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USING RANDOMIZATION TO BREAK THE CURSE 
OF DIMENSIONALITY 

BY JOHN RUST' 

This paper introduces random versions of successive approximations and multigrid 
algorithms for computing approximate solutions to a class of finite and infinite horizon 
Markovian decision problems (MDPs). We prove that these algorithms succeed in break- 
ing the "curse of dimensionality" for a subclass of MDPs known as discrete decision 
processes (DDPs). 

KEYWORDS: Dynamic programming, curse of dimensionality, Bellman operator, random 
Bellman operator, computational complexity, maximal inequalities, empirical processes. 

1. INTRODUCTION 

THIS PAPER INTRODUCES RANDOM VERSIONS of successive approximations and 
multigrid algorithms for computing approximate solutions to Markovian decision 
problems (MDPs). An MDP is a mathematical model of a decision maker who is 
in state st at time t = 1, ... , T (T < oo) and takes an action at that determines 
current utility u(st, a,) and affects the distribution of next period's state St+ I via 
a Markov transition probability p(st? Ilst, at). The problem is to determine an 
optimal decision rule a that solves V(s) max a Ea{T= 0 /3 tu(st, at)Iso = s} where 
Ea denotes expectation with respect to the controlled stochastic process {st at} 
induced by the decision rule a {a1,..., aTl, and /3 E (0,1) denotes the dis- 
count factor. The method of dynamic programming (a term coined by Richard 
Bellman in his 1957 text) provides a constructive, recursive procedure for 
computing a using the value function V as a "shadow price" to decentralize a 
complicated stochastic/multiperiod optimization problem into a sequence of 
simpler deterministic/static optimization problems.2 As is well known (Blackwell 
(1965), Denardo (1967)), a stationary, infinite horizon MDP can be viewed as 
multidimensional generalization of a geometric series whose solution is mathe- 
matically equivalent to the solution to a particular functional equation known as 
Bellman's equation. 

'This paper benefited from helpful comments from a co-editor and two referees, and discussions 
with H. Amman, D. Andrews, W. Brock, G. Chamberlain, W. Davis Dechert, V. Hajivassiliou, K. 
Judd, J. Kuelbs, T. Kurtz, A. Pakes, D. Pollard, J. F. Traub, C. Sims, J. Tsitsiklis, and H. 
Wozniakowski. I am especially grateful to J. Tsitsiklis for pointing out the need for an error bound 
that holds for all N, and to D. Pollard for showing how maximal inequalities for empirical processes 
can be used to derive such a bound. 

2In finite horizon problems V actually denotes an entire sequence of value functions, V- 
{VO,..., VT}, and a denotes the corresponding sequence of decision rules. In the stationary 
infinite-horizon case, T= co, and the solution (V, a) reduces to a pair of functions of the current 
state s. 
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Unfortunately, it is quite rare that one can explicitly solve Bellman's equation 
and derive analytical or "closed-form" solutions for either the optimal decision 
rule a or the value function V so most DP problems must be solved numerically 
on digital computers. From the standpoint of computation, there is an important 
distinction between discrete MDPs, where the state and control variables can 
assume only a finite number of possible values, and continuous MDPs, where the 
state or control variables can assume a continuum of possible values. Discrete 
MDP problems can be solved exactly (modulo rounding error in arithmetic 
operations), whereas the solutions to continuous MDP problems can only be 
approximated to within some arbitrarily small solution tolerance 8. There is a 
well developed literature on solution algorithms for discrete MDPs. Although a 
large number of algorithms have been proposed, simple backward induction and 
variations of the method of successive approximations and policy iteration 
(Newton's method) are the most commonly used solutions methods.3 The most 
commonly used numerical methods for solving continuous MDPs is to solve a 
"nearby" discrete MDP problem. The key restriction is that the "nearby" 
problem lives in a finite-dimensional space so it can be solved on a digital 
computer.4 

A minimum requirement of any sensible approximation procedure is that it be 
consistent: i.e. an approximate solution VN ought to converge to the true 
solution V as N -> oo, where N is some parameter indexing the accuracy of the 
solution. There is a large theoretical literature analyzing the convergence of 
various deterministic discretization and parametric approximation algorithms for 
the approximate solution of various operator equations (see Anselone (1971) 
and Anselone and Ansorge (1981), Krasnosel'skii et al. (1972)), as well as a more 
specialized literature on the approximate solution of Bellman's equation for 
MDP problems (see, e.g., Fox (1973), Bertsekas (1975), Santos and Vigo (1996)). 
However except for a recent numerical study by Keane and Wolpin (1994) there 
is relatively little theoretical literature analyzing the convergence of random 
algorithms for solving the Bellman equation in either finite or infinite horizon 
MDPs.5 

3See Puterman (1990, 1994) for a survey, and Puterman and Brumelle (1979) for a proof that the 
Howard/Bellman policy iteration algorithm is equivalent to the Newton/Kantorovich method. 

4Discretization is not the only way to do this, however. See Rust (1996) and Judd (1996) for a 
survey of "parametric approximation" and "projection" methods that include the Bellman et al. 
(1963) approach of approximating V by polynomials or Daniel's (1976) suggestion of using spline 
functions to approximate V. 

5There is a recent literature analyzing the convergence of stochastic reinforcement learning 
algorithms such as "real-time dynamic programming" (Barto, Bradtke, and Singh (1995)) and 
"Q-learning" (Tsitsiklis (1994)). The Tsitsiklis paper shows that Q-learning can be viewed as a type 
of stochastic approximation algorithhm. Some of these methods are actually being used in applica- 
tions; see, e.g., Pakes and McGuire (1996). Hammersley and Handscombe (1992) describe a number 
of applications of Monte Carlo methods including solution of large linear systems. Although such 
methods would seem to have a direct application to solving the large linear systems arising from 
policy iteration methods, to our knowledge nobody has ever actually used or advocated this approach 
for solving infinite horizon MDPs. 
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There is an important practical limitation to one's ability to solve continuous 
MDPs arbitrarily accurately, Bellman's curse of dimensionality. This is the 
well-known exponential rise in the time and space required to compute an 
approximate solution to an MDP problem as the dimension (i.e. the number of 
state and control variables) increases. Although one typically thinks of the curse 
of dimensionality as arising from the discretization of continuous MDPs, it also 
occurs in discrete MDPs that have many state and control variables. An 
important unresolved question is whether we can somehow circumvent the curse 
of dimensionality through a clever choice of solution algorithm, perhaps for a 
restricted class of problems exhibiting special structure. 

Yudin and Nemirovsky (1976a, 1977) were the first to prove the negative 
result that the static nonlinear optimization problem (a special case of the MDP 
problem when ,B= 0 and the state space S contains a single element) is subject 
to an inherent curse of dimensionality regardless of whether deterministic or 
random algorithms are used. However Yudin and Nemirovsky (1976b) showed 
that it is possible to break the curse of dimensionality for certain subclasses of 
problems such as convex optimization problems. They showed that the number 
of function evaluations required to approximate a solution to a d-dimensional 
convex optimization problem only increases linearly in d on a worst case basis. 
A number of important developments in theoretical computer science in the last 
twenty years have enabled formal proofs of lower bounds on the computational 
complexity of solving various continuous multivariate mathematical problems 
including nonlinear optimization, numerical integration, function approximation, 
and recently, MDP problems. There are two main branches of complexity 
theory, corresponding to discrete and continuous problems. Discrete computa- 
tional complexity applies to finite problems that can be solved exactly such as 
the traveling salesman problem. The size of a discrete problem is indexed by an 
integer d and the (worst case) complexity, comp(d), denotes the minimal 
number of computer operations necessary to solve the hardest possible problem 
of size d (or oo if there is no algorithm capable of solving the problem). 
Continuous computational complexity theory applies to continuous problems 
such as multivariate integration, function approximation, nonlinear program- 
ming, and continuous MDP problems. None of these problems can be solved 
exactly, but in each case the true solution can be approximated to within some 
arbitrarily small solution tolerance ?. Problem size is indexed by an integer d 
denoting the dimension of the space in which the continuous variable lives 
(typically Rd), and the complexity, comp(8, d), is defined as the minimal 
computational cost of solving the hardest possible d-dimensional problem with a 
maximum error of e. 

