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IS THERE A CURSE OF DIMENSIONALITY FOR
CONTRACTION FIXED POINTS IN THE WORST CASE?1

By J. Rust, J. F. Traub, and H. Woźniakowski

This paper analyzes the complexity of the contraction fixed point problem: compute an
�-approximation to the fixed point V ∗ = � �V ∗� of a contraction mapping � that maps a
Banach space Bd of continuous functions of d variables into itself. We focus on quasi linear
contractions where � is a nonlinear functional of a finite number of conditional expectation
operators. This class includes contractive Fredholm integral equations that arise in asset
pricing applications and the contractive Bellman equation from dynamic programming. In
the absence of further restrictions on the domain of � , the quasi linear fixed point problem
is subject to the curse of dimensionality, i.e., in the worst case the minimal number of
function evaluations and arithmetic operations required to compute an �-approximation to
a fixed point V ∗ ∈Bd increases exponentially in d. We show that the curse of dimensionality
disappears if the domain of � has additional special structure. We identify a particular
type of special structure for which the problem is strongly tractable even in the worst case,
i.e., the number of function evaluations and arithmetic operations needed to compute an
�-approximation of V ∗ is bounded by C�−p where C and p are constants independent
of d. We present examples of economic problems that have this type of special structure
including a class of rational expectations asset pricing problems for which the optimal
exponent p = 1 is nearly achieved.

Keywords: Contraction mappings, quasi linear, curse of dimensionality, strong
tractability, computational complexity, dynamic program, rational expectations models.

1
 introduction

This paper analyzes the complexity of the contraction fixed point problem:
compute an �-approximation to the fixed point V ∗ = � �V ∗� of a contraction
mapping � that maps a Banach space Bd into itself where Bd is a space of
continuous functions defined on a compact Sd ⊂ �d. These problems arise fre-
quently in economics, and include infinite horizon dynamic programming (DP)
and asset pricing problems where V ∗�s�=V ∗�s1
 � � � 
 sd� is interpreted as a value
function that depends on a vector of d state variables �s1
 � � � 
 sd� each of which
can assume a continuum of possible values. Although the space Bd is infinite-
dimensional we refer to d as the dimension of the fixed point problem. Banach’s
theorem guarantees that a unique fixed point exists, but only in rare cases is
it possible to obtain analytic expressions for V ∗ and it is usually quite difficult
even to characterize general properties of V ∗ (e.g., monotonicity, concavity, etc.).
For these reasons there has been increasing emphasis on the use of numerical

1 This research was supported in part by the Alfred P. Sloan Foundation and by the National
Science Foundation. We are grateful for the excellent facilities of the Santa Fe Institute where some
of our research was conducted.
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methods to compute approximate contraction fixed points in virtually all fields in
economics and finance, including microeconomic models of intertemporal deci-
sion making under uncertainty (Rust (1997), Judd (1998)), econometrics (Rust
(1994)), macroeconomics (Stokey and Lucas (1987), Cooper (1999)), growth the-
ory (Kydland and Prescott (1982)), and finance and asset pricing (Lucas (1978),
Rust (1985), Duffie (1988)).
In many applications we would like to be able to compute approximations to

extremely high-dimensional problems. In finance there is substantial interest in
pricing index options that are functions of thousands of individual securities: cal-
culation of theoretical values of these options requires solution of high dimen-
sional optimal stopping problems where d is at least as large as the number of
securities in the index; see Boyle, Broadie, and Glasserman (1997). It is increas-
ingly common to see very high dimensional DP problems in economic applica-
tions. For example, models of optimal pricing and inventory decisions of retail or
wholesale companies can easily result in DP problems for which d can be many
thousands. Hall and Rust (2000) model a steel wholesaler that carries over 2,000
individual steel products: each product is described by at least two continuous
state variables, namely the current spot price and quantity on hand. Thus, to
model the firm as a whole would potentially require a DP problem with at least
d = 4
000 continuous state variables. Similarly, Aguirregabiria (1999) develops a
DP model of a Spanish retail supermarket chain that carries over 8,000 separate
products: many U.S. retail outlets carry more than 75,000 products. Thus, it is
increasingly important to find effective algorithms for approximating fixed points
to high dimensional problems where d can be arbitrarily large.
Our analysis focuses on a subclass of quasi linear contraction mappings that

can be represented as nonlinear functionals of a finite number of conditional
expectation operators:

� �V ��s�= f
(
�1�s�+�E1V �s�
 � � � 
�m�s�+�EmV �s�

)

(1)

where f is a continuous function mapping Rm into R, the �i
 i = 1
 � � � 
m, are
fixed functions in Bd, and the Ei
 i= 1
 � � � 
m, are linear conditional expectation
operators on Bd, i.e.,

EiV �s�=
∫
Sd

V �t�pi�t�s�dt
(2)

where pi� Sd × Sd → R+, and pi�·�s� is a conditional probability density func-
tion on Sd for each s ∈ Sd. If f satisfies the quasi linearity property described in
Section 2, then � is a contraction mapping on Bd. Many of the fixed point prob-
lems that appear in economic applications are quasi linear. This family includes
Fredholm integral equations that arise in rational expectations models of asset
pricing (when m= 1 and f �x�= x) and the Bellman equation for infinite horizon
DP problems (when m> 1 and f �x1
 � � � 
 xm�=max�x1
 � � � 
 xm��.
At least since Bellman (1957), it has been thought that contraction fixed point

problems of the type we are considering are subject to an unavoidable “curse of
dimensionality.” Subsequent developments in the theory of computational com-
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plexity of continuous problems (see Traub and Werschulz (1998) for a survey)
have formalized the concept of curse of dimensionality and have succeeded in
determining whether a wide variety of continuous mathematical problems are
subject to this curse. The complexity, comp��
d�, of a d-dimensional mathemat-
ical problem is defined as the minimal cost of computing an �-approximation in
the worst case using deterministic algorithms.2 If comp��
d� depends polynomi-
ally on �−1 and d, we say the problem is tractable; otherwise it is intractable. If
comp��
d� depends exponentially on d, we say the problem suffers the curse of
dimensionality.
Chow and Tsitsiklis (1989) confirmed Bellman’s conjecture by proving that the

problem of approximating the fixed point to Bellman’s equation V = � �V � is
subject to the curse of dimensionality. More precisely, they showed that when the
domain of � is sufficiently large (e.g., the set Ld ⊂ Bd of all uniformly bounded
Lipschitz continuous functions), then the problem of finding an �-approximation
to the fixed point V = � �V � is intractable. They considered a general class of
Markovian decision problems with continuous state and action spaces. However
their result also implies that the problem of approximating V ∗ for a subclass
of MDP’s with only a finite number m of possible actions known as discrete
decision processes (DDP’s) is also intractable, since its complexity is at least of
order �−2d. However DDP problems are mathematically equivalent to computing
the fixed point of the Bellman operator, which is just a special type of quasi
linear contraction mapping. Thus, the intractability of the DDP problem implies
that the quasi linear contraction problem (which includes the finite action MDP
problem as a special case), must be intractable as well.
The objective of this paper is to determine circumstances under which it is

possible to break intractability of the quasi linear contraction fixed point problem.
As discussed in Traub and Werschulz (1998), there are two main ways this can
be done:
(a) by using randomized algorithms, such as Monte Carlo, or
(b) by restricting attention to problems that have some sort of “special

structure.”
Strategy (a) was used by Rust (1997) who showed that a random multigrid

algorithm succeeds in breaking the curse of dimensionality for a subclass of
DDP problems.3 Since DDP’s are a subclass of quasi linear contractions, Rust’s
result suggests that it may be possible to use randomization to break the curse
of dimensionality for a larger class of quasi linear contraction mappings. The
main work involved in computing a fixed point in either of these problems is
the evaluation of the multivariate integrals defining the conditional expectations
EiV 
 i= 1
 � � � 
m. Although the problem of computing multivariate integrals for
integrands that are in a sufficiently large class such as Ld is intractable in the
worst case deterministic setting, it is well known that multivariate integration

2 Complexity is also defined for the average case and randomized settings. See Traub, Wasilkowski,
and Woźniakowski (1988).
3 It is possible to check that the results of Rust (1997) are also valid for the class of problems

considered in this paper.
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is tractable when randomized algorithms are allowed. For example the classi-
cal Monte Carlo method can be used to approximate the integral ÊiV �s� as a
sample average 1/n

∑n
i=1V �s̃i� where �s̃1
 � � � 
 s̃n� are IID draws from the con-

ditional density pi�t�s�. The Law of Large Numbers implies that ÊiV �s� con-
verges to EiV �s� at rate n−1/2 independent of the number of variables.4 The
cost of allowing randomization is that we must be content with the weaker
stochastic assurance that the expected error of the approximate solution is less
than �.
Our paper is about strategy (b). There are two main advantages of this

approach. First, unlike Monte Carlo methods, the algorithms we consider deliver
a stronger deterministic worst case assurance regarding the approximation error.
Second, we provide sufficient conditions under which there is a deterministic
algorithm that uses n quadrature points to approximate the conditional expecta-
tion operators EiV in equation (1) and results in an approximate fixed point V̂n

that, regardless of the dimension d, converges to V ∗ at rate close to n−1.
We now describe the type of special structure we exploit and how it enables

us to break the curse of dimensionality. Our objective is to approximate V ∗ at
an arbitrary point s∗ ∈ Sd. Note that V ∗ is an implicit function of the objects
f 
 �pi�, and ��i�, where f is the function defining the quasilinear contraction
operator in equation (1), the ��i� are the payoff functions in (1), and the �pi�
are the Markov transition densities defining the conditional expectation oper-
ators in (2). We assume that a feasible algorithm for computing an approxi-
mate solution V̂ to V ∗ can only depend on the values of these objects at a
finite number of points �s1
 � � � 
 sn� in the domain Sd. Our worst case analysis
treats the objects f and �pi� as fixed, but allows ��i� to be elements of a set
of functions Fd. For any algorithm (which includes a specific choice for n and
the sample points �s1
 � � � 
 sn�) we can determine the worst case error, i.e., the
largest possible value of �V ∗�s∗�− V̂ �s∗�� for ��i� in the set Fd. The complex-
ity comp��
d� is the minimum cost of computing an �-approximation, where
the minimum is taken over all feasible algorithms. Obviously, the complexity
depends on the set of functions Fd. When Fd = Bd, the (noncompact) set of all
continuous, uniformly bounded functions, the complexity is infinite, i.e., it is not
possible to compute an �-approximation for sufficiently small � using determin-
istic algorithms. When Fd =Ld, the compact set of uniformly bounded Lipschitz-
continuous functions, the complexity is finite, but as noted above, there is a curse
of dimensionality—comp��
d� is an exponential function of d. We will consider
the case where Fd = Fd
 , a compact subset of uniformly bounded functions in
a weighted Sobolev space that will be described in more detail later. We will
define a specific weighted norm �·�Fd
 on the functions in Fd
 that depends on a
4 Note that computer implementations of the Monte Carlo method use pseudo-random number

generators that attempt to emulate truly IID draws from various distributions. The fact that the
observed rate of convergence of these implementations of the Monte Carlo method is n−1/2 can
be taken as evidence that pseudo-random number generators are able to successfully emulate the
behavior of truly IID sequences. The problem of when the use of pseudo-random sample points does
not change the error of Monte Carlo is addressed in Traub and Woźniakowski (1992).
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parameter  = � 1
 � � � 
  d� that has the same dimension as the arguments d of
the functions in Fd
 . The ith component  i is a weight that determines, for any
function � ∈ Fd
 , how sensitive the norm ���Fd
 is to variations in si, the i argu-
ment of �. If  i is small the norm will be very large if the function � is highly
variable as a function of si. Thus, in order for � to have a small weighted norm
when  i is small, it must be the case that � must be nearly “flat” as a function
of si. We show that the quasi linear contraction fixed point problem becomes
tractable in the worst case setting if

∑

d=1  d <
.

