Spring 2001 John Rust
Economics 551b 37 Hillhouse, Rm. 27

FINAL EXAM
April 27, 2001

INSTRUCTIONS: Do all Parts I, IT and III below. You are required to answer all questions
in Part I, 2 out of 6 questions in Part II, and 1 out of 4 questions from Part III. Total points
for the final exam is 100. Part I should take about 15 minutes and is worth 15 points. Part II
should take about 30 minutes and is worth 30 points. Part III should take about 60 minutes
and is worth 55 points. You have 3 hours for the exam, but my expectation that almost all
students will complete it in two hours.

Part I: 15 minutes, 15 points. Answer all questions below:

1. Suppose {X1, ..., Xy} are IID draws from a N (i, 02) distribution (i.e. a normal distribution
with mean p and variance o2). Consider the estimator 6y defined by:

1 XN
i = (52 %) W
i=1
Which of the following statements are true and which are false?

A. Oy is a consistent estimator of o2.
Oy is an unbiased estimator of o2.
Ox is a consistent estimator of u.
is an unbiased estimator of p.
fn is a consistent estimator or p2.

fx is an unbiased estimator of u2.

Q@ = &2 Y a v
>
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fx is an upward biased estimator of p2.

H. Oy is a downward biased estimator of 2.

2. Consider estimation of the linear model
y=XpB+e (2)

based on N IID observations {y;, X;} where X; is a K x 1 vector of independent variables and
y; is a 1 X 1 scalar independent variable. Mark each of the following statements as true or false:

A. The Gauss-Markov Theorem proves that the ordinary least squares estimator (OLS) it
BLUE (Best Linear Unbiased Estimator).

B. The Gauss-Markov Theorem requires that the error term in the regression € be normally

distributed with mean 0 and variance o2.



. The Gauss-Markov Theorem does not apply if the true regression function does not equal
XB, ie. if E{y|X} # Xp.

. The Gauss-Markov Theorem does not apply if there is heteroscedasticity.

E. The Gauss-Markov Theorem does not apply if the error term has a non-normal distribu-

tion.

F. The maximum likelihood estimator of 8 is more efficient than the OLS estimator of 3.

. The OLS estimator of 8 will be unbiased only if the error terms are distributed indepen-
dently of X and have mean 0.

. The maximum likelihood estimator of 3 is the same as OLS only in the case where ¢ is
normally distributed.

. The OLS estimator will be a consistent estimator of 8 even if the error term e is not
normal and even if there is heteroscedasticity.

. The OLS estimator of the asymptotic covariance matrix for 8, 5%(X'X/N)~! (where 52

is the sample variance of the estimated residuals ¢; = y; — X;/3) is a consistent estimator
regardless of whether € is normally distributed or not.

. The OLS estimator of the asymptotic covariance matrix for 8, 5%(X'X/N)~! (where 52

is the sample variance of the estimated residuals ¢; = y; — X;/3) is a consistent estimator
regardless of whether there is heteroscedasticity in e.

. If the distribution of € is double exponential, i.e. if f(e) = exp{—|e|/c}/(20), the maxi-
mum likelihood estimator of 3 is the Least Absolute Deviations estimator and it is asymp-
totically efficient relative to the OLS estimator.

. The OLS estimator cannot be used if the regression function is misspecified, i.e. if the
true regression function E{y|X} # Xg.

N. The OLS estimator will be inconsistent if e and X are correlated.

O. The OLS estimator will be inconsistent if the dependent variable y is truncated, i.e. if

the dependent variable is actually determined by the relation

y = max[0, X + €] (3)

. The OLS estimator is inconsistent if ¢ has a Cauchy distribution, i.e. if the density of €
is given by

fle) = —

ow(1 4 €2) )

. The 2-stage least squares estimator is a better estimator than the OLS estimator because
it has two stages and is therefore twice as efficient.

. If the set of instrumental variables W and the set of regressors X in the linear model
coincide, then 2 stage least squares estimator of S is the same as the OLS estimator of 3.



Part II: 30 minutes, 30 points. Answer 2 of the following 6 questions below.

QUESTION 1 (Probability~question) Suppose Z is a K x 1 random vector with a multivariate
N(0,1) distribution, i.e. E{Z} =0 where 0 is a K x 1 vector of zeros and E{ZZ'} = I where I
is the K x K identity matrix. Let M be a K x K idempotent matrix, i.e. a matrix that satisfies

M?=M+M=M (5)

Show that 3 5
Z'MZ ~ x2(J) (6)

where x?(.J) denotes a chi-squared random variable with .J degrees of freedom and .J = rank(M).
Hint: Use the fact that M has a singular value decomposition, i.e.

