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Abstract This paper introduces a model of commodity price speculation and
proves that the optimal trading strategy is of the (S, s) form when a no expected
loss condition holds. A strong form of this condition is that the retail price charged
to consumers at time ¢ exceeds the expected wholesale price of the commodity at
timer+1,i.e. p/ > BE{pi+1|p:. x:}, where B € (0, 1) is the speculator’s discount
factor.
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1 Introduction

This paper introduces a model of commodity price speculation and proves that the
optimal trading strategy is of the (S, s) form. We consider a speculator who can
purchase inventories of a durable commodity in a wholesale market at price p, for
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subsequent resale to retail customers at price p; ; on business day # + j, j = 0.
A trading strategy is a rule for purchasing the commodity ¢; that depends on the
information available to the speculator at the start of business day  when purchase
decisions are assumed to be updated. This information includes the current whole-
sale market “spot price” p;, the level of inventories carried over from yesterday
q:, and a vector of other information x, affecting retail demand, prices, or storage
costs. We prove that the optimal trading strategy takes the form of an (S, s) policy in
which the optimal order quantity ¢°(p, ¢, x) is given by ¢°(p, ¢, x) = S(p, x) —q
if ¢ < s(p,x) and ¢°(p, g, x) = 0 otherwise. Following Scarf (1960), the key
to proving that the optimal trading strategy is of the (S, s) form is to show that
the value function V (p, g, x) (representing the conditional expected present dis-
counted value of following an optimal trading strategy) is K-concave in g. We
show that a sufficient condition for the K -concavity of V is that a no expected loss
condition holds:

p; — BE{pis1lpi. x:} = 0, (1)

where B8 € (0, 1) is the speculator’s discount factor. This condition states that the
retail price of the commodity is always at least as high as the expected discounted
wholesale price on business day ¢ + 1. This latter quantity represents the expected
discounted cost of replacing the unit sold on business day ¢. This seems to be a
mild restriction that would ordinarily be satisfied in practice. If the speculator has
the power to set prices, we would normally expect this condition to be satisfied.
If the retail market is competitive, the speculator may have little control over p;,
however if the no expected loss condition didn’t hold speculators would leave the
market which would tend to drive up p; and drive down p,4 until the condition
is satisfied.

Indeed, a fundamental “no arbitrage condition” from the commodity pricing
literature (see, e.g. Working 1949; Williams and Wright 1991), is that wholesale
prices are set so that

pr ="+ BE{pilpr, %), 2

where ¢ is the per unit holding cost. If ¢ > 0 (i.e. there are positive holding
costs, as opposed to the case of “convenience yields” where ¢ < 0), then the no
expected loss condition will hold if p; > py, i.e. retail prices charged to individual
consumers are not less than the wholesale price of the commodity.

We prove that the no expected loss condition implies that V is K-concave in g
forany (p, x), and this in turn implies that an (S, s) policy is optimal. We show that
V = max[V?, V"] where V" is a K-concave function representing the value of
not ordering any new inventory, and V? is a linear function representing the value
of restoring inventories to the optimal level S(p, x). The optimal inventory level
S(p, x) is the value of g that equates the shadow price of an extra unit of g to its mar-
ginal cost, V,V"(p, S(p, x), x) = p. The purchase threshold s(p, x) is the point
at which V" and V? first intersect. We show that a sufficient condition for S(p, x)
to be decreasing in p is that the shadow value of inventory increases at a slower
rate than its marginal cost at ¢ = S(p, x): V,p*(p, g, x) = V%qV”(p, q,x) < 1.

Our work builds upon and helps to unify two previously separate literatures
on optimal inventory investment (Arrow, Harris, and Marschak 1951; Holt et al.
1960; Scarf 1960), and on the rational expectations commodity storage model (see,
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e.g. Working 1949; Williams and Wright 1991; Miranda and Rui 1999). The latter
literature studies the role of commodity storage at an aggregate level, analyzing
how the collective behavior of speculators affects prices in the commodity market.
However, this literature has not explicitly studied the decision problem faced by
individual speculators in the commodity market. The literature on optimal inven-
tory investment does focus on the decision problem faced by individual agents, but
apparently the connection between this literature and the literature on commodity
price speculation has gone unnoticed. All of the inventory-theoretic models that
we are aware of focus on the role of inventory decisions in production problems,
rather than on inventory management in commodity price speculation problems.
Although many previous authors have conjectured that generalized forms of the
(S, s) policy (such as where the S and s bands are functions of other state variables)
might be an optimal, we are not aware of a proof of this result — at least in a context
that is sufficiently general to be applied to the class of problems we are studying
here.

The only previous work that we are aware of that anticipates some of the results
in this paper is some recent work in operations research on generalizations of opti-
mal inventory policy with Markovian demands (Sethi and Cheng 1997; Cheng and
Sethi 1999). The articles by Sethi and Cheng use the traditional cost-minimization
formulation of the inventory problem but introduce a finite state Markov chain,
whose current realized state affects the demand for and cost of acquisition of the
commodity. They present a sufficient condition for the K-convexity of the value
function and the optimality of the (S, s) policy that is remarkably similar to our
no expected loss condition. Their sufficient condition requires that the marginal
shortage cost exceed the expected unit ordering cost less an expected marginal
inventory holding cost. We became aware of the Cheng and Sethi result after we
wrote this paper. Our formulation of the problem is significantly different, since
it was inspired by and was directly tailored to the problem of optimal commodity
price speculation introduced in Hall and Rust (2000). We believe that the prob-
lem of optimal commodity price speculation is more naturally specified as profit
maximization rather than as a cost minimization problem. Our formulation con-
tains a more general specification of the Markov process affecting the demand
and acquisition cost of the commodity than the discrete Markov chain formulation
considered by Cheng and Sethi. We allow general transition probabilities for the
underlying “forcing process” {p;, x,} that can accomodate continuous, discrete, or
mixed discrete/continuous laws of motion for these variables.