Tractability is established by showing that comp��
d� takes the form

comp��
d�= c�d�n1��
d�+n2��
d�
(3)

where n1��
d� is the minimal number of function evaluations, n2��
d� is the min-
imal number of arithmetic operations required to compute an �-approximation
to a d-dimensional problem in the worst case, and c�d� represents the cost of a
single function evaluation of �. Clearly, the problem is tractable if n1
n2, and c
all increase polynomially in �−1 and d. We restrict attention to problems where
c�d� is bounded by a polynomial in d, since if this does not hold, the prob-
lem is automatically intractable. In the quasilinear contract problem, we have
n2��
d�=O�n1��
d�

2�, so the key to our argument is to show that n1 is a poly-
nomial in �−1 and d. We provide sufficient conditions under which the problem
is strongly tractable, i.e., where

n1��
d�≤ C�−p(4)

for constants C and p, which are independent of d and �. The minimal (or the
infima of) values of p for which these inequalities hold is called the strong expo-
nent; see Woźniakowski (1994) for a precise definition. We provide sufficient con-
ditions under which the strong exponent is equal to p= 1, which implies that the
optimal (unidimensional) convergence rate of n−1 is nearly achieved regardless
of the problem dimension d.
We verify that these rates of convergence can be attained in the context of

a specific rational expectations asset pricing example. In this case the quasi lin-
ear contraction problem reduces to a Fredholm integral equation for V ∗, where
V ∗�s� represents the value of the asset given information s, where s is a vector
in a d-dimensional state space Sd. The dimension d could be quite large, since it
not only includes a vector of variables that represent the state of the firm (i.e., its
sales, costs, debt, wage costs, market share, and so forth), but it also includes a
large number of market-level variables summarizing the status of the firm’s chief
competitors, and a large number of economy-level variables that affect the over-
all level of the stock market (e.g., interest rates, inflation rates, unemployment
rates, and so forth). Suppose that the asset pays a per share dividend of ��s� in
state s, and that the state evolves according to a Markov transition density p and
there is a constant risk free interest rate r > 0. Then the “fundamental value” of
the stock is given by

V ∗�s�= ��s�+ 1
�1+ r�

∫
Sd

V ∗�t�p�t�s�dt
(5)
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In Section 5 we show that the problem of approximating V ∗ is strongly tractable
if � satisfies some mild smoothness conditions and p is a truncated normal den-
sity for which certain parameters related to the eigenvalues of its correlation
matrix tend to infinity at a sufficiently fast rate. We prove that this problem is
strongly tractable with strong exponent equal to 1. That is, the number of func-
tion evaluations n��
d� necessary to compute an �-approximation to V ∗ at a
point satisfies n1��
d�≤C%�

−1−% for all %> 0. This is substantially faster than the
randomized contraction operator approach considered by Rust (1997). In that
algorithm n1��
d� must be of order �−2 in order to achieve an expected error
of �. Thus, even though V ∗ is a nontrivial function of all d state variables, the
number of sample points necessary to find an �-approximation is independent of
d. The problem complexity, comp��
d�, only depends on d via the cost c�d� of
each function evaluation.5 This gives us a double-win:

• convergence is faster than Monte Carlo,
• with a worst case deterministic guarantee.
Although we do not do so here, our results on the tractability of pointwise

approximation of V ∗ can be extended to enable us to prove the tractability of
uniform approximation of V ∗. Consider a function V̂k constructed from a linear
combination of k “basis functions” �'i
k� whose coefficients are values V̂ evalu-
ated at an appropriate set of sample points �s1
 � � � 
 sk� in Sd:

V̂k�s�=
k∑
i=1

V̂ �si�'i
k�s�
(6)

V̂k will be a uniform �-approximation to V ∗ provided �V ∗ − V̂k�1 ≤ ��V ∗�2 for
some norms �·�1 and �·�2. The value of k for which this is true obviously depends
on � and d. In order for the uniform approximation problem to be tractable we
must guarantee that k depends only polynomially on 1/� and d, and that the time
required to evaluate each of the basis functions depends only polynomially on d.
This can be achieved for the same conditions under which the pointwise approx-
imation problem is tractable, i.e., when the functions V̂ and V ∗ have a particular
type of special structure reflected by small norms in the weighted Sobolev space
Fd
 . Thus, it is sufficient to restrict attention to proving that the problem of
pointwise approximation of V ∗ is tractable.
Section 2 introduces the class of quasi linear contraction mappings, with exam-

ples of how these mappings arise in economic applications. Section 3 reviews
recent empirical and theoretical results on Quasi Monte Carlo (QMC). This

5 Werschulz (1991) and Heinrich (1998) analyzed the worst case complexity of Fredholm integral
equations for smooth functions and showed that these problems are subject to a curse of dimension-
ality. However their results do not necessarily imply that the quasi linear contraction problem suffers
the curse of dimensionality since the class of Fredholm integral equations they consider includes
problems with more general kernels. Our analysis only covers a subset of contractive Fredholm inte-
gral equations where the kernel takes the form �p�t�s� where � ∈ �0
1� and p�·�s� is a conditional
probability density function with special structure.
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is relevant to our results since we show how a particular QMC algorithm that
is based on an approximation algorithm known as the weighted tensor product
algorithm (WTP) enables us to exploit the special structure of integrands in
the Sobolev space Fd
 and break the curse of dimensionality. In Section 4 we
present a class of iterative algorithms for computing approximate fixed points
to quasi linear contractions. Section 5 outlines the structure of our argument in
the special IID case where the transition densities pi�t�s� do not depend on s.
Section 6 applies these algorithms to the problem of approximating fixed points
to an important subclass of quasi linear mappings, (contractive) Fredholm inte-
gral equations. These problems arise in asset pricing applications such as dis-
cussed above, and also in the policy iteration method for solving DDP’s (i.e.,
Markov decision processes with a finite number of possible actions). Section 7
verifies that under mild restrictions, the multidimensional rational expectations
asset pricing problem is tractable with strong exponent equal to p= 1. Section 8
provides a short conclusion that discusses some of the limitations of our results
and offers suggestions for future research in this area. The Appendix contains
the more technical definitions and proofs.

2
 the quasilinear contraction problem

Definition 1: A function f � �m→ � is quasi linear if:
1. f is continuous and nondecreasing in each argument,
2. for all ( ∈ � we have f �x+(�e�= f �x�+( where �e = *1
1
 � � � 
1+T ∈ �m.

Examples:
1. Linear Functions. Let f be given by

f �x�=
m∑
k=1

ckxk
 where ck ≥ 0
 and
m∑
k=1

ck = 1
(7)

2. Max Function. Let f be given by

f �x�= max
k=1
2
 � � � 
m

xk
(8)

3. Smoothed Max Function. Let f- be given by

f-�x�= - ln

(
m∑
k=1
exp�xk/-�

)
for a nonnegative -
(9)

The direct use of (9) is not recommended in computation due to overflow
problems for small - . Note, however, that

f-�x�= max
k=1
2
 � � � 
m

xk+- ln

(
m∑
i=1

(
exp

((
xi− max

1≤k≤m
xk

)
/-

)))
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This formula can be used for computation of f-�x� without problems of overflow
since xi −maxk=1
2
 � � � 
m xk ≤ 0 and we always compute the exponential for a
nonpositive argument. Observe also that

0≤ f-�x�− max
k=1
2
 � � � 
m

xk ≤ - lnm
(10)

and therefore lim-→0 f-�x�=max1≤k≤m xk.
4. “Social Surplus Functions.” Let f- be given by

f-�x�=
∫
�m

max
k=1
2
 � � � 
m

*xk+-.k+q�.1
 � � � 
 .m�d.1 · · ·d.m
(11)

where q�.1
 � � � 
 .m� is a probability density over �m that has finite absolute
first moments. This class of functions was introduced in McFadden (1981). The
adjective “Social Surplus” reflects the interpretation of f-�x� as the expected
utility of a population of agents indexed by . = �.1
 � � � 
 .m� who face m possible
choices, where the utility of choice k is xk+-.k. The smoothed max function (9)
is a special case of (11) when q is the product of m appropriately standardized
univariate Type III extreme value distributions, i.e.,

q�.1
 � � � 
 .m�=
m∏
i=1
exp�−�.1+ ��exp

{−exp�−�.i+ ��
}

where  � 
577216� � � is Euler’s constant.

As noted in Section 1, Bd denotes the Banach space of continuous functions V
on a compact set Sd ⊂ �d with nonempty interior equipped with the sup-norm,
�V � = sups∈Sd �V �s��. Let

�k� Sd → � for k = 1
2
 � � � 
m
(12)

be elements of Bd, and let

pk� Sd×Sd → �+ for k = 1
2
 � � � 
m(13)

be Markov transition densities that are weakly continuous in their second argu-
ment. That is, pk�·�s� is a probability density for each s ∈ Sd and has the property
that for each V ∈ Bd we have EkV ∈ Bd, where

EkV �s�=
∫
Sd

V �t�pk�t�s�dt
(14)

Definition 2: A mapping � � Bd → Bd is quasi linear if � is given by

� �V ��s�= f
(
�1�s�+�E1V �s�
 � � � 
�m�s�+�EmV �s�

)

(15)

where f � Rm→R is a quasi linear function, and � ∈ �0
1�.
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Examples:
1. Fredholm Integral Equations. When m= 1 and f �x�= x we have

� �V ��s�= ��s�+�EV �s�
 ∀ s ∈ Sd
(16)

Thus � is a linear operator in this case. It is easy to see that the fixed point prob-
lem V = u+�EV is equivalent to solving a Fredholm equation of the second
kind with kernel k�t
 s�= �p�t�s�. Equations of this form arise in rational expec-
tations theories of asset pricing; see, for example, Lucas (1978) or Tauchen and
Hussey (1991). Much is known about the complexity of computing approximate
solutions to Fredholm integral equations with general kernels; see Werschulz
(1991) and Heinrich (1998) for surveys of deterministic and stochastic complexity
bounds for this problem. In the case of general kernels, the results in Werschulz
(1991) show that the problem is intractable in the worst case using determinis-
tic algorithms. By exploiting the special structure of the kernel for the class of
Fredholm integral equations combined with additional special structure on the
functions �i and pi (to be defined shortly), we will be able to show that the fixed
point problem, and the associated Fredholm problem, is strongly tractable.
2. Bellman Operators. We take f �x�=max*x1
 � � � 
 xm+ and obtain

� �V ��s�=max[�1�s�+�E1V �s�
 � � � 
�m�s�+�EmV �s�
]



The associated fixed point equation, V = � �V �, is known as Bellman’s equation,
the fundamental equation underlying infinite horizon Markovian decision prob-
lems (see, e.g., Blackwell (1965) and Denardo (1967)).
We stress that this function f corresponds to the case of finitely many choices

of actions, and the case of a continuous choice of actions is not addressed. But
even this restricted case poses difficulties for our analysis since our results depend
on the ability to exploit smoothness properties of the function � �V �. Even if
the functions �k and pk are very smooth with respect to s, the function � �V �
will generally only be a Lipschitz continuous function of s due to the presence
of “kinks” induced by the max operator. One possible solution to the problem
is to approximate V ∗ via Howard’s (1960) policy iteration algorithm. The algo-
rithm consists of alternating policy improvement and policy valuation steps and
is globally convergent. Each policy valuation step is equivalent to the solution of
a Fredholm integral equation. We provide sufficient conditions for the tractabil-
ity of approximating the fixed point to a class of Fredholm integral equations in
Section 6. Assuming that the number of policy iterations required to converge
grows only polynomially in d, it is possible to use an approximate policy iteration
algorithm to approximate the fixed point V ∗ to Bellman’s equation. This requires
showing that the approximate policy iteration algorithm will converge provided
the value function at each approximate policy valuation step is approximated suf-
ficiently accurately. Another possible solution is to smooth the Bellman operator
as discussed below.
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3. Smoothed Bellman Operators. We take f-�x� = - ln�
∑m

k=1 exp�xk/-�� and
obtain

�-�V ��s�= - ln

[
m∑
k=1
exp

{
1
-

[
�k�s�+�EkV �s�

]}]

(17)

The function � �V � is as smooth as �k and pk. From (10) we conclude

0≤ �-�V ��s�−� �V ��s�≤ - lnm
 ∀ s ∈ Sd

and therefore the Bellman operator is a uniform limit of smoothed Bellman
operators: � = lim-→0 �- . This justifies the name of �- as the smoothed Bellman
operator. Fixed point problems with smoothed Bellman operators arise in econo-
metric applications; see, e.g., Rust (1994).
4. Smoothed Bellman Operators via Social Surplus Functions. A wider class of

smoothed Bellman operators can be defined for the class of social surplus func-
tions f- given in equation (11):

�-�V ��s�(18)

=
∫
�m

max
k=1
 � � � 
m

[
�k�s�+�EkV �s�+-.k

]
q�.1
 � � � 
 .m�d.1 · · ·d.m


It is obvious from (18) that � = lim-→0 �- . While our analysis of the complexity
of the quasi linear fixed point problem explicitly considers the numerical integra-
tion problem underlying the evaluation of the conditional expectation operators,
Ek, it abstracts from the integration problem defining the quasi linear function
in (18). Thus, we will assume that the function f in equation (15) can be evalu-
ated exactly, such as in the case of the smoothed Bellman operators (neglecting
potential errors in approximating exp�x� and log�x� which we presume are of
second order relative to errors in multivariate integration). Otherwise the analy-
sis becomes even more complicated since we need to control the approximation
error in the quasi linear function f in addition to the approximation error in Ek.

