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of z;. However if there is heteroscedasticity, then ¢ will not be independent of z; and
adaptive estimation may not be possible. In this case the most efficient possible estimator
can be ascertained by deriving the semi-parametric efficiency bound for the parameter of
interest 3, where the conditional density f(e|z) is treated as a non-parametric “nuisance
parameter”. However this goes far beyond what I expected students to write in the answer
to this exam.

Part IIT (60 minutes, 55 points). Do 1 out of the 4 questions below.

QUESTION 1 (Hypothesis testing) Consider the GMM estimator with IID data, i.e the
observations {y;,z;} are independent and identically distributed using the moment condition
H(0) = E{h(y,Z,0)}, where h is a J x 1 vector of moment conditions and 0 is a K x 1 vector
of parameters to be estimated. Assume that the moment conditions are correctly specified,
i.e. assume there is a unique 6* such that H(6*) = 0. Show that in the overidentified case
(J > K) that the minimized value of the GMM criterion function is asymptotically x? with
J — K degrees of freedom:

NHy(0n)'[On] " Hy(On) = x*(J - K), (74)

where Hy is a J x 1 vector of moment conditions, 6 is a K x 1 vector of parameters, x?(J — K)
is a Chi-squared random variable with J — K degrees of freedom,

On = argmin Hy(0)'[Qn] " Hn (6),
€0

1 N
=1

and Q0 is a consistent estimator of 2 given by
Q = E{h(7,7,0")n(§,%,0")'}.

Hint: Use Taylor series expansions to provide a formula for VN (6y — 6*) from the first order
condition for Oy o K
VHy(On) QN Hy(Oy) =0 (75)

and a Taylor series expansion of Hy(fy) about 6*

Hy(On) = Hy(6%) + VHy (6n) (6 — 6%) (76)
where N
VHN(0) = 3 %y, 21,0) (77)

i=1
is the (J x K) matrix of partial derivatives of the moment conditions Hy(#) with respect to
6 and Oy is a vector each of whose elements are on the line segment joining the corresponding
components of Oy and 6*. Use the above two equations to derive the following formula for
Hn(0n) .
Hy(0n) = MyHy(6%) (78)
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where

My = [I - VHN(éN)[VHN(éN)’Q;VHN(éN)]—1VHN(éN)’Q;V1] . (79)

Show that with probability 1 we have My — M where M is a (J x J) idempotent matrix.
Then using this result, and using the Central Limit Theorem to show that

VNHy(6%)= N(0,9), (80)

and using the probability result from Question 0 of Part II, show that the minimized value
of the GMM criterion function does indeed converge in distribution to a x2(J — K) random
variable as claimed in equation (74).

ANSWER: The hint provides most of the answer. Plugging the Taylor series expansion for
Hny (6n) given in equation (76) into the GMM first order condition given in equation (75) and
solving for (0 — 6*) we obtain

N ~ ~ ~ —1 ~ N
Oy — 0" = — [VHN (O8O VHN (0x)] VHN(0x)Q5 Hy (0. (81)

Substituting the above expression for 6y — 6* back into the Taylor series expansion for H N(é N)
in equation (76) we obtain the representation for Hy(6y) given in equations (78) and (79).
Now we can write the optimized value of the GMM objective function as

Hy(On)' Q") Hy(On) = Hn(0%) MyQy' My Hy (6%)
= Hy(0*)Q 1202 MO 205 My Q2072 Hy (6%) (82)
Now, since Q = E{h(g,%,0*)h(y,Z,0*)'}, it follows from the Central Limit Theorem that
VNH(6%) = N(0,9). (83)

so that
VNQV2Hy(6%) = N(0, 1), (84)

where [ is the J x J identity matrix. Now consider the matrix in the middle of the expansion
of the quadratic form in equation (82). We have