M =XDX' (7)
where X'X = I and D is a diagonal matrix whose diagonal elements are equal to either 1 or 0.

QUESTION 2 (Markov Processes)

A. (10%) Are Markov processes of any use in econometrics? Describe some examples of how
Markov processes are used in econometrics such as providing models of serially dependent
data, as a framework for establishing convergence of estimators and proving laws of large
numbers, central limit theorems, etc. and as computational tool for doing simulations.

B. (10%) What is a random walk? Is a random walk always a Markov process? If not,
provide a counter-example.

C. (40%) What is the ergodic or invariant distribution of a Markov process? Do all Markov
processes have invariant distributions? If not, provide a counterexample of a Markov
process that doesn’t have an invariant distribution. Can a Markov process have more
than 1 invariant distribution? If so, give an example.

D. (40%) Consider the discrete Markov process {X;} = {1, 2,3} with transition probability

1 1 1
P{Xin=1X =1} = 5 P{Xuu=2X, =1} =5 P{Xu =3X =1} =3
3 1
P{Xpn=1X, =2} = T P{Xen=3X;=2}=7 P{Xen =2/X,=3}=1

Does this process have an invariant distribution? If so, find all of them.
QUESTION 3 (Consistency of M-estimator) Consider an M-estimator defined by:
Oy = 0).
N = argmax Qn(9)

Suppose following two conditions are given
(i) (Identification) For all ¢ > 0

Q(6") > sup Q(6)

0¢B(6* s¢)



where B(0%,¢) = {0 € R¥|||0 — 6*|| < €}
(ii) (Uniform Convergence)

sup |Qn(0) — Q(8)] 5 0.
fcO

Prove consistency of the estimator by showing
P (by ¢ B(6",)) B 0.
QUESTION 4 (Time series question) Suppose {X;} is an ARMA(p,q) process, i.e.
A(L)X; = B(L)et

where A(L) is a g*2 order lag-polynomial

A(L) = ap + a1 L + apL? + -+ - + a4 L*
and B(L) is a pth order lag-polynomial

B(L) = fo+ 1L+ foLl? + -+ + B, LF
and the lag-operator L* is defined by

LEX, = X s
and {¢;} is a white-noise process, E{e;} = 0 and (cov(e;, e5)= 0 if t # s, = o2 if t = 5).
A. (30%) Write down the autocovariance and spectral density functions for this process.

B. (30%) Show that if p = 0 an autoregression of X; on ¢ lags of itself provides a consistent
estimate of (ag/0,...,a4/0). Is the autoregression still consistent if p > 07

C. (40%) Assume that a central limit theorem holds, i.e. the distribution of normalized
sums of {X;} to converge in distribution to a normal random variable. Write down an
expression for the variance of the limiting normal distribution.

QUESTION 5 (Empirical question) Assume that shoppers always choose only a single brand of
canned tuna fish from the available selection of K alternative brands of tuna fish each time they
go shopping at a supermarket. Assume initially that the (true) probability that the decision-
maker chooses brand £ is the same for everybody and is given by 0}, k = 1,..., K. Marketing
researchers would like to learn more about these choice probabilities, 8* = (67,...,0%) and
spend a great deal of money sampling shoppers’ actual tuna fish choices in order to try to
estimate these probabilities. Suppose the Chicken of the Sea Tuna company undertook a
survey of NV shoppers and for each shopper shopping at a particular supermarket with a fixed
set of K brands of tuna fish, recorded the brand b; chosen by shopper i, 2 = 1,..., N. Thus,
b1 = 2 denotes the observation that consumer 1 chose tuna brand 2, and b, = K denotes the
observation that consumer 4 chose tuna brand K, etc.

A. (10%) Without doing any estimation, are there any general restrictions that you can place
on the K x 1 parameter vector 6*7



B. (10%) Is it reasonable to suppose that 8} is the same for everyone? Describe several factors
that could lead different people to have different probabilities of purchasing different
brands of tuna. If you were a consultant to Chicken of the Sea, what additional data
would you recommend that they collect in order to better predict the probabilities that
consumers buy various brands of tuna? Describe how you would use this data once it was
collected.