Theorem 1: Let � be a quasi linear mapping given in Definition 2. Then � is
a contraction, and the equation

V = � �V �

has a unique solution V ∗ in the ball UR = �V ∈ Bd� �V � ≤ R� with R ≥
�1−��−1�f ��1�·�
 � � � 
�m�·���, and

�f ��1�·�
 � � � 
�m�·���
1+�

≤ �V ∗� ≤ �f ��1�·�
 � � � 
�m�·���
1−�




Proof: The quasi linearity property of f implies that � satisfies Blackwell’s
(1965) sufficient conditions for a contraction mapping. However it is actu-
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ally easier to verify that � is a contraction via a direct calculation. We have
�Ek�V �� ≤ �V � and

� �V ��s�= � �W +V −W��s�≤ � �W +�V −W��e��s�
= � �W��S�+��V −W�


using the properties 1 and 2 in Definition 1 above. Repeating the same argument,
but interchanging V and W we get

�� �V ��s�−� �W��s�� ≤ ��V −W�
 ∀ s ∈ Sd

Since � < 1
� is a contraction mapping.
By Banach’s theorem, the unique solution of V =� �V � in UR exists if � �UR�⊂

UR. The last inclusion holds since

�� �V ��s�� ≤ f
(
�1�s�+��V �
 � � � 
�m�s�+��V �)

= f ��1�s�
 � � � 
�m�s��+��V �

Hence, for V ∈ UR we have

�� �V �� ≤ �f ��1�·�
 � � � 
�m�·���+�R≤R

due to the condition on R. The bounds on the norms of V ∗ easily follow from
the pointwise estimates

−��V ∗�+ f ��1�s�
 � � � 
�m�s��

≤ V ∗�s�≤ ��V ∗�+ f ��1�s�
 � � � 
�m�s��
 Q
E
D


Quasi linear mappings simplify if all Markov transition densities are the same,
pk ≡ p. Then the second property of the quasi linear function f yields

� �V ��s�= ��s�+�
∫
Sd

V �t�p�t�s�dt
 with(19)

��s�= f ��1�s�
 � � � 
�m�s��


If we further assume that the Markov transition density does not depend on
s
p�t�s�= p�t�, then

� �V ��s�= ��s�+�
∫
Sd

V �t�p�t�dt
(20)

In the later case, the fixed point V ∗ = � �V ∗� differs from � only by a constant,
i.e.,

V ∗�s�= ��s�+ �

1−�

∫
Sd

��t�p�t�dt
(21)

Hence, computation of V ∗ reduces to the computation of a single multivariate
integral in this case. This indicates that quasi linear contractions are computa-
tionally at least as hard as multivariate integration.
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Definition 3: The quasi linear contraction problem is defined as the problem
of computing an �-approximation to V ∗�s∗� at a given point s∗ ∈ Sd where V ∗ is
the unique solution to the contraction fixed point problem

V = � �V �
(22)

and � is a quasi linear contraction mapping satisfying Definition 2.

More precisely, we want to compute an �-approximation V̂ �s∗� such that

�V ∗�s∗�− V̂ �s∗�� ≤ �max��V ∗�
 ��V ∗���
(23)

Here ��·�� is a norm that may be different from the usual sup-norm �·� on the
space Bd. As we shall see later, the choice of the norm ��·�� is very important
and our results on the strong tractability of the quasi linear contraction problem
depend on this norm. The only restriction on the norm ��·�� is that ��V ∗�� be
well defined. Note that if we choose ��·�� such that ��V ∗�� is much larger than
�V ∗�, then the problem of computing an �-approximation is easier.

3
 strong tractability of multivariate integration

As we will see later, multivariate integration is the key “subproblem” of the
quasi linear contraction problem and the potential source of a curse of dimen-
sionality. In this section we review what is currently known about the complexity
of multivariate integration, summarizing the circumstances under which the curse
of dimensionality arises and when it can be “broken.” As already noted in the
introduction, there are two main ways that this can be done: (a) via randomized
methods such as Monte Carlo, or (b) by exploiting special structure of particular
classes of integrands.
Consider the problem of computing the integrals I�f � given by

I�f �=
∫
Sd

f �x�dx
(24)

where for concreteness we assume that Sd is the d-dimensional cube Sd = *0
1+d.
It has long been known that multivariate integration is subject to a curse of
dimensionality in the worst case deterministic setting when the integrands are
allowed to be members of a sufficiently general normed space of functions of d
variables, Fd. Let the norm of the space Fd be denoted by �·�Fd . The curse of
dimensionality can be explained in terms of the error bound en�Fd� given by

en�Fd�= inf
In

sup
f∈Fd
�f �Fd≤1

�I�f �− In�f ��
(25)

where In�f � represents some algorithm for computing an approximate integral
using n evaluations of the integrand f .
We now present an example of Fd for which the curse of dimensionality is

present. The space Fd = Cr�*0
1+d� is the set of functions defined on Sd that
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are r-times Frechet continuously differentiable. That is, we assume that for any
multi-index ( = *(1
(2
 � � � 
(d+ with nonnegative integers (i, such that �(� �=
(1+· · ·+(d ≤ r , we have that

D(f = 5�(�

5(1x15
(2x2 · · · 5(dxd

f

is continuous. The norm of f in Cr�*0
1+d� is defined as the maximal value of
derivatives of f up to order r ,

�f �Cr �*0
1+d� = max
(
 �(�≤r

max
x∈Sd

�D(f �x��


Bakhvalov (1959) showed that for the space Fd we have en�Fd� = 6�n−r/d� and
the complexity of the integration problem is given by

comp��
d�=6

(
c�d�

(
1
�

)d/r)

(26)

where c�d� is the cost of a single evaluation of f and the notation g = 6�h�
means that the function g is asymptotically proportional to the function h as �
tends to zero, i.e., g =O�h� and h=O�g�.6

Bakhvalov’s result implies that for fixed r , the complexity depends exponen-
tially on d, so multivariate integration is subject to an unavoidable curse of
dimensionality using deterministic algorithms. We are interested in the question
of whether there are smaller spaces of functions for which the curse of dimen-
sionality disappears. For sufficiently small spaces, such as the class of all d-variate
polynomials of order at most k, there are analytic formulas for the integral and
the complexity of integration is finite even for � = 0. In fact, the complexity is
proportional to the number of polynomial terms, which is of order dk. Obviously,
we would like to find nontrivial spaces Fd that are practically important, are as
large as possible, and for which the curse of dimensionality for multivariate inte-
gration is not present. We believe that an example of such spaces is the case of
weighted Sobolev spaces Fd
 , which will be discussed below. For these spaces the
curse of dimensionality is not present, and even simple algorithms, such as QMC
discussed below, will allow good error bounds that go to zero as a low degree
polynomial in n−1 independently of d.
Consider the class of Quasi Monte Carlo (algorithms). These are integration

algorithms for which the numerical integral In�f � can be written as a simple
weighted sum of the form

In�f �=
n∑
i=1

wi
nf �si
n�
(27)

6 Bakhvalov’s original article is in Russian; however versions of his theorem and proof can be found
also in books written in English; see, e.g., Novak (1988), Traub and Werschulz (1998), or Traub,
Wasilkowski, and Woźniakowski (1988).
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where �wi
n� are n quadrature weights and �si
n� are n sample points in Sd. In
the classical Monte Carlo algorithm (MC) and in Quasi Monte Carlo algorithms
(QMC), wi
n = 1/n. The difference between QMC and MC is that in QMC the
sample points are deterministically chosen while in MC the sample points are
random, independent, and identically distributed (IID) draws from the uniform
distribution on *0
1+d. It has long been known that the classical Monte Carlo
algorithm succeeds in breaking the curse of dimensionality provided Fd is a set for
which the associated standard deviation -�f �= �I�f 2�−I 2�f ��1/2 is polynomially
bounded in d. This follows from the fact that

sup
f∈Fd

√√√√E

{
�In�f �−n−1

n∑
i=1

f �t̃i��2
}
= supf∈Fd -�f �√

n

(28)

where the expectation is taken with respect to IID sample points �t̃i�.
QMC algorithms differ from the classical Monte Carlo algorithm by attempting

to deterministically choose a set of n sample points �ti� that are as close to
being uniform as possible. By uniform we mean that the fraction of points lying
within any rectangular subregion (with sides parallel to the coordinate axes and
containing zero) of the d-dimensional unit cube is as close as possible to the
volume (Lebesgue measure) of that subregion. The discrepancy of a given set
of n points �t1
 � � � 
 tn� is a measure of their deviation from uniformity. The
discrepancy can be measured in various ways; the most commonly used are L2-
discrepancy and L
-discrepancy. The formal definition of the L
-discrepancy
D
 is given by

D
�t1
 � � � 
 tn�= sup
B∈�
�:n�B�−:�B��(29)

where � is the set of all closed subintervals of *0
1+d (i.e., sets of the form
B =;d

i=1*0
 bi+
 bi ∈ �0
1+�
:�B�= b1b2 · · ·bd is the Lebesgue measure of the set
B, and :n�B� is the empirical measure of B:

:n�B�=
1
n

N∑
i=1
1B�ti�
(30)

where 1B is the indicator function B. That is, 1B�t�= 1 if t ∈ B, and 1B�t�= 0 if
t �∈B. If, instead of taking the maximum difference between :n�B� and :�B� over
all B ∈�, we compute the distance using the L2 or Lp norms, we obtain the L2
and Lp discrepancies, D2 and Dp
p ≥ 1, respectively. We can do this by noting
that there is a one-to-one mapping between the set B and the point b ∈ *0
1+d
representing the vector of endpoints of B =∏d

i=1*0
 bi+. Then we can define the
Lp discrepancy Dp as

Dp�t1
 � � � 
 tn�=
[∫

*0
1+d
�:n�x�−:�x��p dx

]1/p

(31)

As usual, the L2-discrepancy is a special case when p= 2 and the L
-discrepancy
is the limit of Lp-discrepancies as p→
.
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The Koksma-Hlawka inequality allows us to bound the error of the QMC algo-
rithm by the discrepancy of the sample points �ti�. It is usually stated in terms
of the L
 discrepancy as

�I�f �− In�f �� ≤ V �f �D
�t1
 � � � 
 tn�
(32)

where V �f � denotes the variation of the function f (for definition, see Nieder-
reiter (1992)). However in this paper, it is more convenient to work with a
version of the Koksma-Hlawka inequality that can be stated in terms of the
L2-discrepancy:

�I�f �− In�f �� ≤ �f �Fd
1D2�t1
 � � � 
 tn�
(33)

where the norm �f �Fd
1 is used instead of the variation V �f �.7 More precisely,
this bound applies to f in the Sobolev space Fd
1 of functions that are once
differentiable with respect to each variable. This is a special case of the weighted
Sobolev space Fd
 introduced in the Appendix with  d
 i ≡ 1. The norm in the
space Fd
1 is denoted by �·�Fd
1 . Here we only mention that for d = 1 we have

�f �2F1
1 = f �0�2+
∫ 1
0
f ′�t�2 dt
(34)

whereas for d ≥ 2 we have
�f �2Fd
1 =

∑
u⊂�1
2
 � � � 
 d�

∫
*0
1+�u�

f �u��xu
0�
2 dxu


where for u= �u1
 u2
 � � � 
 uk� with k= �u� the cardinality of the subset u
xu =
�xu1
 � � � 
 xuk� and f

�u� = 5�u�/�5xu1 · · · 5xuk� the partial derivative with respect to
xuj . Finally, �xu
0� is a vector with the jth component equal to xj if j is in u,
and 0 otherwise.8

The Koksma-Hlawka inequality makes it clear why we are interested in
QMC algorithms based on sample points that have low discrepancy. Formally, a
sequence �si
n�
 i = 1
 � � � 
 n
n = 1
2
 � � � , is said to have low discrepancy if Dp

satisfies

Dp�s1
n
 � � � 
 sn
n�≤ a�d�
logd−1�n�

n
(35)

for some positive a�d�, and p = 2 or p =
.
7 The L2-discrepancy is also related to the average case error of QMC for the class of continuous

functions equipped with the classical Wiener sheet measure; see Woźniakowski (1991).
8 We stress that the space Fd
1 is one of many examples of Sobolev spaces. Even assuming the

same smoothness of functions one can define a different norm for the Sobolev space. For instance,
one can take for d = 1, instead of (34),

�f �2 =
∫ 1

0
f �t�2 dt+

∫ 1

0
f ′�t�2 dt


and use the tensor product norm for general d. This probably corresponds to the most popular
Sobolev space that is often used in the study of differential equations. The results for multivariate
integration in this latter Sobolev space (with weights) are basically the same as for the space Fd
 as
recently shown in Sloan and Woźniakowski (2000).
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Low discrepancy sequences (LDS) have been extensively studied in the last
40 years. Examples of LDS are Halton, Sobol, Faure, generalized Faure, and
Niederreiter sequences; see Niederreiter (1992), Tezuka (1995), and Drmota and
Tichy (1997). However QMC methods based on LDS have been thought to be
inappropriate for high dimensional integration, since for large d the bounding
term a�d� log�n�d−1/n may be substantially larger than 1/

√
n unless n is huge.