Oy My Q2 72 M0l 2 = Q, (85)
where
Q= [1 - 9—1/2vH(0*)[VH(@*)’Q—1VH(0*)]—1VH(0*)’Q—1/2] : (86)
and where
M = [1 - VH(0")[VH(@"YQ ' VH (")~ 'VH(@" )], (87)

and where VH(6*) = E{0h(y,%,0*)/00'}. Tt is straightfoward to verify that the matrix @ in
equation (86) is symmetric and idempotent. Thus, we have

NHy(On)'[Q3'] Hy (0n) = [QZ)[QZ) = 2'QZ, (88)
where Z ~ N(0,I). By the probability result in Question 1 of Part II, it follows that Z'QZ ~
x2(rank(Q)). However we have rank(Q) = rank(M), and rank(M) < J — K due to the fact

that
MVH(*) =0, (89)
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where 0 denotes a J x K matrix of zeros, as can be verified by multiplying VH (6*) on both
sides of equation (87). However since Q = I — R where R is given by

R= Q7 Y2VH(0*)VH(0*)Q 'VH(9*) ' VH(6*)'Q!/? (90)

and rank(R) < K, it follows that rank(Q)) > J — K. Combining these two inequalities we have
rank(Q) = J — K and we conclude that we have established the result tat

NHy(On)Qy Hy (0n) = X*(J - K). (91)

QUESTION 2 (Consistency of Bayesian posterior) Consider a Bayesian who has observes IID
data (X1,...,Xn), where f(z|0) is the likelihood for a single observation, and p(#) is the prior
density over an unknown finite-dimensional parameter 8 € R¥.

A. (10%) Use Bayes Rule to derive a formula for the posterior density of € given (X1, ..., Xn).
Answer: The posterior is given by

IR f(Xil0)p(6)
FI, - Xw) = JTIY, F(X:|0)p(6)do (82)

B. (20%) Let P(6 € A|X1,...,Xn} be the posterior probability  is in some set A C © given
the first NV observations. Show that this posterior probability satisfies the Law of iterated
expectations:

E{P(GEA|X1,...,XN+1)|X1,...,XN} :P(96A|X1,...,XN).

Answer: The formula for the posterior probability that 8 € A given (X1,..., Xx) is just
the expectation of the indicator function {6 € A} with respect to the posterior density
for 6 given above. That is,

_J1{oe A} I, f(Xi|9)p(9)d9.

PO AXy,..., X 93
(O € AL X0 = 2w T ()0 (%9)
Similarly, we have
N+1 ,
P e AXy,...,Xn,Xny1) = J1{6 € A e, f(Xz|9)p(9)d9. (94)

JTIE £(Xi10)p(6)do

Now, to compute the conditional expectation E {P(6 € A|X1,...,Xn+1)[X1,-.-, XN}
we note that the appropriate density to use is our posterior belief about Xy given
(X1,...,Xn). This conditional density can be derived using the posterior for 6

FXnsilXry o Xn) = [ SNl OlXs, ., Xn)do
SIS £(Xil0)p(6)do

ST, £(Xil0)p(0)do (95)
Thus, E{P(6 € A|X1,..., Xn11)|X1,..., XN} is given by
Jo 1{0 € A}TIY £ (Xil0)p(6)do
/X T fgiop@de 2 CovrlXue XnjdXna. o (96)
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Using the formula for f(Xy1|X1,...,Xn) given in equation (95) we get

/ Jp 116 € AYTINT £(X:l0)p(0)do
XN+1 foV:H f(X;|0)p(6)do
-/ Jo 1{0 € A}ILZY [(Xil0)p(6)d0 [ TLT f(Xil0)p(0)do
xwp S F(Xal0)p(0)dd  [TI, f(X:(0)p(6)do
_ / Jo {0 € A}F (Xn+110) T, £(Xi|0)p(8)dd
XN+41 foil f(X;|0)p(0)do
/ Sxnor T XN4110)dX v 11 1{0 € AYTLY, f(X:]0)p(6)d0
0 JTIX f(Xi|0)p(6)do
_ / {0 € AT, f(Xi|0)p(6)d6
0