C. (20%) Using the observations {b1,...,bx} on the observed brand choices of the sample of
N shoppers, write down an estimator for * (under the assumption that the “true” brand
choice probabilities * are the same for everyone). Is your estimator unbiased?

D. (20%) What is the maximum likelihood estimator of #*? Is the maximum likelihood
estimator unbiased?

E. (40%) Suppose Chicken of the Sea Tuna company also collected data on the prices
{p1,...,pK} that the supermarket charged for each of the K different brands of tuna
fish. Suppose someone proposed that the probability of buying brand j was a function of
the prices of all the various brands of tuna, 87 (p1,...,pK), given by:

exp {B; + ap;}
S exp {B + api}

9;(101,’]7[() =

Describe in general terms how to estimate the parameters («, 51, ..,8k). If @ > 0, does
an increase in p; decrease or increase the probability that a shopper would buy brand 57

QUESTION 6 (Regression question) Let (y;, z;) be IID observations from a regression model
Yt = Bre + €

where y;, z;, and € are all scalars. Suppose that €; is normally distributed with E{e;|z;} = 0,
but var(e;|z;) = 0%|z4|°. Consider the following two estimators for 3*:

T
Bl _ Zt:l Yt

T — T
Dot Tt

T
BQ . Zt:1 TtYt
T— T
Y177
A. (20%) Are these two estimators consistent estimators of £*? Which estimator is more

efficient when: 1) if we know a priori that 8* = 0, and 2) we don’t know 6*? Explain
your reasoning for full credit.

B. (20%) Write down an asymptotically optimal estimator for §* if we know the value of 6*
a priori.

C. (20%) Write down an asymptotically optimal estimator for (8*,6*) if we don’t know the
value of 8* a priori.

D. (20%) Describe the feasible GLS estimator for (8*,0*). Is the feasible GLS estimator
asymptotically efficient?



E. (20%) How would your answers to parts A to D change if you didn’t know the distribution
of ¢; was normal?

Part III (60 minutes, 55 points). Do 1 out of the 4 questions below.

QUESTION 1 (Hypothesis testing) Consider the GMM estimator with IID data, i.e the
observations {y;,z;} are independent and identically distributed using the moment condition
H(0) = E{h(y,Z,0)}, where h is a J x 1 vector of moment conditions and 6 is a K x 1 vector
of parameters to be estimated. Assume that the moment conditions are correctly specified,
i.e. assume there is a unique #* such that H(6*) = 0. Show that in the overidentified case
(J > K) that the minimized value of the GMM criterion function is asymptotically x? with
J — K degrees of freedom:

NHy(0n)[ QN Hy (0n) = x°(J — K), (8)

where Hy is a J x 1 vector of moment conditions, @ is a K x 1 vector of parameters, x?(J — K)
is a Chi-squared random variable with J — K degrees of freedom,

On = argmin Hy(0)[Qn] " Hn (6),
9co

1 N
HN(O) = Nzh(yufnz,a)a
i=1

and Qy is a consistent estimator of Q given by
Q = E{h(y,7,0")n(§,%,0")'}.

Hint: Use Taylor series expansions to provide a formula for v/N(0y — 6*) from the first order
condition for Oy o R
VHy(0n)QN Hy(0n) =0 (9)

and a Taylor series expansion of Hy(fy) about 6*

Hy(0n) = Hy(0%) + VHy(On)(On — 0%) (10)
where v
1 X on
VHy(0) = I ; %(yz’,%’ﬁ) (11)

is the (J x K) matrix of partial derivatives of the moment conditions Hy(#) with respect to
6 and Oy is a vector each of whose elements are on the line segment joining the corresponding
components of Oy and 6*. Use the above two equations to derive the following formula for
Hy(6n) )

Hy(0n) = MnHN(6") (12)

where

My = [I - VHN(éN)[VHN(HAN)'QEIVHN(éN)]’1VHN(éN)’Q]_\,1] . (13)



Show that with probability 1 we have My — M where M is a (J x J) idempotent matrix.
Then using this result, and using the Central Limit Theorem to show that

VNHy(6")= N(0,9), (14)

and using the probability result from Question 0 of Part II, show that the minimized value
of the GMM criterion function does indeed converge in distribution to the x?(J — K) random
variable as claimed in equation (8).