Therefore, up until recently it was widely believed that QMC should not be used
for, say, d ≥ 12. The only way to do very high dimensional integration seemed to
be via classical Monte Carlo.
Then, in the mid-nineties, computer experiments on financial applications with

d = 360 showed that QMC beat MC by factors of 10 to 1000; see Paskov and
Traub (1995), Papageorgiou and Traub (1996), and Paskov (1997). Generalized
Faure points seemed especially effective in these problems. Many numerical
experiments showed that the convergence rate in these problems was roughly n−1

independently of d. A survey of computer experiments on financial instruments
can be found in Traub and Werschulz (1998). In many economic and financial
applications limited computing capacity and the need for results in “real time”
limits the size of n to a few hundred or thousand; yet as we discussed in the
introduction, the problem dimension d may be in the hundreds or thousands.
The �logn�d−1 factor in the error bound suggests that MC should beat QMC; yet
precisely the opposite happened in the computer experiments.
The existing theory of QMC algorithms was unable to explain these experi-

mental findings. The challenge was to develop a theory that could explain why
QMC converges as n−1 independently of d in these financial applications. This
suggests the possibility that the Koksma-Hlawka inequality is too conservative,
and if the type of problems that have been tested have some form of special
structure it might be possible to derive a tighter bound on the integration error.
What special structure might these problems have? In many economic and

financial problems we are interested in computing expected discounted values of
future flows of dividends or utilities. Due to the effect of the additive separability
and the discounting of payoffs or utilities, variables representing payoffs in more
distant points in the future are less important than variables representing near-
term payoffs. That is, the integrands are nonisotropic. Could this special structure
be used to vanquish the curse of dimensionality with a worst case guarantee?
Sloan and Woźniakowski (SW, 1998) formalized a particular type of special

structure of functions that includes functions that can be represented as dis-
counted sums and quantified how much it can help. They analyzed the error of
integration for functions in the Sobolev space Fd
 with a particular weighted
norm, �f �d
 ; see the Appendix. The symbol  refers to a sequence of weights
� d
 i� where  d
 i moderates the behavior of the functions of d variables with
respect to the ith variable. The weight  d
 i enters the norm inversely so that if an
element of f has weighted norm, say, at most 1, then small  d
 i means that the
function f is almost “flat” with respect to the ith variable. If we reorder the argu-
ments of f �x1
 � � � 
 xd� to have nonincreasing weights  d
 i, then this is equivalent
to assuming that arguments with successively higher indices have monotonically
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declining effects on the values of f . One can show that various parametric fam-
ilies of functions commonly used in economics, e.g., Cobb-Douglas production
functions, belong to the class Fd
 .
SW showed that there exist QMC algorithms for which the curse of dimen-

sionality is not present in the worst case under certain conditions on � d
 i�. In
order to summarize their key results, which are directly relevant for our analysis
in this paper, we first recall the notions of tractability and strong tractability for
multivariate integration (see Woźniakowski (1994) for a more in-depth discus-
sion). Tractability can be defined in terms of the error bounds en�Fd�. For n= 0
we do not sample the functions, and we set e0�Fd�= �I� as the initial error. Sup-
pose we want to reduce the initial error by a factor � ∈ �0
1�. Let n= n��
d� be
the minimal n for which

en�Fd�≤ �e0�Fd�


We say that integration is tractable in Fd iff n��
d� can be bounded by a polyno-
mial in d and �−1, and strongly tractable iff n��
d� can be bounded by a polyno-
mial only in �−1. Otherwise, we say it is intractable.
For simplicity, we present results by assuming that  d
 i =  i for the weighted

Sobolev space Fd
 . Then integration is strongly tractable in Fd
 iff


∑
i=1

 i <

(36)

and integration is tractable in Fd
 iff

lim sup
d→


∑d
i=1  i
logd

<

(37)

SW proved this result for QMC algorithms, and Novak and Woźniakowski
(1999b) proved it for arbitrary algorithms. Furthermore, if we consider the classi-
cal unweighted Sobolev space Fd
 with  i ≡ 1, then the complexity of integration
depends exponentially on d and the curse of dimensionality is present.
If (36) holds, then the number, n��
d�, of function evaluations plus arith-

metic operations needed to compute an �-approximation in the worst case setting
satisfies

n��
d�≤ C�−p(38)

where both C and p are independent of d and �, and p ∈ *1
2+. This result shows
that for problems with this type of special structure, the curse of dimensionality
is not present even in the worst case setting, and the rate of convergence is at
least as fast as the classical Monte Carlo algorithm. It is also known, due to
Hickernell and Woźniakowski (2000), that


∑
i=1

 1/2i <
 implies p∗ = 1
(39)
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where p∗ is the infimum of p satisfying (38). Hence, with a more restrictive
condition on  i we have the same rate of convergence as for the one-dimensional
case.
The proofs of these results are nonconstructive and they do not specify for

which algorithms the bound (38) holds. If condition (39) on the weights is
replaced by a stronger condition,


∑
i=1

 1/3i <

(40)

then an algorithm satisfying (38) with p almost 1 has been constructed. This is
the weighted tensor product (WTP) algorithm of Wasilkowski and Woźniakowski
(1999). The WTP algorithm is defined for arbitrary multivariate linear problems
and its definition can be found in the Appendix. We will use the WTP algorithm
to approximate the conditional expectation operators Ei entering the quasi linear
mapping � . We provide sufficient conditions under which the conditional expec-
tation operators Ei map Fd
 into itself and the conditional expectation problem
is strongly tractable. Sections 4 and 5 will use this result and the WTP algorithm
as the basis for an algorithm for solving the quasi linear contraction fixed point
problem.

4
 algorithms

In this section we consider various algorithms for solving the quasi linear con-
traction problem. We begin by assuming for a moment that we can evaluate
� �W��s∗� exactly for a given function W . Then we can solve (22) by the simple
iteration

Vi�s
∗�=� �Vi−1��s

∗� �i = 1
2
 � � � �
(41)

where V0 is the initial approximation of the solution V . For simplicity we take
V0 = 0. Clearly,

�Vi−V ∗� ≤ �i�V ∗�
 ∀ i

Hence Vi converges to the fixed point V ∗. Let

�1 = �
max��V ∗�
 ��V ∗���

�V ∗� 
(42)

We compute an �-approximation A�s�= Vn�s� if �n ≤ �1, which holds for

n=
⌈
ln 1/�1
ln 1/�

⌉

(43)

Observe that the formula for the number of steps n is formally not constructive
since it depends on the norms of the unknown solution V ∗. However, we have
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�1 ≥ � and we may bound n by replacing �1 by �
n ≤ �ln�1/��/ ln�1/���. The
latter bound is constructive.
If � is not too close to 1, the number n of steps is quite reasonable. In this

paper we assume that this is indeed the case. A number of estimates presented in
this paper have unspecified factors that depend on �. These factors are of order
1 if � is not too close to 1. The case of � close to 1 is also of interest although it
is not studied in this paper. For � close to 1, the iteration (41) as well as all its
modifications studied in this paper can be significantly improved for moderate
values of d and �−1, and the number of steps can be proportional to ln 1/�1−
�� as shown in Sikorski and Woźniakowski (1987), and Huang, Khachiyan, and
Sikorski (1999).
Thus, as long as � �Vn��s

∗� can be computed exactly, the quasi linear con-
traction problem can be solved quite efficiently. However, the assumption on
the exact computation of � �Vn��s

∗� is not realistic. Indeed, the computation of
� �Vn��s

∗� requires in particular the computation of the d-dimensional integrals
with weights pk�·�s∗�. This can be done, in general, only approximately.
Assume then that instead of (41) we can compute the perturbed sequence

Vi�s
∗�= � �Vi−1��s

∗�+%i−1�s
∗�
 with �%i−1�s∗�� ≤ %i−1�Vi−1�
(44)

for some nonnegative %i−1. We will see later that %i−1 corresponds to the quadra-
ture error and can be made sufficiently small by taking sufficiently many sample
points in the quadrature formula. For i= 1, we have V0 = 0 and there is no error
in integration. Hence, %0 = 0.
It is natural to ask how small %i−1 should be to preserve the global convergence

property of the sequence (41). In what follows, we assume that

�+%i−1 ≤ �̄ < 1
 ∀ i = 1
2
 � � � 
(45)

We have

�Vi−V ∗� ≤ ��Vi−1−V ∗�+%i−1�Vi−1�
≤ ��+%i−1��Vi−1−V ∗�+%i−1�V ∗�
≤ �̄�Vi−1−V ∗�+%i−1�V ∗�


This yields

�Vi−V ∗� ≤ �̄i�V ∗�+
(

i−1∑
j=0

�̄i−1−j%j

)
�V ∗�


If we set

�̄n ≤ �1/2 which holds for n=
⌈
ln 2/�1
ln 1/�̄

⌉



and

�̄n−1−i%i ≤
�1
2n

�i = 0
1
 � � � 
 n−1�
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then A�s�= Vn�s� is an �-approximation since

�Vn−V ∗� ≤ �1�V ∗� = �max��V ∗�
 ��V ∗���

Observe that the number n of steps is still reasonable if we choose �̄ close to

�, and � is not too close to 1. The perturbation parameters %i can be defined as

%i ≤
�̄i ln 1/�̄

ln 2/�1+ ln 1/�̄
≤ �1

2n�̄n
�̄i+1
(46)

Hence, %i may mildly depend on �1, and should decrease geometrically with i.
This means that we need more accuracy as we go along, and this is quite natural.
Knowing how much we can perturb the original simple iteration (41) we are

ready to replace multivariate integrals in � �V � by quadrature formulas. We
approximate the conditional expectation Ek given by (14) by quadrature formulas

Êk
 j �V ��s�=
i∑

i=1
ai
 j
k�s�V �ti
 j
k�
 s ∈ Sd
(47)

which use the j function values V . Here, ai
 j
k�s� are real numbers and ti
 j
k
are sample points from Sd. For instance, we can take ai
 j
k�s� = pk�si�s�/j and
ti
 j
k = si for some sample points si. For Sd = *0
1+d we can take si as inde-
pendent random points that are uniformly distributed over *0
1+d. In this case,
Êk
 j corresponds to the classical Monte Carlo algorithm. We may also take si as
low discrepancy deterministic sample points. In this case, Êk
 j corresponds to a
quasi-Monte Carlo algorithm.
The quality of the quadrature formula Êk
 j will be measured by its error. We

assume that �j�V � is an upper bound on the quadrature error,∣∣Ek�V ��s�− Êk
 j �V ��s�
∣∣≤ �j�V �
 ∀ s ∈ Sd �k = 1
2
 � � � 
m�
(48)

We are ready to modify the algorithm (41) by replacing the weighted integrals
Ek�Vi��s

∗� by the quadratures Êk
 ji
�Vi��s

∗�. Here, the not yet specified sequence
�ji� tells us how many sample points are used in the quadrature formulas. The
choice of �ji� will depend on the errors �j�V �.
The modified sequence (41) is now formally given by

Vi�s
∗�(49)

= f
(
�1�s

∗�+�Ê1
 ji−1�Vi−1��s
∗�
 � � � 
�m�s

∗�+�Êm
ji−1�Vi−1�s
∗��

)



∀ i = 1
2
 � � � 

We are ready to prove Theorem 2.

Theorem 2: Assume that the quadrature errors satisfy

�ji �Vi�≤min
(
1−�

2



( 1+�
2

)i ln 2
1+�

�
(
ln 2

�1
+ ln 2

1+�
))
�Vi�(50)

for i = 1
2
 � � � and n= ��ln 2/�1�/�ln 2/�1+����.
Then A�s∗�= Vn�s

∗� given by (49) is an �-approximation to V ∗�s∗�.
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Proof: It is easy to check that (49) is of the form (44) with

%i−1 = �
�ji−1�Vi−1�
�Vi−1�




Let �̄ = �1+��/2. From (50) we conclude that (45) as well as (89) hold and
therefore A�s∗� is an �-approximation. Q.E.D.

We now discuss the cost of the algorithm A�s∗� = Vn�s
∗� given by (49) and

Theorem 2 with

n=
⌈

ln 2/�1
ln 2/�1+��

⌉

(51)

We assume that we can compute the values of the functions �k
k= 1
2
 � � � 
m,
and f at any point as well as that we can perform arithmetic operations. Let the
cost of one evaluation of a function �k be c��k� and let the cost of one evalua-
tion of the function f be c�f �. Observe that �k is a function of d variables and
therefore the cost c��k� may depend on d. Let c�d�=maxk=1
 � � � 
m c��k�. Simi-
larly, f is a function of m variables and therefore the cost c�f � may depend on
m. We assume that the cost of one arithmetic operation is taken as unity. We
also assume that the sample points ti
 ji
 k as well �ai
 ji
k�s� are “precomputed.”
Usually, these precomputed numbers depend on the Markov transition densities
pk�·�s� and may require a number of evaluations of pk�·�s�. Since this should be
done once for a given � we do not include the cost of generating these precom-
puted numbers. This is a typical assumption in complexity analysis; see Traub,
Wasilkowski, and Woźniakowski (1988) and Novak and Woźniakowski (1999)
where this point is fully discussed. We also stress that precomputing significantly
simplifies when we use the WTP algorithm; see the Appendix.
We now explain in detail how A�s∗� can be computed. For i= 1
2
 � � � 
 n, and

s ∈ Sd denote

Vi�s�= f

(
�1�s�+

ji−1∑
p=1

�ap
 ji−1
1�s�Vi−1�tp
 ji−1
1�
 � � � 
�m�s�(52)

+
ji−1∑
p=1

�ap
 ji−1
m�s�Vi−1�tp
 ji−1
m�

)



Observe that for i = 1 we have V0 = 0 and the sample points tp
 j0
k are not
needed. This corresponds formally to j0 = 0. Let

T�
d =
{
tp
 ji−1
k� i ∈ *2
n+
p ∈ *1
 ji−1+
k ∈ *1
m+

}
(53)

denote all integration sample points used in (52), and let �T�
d� denote the car-
dinality of the set T�
d. Clearly,

�T�
d� ≤m�j1+ j2+· · ·+ jn−1�
(54)
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Furthermore, if we use nested integration sample points, �tp
 ji−1
k�⊂ �tp
 ji
k�, then

�T�
d� ≤m jn−1


If the points �tp
 j
k� are the same for all k = 1
 � � � 
m, then
�T�
d� ≤ jn−1


In order to compute A�s∗� = Vn�s
∗� we need to compute Vn−1 at the sample

points tp
 jn−1
k. This can be achieved if we know Vn−2 at the sample points tp
 jn−2
k
and so on. Therefore we compute successively V1
V2
 � � � 
Vn−1 at all the sample
points of the set T�
d, and then we can compute the value Vn�s