JTIL f(Xil6)p(6)do
= P(9€A|X1,...,XN). (97)

f(XNy1| X1, o, XN)dX N1

N+1

dX N1

C. (20%) A martingale is a stochastic process {Z;} that satisfies E{Zt+1|It} = Z;, where
T: denotes the information set at time ¢ and includes knowledge of all past Z;’s up to
time t, Z; D (Z1,...,2Z;). Use the result in part A to show that the process {Z;} where
Zi = P(§ € A|X,...,X;) is a martingale. (We are interested in martingales because the
Martingale Convergence Theorem can be used to show that if 4 is finite-dimensional, then
the posterior distribution converges with probability 1 to a point mass on the true value
of 0 generating the observations {X;}. But you don’t have to know anything about this
to answer this question.)

The Law of the Iterated Expectations argument above is the proof that the {Z;} process,
= P(0 € A|X4,...,X;), is a martingale. That is, if we let Z; = (X1,...,X}), then we

have
E{Zi1|T;} = E{P(0 € A|Xq,...,X+1)| X1,--., X4} (98)

The Law of Iterated Expectations result above establishes that
E{P(0 S A|X1, . ,Xt_|_1)|X1, ... ,Xt} = P(g € A‘Xl, - ,Xt), (99)
from which we conclude that the posterior probability process is a martingale.

. (50%) Suppose that if 6 is restricted to the K-dimensional simplex, 8 = (61, ...,0x) with
0; € (0,1),i=1,...,K,1 =YK, 6, and the distribution of X; given 6 is multinomial
with parameter 6, i.e.

PriXi=k} =0, k=1,... K.

Suppose the prior distribution over 6, p(@) is Dirichlet with parameter o:

Mg + -+ CYK)HQI 1
D(ai)-- I1(041()

where both 6; > 0 and o; > 0, ¢ = 1,..., K. Compute the posterior distribution and
show 1) the posterior is also Dirichlet (i.e. the Dirichlet is a conjugate family), and show
directly that as N — oo that the posterior distribution converges to a point mass on the
true parameter 6 generating the data.

ag—1
HK

p(0) =
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Answer: The Dirichlet-Multinomial combination is a conjugate family of distributions.
That is, if the prior distribution is Dirichlet with prior hyperparameters (a1, ..., ax) and
the data are generated by a multinomial with K mutually exclusive outcomes, then the
posterior distribution after observing N IID draws from the multinomial is also Dirichlet

with parameter (a1 + n1,...,ax + nk) where
N
ng =Y I{X; =k} (100)
=1

By the Law of Large Numbers we have that

% = %i[{Xi =k} — BE{I{X; = k}} = 0. (101)

We prove the consistency of the posterior by showing that for any 8 # 6* we have with proba-
bility 1

Lim 1
Nl—l)noo 08

(P(9*|X1, .., XN)
p(0|X1, aee ,XN)
This implies that the limiting posterior puts infinitely more weight on the event that 8 = 6*
than on any other possible value for 6. Dividing by N and taking limits we have

) — oo (102)

* K K
fim o (7o) 57 (0 L8 g g7 —tog(an)] 3 6 flog0) — Tos(61)-

N—oo N p(9|X1,...,XN) k=1 N =1
(103)
However by the Information Inequality we have
K
3" 6} [log(6}) — log(6))] > 0. (104)
k=1

This result implies that with probability 1

(p(0*|X1,. .. ,XN)>
p(9|X1,... ,XN)

_ 1 p(0*|X1,...,XN))]
= —_— 1
]\Jh—rgoN[Nlog(p(le,...,XN) —oo (105)

since the latter term converges with probability 1 to a positive quantity.

lim 1
i, log

Another way to see the result is to note that if the K x 1 vector 8 has a Dirichlet distribution
with parameter (aq,...,ax) then

~ a :
E{0;} = —+—, (106)
k=1 Ck
and X
var(By) = —— 24k 0% — ) (107)

