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Case involved a claim for damage by a corporation, C,
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My position: in the absence of collusion, prices would have
been those predicted by the Bertrand model
I argued that a “price war” between A and B that occured
just prior to the onset of collusion, was not caused by a
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rather, the price war was caused by firm A’s attempt to leap
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Justification for Bertrand pricing

cardboard is a highly standardized product
the consumers of cardboard are firms that are highly
rational and interested in buying inputs at least possible
cost
further, firms acquire these inputs via tenders that create
strong incentives for Bertrand-like price cutting
In the case, we lacked good data on aggregate demand for
cardboard facing firms A and B before and after collusion
but we did have good data on their costs of production
cardboard is made on production lines with machinery that
is well-approximated as constant returns to scale with
constant marginal costs
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A cardboard corrugator

4

best benchmarks when considering an ‘off the shelf’ design 

for its new machine. The term used to describe what it needs 

to achieve is that it must be ‘lean and mean’ regarding costs, 

but able to deliver the best performing board to meet or 

surpass user requirements.  

Until the 30 June 2008, Roberts will maintain 

responsibility for driving the project. The 

Project Director is to be Sandy Fleming 

(pictured), a very experienced project 

manager. He was previously Vice President, 

Project Management, at Pöyry, in Vancouver, 

Canada, and is now a senior member of staff at Amcor. Two 

other Canadians, Bob Pedersen and Ross Densky, have been 

appointed to the senior positions of Engineering Manager and 

Construction Manager respectively.

The time line for commissioning is focussed on the third quarter 

2010, with the new and improved recycled corrugating material 

being available for the peak buying period at the end of the third 

quarter and the start of the fourth quarter 2010. Preparation of the 

brownfi eld site and construction of B9 will take thirty months.

Roberts points out that since there is likely to be an overlap 

in the running of BM7, BM8 and BM9, there will be a need to 

start running down one of the two older machines prior to the 

start up of BM9. This will be based on the requirement for staff 

training and orientation on running the modern machine and 

learning the new technology.

Achieving the Best Technology
When asked about achieving the best technology, Roberts says 

the focus of Amcor is to understand their customers needs and 

to produce the best possible boxes to satisfy those requirements. 

He says Amcor is not in the business of investing lots of money 

into research and development in creating technology when 

building new paper machines, only to produce what the suppliers 

have already achieved. However, he stressed, Amcor is in the 

business of ensuring the best available technology is delivered, 

and to do this members of the team have spent considerable 

time visiting and understanding world reference mills.

As stated above, time was spent by some of the team at Nine Dragons 

in China, where potentially the best available technology is operating. 

Roberts, also states it is not just the technology that matters, but also 

how it affects Amcor’s future process requirements. Part of this work 

has required structured trials with technology leaders to confi rm the 

best results will be achieved for the Amcor business. 

Deconstruction of buildings and old equipment is already 

underway at Botany to clear the area required for B9. The services 

close to the boundary of Botany road will need to be relocated 

to facilitate the development of the new buildings. Roberts says 

Amcor needs to undertake remediation of all land to be sold.

IndustryEdge asked why the current project had been approved 

by the Amcor board, when previous attempts to develop the 

project had failed to achieve the required support. Roberts 

explained the current project is structured very differently, 

looking this time at the vertical integration of the business, 

from paper and paperboard recycling through to corrugated 

box manufacturing. With the restructuring of the business 

to a single paper machine, and accounting for the revenue 

generated from the sale of land reducing the gross cost from 

AUD400M down to what will be expected to be in the region 

of AUD230M, the project achieves the internal rate of return 

required for Board approval.

Machine Design Still Under Wraps
The fi nal design of BM9 is still under negotiation. Roberts confi rmed 

Amcor has maintained an open mind regarding suppliers, and 

has not taken into account past relationships developed during 

the construction of previous machines. However, the selection of 

a provider is expected to be announced in early May.

Roberts has explained the initial estimates for the cost of 

a new paper machine were developed by Pöyry, and then 

validated by the Amcor team. He also stated the new machine 

would have a trim width of 5.6M, being a better fi t for the 2.8M 

corrugators in Brisbane, Sydney and Melbourne. 

Rocklea BHS Corrugator 

Source: Amcor

Members of the Amcor team have visited reference machines 

overseas, including Nine Dragons in China, to establish the 
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Technological progress via cost-reducing investments

in this industry, A and B do minimal amounts of R&D since
there is limited scope for new product innovations to
replace cardboard
however the firms do spend considerable amounts on cost
reducing investments
these investments consist of building new plants or
upgrading existing plants with the latest technology and
machinery for producing cardboard
rather than developing these machines themselves, A and
B purchase these machines from other companies that
specialize in doing the R&D and product development to
develop the machines that produce cardboard at the least
possible cost
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Leapfrogging by firm A lead to a price war

the proximate cause of the collusion between A and B was
a price war in cardboard
a key input to cardboard is paper and A had a severe cost
disadvantage relative to B due to its outdated paper
production plant, with machines that had not been
replaced/upgraded in decades
B, on the other hand, has aggressively invested in the
latest and most cost-efficient technology and maintained a
persistent edge as the low cost leader
however A planned to invest in a new paper mill, enabling it
to produce cardboard at substantially lower costs, thereby
leap frogging B to become the low cost leader
A started cutting prices before undertaking the investment
to assure sufficient capacity utilization for the new plant
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Are price wars evidence of tacit collusion?