2 Motivation and notation

We work with a generalization of the (S, s) model of commodity price speculation
introduced by Hall and Rust (2000, 2005). This model, developed from an empirical
study of the observed trading behavior of a particular speculator in the steel market,
characterizes the optimal trading policy of a commodity price speculator who is
able to purchase bulk quantities of a durable commodity in a wholesale market at
price p,. Time is discrete and indexes successive business days. We assume that
it is prohibitively costly for the speculator to resell his inventory in the wholesale
market, but he can sell it in a retail market at a price p;. Purchases in the whole-
sale market are also costly, requiring the speculator to incur a fixed transactions
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cost K to purchase any positive amount of the commodity, which we denote by
q° > 0. The transactions cost discourages the speculator from making frequent
small purchases in the wholesale market. In all other respects the wholesale market
is perfectly competitive, and the speculator has no ability to affect p,. However
we do allow for the possibility that the speculator might have a limited amount of
market power in the retail market. Due to substantial informational frictions, the
retail market can be conceptualized as a “telephone market” where sales result from
private bilateral negotiations. The search frictions provide an opportunity for the
speculator to charge his retail customers a potentially randomly varying markup
over the wholesale market price p,. While it seems reasonable to expect that the
retail price p; should satisfy p; > p, with probability 1, if it is impossible or
prohibitively costly for the speculator to re-sell the commodity in the wholesale
market, then under certain circumstances it could be optimal for the speculator to
set p; < p;. Thus, we do not rule out the possibility that the speculator, even if
behaving fully optimally, might incur ex post losses in his trading. For this reason
the trading problem we model is best described as speculation rather than arbitrage.

We characterize the optimal trading strategy of a speculator who behaves stra-
tegically in the wholesale market by optimally choosing the level of new inventory
purchases in the wholesale market, but behaves passively with respect to his sales
decisions in the retail market. Let p; denote the retail price at time ¢. This retail
price could either represent the “going price” under the assumption that the retail
market is perfectly competitive, or it could represent a price chosen by the specula-
tor under the assumption that the retail market is imperfectly competitive, affording
the speculator some control over retail prices. In either case we assume that p; is
a draw from a conditional distribution y (-| p;, x;). The essence of a passive retail
sales policy is that the speculator should be willing to sell his entire inventory
q: + g7 to his retail customers at price p;. To see why it might be reasonable to
treat p; as a random variable with respect to the ex ante information available
to the speculator at the beginning of business day ¢, note that the retail price pf
the speculator will ultimately charge his retail customers will generally depend on
additional signals that the speculator receives about his customers and the state
of the retail market during the course of business day ¢, which are random with
respect to the information (py, g;, x,) available to the speculator at the start of the
day. We assume that (p,, x;) is a sufficient statistic for these additional signals, so
the speculator’s beliefs about the retail price p; he will subsequently charge during
day ¢ are given by a conditional probability distribution y (-| p;, x,) that depends on
(pr, x;) but not ¢,. The reason why we exclude g, as an element of this conditioning
set will be clear shortly.

After the retail price p; is set, there is a conditional probability n(p;, p;, x;)
that no customer will arrive, and with the complementary probability, one or more
customers will place orders for the commodity at the qouted retail price. A sale
of a unit yields a revenue of p;, but there is also an opportunity cost of having
to replace the unit on some subsequent day ¢ + j. The no expected loss condition
states that the return from selling a unit of the commodity, net of the discounted
expected cost of replacing that unit on day ¢ + 1, is non-negative:

/ [P} — BE{pis1lpe. x 3] [1 = n(p]. pe. x)] v @p]|ps, x;) = 0. A3)
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The expectation in the expression above is taken with respect to y (dp}|p;, x;)
which represents the conditional distribution of ex post retail prices p; given the
ex ante information at the start of the day (p;, x;). This version of the no expected
loss condition is slightly weaker than the version presented in equation (1), which
specified that [ p; — BE{p;+1|p:, x/}] = 0 with probability 1, and not just in expec-
tation as in the weaker version given above.

As noted above, the no expected loss condition is not automatically satisfied in
all circumstances, e.g. as a necessary condition for profit maximization. The reason
is that under imperfect market conditions, such as when the speculator has power to
set prices and/or when there are “irreversible investment constraints” that prevent
the speculator from being able to liquidate inventories at the prevailing spot market
price, it is not necessarily the case that it is always optimal to replace units of the
commodity that are sold on day ¢ via wholesale market purchases on day ¢ 4 1.
Thus, the expected opportunity cost of selling a unit of the commodity today may
not always equal BE{p;+1|p:, x;}. For example, if the speculator is overstocked,
then the opportunity cost of selling a unit of the commodity today could well be less
than BE{p;+1|p:, x;}. However, as noted above, in well functioning “competitive”
commodity markets, retail prices will not be under the speculator’s control and
the intertemporal no arbitrage condition from the rational expectations commodity
pricing literature does imply that the no expected loss condition will hold. Thus,
the no expected loss condition is an economically meaningful restriction that needs
to be verified on a case by case basis.

However, we caution readers that while the (S, s) policy might appear to be a
very natural and robust trading strategy, it is not hard to change assumptions in ways
that destroy its optimality. For example, (S, s) is unlikely to remain optimal if the
speculator faces significant quantity discounts, or other types of non-linear pricing
schedules in the wholesale market. Characterizing the form of optimal speculative
trading strategies under these conditions remains a topic for future research.

Assumption 0 (Timing of the speculator’s information and actions)

1. Atthe start of day ¢ the speculator knows his inventory level g, the current spot
price p,, and the values of the other state variables x;.

2. Given (q;, p:, x;) the speculator orders additional inventory ¢, for immediate
delivery.

3. Given (py, x;) the speculator sets a retail price p; that may depend on informa-
tion that the speculator observes but which is unobserved from the standpoint
of other observers. Thus, p; is modeled as a random draw from a conditional
distribution y (+| p;, x;).

4. Given (p;, p:, x;) the speculator observes a realized retail demand for the com-
modity, g, , modeled as a draw from a distribution H (g; | p;, p;, x;) with a point
mass at g/ = 0, representing the probability that there is no retail demand for
the commodity on day 7.

5. The speculator cannot sell more of the commodity than he has on hand, so the
actual quantity sold satisfies

¢; =min[q +q7.q/]. 4)

6. The sales in period ¢ determine the level of inventories on hand at the start of
the next business day, ¢ + 1, by the standard inventory identity:

Qi1 =q +9q; —q,. 5)
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7. New values of (p;41, x;+1) are drawn from a Markov transition probability
g(Pi1, X1l pe, Xo).