- (Zszl ak)2 (Eszl ag + 1) .
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Since the posterior distribution is Dirichlet with parameter (a; + n1,...,ax + ng), we can
divide the numerator and denominator of the expression for E{6;|X1,..., Xy} by N and use
the Law of Large Numbers to show that in the limit with probability 1 we have

x aj +n; aj/N +n;/N 05 .
B{O;|Xy ..., Xy} = =i T — 3/ + 5/ g =6 (108)
Y=ok +nr)  Xgmi(ow/N +ni/N) - Yo 6
Via a similar sort of calculation, we can show that the conditional variance var(;|X1,..., Xn}

converges to zero since we have

(o + ) (1 (o + ) — (@5 +15))

(Eszl(ak + nk))2 (Zszl(Oék + nk) + 1)

(/N + i /N) (41 (/N +ni/N) = (/N +ny/N))

- ; (109)
N2 (S s(ow/N + /W) (S (/N + g/ N) +1)

var(éi|X1, cee ,XN) =

and the numerator of the latter expression converges with probability 1 to 0;(1 — 0;) but the
denominator converges to +oc with probability 1.

QUESTION 3 Consider the random utility model:
Ug =v4+¢€, d=1,...,D (110)

where %4 is a decision-maker’s payoff or utility for selecting alternative d from a set containing
D possible alternatives (we assume that the individual only chooses one item). The term vy
is known as the deterministic or strict utility from alternative d and the error term €, is the
random component of utility. In empirical applications v, is often specified as

va = Xaf3 (111)

where X4 is a vector of observed covariates and [ is a vector of coefficients determining the
agent’s utility to be estimated. The interpretation is that X represents a vector of character-
istics of the decision-maker and alternative d that are observable by the econometrician and
€4 represents characteristics of the agent and alternative d that affect the utility of choosing
alternative d which are unobserved by the econometrician. Define the agent’s decision rule
d(e1,..-,€p) by:

6(6) = argmasyc _p [va + &l (112)

i.e. d(e) is the optimal choice for an agent whose unobserved utility components are € =
(€1,--.,€p). Then the agent’s choice probability P{d|X} is given by:

P{d|X} = / {d = 5(e)}f(e| X)de (113)

where X = (X1,...,Xp) is the vector of observed characteristics of the agent and the D al-
ternatives and f(e|X) is the conditional density function of the random components of utility
given the values of observed components X, and I{é(e) = d} is the indicator function given by
I{é(e) = d} = 1if §(¢) = d and 0 otherwise. Note that the integral above is actually a multivari-
ate integral over the D components of € = (e1,...,€p), and simply represents the probability
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that the values of the vector of unobserved utilities € lead the agent to choose alternative d.

Definition: The Social Surplus Function U(v1,...,vp,X) is given by:

U(vl,...,vD,X):E{ max [vd+€d]‘X}:/ max_[vg+eqf (€1, ..., ep|X)de; - - dep
d=1,....D o ep d=1,,D
(114)

=1,..,

The Social Surplus function is the expected maximized utility of the agent.!

A. (50%) Prove the Williams-Daly-Zachary Theorem:

U (..., vp, X) = P{d|X} (115)
Bvd

and discuss its relationship to Roy’s Identity.

Hint: Interchange the differentiation and expectation operations when computing
oU/0dvg:

ou

8—,Ud(lula"'avDaX) = a/avdll"'/eD dznllfj}fD[’Ud+6d]f(61a"'36D|X)d61"'dGD

= // 0/0vy max [vg+ €q|f(e1,...,ep|X)der---dep
o . d=1,...D

and show that

Bug max [va + €] = I{d = d(e)}-
Answer: The hint gives away most of the answer. We simply appeal to the Lebesgue
Dominated Convergence Theorem to justify the interchange of integration and differenti-
ation operators. As long as the distribution of the {e;}’s has a density, the derivative