∗�.
More specifically, we first compute �k�x� for all x ∈ T�
d ∪�s∗� and k ∈ *1
m+

at cost at most m�1+ �T�
d��c�d�. To compute Vi�x� for all x ∈ T�
d, we per-
form 2ji−1m arithmetic operations and one evaluation of the function f at cost
�2ji−1m+c�f ���T�
d�. Finally we compute Vn�s

∗� at cost 2jn−1m+c�f �. Then cost
(A) of computing A�s∗� is

cost�A�=m�1+�T�
d��c�d�+ �1+n�T�
d��c�f �

+2m�T�
d�
n∑
i=1

ji−1+2jn−1m


This means that the cost of the algorithm A crucially depends on the cardinality
of T�
d and on the values of ji which, in turn, depend on the efficiency of quadra-
ture formulas (47). More precisely, the cost of A depends on which indices j we
can guarantee that the integration error �j�V � satisfies (50). Note that (50) holds
if we set

�ji �Vi�= C�

(
1+�

2

)i �Vi�
ln�−11

(55)

for some C� depending only on �. Let

N��
d�= j1+ j2+· · ·+ jn−1(56)

denote the total number of integration steps needed to compute A�s∗�. Then the
cost of the algorithm A can be rewritten as

cost�A�=O
(
N��
d��mc�d�+ �ln�−1�c�f ��+N 2��
d�m

)
(57)

with the big O-factor depending only on �.
The essence of (57) is that the cost of the algorithm A depends polynomially

on N��
d�. In fact, the dependence is roughly linear in N��
d� in terms of
the cost of c�d� and c�f � and quadratic in N��
d� in terms of the cost of
arithmetic operations. Typically, the cost c�d� or c�f � is much larger than unity
and therefore the total cost can be proportional to N��
d�. Hence, as long as
N��
d� is not too large, the cost of algorithm A is reasonable.
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The quantity N��
d� measures the difficulty of approximating the conditional
expectations Ek. From the perspective of computing high dimensional fixed
points where d is large, the best possible case is where N��
d� can be bounded
by a polynomial in �−1 independent of d.
Suppose we want to compute an �-approximation to Ek�V ��s� for all s ∈ Sd

and for all functions V from a normed space Fd that is a subset of Bd. Let
��V �� = �V �Fd be the norm of the space Fd. Let n = n��
d� be the smallest
integer for which there exists Êk
n of the form (47) such that

�Ek�V ��s�− Êk
n�V ��s�� ≤ ��V �Fd 
 ∀ s ∈ Sd
V ∈ Fd
k ∈ *1
m+


We say that the conditional expectation problem is strongly tractable9 in Fd if
there exist nonnegative C and p such that

n��
d�≤ C�−p
 ∀� ∈ �0
1� �d = 1
2
 � � � �
(58)

The smallest (or infimum of) exponent p in the latter bound is called the strong
exponent of the conditional expectation problem.
It seems natural to extend this definition to the quasi linear contraction prob-

lem. We say that the quasi linear contraction problem is strongly tractable iff there
exist nonnegative numbers C
p, and p1 such that the cost of computing an �-
approximation can be bounded by

C
(
*c�d�+c�f �+�−p+�−p1

)



Hence, p is the exponent of �−1 which tells us how many evaluations of �i and
f are needed, and p1 is the exponent of �−1 which tells how many arithmetic
operations are needed to solve the quasi linear contraction problem. The smallest
(or infima of) exponents p and p1 are called the strong exponent of information
and the strong exponent of arithmetic operations of the quasi linear contraction
problem.10

It is easy to check that strong tractability of the conditional expectation prob-
lem in Fd implies strong tractability of the quasi linear contraction problem as
long as Vi and the solution V ∗ of the quasi linear contraction problem belong to
the space Fd. Indeed, define

ji = C

(
C�

�Vi�
�Vi�Fd

(
1+�

2

)i 1
ln�−11

)−p
(59)

9 It is also reasonable to study the case of tractability in which we permit polynomial dependence
on d. For simplicity the focus of our attention in this paper is on strong tractability.
10 For many linear problems, we can guarantee that p1 = p. This is due to the fact that there

exists a linear optimal error algorithm that requires the same order of arithmetic operations as the
number of information evaluations; see Traub and Werschulz (1998) for a survey. In our case, we
have a nonlinear problem for which it may happen that p and p1 are different. In fact, there may
be a tradeoff between the cost of information and arithmetic operations. That is, it may happen that
with the minimal number of information evaluations we must perform significantly more arithmetic
operations, whereas the use of more information evaluations may allow reduction of the number of
arithmetic operations. There are examples of such nonlinear problems; see Novak and Woźniakowski
(1999).
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with C and p given by (58), and C� by (55). Then there exists Êk
 ji
of the form

(47) such that

�Ek�Vi��s�− Êk
 ji
�Vi��s�� ≤ C�

(
1+�

2

)i �Vi�
ln�−11




Hence (55) is satisfied. We now estimate N��
d� for ji given by (59). Then

N��
d�=O

(
C

(
max
i∈*1
n+

�Vi�Fd
�Vi�

)p

��−11 ln�
−1
1 �p

)



Using the definition of �1 (see (42)), we have

N��
d�=O

(
C

(
max
i∈*1
n+

�Vi�Fd
�Vi�

�V ∗�
max��V ∗�
�V ∗�Fd �

)p

��−1 ln�−1�p
)

with the big O-factor depending only on �. Note that �V ∗� is of order �Vi�.
Hence �V ∗�/�Vi� can be dropped from the last maximum at the expense of
enlarging the factor in the big O notation.
We summarize this as well as the previous analysis in Theorem 3.

Theorem 3: Algorithm A computes an �-approximation to the solution of the
quasi linear contraction problem at cost

cost�A�=O
(
c�d�mN��
d�+c�f �N��
d� ln�−1+mN 2��
d�

)
where N��
d� is given by (56). Suppose that

M = sup
d
 i=1
2
 � � �

�Vi�Fd
max��V ∗�
�V ∗�Fd �

(60)

is finite. Then strong tractability of the conditional expectation problem in Fd with
(58) implies strong tractability of the quasi linear contraction problem and the cost
of the algorithm A satisfies

cost�A�=O�c�d�mCMp�−p lnp �−1+c�f �CMp�−p lnp+1 �−1

+mC2M2p�−2p ln2p �−1�

with the big O-factor depending only on �.
Hence, the strong exponent of the quasi linear contraction problem is at most

equal to the strong exponent of the conditional expectation problem whereas the
strong exponent of arithmetic operations of the quasi linear contraction problem is
at most twice the strong exponent of the conditional expectation problem.

Theorem 3 relates strong tractability of the conditional expectation problem
and the quasi linear contraction problem as long as we know that Vi and V are
in the space Fd and the bound M of (60) is finite. So far we only know that Vi
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and V ∗ belong to the Banach space Bd of continuous functions. Let us then take
Fd = Bd. As noted in the introduction, if the functions in Bd are only continu-
ous, the problem is not only intractable, it is insoluble for sufficiently small �
since the integration error en�Fd� does not converge to zero as n→
 when we
have the freedom to choose a worst case integrand from the class of all con-
tinuous functions; see, e.g., Traub, Wasilkowski, and Woźniakowski (1988). If we
want to use the space Bd, one possible solution is to follow Rust (1997) and
switch to the randomized setting in which the bound (48) is understood as the
expected error with respect to randomized sample points. In this paper we stay
with the worst case setting and deterministic algorithms. Therefore to obtain
strong tractability we must explore additional properties of the quasi linear con-
traction problem so that the approximations Vi and the solution V ∗ belong to
spaces Fd for which the conditional expectation problem is strongly tractable.

5
 the iid case

It is easiest to explain our results by beginning with the special case of Markov
transition densities pk�t�s� = pk�t�, which are independent of the second argu-
ment s. This implies that the realizations from these densities, �si
k�
 i= 1
2
 � � � ,
are independent and identically distributed (IID) sequences. The general Markov
case, where transition densities are allowed to depend on s, is considered in the
next section. For the IID case it is easier to specify the spaces Fd for which the
conditional expectation problem as well as the quasi linear contraction problem
are strongly tractable.
For the densities pk independent of s, the assumption on the quality of the

quadrature rules (48) simplifies. We may, of course, assume now that ai
 j
k�s�=
ai
 j
k is also independent of s, and we have∣∣∣∣ ∫

Sd

V �t�pk�t�dt−
n∑
i=1

ai
 j
kV �ti
 j
k�

∣∣∣∣≤ �j�V � �k = 1
2
 � � � 
m�
(61)

As in the previous section we take ��·�� = �·�Fd for some normed space Fd. We
assume that Fd is a Hilbert space with reproducing kernel Kd� Sd×Sd → R. A
reproducing kernel Hilbert space is defined as one where the value of a function
V at a point t is given by the inner product of V and the kernel Kd�·
 t� evaluated
at t. More precisely, the inner product and norm in Fd are denoted by �·
 ·� and
��·�� = �·�Fd = �·
 ·�1/2. For V ∈ Fd we have V �t� = �V 
Kd�·
 t��. For the basic
theory of such spaces the reader is referred to Aronszajn (1950) and Wahba
(1990) as well as to Section 9.1 of the Appendix.
For k = 1
2
 � � � 
m, define

hk�x�=
∫
Sd

Kd�x
 t�pk�t�dt
 x ∈ Sd
(62)

Assuming that hk ∈ Fd, we have from (14) and (47)

Ek�V �= �V 
hk�
 Êk
 j �V �=
〈
V 


j∑
i=1

ai
 j
kKd�·
 ti
 j
k�
〉
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It is easy to check that

�Ek�2 = �hk�2Fd =
∫
Sd

hk�x�px�x�dx =
∫
Sd×Sd

Kd�x
 t�pk�x�pk�t�dt dx


From this we see that (61) holds with

�j�V �= �V �Fd maxk∈*1
m+

∥∥∥∥hk− j∑
i=1

ai
 j
kKd�·
 ti
 j
k�
∥∥∥∥
Fd




We now take ai
 j
k = 1/j . We have∥∥∥∥hk− 1j
j∑

i=1
Kd�·
ti
j
k�

∥∥∥∥2
Fd

=�hk�2−
2
j

j∑
i=1

hk�ti
j
k�+
1
j2

j∑
i
l=1

Kd�ti
j
k
tl
j
k�


Consider the sample points ti
 j
k that are IID draws from the measure with the
density pk. Integrating over such sample points we get

E

(∥∥∥∥hk− 1j
j∑

i=1
Kd�·
 ti
 j
k�

∥∥∥∥2
Fd

)
= 'd
k

j



where

'd
k =
∫
Sd

Kd�x
x�pk�x�dx−
∫
S2d

Kd�x
 t�pk�x�pk�t�dx dt
(63)

From the mean value theorem we conclude that there exist sample points ti
 j
k
such that the quadrature formula Êk
 j of the form (47) satisfies

�Ek�V �− Êk
 j �V �� ≤ �V �Fd
√
'd
k√
j


(64)

We stress that the proof of (64) is nonconstructive since we use the mean value
theorem. This implies that the algorithm A with Ek
j is also nonconstructive.
The estimate (64) proves that (58) holds with p = 2 and

C = sup
k∈*1
m+
d=1
2
 � � �

�1+'d
k�(65)

as long as C is finite. We thus have the following theorem.

Theorem 4: Suppose that C given by (65) is finite. Then the conditional expec-
tation problem is strongly tractable with strong exponent at most 2. Suppose addi-
tionally that M given by (60) is finite. Then the quasi linear contraction problem is
strongly tractable with strong exponent of information at most 2 and strong exponent
of arithmetic operations at most 4. Furthermore, the algorithm A defined by (49)
with (nonconstructive) Êk
 j computes an �-approximation at cost

cost�A�=O�c�d�m(�−2 ln2 �−1+c�f �(�−2 ln3 �−1+m(2�−4 ln4 �−1�

with (= CM2, and the big O-factor depending only on �.
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For many kernels it is easy to check strong tractability of the conditional expec-
tation problem independently of the transition densities. Indeed, define

K = sup
d=1
2
 � � �

sup
x∈Sd

Kd�x
x�
(66)

Then since pk is the density of the measure we have

0≤ 'd
k ≤K
∫
Sd

pk�x�dx =K


Hence, C ≤ 1+K. We summarize this in Corollary 1.

Corollary 1: For uniformly bounded kernels, K <
, the conditional expec-
tation problem for any Markov transition densities pk is strongly tractable with strong
exponent at most 2.