The economic experts defending A and B dismissed my
Bertrand competition with leap frogging investments
hypothesis as completely out of touch with reality
They claim that there is a huge body of research and
empirical work in IO that supports the theory of tacit
collusion by repeatedly interacting duopolist
In particular, the theory shows that the duopolists can
achieve via tacit collusion the same discounted profits as
they could via explicit collusion.
There prices under the counterfactual are unchanged and
the damage to C is zero.
But if this is the case, and if tacit collusion is legal, why
would A and B have had an incentive to engage is illegal
explicit collusion?
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But if this is the case, and if tacit collusion is legal, why
would A and B have had an incentive to engage is illegal
explicit collusion?
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Paucity of empirical support for tacit collusion

Tacit collusion is hard to “observe” by the very fact that it is
tacit
We need good data on costs and demands to calculate
what the cartel price would be
Most of the empirical work on tacit collusion comes from
laboratory experiments
Hundreds of experiments done on tacit collusion have
found that it is extremely difficult to “grow” tacit collusion in
laboratory settings
There are very few “field studies” that find evidence of tacit
collusion outside of Breshnahan’s (1987) JIE paper,
“Competition and Collusion in the American Automobile
Industry: the 1955 Price War”
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Conclusions of meta-study of over 500 experiments

Christoph Engel (2007) “Tacit Collusion The Neglected
Experimental Evidence”
Econometric meta-analysis of 510 laboratory experiments
finds no systematic evidence supporting tacit collusion
D. Engelmann and W. Müller (2008) “Collusion through
price ceilings? A search for a focal point effect”
“Note that the Folk Theorem (see for example Tirole, 1988)
predicts that infinitely many prices can occur as outcomes
of collusive equilibria in infinitely repeated games if the
discount factor is sufficiently high. This suggests a
coordination problem when firms attempt to collude.” (p. 2)
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Results of a laboratory duopoly

Rust’s response to Hausman’s report Page 26

3.78Under the experimental design chosen by Engelmann and Müller, two human subjects playing
the role of two duopoly firms made simultaneous price decisions in a market with computerized
buyers lasting 60 periods. Their model has a unique BertrandNash price of 21, and the maximal
price that can be sustained by tacit collusion between the two firms is 48. The price ceiling
the authors chose is 28, approximately midway between the Bertrand price and the maximum
collusive price. If the two subjects were to coordinate and set their prices equal to the price
ceiling, they would earn profits that were approximately 30%higher than the profits they would
earn under the Bertrand Nash equilibrium price of 21.

3.79Figure 1 below plots the average prices charged by the duopolists in 18 repetitions of the
experiment with separate sets of human subjects playing theroles of duopolist. The blue line
corresponds to subjects who had no price ceiling imposed in periods 1-30, and the price ceiling
28 imposed in periods 31-60. The pink line (the one that peaksto a value of 31 in period 31) is
the reverse treatment: these subjects had a price ceiling of28 imposed for periods 1-30, then it
was lifted in periods 31-60.

Figure 1: Results of a Duopoly Experiment
(Note: the Bertrand price is 21, the maximum cartel price is 48 and 28 is the price ceiling)
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3.80Figure 1 shows that the price is very close to the predicted Bertrand price of 21. The price
ceiling does not appear to serve as a focal point that enablesthe subjects to tacitly collude
on a price higher than the Bertrand price. In the treatment where the price ceiling is initially
imposed in periods 1-30 and then removed in periods 31-60, the price initially jumps up to 31
when the ceiling is removed, but over time, the price decays back to the Bertrand price.
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David Rapson’s reanalysis of Breshnahan 1987

David Rapson (2009) “Tacit Collusion in the 1950s
Automobile Industry? Revisiting Bresnahan (1987)”
“This paper reexamines the competitive landscape in the
1950s U.S. automobile industry, and tests the robustness
of the famous result from Bresnahan (1987) that firms were
engaged in tacit collusion.”
Rapson uses a random coefficients logit model allows for
more realistic demand behavior, including a broad set of
possible substitution patterns in characteristic space.
This enables firms to engage in a more realistic set of
potential actions, including intrabrand or intrafirm,
multiproduct strategic pricing.
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David Rapson’s reanalysis of Breshnahan 1987

“Relative to Bresnahan’s framework, these improvements
increase the likelihood that high price-cost markups will be
attributed properly to either strategic oligopoly behavior or
collusion.” (p. 21).
“For no year can either of the forms of Bertrand
competition be rejected in favor of tacit collusion. This
stands in contrast to Bresnahan’s finding that firms were
colluding in 1954 and 1956, with a price war in 1955.”
“These results accentuate the paucity of empirical
evidence in favor of tacit collusion.
Bresnahan’s (1987) famous paper is one of the only
studies that claim evidence of its occurrence.”
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The Bertrand Investment Paradox

why should Bertrand competitors undertake cost-reducing
investments?
suppose a pair of duopolists simultaneously invest in the
state of the art low cost production technology with
marginal cost c
Bertrand price competition following these investments will
lead to a price of p = c and zero profits for each firm
If each firm earns zero profits ex post, why would either
have incentive to invest ex ante?
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Leapfrogging as a solution to the Investment Paradox