Complexity theory provides a simple way of formalizing what we mean by the 
curse of dimensionality: we say that a discrete MDP problem is subject to a 

6It is not clear whether Bellman originated this term, although the earliest references to this 
phrase of which we are aware appear in the preface to Bellman's (1957) text, and also in Bellman 
and Dreyfus (1962, p. 322): "Let us now discuss one of the most promising techniques for 
overcoming the 'curse of dimensionality', the approximation of functions by polynomials." 
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curse of dimensionality if comp(d) = [(2d), i.e. if the lower bound on computa- 
tional complexity grows exponentially fast as the dimension d increases. Simi- 
larly a continuous MDP problem is subject to the curse of dimensionality if 
comp(8, d) = Q(1/ed).7 In the computer science literature a problem which is 
subject to the curse of dimensionality is said to be intractable.8 On the other 
hand, if we can show that the computational complexity is bounded above by a 
polynomial function of d and e, then the MDP problem is not subject to a curse 
of dimensionality. Computer scientists refer to polynomial-time problems as 
tractable.9 

The discrete and continuous complexity bounds comp(d) and comp(8, d) 
depend on the model of computation used (parallel vs. serial, real vs. Turing), 
the type of algorithm used (deterministic vs. stochastic), the relevant metric for 
measuring the error e in the approximate solution (worst case vs. average case 
complexity), and the class of problems being considered (general MDPs versus 
linear-quadratic problems and other restricted subclasses). We do not have 
space here to present a review of the general theory of continuous (or informa- 
tion-based) computational complexity and refer the interested reader to the 
excellent monograph by Traub, Wasilkowski, and Wozniakowski (1988). The 
main results of this theory and the previous literature on the complexity of the 
MDP problem that are relevant to our analysis in this paper can be summarized 
as follows. Discrete MDPs with ISI states and IAl actions can be solved exactly in 
polynomial time using a variety of algorithms.10 Certain subclasses of continuous 
MDPs such as linear quadratic MDPs can also be solved in polynomial time 
using algebraic methods to solve the matrix Riccati equation.'1 The upper 
bound on the complexity of solving a discrete finite horizon MDP problem with 
SI states and IAl decisions is cTIAIIS12 where c is the time cost per arithmetic 
operation. This upper bound turns out to be the key to understanding the 

7The symbols 0, Q2 denote upper and lower asymptotic bounds, respectively. Thus, f( e) = 0(g(e)) 
if Jjj_jg- oIf(e)/g(e)I < oo. We say f(e) = f2(g(e)) if g(e) = 0). 

8We use the terminology "curse of dimensionality" due to its historic association with dynamic 
programming noted above. Those who are unfamiliar with the technical terminology of computer 
science may also confuse the term "intractable" with "unsolvable," which is an entirely different 
concept. Computer scientists have a specific terminology for unsolvable problems (i.e. problems for 
which there is no algorithm that is capable of solving any particular instance of the problem in a 
finite amount of time): these problems have infinite complexity, and are classified as noncomputable. 
However even though intractable problems are computable problems in the computer science 
terminology, as the problem grows large the lower bound on the solution time grows so quickly that 
large problems are not computable iii any practical sense. 

Here again it is important to note the difference between the common meaning of the term 
"tractable" and the computer science definition. Even so-called "tractable" polynomial-time prob- 
lems can quickly become computationally infeasible if complexity satisfies comp(d) = f(db) for 
some large exponent b. However it seems to be a fortunate act of nature that the maximum 
exponent b for most common polynomial time problems is fairly small; typically b E [1, 4]. 

10This result assumes that we index the size of the MDP by (1SI, AI). There is a curse of 
dimensionality if we index the size of the MDP problem by (ds, da) where ds is the number of state 
variables and da is the number of control variables, since in that case the total size of the MDP 
problem is indexed by (ISId,, IAIda) which increases exponentially fast in ds and da. 

1"See Anderson, Hansen, McGratten, and Sargent (1996). 
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complexity bounds for continuous MDPs established by Chow and Tsitsiklis 
(1989, 1991) who proved that a "one way multigrid" algorithm is an approxi- 
mately optimal algorithm in the sense that its complexity is within a 
O(1/llog(/3)1) factor of the lower bound on worst case complexity given by 

(1. 1) comp(8,ds,da, @ )= 2 2d?+d)' 

where the 0 symbol in equation (1.1) denotes the fact that expression in 
parentheses is an asymptotic upper and lower bound on complexity.'2 This 
bound can be understood as follows: in order to guarantee that the final step of 
the backward induction process yields an approximate value function V that is 
within e of the true value function V, we need to insure that the maximum error 
incurred in each step of the backward induction process is no greater than 
(1 - /)2e. In order to guarantee that any deterministic discretization procedure 
yields this accuracy requires a minimum of JAI = Q(1/((1 - _)28)da) discretized 
decisions and IS = f2(1/((1 _ f)28)ds) discretized states. Since backward induc- 
tion on the resulting discrete MDP problem requires O(TIAIIS12) operations, it 
follows that complexity bound for solution of continuous MDPs is given by the 
expression in equation (1.1).13 

This paper considers the question of whether one can break the curse of 
dimensionality by using random instead of deterministic algorithms. Randomiza- 
tion is known to break the curse of dimensionality of certain mathematical 
problems. The most prominent example is multivariate integration of a function 
f defined on the d-dimensional unit cube [0, 1]d that is r > 0 times differentiable. 
The worst-case deterministic complexity of this problem is compwordet (8, d) = 

0(1/em) where m = d/r, so the integration problem is subject to a curse of 
dimensionality if we only allow deterministic algorithms. However consider 
Monte Carlo integration of f using random uniform draws from [0, 1]d. It is easy 
to show that the worst case randomized complexity of the multivariate integra- 
tion problem is compwor-ran(e d)=O(1/82), so randomization succeeds in 
breaking the curse of dimensionality of the multivariate integration problem. 
However randomization does not always succeed in breaking the curse of 
dimensionality: Yudin and Nemirovsky (1977) showed that randomization does 
not help in solving general multivariate nonlinear programming problems, 
Traub, Wasilkowski, and Wozniakowski (1988) showed that randomization does 
not help in multivariate function approximation and interpolation, and 
Werschulz (1991) showed that randomization doesn't help in solving multivariate 

Formally, we say that f(e) = O(g(e)) if f(e) = 0(g(e)) and f(e) = 1(g(e)). This implies that 
there exist positive constants c1 and c2 such that c11g(e)i < If(-)I < c22g()i for sufficiently small ?. 

13Note that in infinite horizon problems T= 0(log(1/1 -,/)s/log(,3)) contraction steps are 
sufficient to find an 8-approximation to a fixed point of the Bellman operator. Remarkably, in the 
Chow-Tsitsiklis complexity bound, T represents a bounding constant that does not tend to infinity as 
,B -- 1 or ? -- 0. 
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elliptic partial differential equations or Fredholm integral equations of the 
second kind. Indeed, the fact that the general nonlinear optimization problem is 
a special case of the general MDP problem implies that randomization cannot 
break the curse of dimensionality for general MDP problems with an action 
space A that contains a continuum of possible choices. 

We prove that randomization does succeed in breaking the curse of dimen- 
sionality for a particular subclass of MDPs known as Discrete Decision Processes 
(DDPs). These are MDPs with a continuous multi-dimensional state space S, 
but a finite action set A. DDPs arise frequently in economic applications such 
as optimal replacement of durable goods, optimal retirement behavior, optimal 
search, and many other situations (for a review of empirical applications of 
DDPs see Rust (1994)). The fact that DDPs have finite action sets implies that 
the main work involved in carrying out the backward induction process is the 
numerical integration of the value function at each given point in the state 
space. Since randomization succeeds in breaking the curse of dimensionality of 
numerical integration, it seems plausible that it might also be able to break the 
curse of dimensionality for this class of problems. However rather than calculat- 
ing a single multivariate integral, the DDP problem requires calculation of an 
infinite number of multivariate integrals at each possible conditioning state 
s E S. The DDP problem is also nonlinear in the sense that the current value 
function V equals the maximum of the conditional expectation of the future 
value function.14 While randomization can be shown to break the curse of 
dimensionality in certain classes of linear problems such as integration or 
solution of ODEs, it is generally not able to break the curse of dimensionality in 
nonlinear problems. So it is perhaps not immediately obvious that randomiza- 
tion really can succeed in breaking the curse of dimensionality of DDP prob- 
lems. 