Note that Assumption O implies that the speculator does not face any delivery
lags and cannot backlog unfilled orders. Thus, whenever demand exceeds quantity
on hand, the residual unfilled demand is lost. This implies that the amount of the
commodity sold each period is the minimum of retail demand g; and quantity on
hand ¢, + g/ as given in equation (4).

For technical reasons, it is convenient to assume that the state space for the DP
problem is compact.

Assumption 1 The speculator has a maximum storage capacity equal to g < oo.
Negative orders and inventories (representing backlogs) are not allowed, so g/
is restricted to the interval [0, g — ¢;] and g; must lie in the interval [0, g] with
probability 1. The joint Markov process {p;, x,} has support P x X where X is a
compact subset of R* and P = [p, p] where p > 0 and p < oo.

To understand the implications of Assumptions O and 1, we need to describe
the speculator’s retail sales and revenue in a bit more detail. We assume that the
speculator’s retail sales on business day f is a random draw g; from a condi-
tional distribution H(g;|p;, p:, x;) that depends on the retail price p;, the cur-
rent spot price p;, and the values of the other observed state variables x,. Let
n(p", p,x) = HQO|p", p, x) be the probability that the speculator will not make
any retail sales on a particular day. We assume that there are no other mass points
in the distribution function for quantity demanded, H, so it can be represented as
follows.

Assumption 2 The conditional probability distribution for the speculator’s retail
sales on day ¢ is given by:

r

,
H 1P, pox) = 00 px) + [1 — (o, p,x)]/h<dq|p’, px). (6)
0

where n(p”, p, x) € [0, 1), and 4 is a continuous probability density function over
the interval [0, co) satisfying h(g|p”, p,x) > € > 0 for all ¢ € [0, ¢q], and all
(p",p,x) € R" x P x X.

Since the quantity demanded has support on the [0, 0o0) interval, equation (4)
implies that there is always a positive probability of a stockout given by:

8(+q°. p.p.x)=1-H(g+q°|p", p,x). (7)

When a stockout occurs, the speculator may incur per unit “goodwill cost”
cs(p”, p,x) > 0 on the amount of unsatisfied demand. We let EG denote the
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speculator’s ex ante expectation of these goodwill costs at the beginning of a busi-
ness day, conditional on the information (p, x) and inventory on hand of g

EG(p,q,x)
= E{c*(p", p, x) max[(¢" — ¢),0]|p, q, x}
=/ cg(p’,p,x)[l—n(p’,p,x)]/(q’—q)h(q’lp’,p,x)dq’ y(dp|p, x).
0 q

@®)

The key to the solution of the speculator’s optimal trading is the expected per
period retail sales revenue E S(p, g, x). This is just the conditional expectation of
realized sales revenue p”q’, the product of the retail price p” times the quantity
actually sold ¢* = min[g + ¢°, ¢"], given the current spot price p, quantity on
hand ¢, and other information x:

ES(p,q,x) = E{p"q’Ip.q, x}
= E{p"E{minlq.q"1|p". p.q. x}Ip. q. x}

[ee) q
=/p’[1 —n(p", p, )] /q’h(q’lp’,p,x)dq’
0 0
+q/h(q’|p’,p,x)dq’ y(dp'|p, x). 9)

q

Lemma 1 If Assumptions 0-2 hold, ES(p, q, x) is a strictly increasing and con-
cave function of q for each (p, x) and EG(p,q,x) is a strictly decreasing and convex
function of q for each (p, x).

Proof 1t is straightforward to verify via direct differentiation that

VqES(p,q,X)=/p’[l—n(p’,p,x)]/h(q’lp’,p,x)dq’y(dp’lp,x)>0,
0 q
(10)

and

o0

Vo, ES(p.q.x) = —/p’[l —n(p", p,VIh(qlp", p,x)ydp'Ip,x) <O,
0

an

since h(q|p”, p,x) > € > 0and n(p’, p,x) < Lforall (p", p,x) € R* x P x X
by Assumption 3. The properties of EG(p, g, x) can be verified via a similar
calculation. O
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Assumption 3 The speculator incurs a period physical storage cost ¢ (p, ¢, x)
of holding inventory which is a non-decreasing and convex function of g for all
(p,x) e P xX.

We assume the speculator incurs a cost of ordering ¢ units of the commodity
for inventory given by a function ¢’(p, ¢°, x) that is linear in p, but discontinuous
at g’ = 0 due to a fixed transactions cost of placing orders in the wholesale market.

Assumption 4 The cost of purchasing ¢ units of the commodity in the wholesale
market is given by:

K+ pg°® if ¢g°>0

12
0 otherwise, (12)

c’(p,q°,x) =

where K > 0 is a fixed transaction cost associated with placing any order, regard-
less of the quantity ordered.

This specification can be easily modified to account for constant per unit ship-
ping costs p, and to allow both p and K to depend on x. All of the results below
hold under this more general specification, but since the notation becomes more
complex, we will initially ignore shipping costs and assume K is independent of
x. For notational simplicity we assume that any per unit shipping costs are already
embodied in the spot price p, so that at least in this respect the simplified specifi-
cation of order costs given in Assumption 4 involves no loss of generality.

Under these assumptions, the speculator’s single-period profits 7 equals its
sales revenues, less any goodwill costs due to unsatisfied demand, less the cost of
new orders for inventory c’(p, ¢°, x) and inventory holding costs ch (p,q,x):

n(p.p".q"q+q°% x) = p'minlg", g+4°]1=c*(p", p, x) max[qg" —q —¢°, 0]
—c(p.q” ) = c"(p.q +4° %). (13)
The speculator’s inventory investment behavior is governed by the decision rule:
a7 = q°(pr, qr, x1), (14)
where the function ¢° is the solution to:

[ee}

VP g x) = max E4 Y0 BI07(pj, pjo 4o 4 + 455 %) | Prs 4o %
Jj=t
15)
The value function V (p, ¢, x) is given by the unique solution to Bellman’s equa-

tion:

<q°<q—

V(p,q,x) = ,max \ [W(p, q+q°,x)—c’(p.q°, x)], (16)
where:

W(p.q.) = [ES(p,q.%) = EG(p.q.) = (p.q. x) + BEV(p.q. ).
am
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and E'V denotes the conditional expectation of V' given by:
EV(p,q,x) = E{V(p,max[0,q9 —q"], )|p, q, x}
=///n(p’,p,X)V(p’,q,x’)y(dp’lp,X)g(dedx/lp,x)
poxp
[ [ e om0
00

p X p

x / W@ 1P’ prx)dq"y (@p"|p. 0)g(dp', x|, )

q
q
+f / / [1 —n(p’,p,x)]/ V(p'.q—q".x")
pJxJp 0
xh(q"|p", p,x)dq"y(dp"|p, x)g(dp’, dx'| p, x). (18)

The optimal decision rule ¢°(p, g, x) is given by:

4°(p. g %) = inf argmaxoyo gy | W(p.q +0% ) = *(p.g", )| (19)

Note that we invoke the inf operator in the definition of the optimal decision rule
in equation (19) to handle the case where there are multiple maximizing values of
q°. This could arise if W is not strictly concave in g.