If the duopolist could somehow coordinate their
investments, they might be able to avoid undertaking
simultaneous cost-reducing investments, thereby “solving”
the investment paradox
One form of coordination is leap frogging: the firms invest
in an alternating fashion, and avoid a “bad” equilibrium
outcome of simultaneous investment
Does leap frogging require explicit communication and
collusion, or can it arise “endogenously” as an equilibrium
outcome in a dynamic model of competition?
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A model motivated by the collusion case

time is discrete, and the horizon is infinite, t = 1,2,3, . . .
there are two firms selling homogenous goods, no entry or
exit is allowed
the firms face two decisions: 1) the price of their product,2)
whether to invest in the state of the art production
technology that will allow it to produce at a marginal cost of
c at an investment cost of K (c).
each firm maximizes expected discounted profits and
discounts the future at the same discount factor β ∈ (0,1).
the state of the art technology evolves as an exogenous
Markov process {ct} with transition probability π(ct+1|ct ).
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Timing of decisions

at the start of each time t the firms observe the current
state of the art ct and make two simultaneous decisions.
1. the firms simultaneously set their prices p1 and p2

2. the firms make simultaneous decisions about whether or
not to invest in the current state of the art production
technology
If either of the firms invest, there is a one period lag for
time to build, before the new investment is operational
thus, if firm i ’s marginal cost is ci,t under its legacy
technology, and if it invests in the state of the art
technology ct at time t , then ci,t+1 = ct , i.e. its marginal
cost of production will be ct next period.
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A model of consumer demand

there are a continuum of consumers who make static
purchase decisions each period
there are no consumer switching costs, or reputational or
“brand loyalty” frictions
the consumers choose at most one of the products each
period
we index the type of a consumer by a 2× 1 vector
τ = (τ1, τ2) and the utility the consumer gets from
purchasing the product of firm i is ui = στi − pi
in some versions of the model we also allow for the
possibility of an outside good with index 0
then the consumer type is the 3× 1 vector τ = (τ0, τ1, τ2)
and the utility of the outside good is u0 = στ0 − p0, where
p0 is assumed to be an exogenous parameter.
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The no outside good case

if (τ1, τ2) are distributed as IID Type III extreme value
across the population,
then firm 1’s market share, Π1(p1,p2) is given by

Π1(p1,p2) =
exp{−p1/σ}

exp{−p1/σ}+ exp{−p2/σ}
.

The classic Bertrand model is a special case when σ = 0.

Π1(p1,p2) = I{p1 ≤ p2}.

p1 = p2 = p = max[c1, c2].
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Solution concept: Markov-perfect equilibrium

the state of the game at time t is given by (c1,t , c2,t , ct ),
where ci,t is the (legacy) marginal cost of production of firm
i . We have for each t , c1,t ≥ ct and c2,t ≥ ct .
the state space S is the subset of R3 satisfying the
inequalities given above.
A stationary Markovian strategy consists of two pairs of
functions (pi(c1, c2, c), ιi(c1, c2, c)), i = 1,2 where
pi : S → R is firm i ’s pricing decision, and ιi : S → {0,1} is
firm i ’s investment decision, where ιi = 1 denotes the
decision to invest, and ιi = 0 is not to invest
A Markov-perfect equilibrium is a pair of strategies (pi , ιi)
that are mutual best responses for all states in S and at
every time period t = 1,2,3, . . .
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A specification for exogenous technological process

We assume the Markov process governing exogenous
technological improvement, {ct}, has the following form.
If the current state of the art is ct at time t , then with
probability p(ct ) an improvement in the state of the art
occurs, and in this event ct+1 is a draw from a Beta
distribution on the interval [0, ct ]. So we have

π(c′|c) =

{
p(c)B(c′|c) if c′ < c
1 if c′ ≥ c

where B(c′|c) is a beta distribution on [0, c].
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Private shocks affecting investment decisions

In each period t each firm incurs additive costs (benefits)
from not investing and investing, respectively, given by
εi,t ≡ η(ε0,i,t , ε1,i,t ), where {εi,t} are IID bivariate Type III
extreme value processes that are contemporaneously
independent over the two firms, and η ≥ 0 is a scaling
parameter.
The presence of these privately observed shocks makes
this a dynamic game of incomplete information when
η > 0. The purpose is to purify equilibria in the sense of
Harsanyi (1973) and Doraszelski and Escobar (2010).
That is, all equilibrium strategies in the game of incomplete
information are pure, and η serves as a homotopy
parameter for path following algorithms for approximating
mixed strategy equilibria in the limit when η = 0.
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parameter for path following algorithms for approximating
mixed strategy equilibria in the limit when η = 0.