QUESTION 2 (Consistency of Bayesian posterior) Consider a Bayesian who has observes IID
data (X1,...,Xn), where f(z|0) is the likelihood for a single observation, and p(#) is the prior
density over an unknown finite-dimensional parameter 8 € RK.

A. (10%) Use Bayes Rule to derive a formula for the posterior density of 6 given (X1, ..., Xn).

B. (20%) Let P(6 € A|X1,...,Xn} be the posterior probability  is in some set A C © given
the first N observations. Show that this posterior probability satisfies the Law of iterated
expectations:

E{P(9EA|X1,...,XN+1)|X1,...,XN}:P(96A|X1,...,XN).

C. (20%) A martingale is a stochastic process {Zt} that satisfies E{Z~t+1|It} = Z,, where
T denotes the information set at time ¢ and includes knowledge of all past Z;’s up to
time ¢, Z; D (Z1,...,2;). Use the result in part A to show that the process {Z;} where
Zy=P(0 € A|X;...,X;) is a martingale. (We are interested in martingales because the
Martingale Convergence Theorem can be used to show that if 8 is finite-dimensional, then
the posterior distribution converges with probability 1 to a point mass on the true value
of 0 generating the observations {X;}. But you don’t have to know anything about this
to answer this question.)

D. (50%) Suppose that if 0 is restricted to the K-dimensional simplex, 8 = (61,...,0k) with
; € (0,1),i=1,...,K,1=3K,0; and the distribution of X; given 6 is multinomial
with parameter 6, i.e.

Pr{X;i=k} =0y, k=1,...,K.

Suppose the prior distribution over 6, p(@) is Dirichlet with parameter «:

I'(ag + -+ ak)
I'(ai)---T'(ak)

where both 6; > 0 and o; > 0, ¢ = 1,..., K. Compute the posterior distribution and
show 1) the posterior is also Dirichlet (i.e. the Dirichlet is a conjugate family), and show
directly that as N — oo that the posterior distribution converges to a point mass on the
true parameter 6 generating the data.

a;—1 ag—1
01 HK

p(0) =

QUESTION 3 Consider the random utility model:

Ug =vq+¢€, d=1,...,D (15)



where %4 is a decision-maker’s payoff or utility for selecting alternative d from a set containing
D possible alternatives (we assume that the individual only chooses one item). The term vy
is known as the deterministic or strict utility from alternative d and the error term €y is the
random component of utility. In empirical applications v, is often specified as

Vd = Xd,B (16)

where X, is a vector of observed covariates and [ is a vector of coefficients determining the
agent’s utility to be estimated. The interpretation is that Xy represents a vector of character-
istics of the decision-maker and alternative d that are observable by the econometrician and
€4 represents characteristics of the agent and alternative d that affect the utility of choosing
alternative d which are unobserved by the econometrician. Define the agent’s decision rule
d(e1,..-,€p) by:

6(e) = argmaz 4y . p[va + &d] (17)
i.e. d(e) is the optimal choice for an agent whose unobserved utility components are € =
(€1,--.,€p). Then the agent’s choice probability P{d|X} is given by:

P{dX} = [ 1{d = 8(0)}f(e|X)de (18)

where X = (Xj,...,Xp) is the vector of observed characteristics of the agent and the D al-
ternatives and f(e|X) is the conditional density function of the random components of utility
given the values of observed components X, and I{d(e) = d} is the indicator function given by
I{é(e) = d} = 1if §(e) = d and 0 otherwise. Note that the integral above is actually a multivari-
ate integral over the D components of € = (e1,...,€p), and simply represents the probability
that the values of the vector of unobserved utilities € lead the agent to choose alternative d.

Definition: The Social Surplus Function U(v1,...,vp,X) is given by:

U(vl,...,vD,X):E{ max [vd+€d]‘X}:/ / max_[vg+eq)f (€1, -.,ep|X)de; - - dep
d D €1 ep 4=1,....,D

=1,..,,

(19)
The Social Surplus function is the expected maximized utility of the agent.!
A. (50%) Prove the Williams-Daly-Zachary Theorem:
. X
aU(Ula »yUD, ) — P{d|X} (20)

Bvd
and discuss its relationship to Roy’s Identity.