Definition 0 An (S, s) rule is a trading strategy of the form:

(20)

0 if g >s(p,x)
o p—
q°(p.q,x) = {S(p, x) —q otherwise,

where S and s are functions satisfying S(p, x) > s(p, x) for all p and x.

Candidate functions for the upper and lower bands of the generalized (S, s)
policy can be defined in terms of the optimal decision rule ¢°(p, g, x). The upper
band S(p, x) is defined as the optimal order quantity when the speculator has no
inventory on hand:

S(p,x) =4q°(p,0,x). (21)

The lower band s(p, x) is the smallest value of g such that desired inventory
investment is zero:

s(p,x) =inf{q €10,g] [ ¢°(p,q,x)=01}. (22)

Clearly, desired inventory investment at S(p, x) is 0 : ¢°(p, S(p, x),x) = O.
Since s(p, x) is the smallest value of g satisfying ¢°(p, g, x) = 0 it follows that
s(p,x) < S(p, x). We show that the speculator is indifferent between ordering
and not ordering at ¢ = s(p, x) provided s(p, x) > 0. Defining ¢° in terms of the
functions S and s (which are defined in turn from ¢°) may appear circular, but the
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(S, s) rule does amount to a real restriction on the trading strategy ¢°. Substituting
for S(p, x) in equation (20) we have

qo(pa qyx) zqa(PsO»x) —-dq, (23)

when ¢°(p,q,x) > 0 and ¢°(p,q,x) = 0 otherwise. The (S, s) rule further
restricts the set of (p, g, x) for which ¢°(p, g, x) = 0 to be a set of the form
{(p,q,x)lqg = s(p, x)} for some function s(p, x). Thus, it should be clear that
(S, s) rules are indeed a restricted subset of admissible trading strategies and our
definition is not tautological.

The weakest known sufficient condition for the optimality of the (S, s) is the
K -concavity condition introduced by Scarf (1960). For convenience, we re-state
its definition below.

Definition 1 A function f : [0,g] — R is K-concave if and only if for all
q,7,b € Rsatistying0 < g —b < q < g+ z <q we have:

f(q)—f(q—b)]

b (24)

f(q+z)—st(q)+z[

A function is K -concave if the secant approximation to f (g + z) given on the
right hand side of equation (24) exceeds f(g + z) less the constant K. Clearly
a concave function is 0-concave, and thus K-concave for all K > 0. A function
W(p, g, x) is K-concave in g if the inequality (24) also holds for W as a function
of g for all (p, x). Scarf (1960) actually defined the property of K -convexity, but
just as for ordinary convex functions, it is easy to show that f is K-concave if and
only if — f is K-convex.

The following Lemma summarizes the key properties of K-concave functions.
It can be proved via trivial modifications to the proof of an analogous result charac-
terizing properties of K -convex functions (see, e.g. Lemma 2.1 in Bertsekas 1995)
and is therefore omitted.

Lemma2 1. A concave function is 0-concave and hence K -concave for all
K >0.

2. If fi(g) and f>(q) are K-concave and K,-concave, respectively, for con-
stants K| > 0 and K, > 0, then a.f1(q) + Bf2(q) is (¢ K| + BK;)-concave
forany o > 0and B > 0.

3. If {f,(q)} is a sequence of K -concave functions and f = lim,_, , f, is the
pointwise limit of these functions, and if | f (q)| < oo forall q € R, then f is
K-concave.

4. If f is K-concave and w is a random variable for which E{| f (g —w)|} < oo
forall q, then g(q) = E{f(q — w)} is K-concave.

5. If f is a continuous, K-concave function on the interval [0, q], then there
exists scalars 0 < s < § < q such that

(@) f(S) = f(q)forallg €[0,ql.

(b) Eithers =0and f(S)— K < f(0)ors >0and f(S)— K = f(s) >
f(q) forall q € [0, s).

(c) f is strictly increasing for q € [0, s).

(d) f(z) — K < f(q) forall z and q satisfyings < q <z <4q.
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Scarf established the optimality of the (S, s) policy via an inductive proof that
the value function W is K-convex in g. We will prove an analogous result for
K -concave functions, i.e., that the Bellman operator maps the class of continuous
K -concave functions, Fg ¢, into itself. Then part (3) of Lemma 2 implies that V
and W are uniform limits of sequences of continuous, K -concave functions, and
must also be continuous and K-concave. Lemma 3 verifies the analog of Scarf’s
basic result for K-convex functions in our setting, namely that K -concavity of W
implies the optimality of the (S, s) rule.

Lemma 3 Suppose the function W (p, q, x) is continuous and K -concave in q for
all (p, x). Let V be given by:

Vp.g,x) = max [W(p.q+q°x)=c"(p.q" 1)l (25)

and let the (S, s) bands be given by:

S(p, x) = inf argmax,_ . z[W(p, q°,x) — pq°l.
s(p,x) = inf{g € [0, S(p,x)] |W(p,q,x)
= W(p,S(p,x),x) — p[S(p, x) —ql — K}. (26)
Then there is a solution q°(p, q, x) to problem (25) that is of the (S, s) form with the

functions S(p, x) and s(p, x) given above. The value function V can be expressed
in terms of W and (S, s) as:

W(p,S(p,x),x) — plS(p,x) —ql— K if g €[0,s(p,x))
W(p,q,x) if qel[s(p,x),ql.
27

V(p,q,x) = {

Proof To help the reader follow the proof, we illustrate the determination of the
functions S(p, x) and s(p, x) in Fig. 1 below, where for illustrative purposes, we
have plotted the W function as a strictly concave function of ¢ holding its other two
arguments (p, x) fixed. However, as we will see, the proof below does not require
W to be strictly concave in g. It is sufficient for W to be K-concave. Define the
functions V" and V? as follows:

Vn(pv qvx) = W(P’ q»x) (28)

0 _JW(p, S(p,x),x) — plS(p,x) —ql — K ifg €[0,s(p, x)]
VP = {W(p,q,m ifg € (s(p.).q.
(29)

V™(p, q, x) represents the value of not ordering, whereas V’(p, ¢, x) represents
the value of ordering the target inventory level S(p, x) if ¢ < s(p,x) and not
ordering otherwise. It is not hard to see that V = max[V", V°].