A recent study by Keane and Wolpin (1994) used Monte Carlo integration to 
find approximate solutions to large scale DDP problems that would be computa- 
tionally intractable using standard deterministic algorithms. Their computational 
results are quite encouraging, suggesting that random algorithms might have 
considerable promise in a wide range of applications. However apart from 
computer simulations, Keane and Wolpin did not provide any theoretical 
analysis of the convergence properties of their algorithm. We do not provide any 
computer simulations of the random algorithms we propose, although we do 
provide a fairly complete mathematical characterization of the convergence 
properties of our algorithms. Although the particular algorithms we analyze 
here are quite different from the one Keane and Wolpin proposed, our hope is 
that the tools we introduce will be useful for analyzing a wider class of random 
algorithms including the Keane-Wolpin algorithm. In particular, one can show 
(see Rust (1996)) that the Keane-Wolpin algorithm does not succeed in breaking 

14 In particular, if one uses unbiased Monte Carlo integration to compute the conditional 
expectation of the future value function, Jensen's inequality implies that the resulting estimate of 
the current value function will be biased upward. 
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the curse of dimensionality for DDP problems. The reason is that their algo- 
rithm involves a multivariate function approximation subproblem but as we 
noted above multivariate function approximation is subject to a curse of dimen- 
sionality regardless of whether deterministic or random algorithms are used. We 
are able to avoid the curse of dimensionality inherent in multivariate function 
approximation since the random algorithm we propose is self-approximating in a 
sense that will be made precise in Section 3. 

Section 2 provides a brief review of MDPs, and presents the main inequalities 
and convergence bounds that will be used in subsequent sections. The random 
algorithms analyzed in this paper are all based on the random Bellman operator 
EN defined by 

fN 

(1.2) rN(V)(s) = max [u(s, a) + V(-k)p(kls, a)] 
a EA(s) N k=1 

where B is the space of continuous functions on the k-dimensional unit cube, 
B = C([O, 1]d), and N is the number of IID uniformly distributed sample points 
{S1)... ,S } from [0, 1]d at which the Monte Carlo integral (i.e. the sample 
average) is evaluated. The convergence and complexity properties of the random 
successive approximations and multigrid algorithms depends on the error in 
using the random Bellman operator EN to approximate the true Bellman 
operation F. We appeal to a maximal inequality for empirical processes due to 
Pollard (1989) to show that 

(1.3) sup sup E( fN(V) -F(V)} < - y(d)KKv 

pE BL(Kp) jjVj11<K. N 

where y(d) < oo is a bounding constant that satisfies y(d) = 0(d). Section 4 
introduces random versions of successive approximations and multigrid algo- 
rithms for solving finite and infinite horizon DDPs. Using the results of Section 
3 we are able to derive the following upper bound on the computational 
complexity of the DDP problem: 

d4\ 
(1.4) cOmpwor-ran (8, d) = 0(1 4) 

Since the Chow-Tsitsiklis complexity bound implies that the deterministic worst 
case complexity of the DDP problem is given by 

(1.5) compwor-det (8, d) = 0 ([( - )2]) 
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it follows that randomization succeeds in breaking the "curse of dimensionality" 
for this class of problems.15 Section 5 presents concluding remarks and some 
conjectures and suggestions for further research in this area. 

2. BELLMAN OPERATORS 

This section reviews some basic facts about MDPs and defines the Bellman 
operator F. We also define the subclass of DDPs and provide some key 
inequalities involving the Bellman operator that will be used in our subsequent 
analysis. 

DEFINITION 2.1: A Markovian decision process consists of the following ob- 
jects: 

* a time index t c {O,1,2,...,T}, T< oo; 
. a state space S; 
. an action space A; 
. a family of constraint sets s -*A(s) cA; 
. a utility function u(s, a); 
* a Markov transition density p(s'ls, a); 
. a discount factor c E [0, 1). 

We will impose explicit topological structure on S and A and smoothness 
conditions on u and p in Section 3 so we refrain from adding any measure- 
theoretic qualifications at this point. The agent's optimization problem is to find 
an optimal decision rule a* = {a0,..., aT} given by 

(2.1) a*= argmax Ea{UT(S,d)} 
(ao, aT) 

- T T 
.. 
a A E Wu(st, at(st)) Hp(dst1st_ 1,at- l(st- l)po(dso), So ST t = 0 -t= 1 

where po is a probability distribution over the initial state so.16 
In finite-horizon problems (T < Go), dynamic programming amounts to calcu- 

lating the optimal decision rule a* = (a0,..., aT) by backward induction start- 
ing at the terminal period, T. The backward recursion must be done for each 

15Note that the complexity bounds in (1.4) and (1.5) should be interpreted as holding for ? 

sufficiently small and /B sufficiently large. For example, if /B times the expectation of the value 
function was uniformly less than ?, then an 8-approximation to the value function could be obtained 
without any numerical integration by just solving a static maximization problem for each s, which 
involves only JAI operations, where JAI is an upper bound on the number of actions in each A(s). 
The proof of the complexity bound in Chow and Tsitsiklis (1989) requires B > 1/2. Our bounds 
require the condition O3K, > (1 - ,B)?, where Ku is a Lipschitz bound on u to be introduced in 
Section 3. I thank H. Wozniakowski for pointing this out. 

16We have assumed that u and p do not depend on calendar time for notational simplicity. It 
should be obvious that all our results on finite horizon dynamic programming go through if u and p 
depend on time, provided each u, and Pt satisfies the Lipschitz conditions in Section 3. 
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time period t = T, T - 1,0.. , 0 and for each possible state st using the following 
recursions. In the terminal period VT and aT are defined by 

(2.2) aT (ST) = argmax u(ST, aT) 

aTeA(ST) 

(2.3) VT(ST)= max U(ST,aT). 
aTeA(ST) 

In periods t = O, ... , T - 1, VK and at are recursively defined by 

(2.4) ao(s,) = argmax [u(st, a) + 3f ? 1(S+ )p(dst ljIst at)] 
at E-A(st) 

(2.5) Vt(s,) = max [u(st,at) + 13fVt?+(st?+)p(dst+?jst,at)]. 

DEFINITION 2.2: The Bellman operator F: B(S) -* B(S) is a mapping on the 
Banach space B(S) of measurable functions of s E S (under the supremum 
norm) defined by 

(2.6) F(W)(s) max u(s,a) + fW(s')P(ds'Is,a)]. 
a E-A (s) 

Using the definition of the Bellman operator, we can write the recursion (2.5) 
more compactly as 

(2.7) VT- t = r(VT) (t = O, ... ., T). 

In the infinite horizon case T = co so there is no "last" period from which to 
start the backward induction to carry out the dynamic programming algorithm 
described above. However if the per period utility functions u are uniformly 
bounded and the discount factor ,B is in the [0,1) interval, then we can 
approximate the solution to the infinite horizon problem arbitrarily closely by 
the method of successive approximations. This is equivalent to using the solution 
to a long, but finite horizon MDP problem to approximate the solution to the 
infinite horizon problem. Removing time subscripts from equation (2.4), we 
obtain the following equation for the optimal stationary decision rule a: 

(2.8) a(s) = argmax [u(s, a) + ,8fV(s')p(ds'Is, a)], 
a eA(s) 

where V is the solution of Bellman's equation: 

(2.9) V(s) = max [u(s,a) + f3fV(s')P(ds'Is,a)]. 
a E=A(s) 
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Bellman's equation can be rewritten more compactly as a fixed point condition 
on the Bellman operator: 

(2.10) V= F(V). 

There is a standard approach to establishing the existence and uniqueness of a 
solution to Bellman's equation due to Denardo (1967), that recognizes that F is 
a contraction mapping on a Banach space B. This immediately implies the 
existence and uniqueness of the fixed point V to the Bellman operator. It also 
follows that the method of successive approximations is globally convergent 
from any initial starting value. The contraction property of the Bellman operator 
holds under the following regularity conditions: 

1. S and A are compact metric spaces; 
2. s - A(s) is a continuous correspondence; 
3. u(s, a) is jointly continuous in (s, a); 
4. 0 E=[0, 1). 

We impose these regularity conditions in the subsequent analysis, so hereafter 
B will denote the Banach space C(S) of all continuous, bounded functions 
f: S -* R under the supremum norm, IIf II = sups E s If(s)l. We now state a few 
key inequalities that will be useful in the subsequent analysis. The first inequal- 
ity provides bounds on the difference between the fixed point V to a contraction 
mapping F and the fixed point VN to a slightly perturbed contraction mapping 
TN. We say a contraction mapping F has modulus ,B if F (u) - F(w)II < ? fu 
-wI 1for all v,wEB. 

LEMMA 2.1: Suppose {TN} is a family of contraction mappings on a Banach 
space B with common modulus /3 and {TN} converges pointwise to a contraction 
mapping F with modulus /3: i.e., VWEB we have 

(2.11) lim FN(W) = F(W). 
N-ocO 

Then the approximate fixed point VN = FN(VN) -> V where V is the fixed point of F 
and IIVN - VII satisfies the error bound 

1! FN(V) - F(V) I! 
(2.12) IIVN- VI? (1 -/) 

The proof of this lemma is 'a simple application of the triangle inequality: 

(2.13) IIVN- Vll = ll rN(VN) -rF(V)!I 

< 11 N(VN) - TN(V) I+ 11 ? N(V) - T(V)II 

< 8 IIVN - VII + 11 FN(V) - F(V)11. 