Theorem 4 gives sufficient conditions for strong tractability of the conditional
expectation and quasi linear contraction problems. Still, it is not entirely sat-
isfactory due to the lack of constructive quadrature formulas. Also, the strong
exponent might be less than 2.
The problem of how to construct good quadrature formulas with an optimal

exponent of �−1 has been addressed in Wasilkowski and Woźniakowski (1999).
We briefly summarize this construction in a simplified case. We assume that the
space Fd is the weighted tensor product of spaces of functions of one variable.
That is, the domain Sd is now equal to Dd with D being a subset of �. A typical
example is D = *0
1+ which leads to the d-dimensional unit cube Sd = *0
1+d.
The reproducing kernel of Fd is now of the product form

Kd�x
 t�=
d∏

k=1
�1+ d
kK�xk
 tk��
(67)

where K is a reproducing kernel of the space of univariate functions. We assume
that K�·
0�= 0. This assumption implies that the constant functions belong to Fd.
The weights  d
k are nonnegative and moderate the behavior of functions for

all variables. A small weight  d
k means that the functions depend only slightly on
the kth variable. The sum-exponent p of the sequence  = � d
k� is defined in
Wasilkowski and Woźniakowski (1999). Roughly speaking it is the largest positive
number for which

sup
d

d∑
k=1

 
p 
d
k <

(68)

We assume that p exists and p < 1.
We also need to assume that integration is of the tensor product form; see (7)

of Wasilkowski and Woźniakowski (1999). This means that the transition densities
are of the form

pk�t�=
d∏
j=1

qk�tj�(69)
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for some one-dimensional density qk� D→ � from the space L2�D�, and k =
1
2
 � � � 
m. The essence of (69) is that the d-dimensional density pk is gener-
ated by the product of the one-dimensional density qk taken for the successive
components of the vector t.
The weighted tensor product algorithm, for brevity the WTP algorithm, which

is defined in Wasilkowski and Woźniakowski (1999), can be used to approximate
linear tensor product operators; see the Appendix. For the conditional expecta-
tion problem, the WTP algorithm is a quadrature formula of the form (47) which
approximates Ek�V �/�Ek�.
Observe that we now have

�Ek�2 = �hk�2 =
d∏
j=1

(
1+ d
 j

∫
D2
K�x
 t�qk�x�qk�t�dt dx

)



Observe that supd
∑


j=1  d
 j < 
 implies that all �Ek� are of order 1. Hence,
the WTP algorithm can be also used to approximate Ek�V � as effectively as
Ek�V �/�Ek�.
The WTP algorithm depends on a number of parameters. We may choose

them in such a way that the WTP algorithm integrates the constant functions
exactly. The error formula of the WTP algorithm has the following property. For
any positive % there exists a positive C% and there is a WTP algorithm that is a
quadrature formula of the form (47) for which the error bound (48) is

�j�V �= C%j
−1/p∗min

c∈�
�V −c�Fd 
 with p∗ =max

(
p+%


2p 

1−p 

)

(70)

Here, p is the exponent of �−1 for the one-dimensional case, d = 1. We stress
that neither C% nor p∗ depend on d. In particular, if

p ≤
p

p+2 
(71)

then

p∗ = p+%


In this case we can achieve the exponent p∗ that is arbitrarily close to the one-
dimensional exponent p. Hence, we obtain the construction of quadrature for-
mulas with the best possible exponent of �−1. This, with Theorems 3 and 4, yields
the following theorem.

Theorem 5: Consider the spaces Fd with the reproducing kernel (67) and the
weights  d
k satisfying (71). Then the conditional expectation problem is strongly
tractable with strong exponent p which is the exponent of �−1 for the univariate case.

Suppose that

C = sup
d
 i=1
2
 � � �

minc∈R �Vi−c�Fd
�V ∗�Fd
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is finite. Then the quasi linear contraction problem is strongly tractable. The
algorithm A defined by (49) with the WTP algorithm as Êk
 j computes an �-
approximation and its cost satisfies

cost�A�=O�c�d�m(�−p
∗
lnp

∗
�−1+c�f �(�−p

∗
lnp

∗+1 �−1(72)

+m(2�−2p
∗
ln2p

∗
�−1�


with ( = CMp∗ where p∗ can be arbitrarily close to the strong exponent of the
conditional expectation problem, and the big O-factor depends only on �.

We now present the results on strong tractability for the weighted Sobolev
space Fd
 defined in the Appendix. It is known that the exponent p∗ that appears
in Theorem 5 is 1; see Novak (1988).
We first discuss strong tractability of the conditional expectation problem.

Observe that

Kd�x
x�=
d∏

k=1
�1+ d
kxk�


The maximum of this function is attained for x = *R
R
 � � � 
R+ and K given by
(66) is K =∏d

k=1�1+R d
k
�. This is finite iff supd

∑d
i=1  d
 i <
.

Assume then that supd
∑d

i=1  d
 i <
. In this case we have p ≤ 1. Then the
conditional expectation problem for any Markov densities is strongly tractable
and the strong exponent is at most 2. With the additional assumption (71) that
p ≤ 1/3 we can apply Theorem 5 and the strong exponent is 1.
We add that it is known that the assumption p ≤ 1/3 is not sharp for the

Markov transition density pk ≡ 1. It is proved in Hickernell and Woźniakowski
(2000) that we can achieve the strong exponent of 1 assuming that p ≤ 1/2. The
proof is, however, not constructive.
We now turn to strong tractability of the quasi linear contraction problem. This

holds under the additional assumption that supiminC∈R �Vi− c�Fd/�V ∗�Fd <
.
We now discuss when this assumption holds. For simplicity, we consider the case
when the transition densities are the same, pk�t�s� ≡ p�t� for some transition
density p. As already mentioned in (20) and (21) we now have

� �V ��s�= ��s�+�
∫
Sd

V �t�p�t�dt

and the solution is

V ∗�S�= ��s�+ �

1−�

∫
Sd

��t�p�t�dt
 ∀ s ∈ Sd


Observe that the integrals Ek�V � in (14) as well as quadrature formulas Êk
j in
(47) do not now depend on k and s. Hence, Êk
 j �V �= Êj�V �, and the iteration
(49) now takes the form

Vi�s�= ��s�+�Êji−1�Vi−1�
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The functions Vi as well as the solution V ∗ differ from the function g only by
constants. We also have V0= 0 and V1=�, where � is defined by (19). Therefore
Vi ∈ Fd for all i iff � ∈ Fd.
Assume then that � ∈ Fd. Then V ∗ also belongs to Fd and

min
c∈�
�Vi−c�Fd ≡minc∈�

�V1−c�Fd ≤ �V ∗�Fd 


This proves that Theorem 5 holds with M = 1.
Note that the algorithm A may be even further simplified by the use of the

explicit form of the solution V ∗. That is, we may take

A�s�= ��s�+ �

1−�
Ê���

with an appropriate quadrature Ê. Then we do not need to iterate and the bound
of Theorem 5 holds without the logarithms of ln�−1.

6
 general markov transition densities

In this section we consider Markov transition densities pk�t�s� that may depend
on the second argument s. We relate strong tractability of the conditional expec-
tation and quasi linear contraction problems to the approximation problem. By
the approximation problem in a space Fd we mean approximation of elements
V from Fd by using finitely many function values of V . That is, V �s� is approxi-
mated by the linear algorithm11

V̂j�s�=
j∑

i=1
bi
 j �s�V �ti
 j �(73)

for some sample points ti
 j ∈ Sd and some functions bi
 j from the space L2�Sd�
with the norm �f �2L2�Sd� =

∫
Sd
f 2�t�dt. Let

e�V̂j�=
∥∥∥∥V − j∑

i=1
bi
 j �·�V �ti
 j �

∥∥∥∥
L2�Sd�

be the error of the linear algorithm V̂j for V . As for the problems studied in the
previous sections, let napp��
d� be the smallest integer n for which there exists
V̂n such that

e�V̂n�≤ ��V �Fd 
 ∀V ∈ Fd

11 It is known that more general algorithms such as nonlinear algorithms using adaptive choice of

sample points are not better than nonadaptive choice of sample points and linear algorithms con-
sidered in this section; see Traub, Wasilkowski, and Woźniakowski (1988) and Traub and Werschulz
(1998).
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We say that the approximation problem is strongly tractable in Fd iff there exist
nonnegative C and p such that

napp��
d�≤ C�−P 
 ∀� ∈ �0
1� �d = 1
2
 � � � �
(74)

The smallest (or infimum of) such p is called the strong exponent of approxima-
tion.12

We now relate strong tractability of approximation to strong tractability of the
conditional expectation and quasi linear contraction problems. Assume that (74)
holds with C = Capp and p = papp. This means that for every d and j there exist
sample points ti
 j and functions bi
 j such that the corresponding V̂j satisfies

e�V̂j�≤ C
1/papp
app j−1/papp�V �Fd 
 ∀V ∈ Fd


Knowing V̂j we define the quadrature formula Êk
 j as

Êk
 j �V ��s�=
∫
Sd

V̂j�t�pk�t�s�dt =
j∑

i=1

(∫
Sd

bi
 j �t�pk�t�s�dt
)
V �ti
 j �
(75)

Hence, Êk
 j is of the form (47) with

ai
 j
k�s�=
∫
Sd

bi
 j �t�pk�t�s�dt and ti
 j
k = ti
 j 
(76)

Note that in this case the sample points do not depend on k. The coefficients
ai
 j
k�s� can be precomputed for s ∈ T�
d∪�s� with the set T�
d given by (53) with
tp
 ji−1
k = tp
 ji−1 . Clearly,

Ek�V ��s�− Êk
 j �V ��s�=
∫
Sd

�V �t�− V̂j�t��pk�t�s�dt

and therefore

�Ek�V ��s�− Êk
 j �V ��s�� ≤ e�V̂j��pk�·�s��L2�Sd�

Let

P = sup
k∈*1
m+
 s∈Sd

�pk�·�s��L2�Sd�
(77)

If P is finite, then the upper bound �j�V � of the quadrature error given by (48)
is given by

�j�V �= C
1/papp
app j−1/pappP�V �Fd 


12 There are a number of papers where strong tractability of approximation for various classes of
functions is considered; see, e.g., Woźniakowski (1994), and Wasilkowski and Woźniakowski (1999),
and a survey in Traub and Werschulz (1998). In particular, for some cases we know necessary and suf-
ficient conditions under which strong tractability of approximation holds. This is sometimes achieved
by assuming more general evaluations of V than function values such as arbitrary linear functionals
but we do not pursue this point here.
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Hence, �j�V �≤ ��V �Fd if
j = CappP

papp�−papp 


This proves that the conditional expectation problem in Fd is strongly tractable
with at most the same strong exponent as for approximation. This and Theorem
3 yield Theorem 6.

Theorem 6: If P given by (77) is finite, then strong tractability of approximation
in Fd implies strong tractability of the conditional expectation problem in Fd with at
most the same strong exponent.

If additionally M given by (60) is finite, then the quasi linear contraction problem
in Fd is strongly tractable with at most the same strong exponent of information and
with the strong exponent of arithmetic operations at most twice the strong exponent
of approximation.

Furthermore, the algorithm A defined by (49) with Ek
j given by (75) computes
an �-approximation at cost

cost�A�=O�c�d�m(�−papp lnpapp �−1+c�f �(�−papp lnpapp+1 �−1

+m(2�−2papp ln2papp �−1�

with (= Capp�MP�papp and the big O-factor depending only on �.

We illustrate Theorem 6 for the space Fd, that was already considered in
Section 5. This is the Hilbert weighted tensor product space of functions defined
on Sd =Dd with the reproducing kernel Kd given by (67). We assume that∫

D2
Kd�x
 t�dt dx <



Then the operator H�V ��s� = ∫
D
Kd�x
 s�V �x�dx is compact and nonnegative

definite. Consider its eigenpairs �:i
Fi�, HFi = :iFi, with orthonormal Fi and
ordered eigenvalues

:1 ≥ :2 ≥ · · · ≥ 0

Let p: be the sum-exponent of the sequence �:i� of eigenvalues defined by (68).
As in Section 5, p is the sum-exponent of the sequence � d
k� of weights. It is
proven in Wasilkowski and Woźniakowski (1999) that the necessary condition on
strong tractability of approximation in Fd is that both p: and p are finite, and
then the strong exponent of approximation is at least 2 max�p:
 p �.
Assume then that p: and p , are finite. In this case, the WTP algorithm is also

effective for approximation; see Wasilkowski and Woźniakowski (1999). Its con-
struction is based on algorithms for the univariate case, d= 1. Let us assume that
for d = 1 we know algorithms that use n function values with error proportional
to n−1/p1 for some positive p1. It is known that p1 ≥ 2p: and for some spaces we
can achieve p1 = 2p:. These univariate algorithms are used as building blocks
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for the WTP algorithm for arbitrary d. The WTP algorithm is of the form (73)
with the functions bi
 j , which are the product of functions of one variable. That
is, bi
 j �s� =

∏d
k=1 bi
 j
k�sk� for some functions bi
 j
k from the space L2�D�, and

sk is the kth component of the vector s. If we assume that

p ≤
p1

2+2p1

(78)

then the WTP algorithm computes an �-approximation at cost C%�
p1+%. Here, %

is positive and can be made arbitrarily small and C% is independent of d and
may only depend on %. This means that approximation is strongly tractable in
Fd with strong exponent at most p1. If p1 = 2p:, then the strong exponent of
approximation is exactly equal to 2p:. This and Theorem 6 yield Corollary 2.

Corollary 2: Consider the spaces Fd with the reproducing kernel (67) and
the weights  d
k satisfying (78). Then approximation in Fd is strongly tractable with
strong exponent at most p1, where p1 is the exponent of �−1 for the univariate case.

If P given by (77) is finite, then the conditional expectation problem in Fd is
strongly tractable with strong exponent at most p1.

If additionally M given by (60) is finite, then the quasi linear contraction problem
in Fd is strongly tractable with strong exponent of information at most p1 and strong
exponent of arithmetic operations at most 2p1.