The left hand panel of Fig. 1 illustrates how S(p, x) is determined. Since
S(p,x) = argmax, W(p, q, x) — pq. itis located at the point of tangency between
the straight line with slope p, illustrated by the dashed blue line in the left hand
panel of Fig. 1, and the function W (p, ¢, x) (the concave green curve in Fig. 1).

The right hand panel of Fig. 1 illustrates how s (p, x) is determined. The function
V¢ [the value of ordering to the optimal order quantity S(p, x) given in equation
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Determination of S(p,x)
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Fig. 1 Determination of the functions S(p, x) and s(p, x)
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(29) above] is the maximum of the red line representing the actual value of ordering
the quantity S(p, x) — g to reach the target S(p, x) when the initial inventory is
q, less the fixed cost K of placing the order. The latter is represented by a parallel
downward shift in the dashed blue line by K units. The “value of ordering up to
S(p, x)” (i.e. the V° function) is actually only defined on the interval [0, S(p, x)],
since if ¢ > S(p, x) the speculator’s inventory already exceeds the optimal level.
In this region, we define the “value of ordering” to coincide with the value of
not ordering, i.e. V°(p,q,x) = W(p, q, x) for ¢ > S(p, x). Thus in the right
hand panel of Fig. 1, the graph of V? is equal to the red linear segment on the
interval [0, s(p, x)] and is equal to the green W (p, ¢, x) function on the interval
[s(p, %), .

The optimal order threshold is the value of ¢ where the speculator is indiffer-
ent between ordering and not ordering. Thus, ¢ = s(p, x) is the solution to the
equation V°(s(p, x), p, x) = V"' (s(p, x), p, x), or more explicitly in terms of the
function W, W(p, s(p, x),x) = W(p, S(p, x),x) — p[S(p,x) —s(p,x)] — K.
This point is represented by the first intersection of the functions V? and V" in the
right hand panel of Fig. 1. If there is no positive value of g for which V? = V",
then s(p, x) = 0 and it would never be optimal for the speculator to order new
inventory. This would correspond to a “shut down” scenario where the speculator
gradually sells off existing inventory and then goes out of business.

The function S(p, x) exists and is well defined since the maximum of a contin-
uous function over a compact set exists by the Theorem of the Maximum. The func-
tion s(p, x) exists because the set of g satisfying W(p, g, x) > W(p, S(p, x), x)—
pLS(p, x) — q] — K is non-empty [for example g = S(p, x) trivially satisfies this
inequality]. Now we wish to show that the (S, s) rule is indeed optimal. Sup-
pose that s(p, x) > 0. Then for any ¢ < s(p, x) we must have W(p, ¢, x) <
W(p, S(p,x),x) — p[S(p,x) — q] — K otherwise we would have a contra-
diction of the definition of s(p, x) as the smallest g satisfying W(p, g, x) >
W(p, S(p,x),x) — p[S(p,x) — q] — K. But this implies that the speculator
would prefer to order g° = S(p, x) — ¢ units than to order none. By definition of
S(p, x) there is no other order quantity that would yield strictly higher expected
discounted profits, so it follows that ¢°(p, g, x) = S(p, x) — q is indeed optimal
when g < s(p, x). By continuity this also holds at ¢ = s(p, x). Now consider the
case when s(p, x) < g < S(p, x). Lemma 2 implies that if W is K -concave, then
so is the function W (p, g, x) — pq. By the definition of K-concavity we have:

W(p,S(p,x),x) — pS(p,x) — K

S(p,x) —q

q —s(p,x)

x [W(p,q,x)— pqg—W(p,s(p,x),x)+ ps(p,x)]. (30)

<W(p,q,x) — pq+

It is easy to see that the above inequality can be rewritten as

S(p, —
W(p. S(p, 30, )= pS(ps )= K+-L D=4 1w (. 5(py x), )= ps(p )]
q—s(p,x)
S 3 - 3
< 3P0 5P vy )~ pgl. 31)

q —s(p,x)
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However, the definition of s(p, x) implies that
W(pa S(IL x)’ x) - ps(pv X) = W(pﬂ S(pa x)a X) - pS(p’ x) - K. (32)
Combining the above inequality with inequality (31) we conclude that

S(psx) _S(Pax)

(W(p, S(p,x),x) — pS(p,x) — K]

qg — S(P’ x)
S(ps X) - S(Pa )C)
< [(W(p.q,x) — pq]. (33)
q — S(P’ x)
The above inequality is algebraically equivalent to the inequality
Wi(p,S(p,x),x) — plS(p,x) —ql — K = W(p, q,x), (34

which says that it is not optimal for the speculator to order when s(p, x) < g <
S(p, x). Thus, the (S, s) rule yields the optimal decision ¢°(p, ¢, x) = 0 in this
case. It is easy to see that the optimal order quantity is also zero when g = S(p, x).
The final case to consider is when ¢ € (S(p, x), g]. By K-concavity, for any
z € [0,q — q] we have

W(p,q+2z,x)=plg+2—K
Z
W 9 b - - o, <
= W(p.q,x) pq+q_5(p’x)
x[W(p.q.x) = pqg —W(p,S(p.x),x) + pS(p.x)].  (35)

By the definition of S(p, x), the term on the right hand side of the above inequality
is non-positive, so rearranging we have

W(p,q+z,x)—pz— K < W(p,q,x). (36)

However this implies that g°(p, g, x) = 0, so the (S, s) rule also yields the correct
decision in this case. O

Lemma 4 Under the assumptions of Lemma 3, V can be represented as:

V(p,q.x) =max[V"(p,q,x), V’(p,q,0)]. (37)

In order to help the reader understand the proofs of the following lemmas, Fig. 2
further illustrates the functions V", V?, and V. In this illustration, the value of not
ordering, V", is drawn as a strictly concave function of g. As noted above, strict
concavity in g is not required for the proofs below, only the weaker condition of
K-concavity. The right hand panel of Fig. 2 shows that the value function V is
the maximum of the piece-wise linear concave function V? [the value of ordering
up to S(p, x)], and the strictly concave function V". Obviously the maximum of
two concave functions is not necessarily concave, and we see this in the right hand
panel of Fig. 2, where there is a non-concave kink point in V at ¢ = S(p, x).
Thus, while V is not concave in ¢, we will now show that if the no expected loss
condition holds, it is K-concave in q.