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

A model motivated by the collusion case
Solution concept: Markov-perfect equilibrium
Symmetry of equilibria
The Bellman equations

Private shocks affecting investment decisions

In each period t each firm incurs additive costs (benefits)
from not investing and investing, respectively, given by
εi,t ≡ η(ε0,i,t , ε1,i,t ), where {εi,t} are IID bivariate Type III
extreme value processes that are contemporaneously
independent over the two firms, and η ≥ 0 is a scaling
parameter.
The presence of these privately observed shocks makes
this a dynamic game of incomplete information when
η > 0. The purpose is to purify equilibria in the sense of
Harsanyi (1973) and Doraszelski and Escobar (2010).
That is, all equilibrium strategies in the game of incomplete
information are pure, and η serves as a homotopy
parameter for path following algorithms for approximating
mixed strategy equilibria in the limit when η = 0.

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

A model motivated by the collusion case
Solution concept: Markov-perfect equilibrium
Symmetry of equilibria
The Bellman equations

Symmetry of equlibria

Let V i(c1, c2, c, ε0, ε1) be firm i ’s value function in the
publicly observed state (c1, c2, c) when its private cost
shocks are (ε0, ε1).
A frequently imposed restriction on Markov-perfect
equilibria in dynamic games in IO is symmetry

V 1(c1, c2, c, ε0, ε1) = V 2(c2, c1, c, ε0, ε1).

Thus, the identities of firms 1 and 2 do not matter, only the
values of their production technologies matter for
equilibrium strategies and payoffs.
We show that the symmetry condition unwittingly knocks
out most of the interesting equilibria. In particular, pure
strategy equilibria, including equilibria involving leap
frogging, will not satisfy this symmetry restriction.
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Additive separable representation for V i

The independence and additive-separability of the {εi,t}
shocks allows us to show that V i has the following
representation

V i(c1, c2, c, εi0, ε
i
1) = max[v i

0(c1, c2, c)+ηεi0, v
i
1(c1, c2, c)+ηεi1]

where v i
0(c1, c2, c) is the value to firm i if it does not invest,

and v i
1(c1, c2, c) is the value to firm i if invests.

Let r1(c1, c2) be the expected profits that firm 1 earns in
period t from the Bertrand-Nash pricing game
When σ = 0, the classical Bertrand case, we have

r1(c1, c2) =

{
0 if c1 ≥ c2
c2 − c1 if c1 < c2
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The Bellman equations

The value of not investing is given by

v i
0(c1, c2, c) = r i(c1, c2) + βEV i(c1, c2, c,0)

where EV i(c1, c2, c,0) is firm i ’s expectation of its next
period value function V i(c1, c2, c, εi0, ε

i
1) given that it does

not invest this period.
The value of investing is given by

v i
1(c1, c2, c) = r i(c1, c2)− K (c) + βEV i(c1, c2, c,1)

where EV i(c1, c2, c,1) is firm i ’s expectation of its next
period value function V i(c1, c2, c, εi0, ε

i
1) given that it does

invest this period.
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Representation of the EV functions

Using the “max-stability” property of extreme-value random
variables, we get the following representation∫

εi0

∫
εi1

V i(c1, c2, c, εi0, ε
i
1)q(εi0)q(εi1)dεi1dεi0 =

η log
[
exp{v i

0(c1, c2, c)/η}+ exp{v i
1(c1, c2, c)/η}

]
Define the function φ(v i

0(c1, c2, c), v i
1(c1, c2, c)) as

φ(v i
0(c1, c2, c), v i

1(c1, c2, c)) ≡
η log

[
exp{v i

0(c1, c2, c)/η}+ exp{v i
1(c1, c2, c)/η}

]
.

We call this the log-sum or the “smoothed max” function.
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Log-sum formula is the “smoothed-max” function

The φ function is sometimes referred to as the “log-sum” or
“smoothed max” function since we have

lim
η→0

φ(v0, v1) = max [v0, v1] .

Further, for any η > 0 we have φ(v0, v1) > max[v0, v1].
Firm 2’s perception of firm 1’s probability of investing is
given by

P1
1 (c1, c2, c) =

exp{v1
1 (c1, c2, c)/η}

exp{v1
1 (c1, c2, c)/η}+ exp{v1

0 (c1, c2, c)/η}

As η → 0 we have
P1

1 (c1, c2, c)→ I{v1
1 (c1, c2, c) ≥ v1

0 (c1, c2, c)}.
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Further, for any η > 0 we have φ(v0, v1) > max[v0, v1].
Firm 2’s perception of firm 1’s probability of investing is
given by

P1
1 (c1, c2, c) =

exp{v1
1 (c1, c2, c)/η}

exp{v1
1 (c1, c2, c)/η}+ exp{v1

0 (c1, c2, c)/η}

As η → 0 we have
P1

1 (c1, c2, c)→ I{v1
1 (c1, c2, c) ≥ v1

0 (c1, c2, c)}.
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Representation of the EV i functions, continued.