The next lemma provides some additional inequalities bounding the rate of 
convergence of the method of successive approximations. 
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LEMMA 2.2: Let F be a contraction mapping on a Banach space B with fixed 
point V= F(V). If W is an arbitrary element of B, the following inequalities hold: 

(2.14) I1w- T(W)II < (1 + 8)iiv- Wii, 

(2.15) i(W) - V11 ?< 311 F(w) - Wii/(1 - /8). 

Error bound (2.14) shows that if W is close to the fixed point V, then W must 
also be close to F(W). Inequality (2.15), is an a priori error bound that gives the 
converse result: the maximum error in a sequence of successive approximations 
{ Ft(W)1 starting from W is a geometrically declining function of the initial 
error IIV- F(W)ii. These two inequalities will be used to establish the conver- 
gence of the various parametric approximation methods presented in Sections 3. 
The next lemma is a useful result that implies that the fixed point to Bellman's 
equation always lies within a maximum distance K/(1 - ,3) of the origin. 

LEMMA 2.3: Let F be a Bellman operator. Then we have 

(2.16) F: B(O, (1 3)) ,B(O, (1 

where B(O, r) = {V E B Iv IVI < r} and the constant K is given by 

(2.17) K-sup sup Iu(s,a)i. 
sES a eA(s) 

The final lemma of this section extends Lemma 2.1 to provide a simple 
sufficient condition guaranteeing that in the finite horizon case the sequence of 
value functions resulting from backward induction using an approximate 
Bellman operator TN will be uniformly close to the true value functions 
produced by backward induction using the true Bellman operator F. 

LEMMA 2.4: Let {TN1 be a family of contraction mappings with modulus /3 that 
converge pointwise to a contraction mapping F. Suppose there exists an integer 
N(, /3 ) such that for all N ? N(?, )3) we have 

(2.18) FN(W) - F(W) 1 < (1 - /3)8, 

uniformly for all W E B(O, K/(1 - ,3)) where the constant K is given by 

(2.19) K sup sup Iu(s,a)i. 
sES a (eA(s) 
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If we begin the backward induction using any estimate of the terminal value function 
VT satisfying 

(2.20) IIVT -VTII < 8, 

IIVTII <K/(1 - ,3), 

then VK will be uniformly within e of VK for all t: 

(2.21) max IIV - VI? < 8. 
t E{1. T} 

The proof of Lemma 2.4 is given in the Appendix. We conclude this section 
with a definition of the class of DDPs, the subclass of MDPs which will be the 
focus of the remainder of the paper: 

DEFINITION 2.2: A discrete decision process (DDP) is an MDP with the 
following property: There is a finite set A such that A(s) cA for each s E S. 

For simplicity, Section 3 will make the further assumption that A(s) =A for 
all s E S. This apparent restriction actually does not involve any loss of general- 
ity, since we can mimic the outcome of a problem with state-dependent choice 
sets A(s) by a problem with a state-independent choice set A by choosing the 
utility function u(s, a) so that the utility of any "infeasible" action a eA fnA(s)c 
is so low that it will never be chosen. 

3. RANDOM BELLMAN OPERATORS 

This section derives bounds on the approximation error of using a "random 
Bellman operator," FN in place of the true Bellman operator F defined in 
equation (2.6) of Section 2. Since evaluation of the true Bellman operator 
involves multivariate integration, it generally can only be approximated whereas 
the random Bellman operator we propose requires only a finite number of 
algebraic operations and is thus quite simple to evaluate. In Section 4 we 
propose random versions of successive approximations and multigrid algorithms 
that simply involve replacing iterations of the true Bellman operator F by the 
random Bellman operator EN. Using the error bound derived in Lemma 2.1 of 
Section 2, we will be able to derive a bound on the expected error between the 
true value function V (the fixed point to the true Bellman operator F) and the 
random value function VN (an approximation to the fixed point of the random 
Bellman operator FN) in terms of the expected error of II FN(V) - F(V)II. This 
bound, which holds uniformly for all V E B(O, K) for some constant K, is the key 
to the derivation of the complexity bounds in Section 4. We begin by presenting 
some preliminary definitions and inequalities and establishing the asymptotic 
properties of the random Bellman operator. Section 3.2 uses a maximal inequal- 
ity of Pollard (1989) to derive a uniform bound on E{I IFN(V) - F(V)!I}. Proofs 
of all results are given in the Appendix. 
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3.1. Preliminary Definitions and Inequalities 

DEFINITION 3.1: The random Bellman operator rN: B -> B (where B = C[O, 1 ]) 
is given by 

fi N 

(3.1) FN(V) (s) max u(s,a) ?- E V(?k)p(SkIs,a) 
a E-A Nk=1 

where {1, ..., SN} are IID draws with respect to Lebesgue measure A from the 
unit hypercube [0, I]d. 

Note that the operator TN is self-approximating: for any function V one can 
evaluate J(V)(s) at any point s E S without requiring any explicit interpolation 
of the values of F(V)(s) at the random sample points s E {&N,...,sN}J7 In 
particular, if u and p are continuous functions of s, then FN(V) is a (random) 
continuous function of s and evaluation of this function at any particular point 
s5 [0,1]d involves nothing more than evaluating the simple formula on the 
right-hand side of equation (3.1). 

Our proof of the convergence of FN(V) to F(V) is based on the linear 
operators 1a N and Fa defined by 

/3 N 

(3.2) ai N (V)(S) = u(s, a) + - E V(?k)pUkIs, a), 

Fa(V)(s) = u(s, a) + /3f V(s')p(s'is, a)A(ds'). 

The operators JN(V) and F(V) can be regarded as "envelopes" of the linear 
operators Ja N(V) and Fa(V) in the sense that 

(3.3) FN(V)=maxa NF(V), 
aEA 

F(V) = maxFa(V), 
aEA 

where the maximization on the right-hand side of (3.3) is performed pointwise 
for each s E S. 

Note that TN is not guaranteed to be a contraction mapping with probability 
1 since ENi.1P(Skjs,a)/N does not necessarily sum to 1. However a simple 
application of the uniform strong law of large numbers shows that the sum 
converges to 1 with probability 1 uniformly for s e [0, 1]d, so that TN will be a 
contraction for N sufficiently large for any ,3 E [0, 1). However since we want 
error bounds that hold for all N, we show that by using a simple normalization 
we can construct a closely related random Bellman operator, TN, that is 

17The random Bellman operator was inspired by a deterministic self-approximating linear 
operator introduced by Tauchen and Hussey (1991). 
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guaranteed to be a contraction mapping for all N and all sample points 
{S1 ... ., SN} : 

[ N 
(3.4) "N (V)(s) = max u(s, a) + ,6 , V(sk)pN(Sk s, a)], 

aEA k==1 

where PN is defined by 

(3.5) PN (Sk Is, a) = P(Skls,a) 

if EN 1 p(si I s, a) > 0, or 0 otherwise. It turns out to be much simpler to analyze 
the asymptotic properties of the sequence { a, N(V)} since it is a simple sample 
average of IID random elements. Thus, the initial analysis will focus on the 
random linear operators Ta N. However we will show that error bounds on 

Ja,N(V) and FN(V) can be used to derive corresponding error bounds for the 
normalized operators ra N(V) and FN(V). In particular, the normalized opera- 
tors also share the K rate of convergence to the true operators Fa(V) and 
F(V), which implies that backward induction or successive approximation based 
on the normalized random Bellman operator TN succeeds in breaking the curse 
of dimensionality. 

The following lemma is the key to the subsequent analysis. It bounds the 
approximation error in the nonlinear operator 11 Fr(V) - F(V)II by the maxi- 
mum of the approximation errors in the linear operators I raJ N(V) - Ja(V)11. 

LEMMA 3.1: VN ? 1 we have 

(3.6) F|rN(V)-F(V) 1= maxJ,,N(V)-maxJa(V) a E-A a E-A 

< Ma 11 f,, N (V) ra(V) . 

a EA 

Notice that inequality (3.6) holds everywhere, i.e., for any N ? 1 and any set of 
sample points {s1, . . , SN) E [0, 1]dN, and not just with probability 1. It is easy to 
verify that inequality (3.6) also holds for the normalized operators TN and fa N 

Before we can proceed further, we need to specify the regularity conditions 
defining the subclass of DDP problems for which our subsequent results apply. 
The regularity conditions amount to the requirement that u and p are Lipschitz 
continuous functions of s. 