Definition 2 Let Fx ¢ denote the class of functions V (p, ¢, x) which are contin-
uous and K -concave as a function of ¢ for all (p, x) € P x X.
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Fig. 2 Illustrations of the functions V°, V" and V = max[V", V]
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Let B denote the Banach space of all continuous functions W (p, ¢, x) mapping
P x [0, q] x X into R under the usual sup-norm | - ||. It is not difficult to show
that the Bellman equation for the value function V (p, ¢, x) can be represented as
a fixed point of a contraction mapping on B, and hence V exists and is unique. We
now characterize its properties. In particular, we show that both V and W are K -
concave in g. We do this by showing that the Bellman operator can be represented
as the composition of two operators I' : B — B and A : B — B given by:

FW)(p.g.x) = max [W(p.q+4q"x) =c"(p.q". 0], (38)
A(V)(p,q,x) = ES(p,q,x) — EG(p,q,x) —c"(p,q,x) + BEV(p,q,x).
(39)

Lemma 5 The value function V is the unique fixed point of the composition oper-
ator, ' o A : B — B given by:

V=ToA(V)=TANV)). (40)

The function W is the unique fixed point to the composition operator Ao’ : B — B
given by:

W = AoT(W) = A (W)). 41)

The representation of the Bellman operator in Lemma 5 suggests that we can
prove that V and W are K -concave in ¢ in two steps: (1) first we demonstrate that
I' : Fxc — Fkc and (2) we demonstrate that A o I' : Fxe — Fgc. This will
enable us to establish the key induction step of our argument, which will imply
that the fixed point V is a uniform limit of functions in Fx¢, and hence will also
be a member of this class.

Lemma 6 Assumptions 1-5 imply that I : Fxc — Fkc. That is, if W is contin-
uous and K-concave in q, then V.= I'(W) is continuous and K -concave in q.

Proof By the theorem of the maximum if W is continuous in g then I'(W) given
in equation (38) is also continuous in g. The proof is completed by showing that
for any (p, x) € P x X and any points ¢ — b, g and g + z satisfying0 < g — b <
q < q + z < g, the function V = I'(W) satisfies the definition of K-concavity

V(p,g+2,x)— K <V(p,q,x)+ f—) [V(p,q.x) — V(p.q —b,x)]. 42)

Let S(p, x) and s(p, x) be the (S, s) bands defined in Lemma 3. There are three
cases to consider, depending on which side of the kink point at s(p, x) the points
q —b, g and g 4 z lay on. Since V is linearin g forg < s(p, x),ifg+z < s(p, x)
then all these points lie in the interval [0, s(p, x)] where V is linear, and thus K-
concave. Similarly, if s(p, x) < g —b all of the points lie on the interval [s(p, x), q]
where V = W, and since W is K-concave, then so is V. So the only remaining
case to consider is where the points ¢ — b, g and g + z straddle the kink in V at
s(p, x). In this case we have 0 < ¢ — b < s(p, x) and g + z > s(p, x). Equation
(27) implies that V(p,q +z,x) = W(p,q + z, x) and

V(p,g —b,x) =W(p,S(p,x),x) —plS(p,x) —(g—b)]—-K
= W(p,s(p,x),x)—pls(p,x) — (g —b)], (43)
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where we have used the fact since s(p, x) > 0 we have

W(p.s(p.x),x) =W(p,S(p,x),x) = p[S(p,x) —s(p.x)] = K, (44)

by result 5-b of Lemma 2. If ¢ < s(p, x), then it is easy to see that V(p, g, x) —
V(p,q — b, x) = pb, so that inequality (42) characterizing the K -concavity of V
reduces to:

Vip,q+z,x) — K <= W(p,S(p,x),x) — p(S(p,x) —q) — K + pz, (45)
which can be rearranged into an equivalent inequality

Vip.q+z,x) = plg+2) = V(p,S(p,x), x) — pS(p, x), (46)
which necessarily holds via the definition of S(p, x) as the argmax of W (p, ¢, x) —
pq ing.Nowifg > s(p, x), then Lemma 3 implies that V (p, g, x) = W(p, q, x).
Suppose that ¢ is such that

W(p.q.x) — pqg =< W(p,s(p,x),x) — ps(p, x). (47)

Via some simple algebra, we see that this inequality is equivalent to the inequality
Z

q—s(p,x)

<~ [W(p.q.x) = W(p.s(p.x).x) + p(s(p.x) =g +b)].  (48)

[W(p7 q7 -x) - W(pv S(pv x)’ .X)]

which holds for any z > 0. Since W is K-concave, we have

Z

Wp,q+z,x)—K <W(p,q,x) +
s(p, x)

[(W(p.q,x) = W(p,s(p,x),x)].
(49)
Using this inequality and inequality (48) we have
W(p.q+z,x) —K < W(p.q,x)
2 IW(p.q.x) = W(p.s(p.x).x) + pls(p.x) =g + )] (50)
Using the identity (44) and the definition of V in (27) we see that the above inequal-

ity is equivalent to the inequality defining K -concavity of V in (42). The final case
is where g > s(p, x) and g satisfies

W(p,q.x) — pg > W(p,s(p,x),x) — ps(p, x). (5D
Using this inequality and the definition of S(p, x) as the argmax of W (p, ¢q, x)—pg
in g we have
W(p.q+z,x)—plg+2)—K

=W(p,S(p,x),x) —pS(p,x) — K

= W(p,s(p,x),x) — ps(p,x)

<W(p.q.x) = pq

<W(p.q.x) — pq

+§ (W(p.q.x) — pg — W(p.,s(p.x), x) + ps(p.x)]. (52
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Rearranging terms in the last inequality we obtain

Wp,q+z,x)— K < W(p,q,x)
+§ [W(p.q.x) — W(p,s(p.x).x) + p(s(p.x) —q + B)].  (53)

which is equivalent to the inequality defining the K -concavity of V in (42).