Hint: Interchange the differentiation and expectation operations when computing
oU/0vg:
BU(Ul,...,’UD,X)
a’Ud

= 8/3vd/ maxD[Ud+6d]f(615"-;6D‘X)d61'--deD
€1

€D =1y
= / / 8/8Ud max [Ud—i-ed]f(el,...,ED‘X)dEl---dCD
e . d=1,...,D

'TIf we think of an economy consisting of a population of agents each with their own observed vector of
utilities € and f(e|X) is the density function representing the distribution of these “types” in the population,
then U(v1,...,vp, X) represents the indirect or maximized utility of a typical person in the population. This is
the reason U is referred to as a Social Surplus Function.




and show that
0/0vq d_rrllaxD[vd +eq) =I{d =d(¢)}-

. (50%) Consider the special case of the random utility model when € = (e1,...,€ep) has a
multivariate (Type I) extreme value distribution:

D
F(elX) = JT exp{~ea} exp {~ exp{—eq}}. (21)
d=1

Show that the conditional choice probability P{d|X} is given by the multinomial logit
formula:
P{d|X} = Dexp&. (22)
Ya—1exp{va}
Hint 1: Use the Williams-Daly-Zachary Theorem, showing that in the case of the extreme
value distribution (21) the Social Surplus function is given by

U(Ula"'aUDaX) =+ log

D
> eXP{“d}] - (23)

d=1
where v = .577216. .. is Euler’s constant.

Hint 2: To derive equation (23) show that the extreme value family is maz-stable: i.e. if
(€1,...,€ep) are IID extreme value random variables, then max4{ey} also has an extreme
value distribution. Also use the fact that the expectation of a single extreme value random
variable with location parameter o and scale parameter o is given by:

+o0
E{e} = /_OO eexp{—e}exp {—exp{—€}}de = a+ o7, (24)
and the CDF is given by
F(z|a,0) = P{é < z|a,0} :exp{—exp{@}}. (25)

Hint 3: Let (e1,...,ep) be INID (independent, non-identically distributed) extreme
value random variables with location parameters (a1,...,ap) and common scale param-
eter 0. Show that this family is max-stable by proving that max(e;,...,€ep) is an extreme
value random variable with scale parameter ¢ and location parameter

D
a=olog lz exp{ad/a}] (26)
d=1

QUESTION 4 (Latent Variable Models) The Binary Probit Model can be viewed as a simple
type of latent variable model. There is an underlying linear regression model

7=XpB"+e¢ (27)

but where the dependent variable ¢ is latent, i.e. it is not observed by the econometrician.
Instead we observe the dependent variable y given by

_J 1 if g>0
y‘{o if §<0 (28)



. (5%) Assume that the error term ¢ ~ N(0,0%). Show that the scale of 8* and the
parameter o2 is not simultaneously identified and therefore without loss of generality
we can normalize 02 = 1 and interpret the estimated S coefficients as being the true
coefficients 8* divided by o

*

=" (29)

. (10%) Derive the conditional probability Pr{y = 1|X} in terms of X, 8 and the standard
normal CDF, ® and use this probability to write down the likelihood function for N IID
observations of pairs {(y;, X;)},i=1,...,N.

. (20%) Show that 8 can be consistently estimated by nonlinear least squares by writing
down the least squares problem and sketching a proof for its consistency.

. (20%) Derive the asymptotic distribution of the maximum likelihood estimator by pro-
viding an analytical formula for the asymptotic covariance matrix of the MLE estimator
Bn (Hint: This is the inverse of the information matrix Z. Derive a formula for Z in
terms of ®, X and f and possibly other terms.)

. (20%) Derive the asymptotic distribution of the nonlinear least squares estimator and
compare it to the maximum likelihood estimator. Is the nonlinear least squares estimator
asymptotically inefficient?

. (25%) Show that the nonlinear least squares estimator of /3 is subject to heteroscedasticity
by deriving an explicit formula for the conditional variance of the error term in the
nonlinear regression formulation of the estimation problem. Can you form a more efficient
estimator by correcting for this heteroscedasticity in a two stage feasible GLS procedure
(i.e. in stage 1 computing an initial consistent, but inefficient estimator of § by ordinary
nonlinear least squares and in stage two using this initial consistent estimator to correct
for the heteroscedasticity and using the stage two estimator of J as the feasible GLS
estimator)? If so, is this feasible GLS procedure asymptotically efficient? If you believe
so, provide a sketch of the derviation of the asymptotic distribution of the feasible GLS
estimator. Otherwise provide a counterexample or a sketch of an argument why you
believe the feasible GLS procedure is asymptotically inefficient relative to the maximum
likelihood estimator.

10