Using φ we can write

EV 1(c1, c2, c,0) =

∫ c

0

[
P2

1 (c1, c2, c)H1(c1, c, c′)+

(1− P2
1 (c1, c2, c))H1(c1, c2, c′)

]
π(dc′|c)

EV 1(c1, c2, c,1) =

∫ c

0

[
P2

1 (c1, c2, c)H1(c, c, c′)+

(1− P2
1 (c1, c2, c))H1(c, c2, c′)

]
π(dc′|c)

where H1 is given by

H1(c1, c2, c) = φ(v1
0 (c1, c2, c), v1

1 (c1, c2, c)).
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Bellman equation for firm 1

Using the representation for the EV i functions above, we
can write a system of functional equations for (v1

0 , v
1
1 )

v1
0 (c1, c2, c) = r1(c1, c2) +

β

∫ c

0

[
P2

1 (c1, c2, c)φ(v1
0 (c1, c, c′), v1

1 (c1, c, c′))

(1− P2
1 (c1, c2, c))φ(v1

0 (c1, c2, c′), v1
1 (c1, c2, c′))

]
π(dc′|c).

v1
1 (c1, c2, c) = r1(c1, c2)− K (c) +

β

∫ c

0

[
P2

1 (c1, c2, c)φ(v1
0 (c, c, c′), v1

1 (c, c, c′))

(1− P2
1 (c1, c2, c))φ(v1

0 (c, c2, c′), v1
1 (c, c2, c′))

]
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Bellman equation for firm 2

Using the representation for the EV i functions above, we
can write a system of functional equations for (v2

0 , v
2
1 )

v2
0 (c1, c2, c) = r1(c2, c1) +

β

∫ c

0

[
P1

1 (c1, c2, c)φ(v2
0 (c, c2, c′), v2

1 (c, c2, c′))

(1− P1
1 (c1, c2, c))φ(v2

0 (c1, c2, c′), v2
1 (c1, c2, c′))

]
π(dc′|c).

v2
1 (c1, c2, c) = r1(c2, c1)− K (c) +

β

∫ c

0

[
P1

1 (c1, c2, c)φ(v2
0 (c, c, c′), v2

1 (c, c, c′))

(1− P1
1 (c1, c2, c))φ(v2

0 (c1, c, c′), v2
1 (c1, c, c′))

]
π(dc′|c).
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Bellman equation for firm 2

Using the representation for the EV i functions above, we
can write a system of functional equations for (v2
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2
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v2
0 (c1, c2, c) = r1(c2, c1) +

β

∫ c

0
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(1− P1
1 (c1, c2, c))φ(v2

0 (c1, c2, c′), v2
1 (c1, c2, c′))

]
π(dc′|c).

v2
1 (c1, c2, c) = r1(c2, c1)− K (c) +

β

∫ c

0

[
P1

1 (c1, c2, c)φ(v2
0 (c, c, c′), v2

1 (c, c, c′))

(1− P1
1 (c1, c2, c))φ(v2

0 (c1, c, c′), v2
1 (c1, c, c′))
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Solving the “End Game”

To be a Markov-perfect equilibrium, we must solve for
equilibria for all (c1, c2, c) values, even if some of these will
be “off the equilibrium path” (i.e. never reached in
equilibrium)
Similar to chess, there are circumstances where the
solution of the game is easier, since there are fewer future
options
Our exogenous Markov specification for technological
progress has a natural absorbing state, when ct = 0. So
we are interested in solving the “(c1, c2,0) end game” for
all possible values of c1 and c2
the Bellman equations simplify considerably when c = 0,
and it is possible to get some easy insight into the nature
of equilibrium in the overall dynamic game
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The (0,0,0) End Game

The easiest end game is when (c1, c2, c) = (0,0,0). No
further innovation or price reductions will occur in this
state, and so the game is fully stationary.

v i
0(0,0,0) = r i(0,0) +

βP∼i
1 (0,0,0)φ(v i

0(0,0,0), v i
1(0,0,0)) +

β[1− P∼i
1 (0,0,0)]φ(v i

0(0,0,0), v i
1(0,0,0))

= r i(0,0) + βφ(v i
0(0,0,0), v i

1(0,0,0))

where P∼i
1 (0,0,0) is a shorthand for firm i ’s opponent’s

probability of investing,

P∼i
1 (0,0,0) =

exp{v∼i
1 (0,0,0)/η}

exp{v∼i
0 (0,0,0)/η}+ exp{v∼i

1 (0,0,0)/η}
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The (0,0,0) End Game, continued

Due to the fact that (0,0,0) is an absorbing state, it can be
easily shown that the value of investing, v i

1(0,0,0), is given
by

v i
1(0,0,0) = v i

0(0,0,0)− K (0),

which implies that

P∼i
1 (0,0,0) =

exp{−K (0)/η}
1 + exp{−K (0)/η} .

Thus, as η → 0, we have P∼i
1 (0,0,0)→ 0 and

v i
0(0,0,0) = r i(0,0)/(1− β), and in the limiting case where

the two firms are producing perfect substitutes, then
r i(0,0) = 0 and v i

0(0,0,0) = 0.
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The (0,0,0) End Game, continued

For positive values of η we have

v i
0(0,0,0) = r i(0,0) + βφ(v i

0(0,0,0), v i
0(0,0,0)− K (0)).

This is a single non-linear equation for the single solution
v i

0(0,0,0).
The derivative of the right hand side of this equation with
respect to v i

0(0,0,0) is 1 whereas the derivative of the right
hand side is strictly less than 1, so if r i(0,0) > 0, this
equation has a unique solution v i

0(0,0,0) that can be
computed by Newton’s method.
Note that symmetry property does hold in the (0,0,0) end
game: v1

0 (0,0,0) = v2
0 (0,0,0) and v1

1 (0,0,0) = v2
1 (0,0,0).