The next key result, that AoT" : Fxc — Fkc, is aharder to establish, and requires
an additional condition. Although it is possible prove this using a weaker sufficient
condition (which we will discuss following our proof of Lemma 7), we prefer to
use the no expected loss condition below since it is easy to verify and has a simple
economic interpretation. O

Assumption 5 (No expected loss condition) With probability 1 the following
inequality holds:

/ p’—ﬁ//p’g(dp’,dX’Ip,X) [1=n(p", p, )] y(dp"|p, x)=0, (54)
P px

i.e. the set of (p, x) for which the conditional expectation above is non-negative
has probability 1 for the Markov process {p;, x;} in each time period ¢.

Lemma 7 Assumptions 1-5 imply that A o U : Fgc — Fgc. That is, if U is
K-concave in q, then W = A(I'(U)) is K -concave in q.

Proof By Lemma6if U € Fgc,then'(U) € Fgc. By Lemma 3, there exist func-
tions S: Px X — Rands: P x X — Rsatisfying0 < s(p,x) < S(p,x) <q
for which I'(U) can be represented as

U(p,S(p,x), x)—plS(p,x)—ql—K if g €[0,s(p,x))
U(p.q,x) if gqels(p,x),ql
(55)

F(U)(p,q,X)={

Although I'(U) is defined for g € [0, g], it can be extended to a function V defined
on (—oo, g] by

riw)p,0,x)+pg if g€ (—o0,0]

56
r'w)p.q,x) otherwise. (56)

V(P’qvx)Z {

It is not difficult to see that the proof of Lemma 6 implies that V is K-con-
cave over the entire interval (—oo, g]. Now consider the function fooo Vip,q —
q", x)h(q"|p, x)dq". Since each translate V(p, g — g", x) is K-concave in g over
the interval (—oo, g], and since positive linear combinations and pointwise limits
of K-concave functions are K -concave by Lemma 2, it follows that fooo V(ip,q —
q",x)h(q"|p, x)dq" is K-concave in g on the interval (—oo, g]. We have
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oo

/ V(p,q—q",x)h(q"|p, x)dq"

0
00

V(p,q —q",x)h(q"|p, x)dq" + / V(p.q—q",x)h(q"|p, x)dq"

q

V(p,q —q", x)h(q"|p, x)dq"

Il Il
O —s T

+V(p,0,x) f h(g"|p,x)dq" + p/(q —q"h(q"|p, x)dq".

Using equations (18) and (56), we have

AoTWU)(p,q,x)=AV)(p.q.x)
= ES(p’ qv-x) - EG(p» qvx) _Ch(p» qvx) +,3EV(p, q,x)
= ES(p,q,%) — EG(p,q,x) —"(p, q, %)

+ﬁ///n(p’,p,x)V(pCq,X’)V(dp’lp,x)g(dp’,dX’Ip,X)

p X p

+ﬁ///[l—n(p P, 01V (p',0,x")

p X p"

X/h(q 1p", p,x)dq"y(dp"|p, x)g(dp’, dx| p, x)

+ﬁf//[1—n(p P, x)]

p xp

X f V(p',q—q", xh(q"|p", p,x)dq"y(dp"Ip, x)g(dp’, dx'| p, x)

—ﬁ///[l—n(p p.x)]

poxp

x / /(@ = qh(@ I, 1)dq g(dp’, dx'|p, x). (57)
q

The sum of the fourth, fifth and sixth terms in the last equation in (57) (i.e. the
three triple integrals except for the last one) is K -concave since they are a limits of
convex combinations of K-concave functions (see Lemma 2). Since EG(p, ¢, x)
is a convex function of ¢ by Lemma 1 and " (p, g, x) is a convex function of g by
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Assumption 3, a sufficient condition for the K-concavity of A o I'(U)(p, ¢, x) is
that the function

ES(pqux)_ﬁ/[/[l_n(pr7pvx)]

P, x' pr
oo

Xfp’(q—q’)h(qup,x)dq’g(dp’,dx’lp,X), (58)
q

is concave in g. It is easy to see this function is continuously differentiable in ¢
with second derivative given by:

ng ES(P’Q’X)—/g///[l—U(Prvp’x)]

p X pr
Xfp/(q —q")h(q"Ip, x)dq" g(dp’, dx'|p, x)
q

= —f P —ﬂf/p’g(dp’,dx’lp,X)
ro

P
x[1=n(p", p.x)]h(glp". p. x)y(dp"|p. x). (59)
However, h(q|p", p, x) > € > 0 by Assumption 2, so the no expected loss condi-
tion, Assumption 5, guarantees that expression on the right hand side of equation
(59) is non-positive, and this enables us to conclude that W = A(V) = AT'U is
K-concave in ¢ for any (p,x) € P x X.

Note that we could have proven Lemma 7 under the weaker condition that the
function

ES(p,q,x) —EG(p,q,x) — c"(p, q,x)

8 / f / L—n(p p.0)] [P @—q"h(q |p, x)dq"g(dp', dx'|p. x),
p x' pr q

(60)

is concave in ¢ for all (p, x) € P x X. Assuming that c¢” is twice continuously
differentiable, a sufficient condition for this to hold is that the hessian of this func-
tion is negative. This leads to the following more general version of the no expected
loss condition:

/ pr+ct(p, p,x) —ﬂ//p/g(dp’,dx/lp,x)
P px

x[L=n(p", p,x)] y(@p"Ip, x) — Vguc"(p. g, x) = 0. (61)
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By Assumption 3, c(p", p,x) > 0, and quch(p, q,x) < 0, so we see that our
formulation of the no expected loss condition in Assumption 5 is stronger than
necessary to prove our result. Thus, we do not claim that we have found the weak-
est possible conditions under which our results can be proved, however, since it is
easier to verify and provide a simple economic interpretation for the more restric-
tive form of the no expected loss condition in Assumption 5, we have opted to
stress this version since as we have noted above it is likely to be satisfied in many
situations. O

Lemma 8 Under Assumptions 0-5, the functions V and W, the unique fixed points
of the contraction mappings given in Lemma 5, are K -concave functions of q for
all (p,x) € P x X.