0/0vq d:I?;a.fD[Ud +eq) = I{d = 6(e) }. (116)

exists almost everywhere with respect to this density and is bounded by 1, so that the
Lebesgue Dominated Convergence Theorem applies. It is easy to see why the partial
derivative of maxg—1, . p[vs+eq] equals the indicator function I{d = d(e)}: if this function
equals 1 then alternative d yields the highest utility and we have

vyt € >vg +egp Vd #£d

Thus, vg + €g = maxgy—1 . p[vy + €] and we have 0/0vgmaxy—1 . p[vg + €4] = 1 when
I{d = é(e)} = 1. However when I{d = d(¢)} = 0, then alternative d is not the utility
maximizing choice, so that maxg—_; _plve + €x] > vqg + €4. It follows that we have
0/0vgmaxg—1,. plvg+e€q) =0 when I{d = é(e)} = 0 so that the identity claimed in (116)

'Tf we think of an economy comsisting of a population of agents each with their own observed vector of
utilities € and f(e|X) is the density function representing the distribution of these “types” in the population,
then U(v1,...,vp, X) represents the indirect or maximized utility of a typical person in the population. This is
the reason U is referred to as a Social Surplus Function.
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holds with probability 1, and so via the Lebesgue Dominated Convergence Theorem we

have
ou 0
8—’1)(1(1]1"”’IUD’X) = a—lvd/61 eDdznll,{.i:)fD[’Ud—l—Ed]f(el,.,_,€D|X)d€1...d6D
0
- / / H{d = 6()} fer,...,ep|X)der - - dep
€1 €D
= P{dX}. (117)
B. (50%) Consider the special case of the random utility model when € = (e1,...,ep) has a

multivariate (Type I) extreme value distribution:

fle|X) = H exp{—eq} exp {—exp{—eq}}. (118)
d=1

Show that the conditional choice probability P{d|X} is given by the multinomial logit
formula:

_ exp{vgq/o}
P{d|X} = S (119)

Hint 1: Use the Williams-Daly-Zachary Theorem, showing that in the case of the extreme
value distribution (118) the Social Surplus function is given by

D
U(vi,...,vp,X) =0y +olog [Z exp{vd/a}] . (120)
d=1

where v = .577216. .. is Euler’s constant.

Hint 2: To derive equation (120) show that the extreme value family is maz-stable: i.e. if
(€1,...,€ep) are IID extreme value random variables, then maxg{ey} also has an extreme
value distribution. Also use the fact that the expectation of a single extreme value random
variable with location parameter o and scale parameter ¢ is given by:

E{e} = /+ooeexp{—e} exp {—exp{—¢€}} de = a + o7, (121)
—o0
and the CDF is given by
F(z|a,0) = P{é¢ < z|a,0} :exp{—exp{@}}. (122)
Hint 3: Let (€1,...,ep) be INID (independent, non-identically distributed) extreme
value random variables with location parameters (aq,...,ap) and common scale param-

eter o. Show that this family is max-stable by proving that max(ey, ..., €ep) is an extreme
value random variable with scale parameter ¢ and location parameter

D
a=olog lz exp{ad/o}] (123)
d=1
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Answer: Once again, the hints are virtually the entire answer to the problem. By hint
1, if the Social Surplus function is given by equation (120) then by the Williams-Daly-
Zachary Theorem we have

P{d|X} = Bi [a'y + olog lz exp{vd/a}H ___exp{va/o} (124)

Vd d=1 25:1 exp{va [0}

Now to show that the Social Surplus function has the form given in equation (120), we
use the fact that if {€;} are independent random variables, we have following formula for
the probability distribution of the random variable maxq—1 . p[vq + €4):

D

Pr {d:nlli)fD[vd—l—ed] < w} —dl;IlPr{vd%—ed <z}. (125)
Now, let €5 have a Type IIl extreme value value distribution with location parameter
ag = 0 and scale parameter ¢ > 0. Then it is easy to see that vy + €4 is also a Type III
extreme value random variate with location parameter v; and scale parameter . That is,
the family of independent Type III extreme distributions is max-stable. Plugging in the
formula for the Type III extreme value distribution from equation (122) into the formula
for the CDF of maxg—1.... p[vq + €4] given above, we find that

Pr{dmaxD[vd—i—ed] < x} :exp{—exp{y}}, (126)

=1,...,

where the location parameter is given by the log-sum formula in equation (123). The form
of the Social Surplus Function in equation (120) then follows from the formula for the
expectation of an extreme value random variate in equation (121), and formula (123) for
the location parameter of the maximum of a collection of independent Type III extreme
random variables, i.e.