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Solving the “End Game”
Solving the full game
Equilibrium simulations
Socially optimal investment

The (0,0,0) End Game, continued

For positive values of η we have

v i
0(0,0,0) = r i(0,0) + βφ(v i

0(0,0,0), v i
0(0,0,0)− K (0)).

This is a single non-linear equation for the single solution
v i

0(0,0,0).
The derivative of the right hand side of this equation with
respect to v i

0(0,0,0) is 1 whereas the derivative of the right
hand side is strictly less than 1, so if r i(0,0) > 0, this
equation has a unique solution v i

0(0,0,0) that can be
computed by Newton’s method.
Note that symmetry property does hold in the (0,0,0) end
game: v1

0 (0,0,0) = v2
0 (0,0,0) and v1

1 (0,0,0) = v2
1 (0,0,0).

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Solving the “End Game”
Solving the full game
Equilibrium simulations
Socially optimal investment

The (0,0,0) End Game, continued

For positive values of η we have

v i
0(0,0,0) = r i(0,0) + βφ(v i

0(0,0,0), v i
0(0,0,0)− K (0)).

This is a single non-linear equation for the single solution
v i

0(0,0,0).
The derivative of the right hand side of this equation with
respect to v i

0(0,0,0) is 1 whereas the derivative of the right
hand side is strictly less than 1, so if r i(0,0) > 0, this
equation has a unique solution v i

0(0,0,0) that can be
computed by Newton’s method.
Note that symmetry property does hold in the (0,0,0) end
game: v1

0 (0,0,0) = v2
0 (0,0,0) and v1

1 (0,0,0) = v2
1 (0,0,0).

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Solving the “End Game”
Solving the full game
Equilibrium simulations
Socially optimal investment

The (c,0,0) End Game

The next simplest end game is (c,0,0). In the “pure
Bertrand case” (i.e. when η = 0 and σ = 0) it is clear that
firm 1 would not have any incentive to invest since the
investment would not allow it to leap-frog its opponent.
When η > 0, there may be transitory shocks that would
induce firm 1 to invest and thereby match the 0 marginal
cost of production of its opponent.

v1
0 (c,0,0) = r1(c,0) + βφ(v1

0 (c,0,0), v1
1 (c,0,0))

v1
1 (c,0,0) = r1(c,0)− K (0) + βφ(v1

0 (0,0,0), v1
1 (0,0,0)).

Substituting the resulting solution for v1
1 (c,0,0) into the

first equation above results in another nonlinear equation
with a single unique solution v1

0 (c,0,0) that can be
computed by Newton’s method.
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The (c,0,0) End Game, continued

Note that, as we show below, the probability that firm 2
invests in this case, P2

1 (c,0,0) is given by

P2
1 (c,0,0) =

exp{−K (0)/η}
1 + exp{−K (0)/η} (1)

since firm 2 has achieved the lowest possible cost of
production and its decisions about investment are
governed by the same idiosyncratic temporary shocks, and
result in the same formula for the probability of investment
as we derived above in the (0,0,0) end game.
Note: It is not hard to show that the symmetry condition
holds in the (c,0,0) end game as well:
v2

0 (c,0,0) = v1
0 (0, c,0), and v2

1 (c,0,0) = v1
1 (0, c,0), where

the solutions for the latter functions are presented below.
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The (0, c,0) End Game

In this end game, firm 1 has achieved the lowest cost of
production but firm 2 hasn’t yet. Clearly firm 1 has no
further incentive to invest.
However in the presence of random cost shocks (i.e. in the
case where η > 0), firm 1 might invest due to idiosyncratic
transitory investment shocks. This implies

v1
1 (0, c,0) = v1

0 (0, c,0)− K (0).

v1
0 (0, c,0) = r1(0, c) +

βP2
1 (0, c,0)φ(v1

0 (0,0,0), v1
0 (0,0,0)− K (0))

+β[1− P2
1 (0, c,0)]φ(v1

0 (0, c,0), v1
0 (0, c,0)− K (0)).
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The (0, c,0) End Game, continued

The probability that firm 2 will invest, P2
1 (0, c,0) is given by

P2
1 (0, c,0) =

exp{v2
1 (0, c,0)/η}

exp{v2
1 (0, c,0)/η}+ exp{v2

0 (0, c,0)/η}

=
exp{v1

1 (c,0,0)/η}
exp{v1

1 (c,0,0)/η}+ exp{v1
0 (c,0,0)/η} ,

using the symmetry condition that v2
j (0, c,0) = v1

j (c,0,0).