(Al) S = [0, 1]d. 

(A2) 3K1 < oo, Va EA, Vs, s' E S we have Iu(s, a) - u(s', a)I < K, Is - s'I. 
(A3) The transition probability has a density p(s'Is, a) with respect to Lebesgue 

measure A on [0, I]d. 
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(A4) Va E A, Vs', s, t E Slp(s'Is, a) -p(s'lt, a)I <Kp(s')Ils - tlI where Kp(s') 
satisfies 

fK'(s')A(ds') < K2 < O0. 
I p 

For notational convenience we will also assume that the following inequalities 
hold: 

(3.7) max sup I u(s, a) I < Ku, 
aeA sES 

max sup sup p(s'I s, a) < Kp. 
aeA s'eS sES 

DEFINITION 3.2: Let BL(K) cB denote the set of uniformly Lipschitz func- 
tions with Lipschitz bound K, i.e., 

(3.8) BL(K) = {f E B| I f(s) -f(s') I < KIIs - s'I 1, Ilf 11 < K} . 

The Arzela-Ascoli Theorem implies that BL(K) is a compact subset of B. 
Compactness is a key to the error bounds derived below. The next lemma shows 
that the random Bellman operator maps elements of B into the compact set 
BL(K) for some K < oo. 

LEMMA 3.2: VK > 0, VN 2 I the operators FN, ra, N FN ra, N F, and Fa map 
B(O, K) into BL(KU ? /3KKp), where B(0, K) is the ball of radius K in B. 

Lemma 3.2 implies that the random elements FN(V) and Ja N(V) are 
concentrated with probability I on the compact subset BL(KU + 3 ii V IKp) c B. 

3.2. Error Bounds for Random Bellman Operators 

In this section we show that the expected error in using the random Bellman 
operator EN to approximate the true Bellman operator F decreases at rate 
1/ independent of the dimension d. To gain some insight into why this 
might be so, note that by Lemma 3.1, the approximation error IIFN(V) - F(V)II 
is bounded above by the sum of the approximation errors in the random linear 
operators Za N(V) defined by 

(3.9) Za,N(V) [ra,1N(V) - ia (V)]. 

Observe that for each VEB, Za N(V) is a Lipschitz function of t C [0, 1]d, i.e. a 
random element of C([0, 1]d). Let N(W) be the minimal number of balls of 
radius e which cover [0, 1]d. Since N(W) = O(1/ed) the d-dimensional hyper- 
cube has finite metric entropy: 

(3.10) f /log (N(8)) de< oo. 
0 
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The Jain-Marcus (1975) central limit theorem implies that Za, N(V) =w Za(V) 
where Za(V) is a Gaussian random element of C([0, 1]d). This, together with 
Lemma 3.1, implies the following result. 

THEOREM 3.1: For each Ve B we have 

(3.11) NH F(V) - FN(V) I = O (1), 

g1! rv) - N(vl -O(I). 

Thus, the error in approximating F(V) by EN(V) is Op(1/ iNK). The fact that 
the rate of convergence is independent of the dimension d suggests that 
iterations based on the random Bellman operator might be capable of breaking 
the curse of dimensionality. However Theorem 3.1 is not sufficient to prove the 
result since we need to show that the expectation of the Op (1/ wNK) approxima- 
tion errors in (3.11) do not increase exponentially fast in d. Indeed, in order to 
derive the complexity bounds in Section 4, we need a bound on the expected 
error E{l FN(V) - F(V)II that holds uniformly, i.e. for all N > 1, for all VE 
B(O, K), and for all u and p satisfying (A2),... , (A4). 

To establish the latter bound, we appeal to a maximal inequality for empirical 
processes due to Pollard (1989). The reason empirical processes play a role in 
this problem is due to the fact that the random linear operators Za N(V) 
--N[ a, N - Fa(V)] can be represented as stochastic integrals with respect to 
the empirical process RN: 

(3.12) Za, N(V)(t) = 13fV(s)p(slt, a)BN(ds), 

where BN(S) = [ AN(S) - A(s)], A(s) is Lebesgue measure of the set [0, s], and 
AN(S) is the empirical CDF 

I N 
(3.13) AN(S) =- E I{si < S}. 

N i = I 
The maximal inequality provides a bound on the expectation of the supremum 
norm of Za, N(V), i.e. a bound on E{lIZa, N(V)II} which holds for all N ? 1. Since 
these maximal inequalities are derived from somewhat simpler maximal inequal- 
ities for Gaussian processes (e.g. Theorem 3.2 in Pollard (1989)), it is convenient 
to derive the bound in two steps: we first derive a bound on E{IIZa(V)II} where 
Za(V) is the limiting Gaussiarn process, and then use Pollard's "symmetrization 
method" to show that this bound also applies to E{lIZa N(V)II at the cost of a 
slight increase in the bounding constant. The maximal inequality can be defined 
in terms of a covering integral similar to (3.10), except that we replace N(e) by 
N(e/2) and the covering number N(W) is defined in terms of a metric p(t, s) on 
[, 1]d satisfying 

(3.14) E iza(V)(S) - Za(V)(t) 2 ?p(s,t)2. 
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In order to define p(s, t) and the implied bound on E{IIZa(V)Ill}, it is helpful to 
have an explicit representation for the limiting Gaussian process Za(V). As is 
well known from the literature on empirical processes, BfN converges weakly to 
B, where B is the Brownian bridge process on [0, 1]d (see, e.g., GdnB3ler (1983)). 
This implies that the Gaussian stochastic process Za(V) also has a representa- 
tion as a stochastic integral with respect to the limiting Brownian bridge process: 

(3.15) Za(V)(t) = 13fV(s)p(sIt, a)B(ds). 

Using this representation, it is easy to see that the metric p(s, t) = 3KpI I VII Ils - 
tll satisfies (3.14) and the corresponding covering integral satisfies 

(3.16) fV log (N(8 /2)) d e < dx3Kp KII VII, 

where 8 = supS E [o lad p(s, O) = Vd,pKpIIV II. 

THEOREM 3.2: Let Za(V) be the Gaussian process defined in equation (3.15). 
Then E{IIZa(V)II} satisfies the following bound: 

(3.17) E{l Za(V) 1} <E{ Za(V)(O) I} + Cf vlog(N(e/2)) de 

<,3[1? + dFC]KpII VII, 

where C is a universal constant independent of Za(V). 

COROLLARY: The bound in Theorem 3.3 holds uniformly for all p E BL(Kp) 
and all IIVI I B(0, Kv): 

(3.18) sup sup E{ Za(V)} < B[1? dfC]KPKV. 
p E BL(Kp) VE B(O, Ku) 

The next step is to apply the symmetrization method of Pollard (1989) to show 
that a version of the inequality (3.18) not only holds in the limit as N > oo, but 
also for all N ? 1 at the cost of a slight increase in the bounding constant-by a 
factor of 177/2. 

THEOREM 3.3: For each N ? 1 we have 

(3.19) E{ Za, N(V) 11} = E{VK Pa NN(V) -1a(V) } 

/Ti ru PR .d/ C] 1lT ri 
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COROLLARY: For each n ? 1 the following uniform bound holds: 

(3.20) sup sup E{ | ,N(V)- (V) 
y 
Y(d)KPK, 

p E BL(KP) VE B(O, KU) 

where the constant y(d) is given by 

(3.21) y(d ) = 2 /3 [I + dF7C] 

Using inequality (3.20) and inequality (3.6) from Lemma 3.1, we obtain the 
main result of this section. 

THEOREM 3.4: For each N2 1 the expected error in the random Bellman 
operator satisfies the uniform bound: 

(3.22) sup sup E{ FN(V)-F(V)II < Y(d)IAIKPK 
p E BL(KP) VE B(O, Kd ) 

where the bounding constant y(d) is given in equation (3.21). 

COROLLARY: The expected error in the normalized Bellman operator rN satisfies 

(3.23) sup sup E{ FN(V)-F(V)I}?<2 
Y 

p E BL(KP) VE B(O, Kd) 

where the bounding constant y(d) is given in equation (3.21). 