Proof We prove this by induction using Lemmas 6 and 7. Since I" o A is a contrac-
tion mapping, the fixed point V.= I o A(V)) can be uniformly approximated by the
method of successive approximations starting from an initial guess, V, = 0. We
have AVy(p,q,x) = ES(p, q,x) — c"(p, g, x) is concave in ¢ by Assumption 2
and Lemma 1. Since concave functions are automatically K -concave, we have that
AVy € Fgc. Lemma 6 implies that Vi = I'AV,y € Fgc. Lemma 7 implies that
AV = (A oT)AVy € Fgc. Continuing inductively, we see that for each ¢ > 0 in
the sequence of successive approximations, V; € Fk. Since the fixed point V is
a uniform limit of functions in Fc it follows that V € Fkc. Since W = ATV,
Lemma 7 also implies that W € Fgc.

Lemmas 1-8 constitute the proof of our main result. O

Theorem 1 Consider the function W (p, q+q°, x) defined in equation (17), where
W is defined in terms of the unique solution V to Bellman’s equation (16). Under
Assumptions 0-5, for any (p, x) € P x X the functions V and W are K -concave
in q, and the speculator’s optimal inventory investment policy q°(p, q, x) takes
the form of an (S, s) policy. That is, there exist a pair of functions (S, s) satisfying
S(p,x) = s(p, x) where S(p, x) is the target inventory level and s(p, x) is the
inventory order threshold, i.e.

0 if g>s(p,x)
¢ b b = 1 62
q°(p,q,x) {S(P,x) — g otherwise, ©2
where S(p, x) is given by:
S(p,x) = argmaXOSq,,gfq[W(p, q°,x) —c’(p,q°, X)], (63)

and the lower inventory order limit s(p, x) is the value of q that makes the specu-
lator indifferent between ordering and not ordering more inventory:

s(p,x)=inf {q€[0,ql|lW(p,q,x)=W(p, S(p, x),x)—p[S(p,x)—q]l—K}.
(64)

Corollary If fixed costs of placing orders are zero, K = 0, then the minimum
order size is 0, i.e.

S(p,x) =s(p,x). (65)
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Theorem 2 Suppose that W (p, q, x) is twice continuously differentiable in (p, q).
Then S(p, x) is a decreasing function of p iff the shadow price of inventory in-
creases at a slower rate than the wholesale price p, i.e. iff

1> ngW(p,q,x) at g = S(p, x). (66)
Proof Totally differentiating the first order (Euler) equation for S(p, x) and solving
for V,S(p, x) we get
2
1=V, W(p,q,x)
ViW(p.q,x)

VpS(p,x) = . g =S(p,x). (67)

The denominator is strictly negative since ¢ = S(p, x) is a global optimum of the
W function. Thus the sign of V,,S(p, x) depends on the sign of 1 — V,%q W(p,q,x).
O

One can interpret S(p, x) as the “target demand function” for inventory. As
with ordinary demand functions, we would expect that the target demand function
should be downward sloping in price. Theorem 2 provides a sufficient condition
for this to be the case. Note that V, W is the shadow value of an additional unit of
inventory. Thus, V,% o, W represents how this shadow value changes when the under-
lying wholesale price p increases. Theorem 2 tells us that if the shadow value of
inventory holdings increases at a slower rate than the wholesale price at which new
inventories can be purchased, V,z, q W < 1, then S(p, x) is a decreasing function of
p- The intuition for this result is that if purchases of the commodity are not subject
to “free disposal” (i.e. speculator cannot sell back any excess inventory at the cur-
rent wholesale price p), then it is not necessarily the case that W (p, g, x) > pq.If
there are also costly delays to waiting for retail customers to purchase any excess
inventory the speculator may have previously acquired (due, for example, to costs
of holding inventory), then we would also expect that V; ,W < 1,1e. anincrease
in the unit wholesale price of the commodity will increase the incremental value
of an additional unit of inventory by less than the increase in the wholesale price.
If this is the case, then as wholesale prices increase, the marginal cost of acquiring
an additional unit of inventory is not matched by a corresponding increase in the
marginal value of being able to sell that unit in the retail market. This implies that
the speculator will want to hold less inventory as the wholesale price increases, i.e.
the target inventory demand function S(p, x) is downward sloping in p.

3 Example: Scarf’s inventory model

We conclude the paper by illustrating how our results apply to the model of opti-
mal inventory investment studied by Scarf (1960). Scarf formulated the inventory
problem as a cost minimization problem. However, if it is recast as a profit maximi-
zation problem, then it is easily seen to be a special case of our framework where
the vector of state variables x does not enter the model, n = 0, the wholesale price
p is a non-random constant, and the retail price equals a non-random constant p”.
Thus the only state variable is g.

Scarf considered the case where unfilled inventory can be backlogged, repre-
sented by negative inventory levels g < 0. We assume orders cannot be backlogged
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and impose the non-negativity constraint ¢ > 0. An (S, s) policy in this case is
simply two scalars s and S satisfying s < S where S is given by

S = argmax,_, - [W(q) — pql, (68)
and s is given by
s =inf{g € [0, S]| W(g) = W(S) — p[S —q]l — K}. (69)

It is easy to see that the expected sales and value functions E'S and E'V are given
by

q 00

ES(q) =p" fq’h(q")dq’ +q/h(q’)dq’ ,
0 q
v q
EV(g) = V(O)/h(q’)dq’ +/0 V(g —q")h(g")dq". (70)
q

The function W, the value of holding inventory ¢, is given by:

W(q) = ES(q) — EG(q) — "(q) + BEV (). (71)
Bellman’s equation is given by
Vig)=, max [Wig+q) "], (72)
<¢°<q—q

where ¢ is the order cost function (Assumption 4). The no expected loss condition
(Assumption 5) reduces to

p" = Bp. (73)

If the other regularity conditions in Assumptions 1-5 hold, Theorem 1 guarantees
that V and W will be K-concave in g and the (S, s) policy is an optimal trading
strategy.
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