D
U(vi,...,vp,X)=FE {d_maxD[vd + ed]} =oy+a=o0y+olog lz exp{vd/a}] . (127)
=1,..., et

QUESTION 4 (Latent Variable Models) The Binary Probit Model can be viewed as a simple
type of latent variable model. There is an underlying linear regression model

z=Xp"+e¢ (128)

but where the dependent variable Z is latent, i.e. it is not observed by the econometrician.
Instead we observe the dependent variable y given by

1 if >0
y‘{Oifégo (129)

1. (5%) Assume that the error term e¢ ~ N(0,02). Show that the scale of $* and the
parameter o2 is not simultaneously identified and therefore without loss of generality
we can normalize 02> = 1 and interpret the estimated 8 coefficients as being the true
coefficients 8* divided by o g

a

B (130)
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Answer: Notice that if A > 0 is an arbitrary positive constant, then if we divide both
sides of equation (128) by A, the probability distribution for the observed dependent
variable has not changed since we have

2>0<:>§>0. (131)

Thus the model with latent variable Z/) is observationally equivalent to the model with
the latent variable Z. If we normalize the variance of € to 1, this is equivalent to dividing
Z by the standard deviation o of the underlying “true” e variable, so that our estimates
of 8 should be interpreted as being estimates of /0.

. (10%) Derive the conditional probability Pr{y = 1| X} in terms of X, 8 and the standard
normal CDF, ® and use this probability to write down the likelihood function for N IID
observations of pairs {(y;, X;)},i=1,...,N.

Answer: We have
Pr{y =1|X,8"} =Pr{Z > 0} =Pr{X* + e >0} =Pr{—e < Xp'} = ®(X%), (132)

where @ is the CDF of a N(0, 1) random variable, and we used the fact that if e ~ N (0, 1)
then —e ~ N(0,1). Using this formula, the likelihood for N observations {y;, X;} is given

by
N

L(B) = [J[®(X:B)]%[1 — ®(X;B)) ¥4, (133)

i=1
. (20%) Show that 8 can be consistently estimated by nonlinear least squares by writing

down the least squares problem and sketching a proof for its consistency.

We observe that y satisfies the following nonlinear regression equation:
y =O(XB") +¢, (134)

where E{¢|X} = 0. To see this, note that conditional on X the residual ¢ takes on two
possible values. If y = 1, which occurs with probability ®(X3*), then £ = 1 — ®(X5*).
If y = 0, which occurs with probability 1 — ®(X3*), then £ = —®(X*). Thus we have
the conditional expectation is given by

E{{IX} = [1 - ®(XB7)]2(XB") — &(XB")[1 — 2(XB7)] = 0. (135)

Thus, since the conditional expectation of y is given by the parametric function ®(X5*)
it follows from the general results on the consistency of nonlinear least squares that the
nonlinear least squares estimator

N
By = argmin Y _[y; — ®(X:B)]? (136)
BERF ;—1

will be a consistent estimator of g*.

. (20%) Derive the asymptotic distribution of the maximum likelihood estimator by pro-
viding an analytical formula for the asymptotic covariance matrix of the MLE estimator

Bn
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Hint: This is the inverse of the information matrix Z. Derive a formula for Z in terms of
®, X and S and possibly other terms.