Substitute v1
0 (c,0,0) and v1

1 (c,0,0)) from the (c,0,0) end
game into the Bellman equation for v1(0, c,0) to obtain a
unique solution for v1

0 (0, c,0).
Once again, it is not hard to verify that payoff symmetry
holds in the (0, c,0) end game.
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The (c1, c2,0) End Game

The final case to consider is the end game where both
firms have positive marginal costs of production, c1 and c2,
respectively.
We will show that in this end game, asymmetric equilibrium
solutions are possible. The value to firm 1 of not investing
is

v1
0 (c1, c2,0) = r1(c1, c2)

+ βP2
1 (c1, c2,0)φ(v1

0 (c1,0,0), v1
1 (c1,0,0))

+ β[1− P2
1 (c1, c2,0)]φ(v1

0 (c1, c2,0), v1
1 (c1, c2,0))

v1
1 (c1, c2,0) = r1(c1, c2)− K (0)

+ βP2
1 (c1, c2,0)φ(v1

0 (0,0,0), v1
1 (0,0,0))

+ β[1− P2
1 (c1, c2,0)]φ(v1

0 (0, c2,0), v1
1 (0, c2,0)).
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The (c1, c2,0) End Game, continued

Given the equation for v1
1 (c1, c2,0) depends on known

quantities on the right hand side (the values for v1
0 and v1

1
inside the φ functions can be computed in the (0,0,0) and
(0, c,0) end games already covered above), we can treat
v1

1 (c1, c2,0) as a linear function of P2
1 which is not yet

“known” because it depends on (v2
0 (c1, c2,0), v2

1 (c1, c2,0))
via the identity:

P2
1 (c1, c2,0) =

exp{v2
1 (c1, c2,0)/η}

exp{v2
0 (c1, c2,0)/η}+ exp{v2

1 (c1, c2,0)/η} .

Then we can write v1
1 (c1, c2,0,P2

1 ) as an implicit function of
P2

1 : the value of v1
1 that satisfies the Bellman equation for

v1
1 above, for an arbitrary value of P2

1 ∈ [0,1].
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quantities on the right hand side (the values for v1
0 and v1

1
inside the φ functions can be computed in the (0,0,0) and
(0, c,0) end games already covered above), we can treat
v1

1 (c1, c2,0) as a linear function of P2
1 which is not yet

“known” because it depends on (v2
0 (c1, c2,0), v2

1 (c1, c2,0))
via the identity:

P2
1 (c1, c2,0) =

exp{v2
1 (c1, c2,0)/η}

exp{v2
0 (c1, c2,0)/η}+ exp{v2

1 (c1, c2,0)/η} .

Then we can write v1
1 (c1, c2,0,P2

1 ) as an implicit function of
P2

1 : the value of v1
1 that satisfies the Bellman equation for

v1
1 above, for an arbitrary value of P2

1 ∈ [0,1].
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The (c1, c2,0) End Game, continued

This implies that we can write firm 2’s probablity of
investing as a function of its perceptions of firm 1’s
probability of investing, or as P2

1 (c1, c2,0,P1
1 ). Substituting

this formula for P2
1 into the equation for P1

1 we obtain the
following fixed point equation for firm 1’s probability of
investing

P1
1 =

exp{v1
1 (c1, c2,0,P2

1 (c1, c2,0,P1
1 ))/η}

D(c1, c2,0,P2
1 (c1, c2,0,P1

1 ))

where

D = exp{v1
0 (c1, c2,0,P2

1 (c1, c2,0,P1
1 ))/η}

+ exp{v1
1 (c1, c2,0,P2

1 (c1, c2,0,P1
1 ))/η}.
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End Game Solutions

By Brouwer’s fixed point theorem, at least one equilibrium
solution to the fixed point equation exists.
Further, when η > 0, the objects entering this equation (i.e.
the value functions v1

0 (c1, c2,0,P2
1 ), v1

1 (c1, c2,0,P2
1 ),

v2
0 (c1, c2,0,P1

1 ), v2
1 (c1, c2,0,P1

1 ) and the logit choice
probability function P2

1 are all C∞ functions of P2
1 and P1

1

Standard topological index theorems (e.g. Harsanyi, 1973)
be applied to show that for almost all values of the
underlying parameters, there will be an odd number of
separated equilibria.
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End Game Solutions, continued

Further, the results of Harsanyi (1973) as extended to
dynamic Markovian games by Doraszelski and Escobar
(2009) show that as η → 0 the set of equilibria of the game
of incomplete information converge to the set of equilibria
of the game of complete information
Thus, η serves as a “homotopy parameter” for path
following algorithms that can be used to solve the set of
equilibria to the limiting game of complete information,
including mixed strategy equilibria.
We use this approach to solve for equilibria of the limiting
“pure Bertrand duopoly” case where η = 0 and σ = 0.
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End Game Solutions, continued

We find that there are either 1 or 3 equilibria to the game,
depending on the values of the parameters.
The “trivial equilibrium” is a no-investment equilibrium that
occurs when the cost of investment K (0) is too high
relative to the expected cost savings, and neither firm
invests in this situation.
However whenever K (0) is below a critical threshold, there
will be 3 equilibria to the end game:two pure strategy
equilibria and an intermediate mixed strategy equilibrium.
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End Game Solutions, continued

It turns out that the investment game is isomorphic to a
coordination game.
The two pure strategy equilibria correspond to outcomes
where firm 1 invests and firm 2 doesn’t and firm 2 invests
and firm 1 doesn’t.
The mixed strategy equilibrium corresponds to the
situation where firm 1 invests with probability π1 and firm 2
invests with probability π2.
It is not hard to see that when c1 = c2 the game is fully
symmetric and we have π1 = π2.
However when c1 6= c2, then the game is asymmetric and
π1 6= π2.
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Graph of the Fixed Point Equation for P1
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Foreshadow of leap frogging