4. COMPLEXITY BOUNDS FOR RANDOM SUCCESSIVE APPROXIMATIONS AND 

RANDOM MULTIGRID ALGORITHMS 

Using the error bound in Theorem 3.4, it is now straightforward to show that 
the random Bellman operator succeeds in breaking the curse of dimensionality 
for finite and infinite horizon DDP problems. We begin by considering the 
complexity of the random version of the successive approximations algorithm. 
Given a desired solution tolerance 8 we choose a number of simulations N 
sufficiently large that the expected error in the solution will be less than C. Then 
we draw IID uniform random sample points { N, ..., Sj which will subsequently 
remain fixed in each of T backward induction steps. Backward induction begins 
with a value function VT E RN given by 

(4.1) VT(U) = argmax u j, a) (i= 1,..N). 
aEA 

Subsequent value functions VT-t, t = 0,.. ., T, are generated by successive appli- 
cation of the TN operator: 

(4.2) VT-tC) = FN(VT)( ) (t = 0,.. ., T; si = 1,...,N). 
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Recall from the introduction that the total work involved in carrying out this 
backward induction is O(TIAIN2). Thus, the solutions the algorithm produces 
are approximations to the (T + 1) value functions V, t = 0,..., T, evaluated at N 
randomly selected points in S, i.e. the (T + 1) X N array {Vt(gi) I i = 1,.. ., N; 
t = O, .. ., T} satisfying E{| Vt(s?j) - Vt(si) |} < ?. The complexity functions in the 
theorems below are upper bounds on the total number of arithmetic operations 
required to (i) calculate the "information" {u(&i, a), p(s&1 I &j, a) I i, j = 1,... ., N; 
a = 1,.. .,IA I), and (ii) calculate the (T + 1) approximate value functions JK(sg) at 
the N randomly selected points {s&,,..., S}. The self-approximating property of 
the random Bellman operator implies that the algorithm can also be used to find 
solutions Vt(s) at points s e {i1,..., U N}' and the uniform convergence bounds in 
Theorem 3.4 guarantees that if N = (9(d2Al2K2K2/82), then E{sups E 5IVts) 
- Vt(s)J} < 8. The marginal cost of calculating Vt(s) at an additional point 

S 0 {51, ..., JNJ is O(IAIN2). 
Finally, note that under our assumptions, if Ku is an upper bound on Vt, then 

,Bf Vt(s')p(s' Is, a)A(ds') < P3K0, and if this latter term is less than 8 we can 
compute an e-approximation to Vt in O(IAIN) operations by simply solving the 
static optimization problem maxa e A(S)[ u(si, a)] at N points in S and ignoring 
the problem of calculating 3f Vt(s')p(s' Is, a)A(ds'). Therefore the complexity 
bounds given below are valid only for (,B, 8) satisfying K, > 8/l3, i.e. for 1B 
sufficiently large and 8 sufficiently small. In the infinite horizon case, K, = 

KUl(1l- 1,) and the condition becomes 13Ku > (1 - ,8)8. We implicitly assume 
that these inequalities hold in order to simplify the statements of Theorems 4.1 
and 4.2 below. 

THEOREM 4.1: Randomization breaks the curse of dimensionality of solving finite 
horizon DDPs: i.e., an upper bound on the worst case complexity of the class of 
randomized algorithms for solving a T-period DDP problem with IAI possible 
actions, discount factor 13 E (0,1) and utility function and transition probability 
(u, p) satisfying (A1),..., (A4) is given by 

(4.3) compwor-ran (8, d) = 0( Td41 AIK4Kp) 
(1 )? 1 

COROLLARY: Randomization breaks the curse of dimensionality of solving infi- 
nite horizon DDPs: i.e., an upper bound on the worst case randomized complexity of 
the infinite horizon DDP problem is given by 

(4.4) com wor-ran (?,d) = log( 13)I( - )8 
d p 

og(I/1 - )1(1_dA3)854KK 

We now consider a random extension of the one-way multigrid algorithm 
introduced by Chow and Tsitsiklis (1991). We show that for infinite horizon 
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DDPs, this "random multigrid algorithm" reduces the upper bound on the worst 
case randomized complexity of infinite horizon DDP problems by a factor 
log(1/(1 -,8)e). The random multigrid algorithm consists of a number of 
"outer" iterations k = 1, 2,..., where a number Nk of uniform random sample 
points {S Nk... , S is drawn at each iteration k independently of the sample 
points drawn at previous iterations k - 1, k - 2, .. ., of the multigrid algorithm. 
The basic idea is to start at iteration k = 0 with a relatively small number of 
sample points No and successively increase the number of sample points drawn 
at each iteration by a factor of 4: 

(4.5) N =2 N0. 

Within each outer iteration k, a number T(k) of inner successive approximation 
steps are taken using the random Bellman operator TNk. Let Vk denote the 
value function produced at the termination of the T(k) successive approxima- 
tion steps at outer iteration k. The starting point for successive approximations 
in outer iteration k is the value function Vkl produced at outer iteration k - 1. 
Thus we have the recursion 

(4.6) V= k(k_j)' 

where the starting point for iteration 0 of the multigrid algorithm is given by 
(4.1). Since the expected error between FNk and F is given by 

f(V)-F(V) ~ Y(d)IAIKuKp K (4.7) E{|r Fv-(V) |< l( )=/(- 

we choose the following stopping rule for the inner successive approximation 
steps: T(k) is the smallest integer t satisfying 

K 
(4.8) Ek F<k(VkI)-Fj?I(Vki) | N43(-f3 

Given a desired solution tolerance of e > 0 the stopping criterion for the outer 
iterations is the smallest value k* satisfying 

K2 
(4.9) Nk* (1- 

Since Nk is increasing by a factor of four at each outer iteration (and therefore 
the expected error is being halved at each outer iteration of the multigrid 
algorithm), it is clear that the multigrid algorithm will terminate after a finite 
number of iterations k. Let VNk* denote the fixed point of the operator rNk* at 
the final iteration of the multigrid algorithm. Inequality (2.15) and the stopping 
rules for T(k*) given in equation (4.8) imply the following bound: 

(4.10) E{!jVk* -VNk * 11 <8 
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Inequality (2.12) and the stopping rule for k* given in inequality (4.9) imply that 
the expected error between VNk* and the true fixed point V= F(V) is given by 

(4.11) E{ l AVNk -VH/ ? l 
E 

< N,* (1) 
- (V) < 

Using the triangle inequality and inequalities (4.10) and (4.11) we have 

(4.12) E{IJIA* - Vll) < 2e. 

Thus, the multigrid algorithm terminates after a finite number of iterations k* 
with an expected error of 2e. The next lemma shows that the stopping rule (4.8) 
for the successive approximation steps guarantees that T(k) = O(1/llog(,8)1) 
independent of e and k. 

LEMMA 4.1: There exists a constant c independent of /3 and 8 such that 

C 
(4.13) T(k) < ?1 ( 3)I (k =1,...,k*). 

THEOREM 4.2: An upper bound on the worst case complexity of infinite horizon 
DDP problems is given by 

(4.14) compwor-ran (8, d) = o jIA(3d(KU Kp ) 

5. EXTENSIONS AND CONJECTURES 

This paper has established upper bounds on the randomized complexity of 
finite and infinite horizon DDP problems. We showed that randomization 
succeeds in breaking the curse of dimensionality of a subclass of DDP problems 
satisfying a Lipschitz condition. We assumed, for simplicity, that the Lipschitz 
bounds Ku and Kp on (u, p) are constants independent of the problem 
dimension, d. It is easy to show that our algorithms will also break the curse of 
dimensionality if Ku and Kp increase polynomially in d. A much more difficult 
problem is to establish tight upper and lower bounds on the randomized 
complexity of the DDP problem. We conjecture that an integration algorithm 
similar to Bakhvalov's (1959) algorithm will be an optimal random algorithm for 
the DDP problem, with a complexity exponent equal to the square of the 
exponent m = d/r (where r denotes the highest degree of differentiability of 
(u, p)), indicating that smoother DDP problems enjoy faster rates of conver- 
gence. However since m = d/r, the gain in using more sophisticated randomiza- 
tion schemes over the simple Monte Carlo algorithm will be small when the 
problem dimension d is large relative to the degree of smoothness r. 
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The analysis in this paper assumes the real number model of computation. That 
is, we have assumed that all calculations are carried out in infinite-precision 
arithmetic and that the computer is capable of generating truly IID random 
uniform draws from the unit cube [0, 1]d. Of course, actual computers are only 
capable of finite-precision arithmetic and generate pseudorandom uniform draws 
from [0, If using deterministic algorithms. However we agree with the view 
expressed in Traub, Wasilkowski, and Wozniakowski (1988) that "pseudo-ran- 
dom computation may be viewed as a close approximation of random computa- 
tion, and that randomness is a very powerful tool for computation even if 
implemented on deterministic computers" (p. 414). Indeed, Traub and 
Wozniakowski (1992) have shown that a Monte Carlo algorithm based on a 
linear congruential generator of period m with a uniformly distributed initial 
seed "behaves as for the uniform distribution and its expected error is roughly 
n-1/2 as long as the number n of function values is less than mi2" (p. 323). 