Furthermore, the algorithm A defined by (49) with the WTP algorithm to obtain
Êk
 j by (75) computes an �-approximation and its cost satisfies

cost�A�

=O�c�d�m(�−p
∗
lnp

∗
�−1+c�f �(�−p

∗
lnp

∗+1 �−1+m(2�−2p
∗
ln2p

∗
�−1�


with (= C%�MP�p
∗ where p∗ = p1+%, and the big O-factor depends only on �.

As in the previous section, we now specify the results for the weighted Sobolev
space Fd
 defined in the Appendix. We now have p1 = 1 and (78) means that
p ≤ 1/4.
Consider the case when the transition densities are the same, pk�t�s�= p�t�s�.

Due to (19), the quasi linear contraction problem now takes the form

V �s�= ��s�+�
∫
*0
R+d

V �t�p�t�s�dt
 ��s�= f ��1�s�
 � � � 
�m�s��
(79)

The WTP algorithm generates the quadrature formulas Êk
 j = Êj , which are now
independent of k such that

Êj�V ��s�=
j∑

i=1
ai
j �s�V �ti
j � with ai
j �s�=

∫
*0
R+d

bi
j �t�p�t�s�dt
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The condition p ≤ 1/4 guarantees that for any % ∈ �0
1� and a positive c there
exists a positive C such that we can choose the sample points ti
 j and the func-
tions bi
 j for which

e�V̂j�≤min�Cj−1+%
 c��V �Fd
 G(80)

see Theorem 5 of Wasilkowski and Woźniakowski (1999) applied to the problem
of approximating functions V from Fd
 . The need for the constant c will be
soon clear.
We want to check when Vi and V ∗ belong to Fd
 . Assume that p�t�·� belongs

to Fd
 for all t ∈ *0
R+d, and � ∈ Fd
 . Then ai
 j , Êj�Vi� as well as Vi belong
to Fd
 for all i. The solution V ∗ also belongs to Fd
 since p�t�·� ∈ Fd
 for all
t ∈ *0
R+d and

V ∗�s�= ��s�+�
∫
*0
R+d

V ∗�t�p�t�s�dt

implies that all partial derivatives 5�u�V ∗/5xu belong to L2�*0
R+�u��.
We now estimate the ratios �Vi�Fd
 /max��V ∗�
�V ∗�Fd
 �. For any u ∈ �1,

2
 � � � 
 d� by V u we mean V �0� if u = � and 5�u�V/5xu, otherwise. Similarly pu

denotes 5�u�p�t�·�/5xu. We have
V u
i �s�= �u�s�+�Êu

ji−1�Vi−1��s�


�V ∗�u�s�= �u�s�+�
∫
*0
R+d

V ∗�t�pu�t�s�dt


Recall that E�V ��s� = ∫
*0
R+d V �t�p�t�s�dt is the integral of V with respect to

the transition density p. Observe that the quadrature Êu
j is the usual quadrature

applied to the integration problem Eu�V �. Clearly,

�Eu�V ��s�− Êu
j �V ��s�� ≤ e�V̂j��pu�·�s��L2�*0
R+d�

and

�E�V �− Êj�V ��Fd
 ≤ e�V̂j��p�L2�*0
R+d�×Fd
 

where

�p�L2�*0
R+d�×Fd
 =
(∫

*0
R+d
�p�t�·��2Fd
 dt

)1/2



Since

Vi−V ∗ = ��Êji−1�Vi−1�−E�V ∗��

= ��Êji−1�Vi−1�−E�Vi−1�+E�Vi−1−V ∗��
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we have

�Vi−V ∗�Fd
 ≤ �
(
e��V̂i−1�ji−1�+�Vi−1−V ∗�)�p�L2�*0
R+d�×Fd
 
(81)

From (80) we have e�V̂j� ≤ c��V −V ∗�Fd
 +�V ∗�Fd
 �. Since �Vi−1−V ∗� is of
order �V ∗�, we have

�Vi−V ∗�Fd
 ≤ �c�p�L2�*0
R+d�×Fd
 �Vi−1−V ∗�Fd
 
+K�p�L2�*0
R+d�×Fd
 �V ∗�

for some K dependent only on �.
Choose c such that �c�p�L2�*0
R+d�×Fd
 ≤ 1/2, say. Observe that as long as�p�L2�*0
R+d�×Fd
 is uniformly bounded in d, then c is uniformly bounded from

below and the presence of c in (80) is not really essential. From this we have

�Vi−V ∗�Fd
 =O
(
max��V ∗�Fd
 
�p�L2�*0
R+d�×Fd
 �V ∗��)


This proves that �Vi�Fd
 /max��V ∗�
�V ∗�Fd
 � is of order 1 as long as
�P�L2�*0
R+d�×Fd
 is uniformly bounded in d.
We summarize the results of this section. For the weighted Sobolev space Fd

consider the set of transition densities

PL =
{
p� sup

s∈*0
R+d
�p�·�s��L2�*0
R+d� ≤ L and �p�L2�*0
R+d�×Fd
 ≤ L

}
with a constant L≥ 1, as well as the set of functions

U = ���1
�2
 � � � 
�m�� f ��1�·�
�2�·�
 � � � 
�m�·�� ∈ Fd
 �

Then Theorem 5 and the results of this section yield the following theorem.

Theorem 7: If p ≤ 1/4, then the conditional expectation and quasi linear con-
traction problems with data from P and U are strongly tractable with strong expo-
nent 1. For any positive %, the algorithm A defined by (49) with an appropriately
chosen WTP algorithm computes an �-approximation with

cost�A�=O
(
c�d�mL2�1+%��−1−% ln1+% �−1+c�f �mL2�1+%��−1−% ln2+% �−1

+mL4�1+%��−2�1+%� ln2�1+%� �−1
)

with the big O-factor depending only on �, %, and R.

7
 example: the rational expectations pricing model

In this section we provide an example of how special structure can arise in
an economic problem. We show how this structure enables us to design an algo-
rithm that nearly attains the optimal univariate rate of convergence of n−1, in
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multivariate problems where the dimension d may be arbitrarily large. We con-
sider a special case of the rational expectations asset pricing model, where V ∗�s�
denotes the expected discounted value of an asset given information s and is the
unique solution to the Fredholm integral equation given by

V �s�= ��s�+�
∫
*0
R+d

V �t�p�t�s�dt
 s ∈ *0
R+d
(82)

where

p�t�s�=
d∏
i=1

exp�−�ti−(d
 i−bdsi�
2/�2:d
 i��∫ R

0 exp�−�t−(d
 i−bdsi�
2/�2:d
 i��dt


(83)

with (d =Qdad+�1−bd�/2 �R, where Qd is a d×d orthogonal matrix, :d
 i > 0, ad
is an element of Rd, bd ∈ �0
1� for all d, and �R= *R
 � � � 
R+. The interpretation
of this problem is that ��s� represents the payoff of the asset in state s, and p�t�s�
is the Markov transition probability governing the evolution of information. The
transition density (83) is a truncated normal approximation to the vector AR(1)
process given by

ln�sj+1�= ad+bd ln�sj�+�j
(84)

where ��j� is an IID Gaussian process with marginal distribution N�0
Id�,
where Id is a positive definite covariance matrix. We can write Id =
Q′

dDdQd, where Qd is an orthogonal matrix and Dd = diag�:d
1
 � � � 
 :d
d� is
a diagonal matrix containing the eigenvalues of Id. Formula (83) results from
truncating the normal process to the cube *0
R+d.
We consider the Fredholm integral problem (82) for the weighted Sobolev

space Fd = Fd
 , which is defined in the Appendix. We take the vector  of the
weights given by  d
 i = i−4.

Theorem 8: Assume the � belongs to Fd
 ,

b �= sup
d

bd < 1 and a �= sup
d

( d∑
i=1

a2d
 i

)1/2
<


and

: �= sup
d

d∑
i=1

i4:−2d
 i <



Then there exists R0 depending only on a and b such that the rational expectations
pricing model (82) with R≥R0 is strongly tractable. More precisely, for any positive
% there exists a positive C depending only on %
a
b
:, and R such that the algorithm
A computes an �-approximation with

cost�A�≤ C�c�d��−�1+%� ln1+% �−1+�−�2+%� ln2�1+%� �−1�


Hence, the strong exponent of the rational expectations pricing model is at most 1,
and the strong exponent of arithmetic operations is at most 2.
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The proof of Theorem 8 is presented in the Appendix. Notice that if condition
(8) holds, the parameters �:d
 i� tend to 
 as i→ d and d→
. Formula (83)
implies that for i close to d, the corresponding marginal densities of p�t�s� are
close to a uniform density over *0
R+ independent of the value si. This implies
that even though ��s� depends on potentially all of the state variables s, if it
belongs to the weighted Sobolev space Fd
 , then the conditional expectation E�
and the asset value V ∗ will effectively depend on only a relatively small number
of the si variables. The economic interpretation of the special structure embodied
by this example is that in problems where there is sufficient uncertainty about the
future values of many of the state variables affecting asset payoffs, asset prices
will effectively depend only on a finite number of state variables for which there is
a sufficiently strong link between current realized values and future expectations.
The implied restrictions on the dependence of V ∗ on s makes the calculation of
asset prices strongly tractable, and the number of sample points n necessary to
compute an �-approximation to V ∗�s� is independent of d.
Observe that we did not assume that the norm in the space Fd
 of the function

� is uniformly bounded in d. However, the norm of � directly affects the norm
of the solution V ∗ which, in turn, affects the definition of an �-approximation.

8
 conclusion

In this paper we have identified a general type of “special structure” and have
introduced an algorithm that enables us to exploit this special structure and
break the curse of dimensionality associated with approximating the fixed point
V = � �V � for a class of quasilinear contraction mappings � that arise frequently
in economic applications. We showed that there is a deterministic, successive
approximations algorithm that converges at a faster rate than the random suc-
cessive approximations and random multigrid algorithms that were used by Rust
(1997) to break the curse of dimensionality for these problems in the random-
ized setting. In addition to showing that a deterministic algorithm can break
the curse of dimensionality, we have established the surprising result that even
though the function V can depend on an arbitrarily large number of continuous-
valued arguments �s1
 � � � 
 sd�, our algorithm can approximate V to within an
error of � using only roughly O��−1� function evaluations and O��−2� arithmetic
operations, independent of d. In the terminology of computer science, we have
shown that the quasilinear contraction problem is strongly tractable with strong
exponent equal to 1: using n function evaluations and O�n2� arithmetic opera-
tions, our algorithm produces an approximation to the true fixed point V with an
error bounded by Cn−p, where p is close to one and C is an absolute constant
that does not depend on d. Thus, we have identified a class of multivariate prob-
lems with arbitrarily large d for which our algorithm attains nearly the same rate
of convergence that can be attained for uni-dimensional problems, d = 1. How-
ever, for multi-dimensional problems with d continuous variables, the method
of successive approximations using multi-dimensional interpolation and standard
product-rule quadratures to perform the numerical integrations requires O�nd�
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points and O�n2d� arithmetic operations to attain an error of order O�1/n�. For
these methods the curse of dimensionality is present. We use an alternative lin-
ear approximation algorithm known as the weighted tensor product algorithm to
achieve an error roughly of C/n using only n points (function evaluations).
The other contribution of this paper is to identify an economically meaning-

ful type of “special structure” for the profit, utility, and value functions entering
the fixed point problem for which it is possible to nearly achieve this optimal
uni-dimensional rate of convergence. The special structure can be described intu-
itively: it occurs when the dependence of a function on its ith variable decreases
with increasing i. This dependence is controlled by a sequence of positive weights
 i. We have provided a criterion on  i that enables us to break the curse of
dimensionality. A sufficient condition for strong tractability is that the weights
satisfy

∑

i=1  i <
. The boundedness of this sum implies that the weights  i go

to zero. When  i is small, the norm of the function is very sensitive to changes
in the ith variable. Thus, if our functions are to have bounded weighted norm,
they must essentially be “flat” with respect to variables with large i. If we require
that the  i weights approach zero at a sufficiently rapid rate, so that the sum of
the weights satisfies