Answer: We know that if the model is correctly specified and basic regularity condi-
tions hold, that the maximum likelihood estimator, ﬂ%[ , is consistent and asymptotically
normally distributed with

VN[ -8 = N(0,T7), (137)
where 7 is the Information Matriz given by
T = (. log f (4|, 8%) 2 log f (4| X. ). (138)
op op'
In the case of the probit model we have
log f(y| X, B%) = ylog(®(Xp)) + (1 —y) log(1 — ®(Xp)), (139)

and so we have

B o(Xp) (1-2(XB))
where )
HXP) = ¥'(XP) = o exp{~(X)*/2}. (141)
Using this formula it is not hard to see that
]- ]- * !
7 = E{[(I)(Xﬁ*) o <I>(XB*)]] PA(XB)XX }
P*(XBr)XX'
F { l@(m*m = @(Xﬂ*)]] } ‘ (142

. (20%) Derive the asymptotic distribution of the nonlinear least squares estimator and
compare it to the maximum likelihood estimator. Is the nonlinear least squares estimator
asymptotically inefficient?

Answer: The first order condition for the nonlinear least squares estimator B N is given
by:
N
1 R .
0=% > lyi — B(Xifn))d(Xifn) Xi- (143)

i=1

Expanding this first order condition in a Taylor series about 8* we obtain

N
0 = &l BGHGGET)X,
i=1

1

2|

N
Y P (XiBN) X X[ — [y — B(XiBn)|¢ (XiBn) X X[ | (By — B*). (144)
i=1
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where By is a vector each of who coordinates are on the line segment joining the cor-
responding components of Sy and *. Solving the above equation for vV N(5 — %) we
obtain

-1

N
VN(By —B*) = [% Z¢2(Xiﬂ~N)Xin{ Z[yz d(XiBn)|¢ (XiBn) Xi X]

X l Z[%— BY)B(XiB") X (145)

Applying the Central Limit Theorem to the second term in brackets in the above equation
we have

z [yi — ®(X:8")¢(Xif*)Xi] = N(0,9), (146)
where Q is given by
o = B{[[1-8(Xp)P(XE) +[B(XB)P[1 - B(XB)]| $*(XBT)X X'}
= E{[1 - o*(Xp")$A(X)XX'}. (147)

Appealing to the uniform strong law of large numbers, we can show that the other term
in equation (145) converges to the following limiting value with probability 1:

[ Zﬁb (XiBw) XiX] - [y Q)(XiBN)]QéI(XiBN)XiXé] — 2 (148)

=1

where
»=E{g(xp)XX'}. (149)
It follows that the asymptotic distribution of the nonlinear least squares estimator is given
by
VN[By - ] = N(0, =715, (150)
Since the maximum likelihood estimator is an asymptotically efficient estimator and the
nonlinear least squares estimator is a potentially inefficient estimator, we have

T l<y et (151)

To see that the inequality is strict in general, consider the special case where there is a de-
generate distribution with only one possible X vector. Then turning the above inequality
around we want to show that

>3y, (152)

However when the distribution of X is degenerate we have

¢* (X)X X'
7= . 153
(XG5 15)
Similarly we have
2 X,B*)XXI

no-ly = SESXX 154
[1- 97(XF) a0
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However since 1 1

> )
(X)L - @(Xp*)] ~ [1 - @*(Xp*)]
it follows that Z > £Q '3, so that the nonlinear least squares estimator will generally be
strictly asymptotically inefficient in comparison to the maximum likelihood estimator.

(155)

. (25%) Show that the nonlinear least squares estimator of 3 is subject to heteroscedasticity
by deriving an explicit formula for the conditional variance of the error term in the
nonlinear regression formulation of the estimation problem. Can you form a more efficient
estimator by correcting for this heteroscedasticity in a two stage feasible GLS procedure
(i.e. in stage 1 computing an initial consistent, but inefficient estimator of § by ordinary
nonlinear least squares and in stage two using this initial consistent estimator to correct
for the heteroscedasticity and using the stage two estimator of § as the feasible GLS
estimator)? If so, is this feasible GLS procedure asymptotically efficient? If you believe
so, provide a sketch of the derviation of the asymptotic distribution of the feasible GLS
estimator. Otherwise provide a counterexample or a sketch of an argument why you
believe the feasible GLS procedure is asymptotically inefficient relative to the maximum
likelihood estimator.