An important open question is whether one can break the curse of dimension- 
ality of the DDP problem on an average case basis: i.e., when the error in the 
algorithm is evaluated relative to a prior distribution over the space (u,p) of 
possible DDP problems (for details on how average case complexity is defined, 
see Traub, Wasilkowski, and Wozniakowski (1988)). Certain problems including 
multivariate integration have been shown to be tractable on an average case 
basis even though they are intractable on a worst case basis. The difficulty in 
applying an average case analysis to the DDP problem is to find a reasonable 
prior over the space of admissible transition probabilities. The typical prior used 
in multivariate integration problems, folded Wiener sheet measure, does not 
ensure that the transition probabilities p are nonnegative and integrate to 1. 

Recent research has shown that the simple sample average integration algo- 
rithm (3.7) based on deterministic sample points such as the Hammersley, 
Halton, and Sobol points, approaches the lower bound on the average case 
complexity of numerical integration (see, e.g., Wozniakowski (1991) who showed 
that a shifted version of the Hammersley points actually attains the lower bound 
on average case complexity). We can gain some insight into why these determin- 
istic integration methods work well from the Koksma-Hlwaka inequality: 

I N 

(5.1) N | f (s) -ff(s)A(ds) < V(f)D*(sl, sN) 

where A is Lebesgue measure on [0, 1]d, V(f) is the total variation in f in the 
sense of Hardy and Krause (see Neiderreiter (1992, p. 19) for a definition), and 
DN is the discrepancy: 

(5.2) DN( sup--,SN) = IAN(B)-A(B)I, 
B E 

where _ is the class of (open) suborthants of [0, I]d, (M = {[0, S)" C [0, j]djS E 

[0, j]d}) and AN is the empirical CDF corresponding to the sample points 
(Sl,... ,SN). This inequality suggests that one can obtain maximal inequalities for 
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a class of functions of uniformly bounded V(f)-variation using a maximal 
inequality for the empirical process indexed by the class -. Moreover, the 
Koksma-Hlwaka inequality suggests that we can get more accurate estimates of 
the integral by using deterministic sequences of points (s1, .. ., SN) for which the 
discrepancy is small or even minimal. An interesting literature on discrepancy 
bounds (surveyed in Neiderreiter (1992)) has derived upper and lower bounds on 
the rate of decrease of certain "low discrepancy" point sets such as the 
Hammersley, Halton, and Sobol points. For example Roth's (1954) lower bound 
on the discrepancy of any set of points (s1, ..., SN) in [0, 1]d is given by 

(log N)(d 1)/2 

Dj(s1, *,N) 2)K(d) N 

where K(d) is a universal constant that only depends on the dimension of the 
hypercube, d. An upper bound for the N-element Hammersley point set P is 
given by 

Dy(d)(log N)d O(N 1(log N)d 2). 

This means that multivariate integration using deterministic sequences such as 
Hammersley points do much better than random samples since the rate of 
decrease in the expected error in the latter is at the slower rate 1/ N. Recent 
numerical experiments comparing the accuracy of numerical integration using 
deterministic integration points such as the Halton and Sobol points versus 
standard Monte Carlo integration in Paskov (1996) and Paskov and Traub (1996) 
confirms that for certain classes of functions, the deterministic algorithms 
provide more accurate estimates in less cpu time. The intuitive reason for the 
superior performance of deterministic, low discrepancy sequences over pseudo- 
random sequences is that the former are more evenly distributed about the unit 
cube, with fewer "gaps" and "clusters." This is visually apparent in Figures 5.1 
and 5.2 which compare successive points generated by Sobol's sequences to 
those generated by a linear congruential pseudo random number generator. In 
future work we plan to investigate versions of successive approximations and the 
multigrid algorithms for solving DDP problems using the Sobol points and other 
low discrepancy sequences. Our conjecture is that the deterministic versions of 
these algorithms could significantly outperform the ''random'' versions for a 
wide variety of DDP problems. 

Dept. of Economics, Yale University, P.O. Box 8264 Yale Station, New Haven, CT 
06520-8264, U.S.A. 

Manuscript received April, 1994; final revision received April, 1996 
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FIGURE 5.1.-Example of successive grids generated by Sobol multigrid algorithm. 
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FIGURE 5.2.-Example of successive grids generated by random multigrid algorithm. 

APPENDIX: PROOFS OF PROPOSITIONS 

PROOF OF LEMMA 2.4: We prove the result by induction on t. Starting at t =T- 1 suppose we 
choose N and VT satisfying (2.18), (2.19), and (2.20). Then we have 

(6.1) ii| V - I-VT- il|| = ||IFN( VT) - F(VT)11 

= IIrN( VT) - N(VT) + FN(VT) - (VT)II 

? IIF18( VT) - N(VT)II + IIFN( VT) - (VT)I 

? ,/3 + (1- -3 )e?= e:. 

This argument can be repeated for each t = T -1, T -2,...,1, provided we can show that for eacht 
we have IItl V<II?K/(1 -,l3). Howeveif this follows from Lemma 2.3 and the assumption that the 
approximate Bellman operator oN is a contraction mapping with modulus a r3. 

PROOF OF LEMMA 3.1: Fix x E S. Define the decision rules a and arN by 

(6.2) x(s)T= argmaxlTjV)(s), 
aEA 

aN(s)N= argmaxJ7j (VT)(s)) 
aeA 
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Then we have 

(6.3) F(V)(s) = I>,(s)(V)(s) 2 IN(s)(V)(s), 

FN(V)(S) = <" N(s),N (V)(s) ? Fa(,),N(V)(S) 

Suppose that FN(V)(s) ? F(V)(s). Then we have the following inequality: 

(6.4) PaN(s),N( (V ) = FN(V)(s) ? F(V)(s) = F(S)(V)(S) 2 F17N(S)("s). 

It follows that 

(6.5) 0 < FN(V)(s) - F(V)(s) < JaN(s),N(V)(S) - F,,N(s)(V)(S) 

< max I1 N(V)(S) - 17(V)(s)I- 
aeA 

Using an identical argument when F(V)(s) ? fN(V)(s) we get the following inequality: 

(6.6) 0 < F(V)(s) - fN(V)(s) < Is(,)(V)(s) - f1(),N(V)(s) 

< maxIlja(V)(s) - a, N(V)(S)LI 
aeA 

In either case we have 

(6.7) IFN(V)(s) - F(V)(s)I < maX If,,N(V)(s) - Fa(V)(S) I 
aeA 

Taking suprema over s E S we have 

(6.8) IIfN(V) - F(V)II = supIfN(V)(s) - F(V)(s)I 
sfeS 

< sup maxI fa N(V)(S) - Fa(V)(s)I 
sfES aeA 

= max supIa NN(V)(S) - Fa(V)(s)I 
aEA seS 

= maXII1a1N(V) - Fa(V)1 
aeA 

< : || ra,N(V) 
- 

a(V)11' 

aeA 

PROOF OF THEOREM 3.2: Define a metric p(s, t) on S = [0, lid by 

(6.9) p(s, t) = ,PKpIIVI Ils - tll, 

where Ils - tll is the usual Euclidean distance between the points s and t, Is- ti2 = (sl-t)2 
+ (sd - td)2. Since the sample paths of Za(V) are p-continuous, we can apply the maximal 
inequality in Theorem 3.2 of Pollard (1989) provided that we can show that inequality (3.14) holds. 
This turns out to be an easy consequence of the representation of Za(V) in equation (3.15): 

(6.10) E{IZa(V)(t) -Za(V)(S)12} - 32E{ fV(s')[p(s'lt,a)-p(s'ls,a)]B(ds') 2} 

= 32fV2(s' )[p(s'Is, a) -p(s'lt, a)]2 A(ds') 

- 2 [f V(s')[ P(S'l s a) -p(s'I t, a)]A(ds' ] 
< p2KP2IVII2VIs - t112 = p(s, t)2. 
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H6lder's inequality and the normality of Za(V)(so) imply that the first term on the right-hand side 
of inequality (3.14) is bounded by fBKpIIVII: 

(6.11) E{IZa(V)(so)I} = f3E( f V(s)p(s so, a)B(ds) | } < fKpIIVII. 