∑

i=1  

1/4
i <
, then the strong exponent of our algorithm is

p = 1, i.e., it is possible to come arbitrarily close to attaining the optimal uni-
dimensional rate of convergence rate of Cn−p with p = 1.
We have two important caveats about our results. First, although our algorithm

is constructive, we do not yet feel that it is “practical” for use in real problems.
The weighted tensor product algorithm is difficult to implement, which may imply
that its advantages over simpler algorithms such as Rust’s (1997) random multi-
grid method will only become obvious for large d. A related problem is that our
analysis also assumes that the quadrature weights that are used to approximate
the conditional expectations of the value functions are “precomputed” (see for-
mula (76) in Section 6). However, computing these weights themselves involves
computing multivariate integrals. Our analysis has assumed that these integrals
are computed exactly, but in practice they would have to be computed numeri-
cally and this would be a substantial additional computational burden.
Second, although the Bellman equation of dynamic programming is a special

type of quasi-linear contraction mapping, we do not yet know whether our result
applies to this case. The reason is that our result requires sufficient smooth-
ness of both the profit/utility functions ��k� and the sequence of value functions
�Vj� generated by our successive approximations algorithm. The assumption in
Theorem 7 that f ��1�·�
 � � � 
�m�·�� ∈ Fd
 does not generally hold when the
quasi linear function f is nondifferentiable as in the Bellman case where f is the
max function. Further, the �Vj� sequence must have bounded weighted norm for
strong tractability to hold and the strong exponent to be equal to 1. However, in
the Bellman case, the max operator may introduce enough kinks in the �Vj� func-
tions so that the weighted norm of this sequence may not be uniformly bounded.
One way to get around the problem is by “adding some noise” to smooth out
the kinks: thus, the “smoothed Bellman operators” �- with smoothing parame-
ters - > 0 do have sufficient smoothness for our results to apply provided - is
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sufficiently large. However, as -→ 0, the norm of the corresponding smoothed
quasi-linear function f-��1�·�
 � � � 
�m�·�� tends to infinity, and for this reason
we cannot use the results for the strong tractability of the smoothed Bellman
problem to argue that the original unsmoothed Bellman problem is also strongly
tractable.
We are optimistic that it will be possible to extend our results to the impor-

tant case of Bellman operators, but we leave this as an open conjecture and a
topic for future research. One possible direction is to consider policy iteration
algorithms for solving the Bellman equation and to note that each policy valu-
ation step involves a solution to a contractive Fredholm integral equation, and
our results have shown that under appropriate conditions, the contractive Fred-
holm problem is strongly tractable with strong exponent equal to 1. We conclude
by noting that our theoretical results have already stimulated new investigations
that attempt to use linear algorithms similar to the WTP algorithm to break
the curse of dimensionality of dynamic programming problems. Computational
experiments such as in Benítez-Silva et al. (2000) suggest that the strategy of
using linear algorithms in conjunction with policy iteration could be highly effec-
tive for solving high dimensional dynamic programming problems.
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APPENDIX

A
 Weighted Sobolev Space Fd
 

The space Fd
 is a Hilbert space of functions defined on the d-dimensional cube Sd = *0
R+d ;
see Sloan and Woźniakowski (1998) where the case R= 1 is considered. This is a Hilbert space with
a reproducing kernel. For the basic theory of such spaces the reader is referred to, e.g., Aronszajn
(1950) and Wahba (1990). The most important property of a reproducing kernel Hilbert space is that
there exists a function Kd� Sd×Sd →R such that Kd�·
 x� ∈H for any x ∈ Sd and

f �x�= �f 
Kd�·
 x�� ∀f ∈H


where �·
 ·
 � is the inner product of H .
The function Kd is called a reproducing kernel of the Hilbert space H . Sometimes we write H =

H�Kd� to indicate the reproducing kernel of H . The reproducing kernel has the following properties.
For any x and t from Sd , we have

�Kd�·
 x�� =K1/2
d �x
x� and Kd�t
 x�≤K1/2

d �t
 t�K1/2
d �x
x�
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For any integer n and points ti ∈ Sd for i = 1
 � � � 
 n, the n×n matrix �Kd�ti
 tj �� is nonnegative
definite. In fact, for any function Kd with the last property, there exists a Hilbert space for which Kd

is its reproducing kernel. Therefore, it is enough to present a reproducing kernel in order to define
the Hilbert space with this kernel.
That is the approach we take for introducing the weighted Sobolev space Fd
 . Its reproducing

kernel Kd
 is

Kd�x
 t�=
d∏
i=1
�1+ d
 imin�xi
 ti��


Here,  d
 i ≥ 0. For  d
 i ≡ 1, we obtain the reproducing kernel of the classical (unweighted) Sobolev
space Fd
1 =W 1
1
 � � � 
1�*0
R+d�.
For d = 1, the space F1
 consists of absolutely continuous functions whose first derivatives are in

L2�*0
1+� with the inner product of V , W ∈ F1
 , given by13

�V 
W � = V �0�W�0�+ −11
1
∫ 1

0
V ′�x�W ′�x�dx


For d ≥ 2, the space Fd
 is the tensor product of F1
 d
1 ⊗F1
 d
2 ⊗· · ·⊗F1
 d
d and corresponds to
functions that are once differentiable with respect to each variable.
We denote the inner product and norm in Fd
 by �·
 ·�Fd
 and �·�Fd
 =�·
 ·�1/2. The inner product

of Fd
 is

�V 
W � = ∑
u⊂�1
2
 � � � 
 d�

 −1d
u
∫
*0
R+�u�

5�u�

5xu
V �xu
0�

5�u�

5xu
W�xu
0�dxu
(85)

Here, �u� is the cardinality of u. For the vector x ∈ *0
R+d , we denote xu as the vector from *0
 R+�u�

containing the components of x whose indices are in u, and dxu =
∏

j∈u dxj . By �xu
0� we mean the
vector x from *0
R+d , with all components whose indices are not in u replaced by 0.
For u=� we have  d
� = 1, and for u �= � we have  d
u =

∏
j∈u  d
 j . If the weight  d
 j is zero, then

all  d
u = 0 with j ∈ u. In this case, we assume that the functions do not depend on the jth variable,
and we have 0/0= 0 in the inner product formula. Observe that the sum in the inner product has 2d
terms.
The norms �V �Fd
 and �V � =maxx∈*0
R+d �V �x�� may be quite different. Indeed, take R= 1 and

the function V �x�= �1−x1� · · · �1−xd�. Then �V � = 1 and for positive  d
 j we have

�V �Fd
 =
∑
u

 −1u =
d∏
j=1
�1+ −1d
 j �


Hence, for  d
 j ≡ 1 we have �V �d
 = 2d .
We now consider the Cobb-Douglas function,

��x�=
d∏

k=1
�xk+(k�

(k 
 xk ∈ *0
R+


13 For the inner product

�V 
W � =
∫ 1

0
V �x�W�x�+ −1

∫ 1

0
V ′�x�W ′�x�dx

we obtain the Sobolev space with the reproducing kernel

K1�x
 t�=
√
 

sinh
√
 
cosh�

√
 �1−max�x
 t��� cosh�√ min�x
 t��
 ∀x
 t ∈ *0
1+


as shown by Thomas-Agnan (1996).
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where x = *x1
 x2
 � � � 
 xd+ with nonnegative ak and (k such that
∑d

k=1 (k = 1.
The weighted norm of � was estimated in Wasilkowski and Woźniakowski (1999) for  d
k = (k.

Then � ∈ Fd
 iff a �=minj aj > 0. If so, then

���Fd
 ≤ b2+ b2R

a2
exp�R/a2�
 ∀d
(86)

where b =maxj aj . In particular, for aj ≡ 1 we have ���Fd
 ≤ 1+Rexp�R�.

B
 Weighted Tensor Product Algorithm

The WTP algorithm is defined as a linear algorithm to approximate linear multivariate weighted
tensor product problems; see Wasilkowski and Woźniakowski (1999). The essence of this algorithm
is that it requires only the knowledge of linear algorithms for the solution of the corresponding
univariate problem. This is usually relatively easy to achieve. For the multivariate case, the WTP
algorithm takes a special tensor product of the known univariate algorithms in such a way that the
total number of information and arithmetic operations is strictly controlled. This number depends on
the weights of the tensor product problem. For the weights that go sufficiently fast to zero, the total
number of information and arithmetic operations needed to guarantee that the error of the WTP
algorithm is at most � is independent of the dimension d and, roughly speaking, is the same as for
d = 1.
We briefly describe the WTP algorithm for multivariate integration,

I�f �=
∫
Sd

f �x�dx


Let �In
 � be a sequence of algorithms of the form (27) for approximation of the integral I�f � in the
univariate case d = 1. That is,

In
 �f �=
n∑
i=1

wn
i
 f �sn
 i
 �(87)

where the quadrature weights �wn
 i
 � and sample points �sn
 i
 � may depend on the weight  defining
the weighted norm for F1
 . Observe that the cost of In
 is c�d�n. We assume that the quadrature
weights and sample points are chosen so that the errors, en�Fd
 � converge to 0 as n→
. For each
weight  , we assume that there is an increasing sequence of integers

m0
 = 0<m1
 = 1<m2
 < · · ·<mi
 
(88)

and define

Ji
 �f �= Imi
 
 
�f �− Imi−1
 
 �f � for i ≥ 1
(89)

Observe that
∑j

i=1Ji
 = Imj
 
 
and Imj
 
 

�f � converges to I�f � for every f ∈ Fd
 . Let �d
+ be the

set of vectors i = *i1
 � � � 
 id+ with positive integer coefficients ik. To stress their role, we shall refer
to them as multi-indices. By ��i� we mean ∑d

k=1 ik. Let �Pn
d� be a sequence of subsets of �d
+ such

that Pn
d consists of n multi-indices, Pn
d ⊂ Pn+1
d and ∪nPn
d =�d
+. Each set Pn
d may depend on all

weights  i for i = 1
2
 � � � 
 d.
The weighted tensor product (WTP) algorithm is defined as the sequence �Un
d
 � given by

Un
d
 �f �=
∑
�i∈Pn
d

( d⊗
k=1

Jik
 k

)
�f �
(90)

where the tensor product f = f1 ⊗ · · · ⊗ fd =
⊗d

k=1 fk in the case of scalars fk is just the product∏d
k=1 fk. In the case where the fk are scalar functions, f =

⊗d

k=1 fk is a function of d variables given
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by f �t1
 � � � 
 td� =
∏d

k=1 fk�tk�. In the case of linear operators Tk, T =
⊗d

k=1 Tk is a linear operator
such that T

(⊗d

k=1 fk
)=⊗d

k=1 Tk�fk�. The WTP algorithm depends on a number of parameters. First
of all, it depends on the sequence of weights � d
k�, the sequence of cardinalities mi
 k

, as well as
the sequence of sets Pn
d . It also depends on the one-dimensional quadrature algorithms In
 d
k. By
varying these parameters we obtain the class of WTP algorithms.
Since limj→


∑j
i=1Jmi
 

�f �= I�f � for every f ∈ Fd
 , we have

I�f �= ∑
�i∈�d+

( d⊗
k=1

Jik
 d
k

)
�f �
 ∀ f ∈ Fd
 
(91)

This yields

�I�f �−Un
d
 �f �� =
∥∥∥∥ ∑
�i∈�d+\Pn
d

d⊗
k=1

Jik
 d
k
�f �

∥∥∥∥≤ ∑
�i∈�d+\Pn
d

∥∥∥∥ d⊗
k=1

Jik
 d
k
�f �

∥∥∥∥

Therefore the error of Un
d
 is bounded by

e�Un
d
 
 I�≤
∑

�i∈�d+\Pn
d

∥∥∥∥ d⊗
k=1

Jik
 d
k

∥∥∥∥= ∑
�i∈�d+\Pn
d

d∏
k=1

∥∥Jik
 d
k

∥∥
(92)

This formula suggests that a good choice for Pn
d is the set of n multi-indices �i that correspond to
the n largest norms of ⊗d

k=1Jik
 k
. We refer the reader to Wasilkowski and Woźniakowski (1999) for

further discussion of the WTP and its rate of convergence.

C
 Proof of Theorem 8

We prove Theorem 8 by applying Theorem 7. First of all, note that for  d
 i = i−4 we have p = 1/4
as needed in Theorem 7. We now check the other two assumptions of Theorem 7 that

�p�·�s��L2�*0
R+d� and �p�L2�*0
R+d�×Fd
 
are uniformly bounded in d and s.
To prove that �p�·�s��L2�*0
R+d� is uniformly bounded in d and s, observe that due to (83) and the

conditions on :d
 i , it is enough to show that for :≥ 1 and c = (d
 i+bdsi we have∫ R

0
exp�−�u−c�2/:�du≤

(∫ R

0
exp�−�u−c�2/�2:��du

)2



This holds if we show that∫ R

0
exp�−�u−c�2/�2:��du≥ 1


We have

−a+ 1−b

2
R≤ c ≤ a+ R

2
+bd

(
si−

R

2

)
≤ a+ 1+b

2
R


Therefore −c ≤ a− �1−b�R/2 and R−c ≥−a+ �1−b�R/2 and∫ R

0
exp�−�u−c�2/�2:��du=

∫ R−c

−c
exp�−x2/�2:��dx ≥

∫ −a+�1−b�R/2

a−�1−b�R/2
exp�−x2/2�dx


Since the last integral is about
√
2� > 1 for large R, there exists R0 depending only on a and b such

that the last integral is indeed at least 1, as claimed.
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We now estimate �p�L2�*0
R+d�×Fd
 . Due to the product form of p in (83) we first consider the
function

h�ti�si�=
exp�−�ti−(d
 i−bdsi�

2/�2:d
 i��∫ R

0 exp�−�t−(d
 i−bdsi�
2/�2:d
 i��dt




It is easy to check that

∫ R

0

∫ R

0

(
5h

5s
�t�s�

)2
dt ds =O

(
b2d
:2d
 i

)
with the factor in the big O-notation depending on the global parameters a, b, and R. This yields that

�p�2
L2�*0
R+

d�×Fd
 
= �p�·�0��2

L2�*0
R+
d�
+ ∑
��=u⊂�1
 � � � 
d�

O

(∏
j∈u

b2d
 d
 i:d
 i

)

=O

( d∏
j=1

(
1+ i4bC

:d
 i

))

for some C. This is uniformly bounded in d due to the condition on :d
 i , which completes the proof.
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