Answer: There is heteroscedasticity in the nonlinear regression formulation of the probit
estimation problem in (134) since we have

var(§]X) = E{&’|X} = [1 - $(X[")PO(XS") + [B(XS")[1 - B(XB")]. (156)

Now suppose we do an initial first step nonlinear least squares estimation to obtain an
initial v/N-consistent estimator Ay and then use this to construct a second stage weighted
nonlinear least squares problem as follows:

1 & ly; — ®(X,8)]?
39 — argmin — = = = = .
N A e Pe i) + O — e

It turns out that this two stage, feasible GLS estimator has the same asymptotic distri-
bution as maximum likelihood, i.e. it is an asymptotically efficient estimator. It is easiest
to see this result by assuming first that we know the exact form of the heteroscedasticity,
i.e. in the denominator of the second stage we weight the observations by the inverse
of the exact conditional heteroscedasticity givein in equation (156). Then repeating the
Taylor series expansion argument that we used to derive the asymptotic distribution of
the unweighted nonlinear least squares estimator, it is not difficult to show that

5 ¢*(XiBn) X X! [yi — ®(X;Bn)]# (XiBn) Xi X!
VN - [ § E{fs?]\VX} ‘_Z FEX]
y [ 1 Z[yi—@(;cﬁ;];(si(f@ﬁ*)xi | (158)

Once again, appealing to the Central Limit Theorem, we can show that the second term
in equation (158) converges in distribution to

1

- lyi — QXX Xi _
D b 7 NO9). (159)
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where in the GLS case (Q is given by

Q =

el POEBX X }
[1 — &(XB*)2(X %) + [®(XB*)]*[1 — (X *)]]

P*(XBXX'
E{<I>< }

Xp)[1 - e(Xp*)]
= T (160)

Similarly, we can show that the other term in equation (158) converges with probability
1 to the matrix ¥,

[ 1 % ¢ (XiBn)Xi X! — [yi — ®(XiBn)]¢ (XiBn) Xi X!
N =1 E{fz‘Xz}

where we also have ¥ = Z. Thus, the GLS estimator converges in distribution to

— ¥ (161)

VN, - 81 = N@O, 2 ' ) = NO,T 1Y), (162)

so the GLS estimator is asymptotically efficient. To show that the feasible GLS estimator
(i.e. the one using the estimated conditional variance as weights instead of weighting by
the true conditional variance) has this same distribution is a rather tedious exercise in
the properties of uniform convergence and will be omitted.

Final Comment: I note that the GMM efficiency bound for the conditional moment
restriction ) )

H(p*|X) = E{h(y, X, B")|X = X)} (163)
coincides with Z~! when h(7, X, 8) = §— ®(X ). To see this, recall that the GMM bound
for conditional moment restrictions is given by

(2 {vaExe x)veEx)}] (164)
where
and ) o
VH(EX) = B{ 22h(5, X, 681X = X | (166)

In the case where h(g, X, 8) = § — ®(X ) we have
Q(X) = B{E°|X} = [1 - ®(XB")*@(X ") + [@(XB")°[1 — (X)), (167)

that is, Q(X) is just the conditional heteroscedasticity of the residuals in the nonlinear
regression formulation of the probit problem. Also, we have

VH(B*|X) = —p(X %) X. (168)

Plugging these into the matrix in the inside of the expectation of the GMM bound we
have

P (X)X X'
(XB )L - B(XB")]

VH(E O (X)VH(E|X) = = (169)
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Taking expectations with respect to X and comparing to the formula for the information
matrix in equation (138) we see that

E{VH($|X)Q (X)VH(B*|X)'} =T. (170)

Since the GMM bound is the inverse of this matrix, it equals the inverse of the information
matrix, Z~!, and hence is the same as the (asymptotic) Cramér-Rao lower bound.
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