Using the fact that 

(6.12) H( 2p ) H( 2KPIVII ) 

we can derive an upper bound for H(G'/2, p) by partitioning S = [0, 1]d into cubes of length 2 /1 /d 
on each side. It is easy to see that the diameter of these cubes is 2? and there are N= (v/2= 8 
such cubes in the partition. If we let {sl,..., sN} denote the centers of these cubes, the N balls with 
radius ? constitute an 8-net of [0, 1]d, so it follows that 

d 

Integrating the entropy function using the above inequalities we have 

(6.14) f6log (H( / S3KII I ,s )) dx <? /if log( dxI )/ . 

Let s0 = 0 E [0, 1]d. A straightforward calculation shows that 4i = supG[0o,j] p(s, so) = d,8KpII VII. 
Using the change of variables xd7fKPIIVIIy =x, we can evaluate the last integral in (6.14) as 

(6.15) t log( PI ) dx=dI3KpIIVIIflog(-) dy = d12 d KpII VII. 

Substituting inequalities (6.11), (6.14), and (6.15) into the maximal inequality in Theorem 3.2 of 
Pollard (1989) we obtain the inequality for E{11Za(V)11} given in (3.17). 

PROOF OF COROLLARY TO THEOREM 3.2: Inequality (3.17) applies to an arbitrary p E BL(Kp), so 
inequality (3.17) must hold uniformly for all p E BL(Kp): 

(6.16) sup E{IIZa(V)11} < ,[1 +dV7C]KIpII VII. 
p E BL(Kp) 

If we substitute Ku for IIVII in the above inequality, it follows that 

(6.17) sup sup E{11Za(V)11}= sup sup E{11Za(V)II} 
VEB(O,K,,) peBL(Kp) p E BL(Kp) Ve B(O, K,) 

< 8 [ 1 + d FrC ]Kp Kv. 

PROOF OF THEOREM 3.4: This follows from the bound in Theorem 3.3 and a straightforward 
modification of inequality (7) in Pollard (1989). 

PROOF OF COROLLARY TO THEOREM 3.4: Using the definition of the normalized random Bellman 
operator in equation (3.4) we can write the following expression for the difference between 
Fa,N(V)(s) and fa,N(V)(S): 

(6.18) 17 N,,(V)(s) -r 1,N(V)(s) 1 N ( a[s, Is, a)] 

x [1 N V(sj)p(sIs, a)]- 
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Equation (6.18) implies the following bound on the difference between 1a N(V) and 17, N(V): 

l N 

(6.19) IIfa,N(V) - 17,N(V)11<8 311VII sup ll - - p(sjIs,a)I. 
se [O, lid i=1 

Applying the maximal inequality for empirical processes of Theorem 3.4 to that special case when 
V- 1 and /3 = 1, we have 

I ~~~1 N I y (d) K 
(6.20) Et sup Jl-N - p(sjIs,a)I' ?, 

S E=-[,IOid Ni=1 ) N 

where y(d) is given in equation (3.21). Together, inequalities (6.19) and (6.20) imply the following 

uniform bound on the expected error in JlJFaN(V) - FakN(V)11: 

(6.21) sup sup E{Jl IaNN(V)-1 N(V)II 1 <y -P 
p e BL(K) Ve B(B, Kd) 

Inequality (3.6) implies the following bound on the expected error in 11 N(V) -N(V)II: 

(6.22) sup sup E{ilIN(V)-fN(V)I}? < y(d)IAIKPK, 
p E BL(K ) Ve B(O, Kd) 

To obtain the final uniform bound on the expected error in II FN(V) - F(V)11, use inequalities (6.21), 
(6.22), and the triangle inequality, 

(6.23) FKNIIFN(V) - F(V)II < ?NIITN(V) - FN(V)II + VNIIFN(V) - F(V)11, 

to obtain inequality (3.23). 

PROOF OF THEOREM 4.1: Recall that by Lemma 2.4 if VT is within e of the true term value 
function VT given in equation (2.3) of Section 2 and N is chosen sufficiently large that II tN(V) - 

F(V)II < (1 - J3)e for all Ve B(O, KU/(1 - /3)), then VT t is guaranteed to be within e of the true 
solution VT-t for all t =0,...,T. Although the random Bellman operator generates a random 
sequence {V0o ... I VT} of value functions, it is easy to see that the results of Lemma 4.1 continue to 
hold when expectations are taken. Thus, if N is chosen sufficiently large so that E{II FN(V) - F(V)II} 
< (1 - ,B)? uniformly for all Ve B(O, KU/(1 - ,)), then we have 

(6.24) E{ill - VT-tl} ?8 (t = 0,..., T). 

The error bound in the corollary to Theorem 3.5 allows us to guarantee that E{Il FN(V) - F(V)11} < 
(1 - ,B)e uniformly for p 0 BL(KP) and V EB(O, K /(1 - 13)) provided the number of random 
sample points N satisfies 

(6.25) N? [2y(d)IAIKK1Kp2, 

where y(d) is defined in (3.21). Since the work involved in solving a T-period DDP problem with N 
possible discrete states and IAI possible actions by backward induction is O(TIAIN2), it follows that 
an upper bound on the complexity of randomized algorithms for solving the DDP problem is given 
by equation (4.3). Furthermore, Theorem 3.5 guarantees that choosing N to satisfy (6.25) guarantees 
that the expected error E{IIVT_t-VT - tt} < -- for any DDP problem (u, p) satisfying (Al),...,(A4). 
Thus, the complexity bound (4.3) does in fact provide an upper bound on the worst case complexity 
of solving this class of DDP problems using random algorithms. 
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PROOF OF COROLLARY TO THEOREM 4.1: Lemma 2.1 guarantees that if E{lI JI(V)-F(V)II1 ? (1 
- ,(3) uniformly for VE B(O, KU/(1 - /3)), then E{IIVN - VII} < 1 where VN is the (random) fixed 
point to the random contraction operator EN and V is the fixed point V to F. By inequality (2.15) of 
Lemma 2.2, a total of T( ,8, s) successive approximation steps are required to guarantee that the 
final iteration of any contraction mapping of modulus 13 is within 8 of the fixed point, where 
T(,8, ?) is given by 

(6.26) T( 8, ) = g(| ( 

Thus, setting N to satisfy inequality (6.25) and T to satisfy inequality (2.15) guarantees that the 
expected error in the final iterate V = FNI(VT) satisfies 

(6.27) E{lIVo - VII} < 28. 

Setting N and T to the minimal values satisfying inequalities (2.15) and (6.26) yields the upper 
bound on randomized complexity (4.4). 

PROOF OF LEMMA 4.1: We closely follow the proof given in Chow and Tsitsiklis (1991) for their 
nonrandom version of the multigrid algorithm, with notation adapted to the current problem 
formulation. Let V be the value function produced at successive approximation step T(k - 1) - 1 of 
iteration k - 1 of the multigrid algorithm 

(6.28) V =FNkt-) (Vk-2)- 

Using the triangle inequality and inequality (4.7) we have 

(6.29) Et{lFNk(Nk i -)) rNk-1(V)J1J <E{IINk(tNk V (v))-F (Nk_ (V))11} 

+E{II F( Nk (V)) - ?Nk Nk( ^))II} 

?E{INk _ INk- I -V Nk-( V)1} 

K K 

N k(-13) + Nk- /3) 

OK 

(Nkl3(1 -/) 

5K 

N(1 -/3) 

Using the fact that 1Nk is a contraction mapping with modulus ,3, we have 

5K 
(6.30) ~ F~ E(lrNVk- l-k (Vk- 1)11} <0 EtN r(k Vk Vk- 111} <,8 (t s 

'Nk(1 -/3) 

where the second inequality follows from (6.29) and the fact that Vk- 1 = TN__(V). If we choose t so 
that 5/3 < 1, it is easy to see from (6.30) that the stopping criterion (4.8) is satisfied. Thus it follows 
that the stopping rule T(k) satisfies: 

(6.31) T(k) log (/3). 
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PROOF OF THEOREM 4.2: By Lemma 4.1 at most T(k) = log (5)/Ilog( ,8)1 successive approximation 
steps are performed at any iteration of the multigrid algorithm so the total work at step k of the 
multigrid algorithm is of order O(IAINk7/llog(/3)1). It follows that the complexity of the multigrid 
algorithm is bounded by 

(2~,d) - ( AlI (Nk* 2 Nk* ~2? (6.32) c pwormranp(2 d- ( [Nk* 4 ) ( 16 ) 

o (8 A N; [ 4 1]) 
I A I Nk2* I 

(IA INk2* = 
11og(13)I 

- 

Since Nk* is chosen to satisfy (4.9) where the constant K is given in equation (4.7), simple 
substitution yields the form of the complexity bound in equation (4.14). 
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