Since the end game is essentially a two-period game, due
to the presence of the zero cost absorbing state, it is not
rich enough for us to observe deterministic leap frogging,
excepting the pure strategy equilibrium where firm 1
invests with probability 1 when c1 > c2

However, we can show (via numerical solutions) that for
the mixed strategy equilibrium, c1 > c2 =⇒ π1 > π2.
We have been unable to prove this yet, but conjecture that
the result is true in general.
Thus, the “high cost follower” has a higher probability of
investing and leap frogging the “low cost leader” to attain
permanent low cost leadership at a marginal cost of c = 0.
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Normal form representation of the (c1, c2,0) end game
case of the “pure Bertrand model” where the two firms produce perfect substitutes (σ = 0) and there are

no unobserved shocks to the investment decisions (η = 0). Further, we show the payoff matrix in the

asymmetric equilibrium case wherec1 > c2, i.e. firm 2 is the low cost leader and firm 1 is the high cost

follower.

Firm 1

Firm 2

Invest Don’t Invest

Invest −K,c1−c2−K βc2/(1−β)−K,c1−c2

Don’t Invest 0,c1−c2+βc1/(1−β)−K βV1,c1−c2+βV2

Figure 1: End Game Payoff Matrix in state(c1,c2,0) with c1 > c2

To understand the formulas for the payoffs, it is easiest to start with the upper left hand corner of

the payoff matrix when both firms decide to invest. In this case, since both firms attain the state of the

art 0 marginal cost production technology, Bertrand competition insures that both firms earn zero profits

following the investment, which costsK today. Since firm 2 is the low cost leader, it earns a profit ofc1−c2

in the current period, less its investment costK, and zero profits thereafter, so its payoff isc1 − c2−K.

Firm 1 is the high cost follower so it earns zero profits in the current period, incurs the investment costK,

and earns zero profits thereafter, so its payoff is just−K.
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Explanation of payoff matrix cells

When both firms invest, they will both achieve the 0 cost
absorbing state and make zero profits in every future
period. The low-cost leader, firm 2, will earn profits of
c2 − c1 in the period the investment occurs, and both will
incur the fixed investment cost K
When firm 1 invests and firm 2 doesn’t, firm 1 attains
permanent low cost leadership that allows it to charge of
price of c2. Its discounted payoff net of investment costs is
βc2/(1− β)− K . Firm 2 only earns the single period profit
of c1 − c2.
When firm 2 invests and firm 1 doesn’t, firm 2 attains
permanent low cost leadership that allows it to charge a
price of c1. Its discounted payoff is
c1 − c2 + βc1/(1− β)− K . Firm 1 earns 0.
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Deriving the mixing probabilities

The final case is the case where neither firm invests. Firm
1 earns expected discounted profits of V1 in this case, and
firm 2 earns V2. For firm 1 we have

V1 = 0 + βV1 =⇒ V1 = 0

Since firm 1’s expected payoffs from not investing are zero
regardless of whether firm 2 invests or not, it follows that if
firm 2 invests with probability π2, the expected payoff to
firm 1 from investing must also be 0. This implies

−Kπ2 + (1− π2)[βc2/(1− β)− K ] = 0,

or
π2 =

βc2/(1− β)− K
βc2/(1− β)

. (2)
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Deriving the mixing probabilities, cont.

For firm 2 we have the following equation for V2

V2 = π1(c1 − c2) + (1− π1)(c1 − c2 + βV2)

which implies that

V2 =
c1 − c2

1− β(1− π1)
.

In order for firm 2 to be willing to pay a mixed investment
strategy, its expected return from investing must also be
equal to V2, so we have

V2 = π1(c1− c2−K ) + (1−π1)(c1− c2 + βc1/(1− β)−K ).

Combining these equations, we obtain a quadratic
equation, one of whose roots is π1.
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Leapfrogging in the end game

Conjecture: If c1 > c2, then in the unique mixed strategy
equilibrium of the pure Bertrand dynamic investment and
pricing game in state (c1, c2,0) we have π1 > π2.
We have found this result to hold in all numerical solutions
of the game we have examined so far. However the proof
of this conjecture turns out to be surprisingly difficult and
we have been unable to provide a general proof so far.
Note that the lack off coordination between the two firms in
the mixed strategy equilibrium is very undesirable (from
their standpoint), since it implies a positive probability of
inefficient simultaneous investment by the two firms.
The $1000 question is, can more efficient pure strategy
coordination mechanisms be established as equilibria to
the full game?
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Solving the full game

With the end game solutions in hand, we are now ready to
proceed to discuss the solution of the full game.
The end game equilibria give us some insight into what
can happen in the full game, but the possibilities in the full
game are much richer, since unlike in the end game, if one
firm leap frogs its opponent, the game does not end, but
rather the firms must anticipate additional leap frogging
and cost reducing investments in the future.
In particular, forms of dynamic coordination may be
possible that are not present in the end game, which is
closer to a “two stage” game than to an infinite horizon
game.
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Equilibrium selection rules

When there are multiple equilibria to the state-specific
investment “stage games”, we can construct bigger sets of
equilibria in the overall game, which are analogous to
supergame equilibria in the theory of repeated games
Thus the state-specific equilibria are the analogs of
equilibria in the stage game and by adopting various rules
for selecting among the various equilibria in the stage
games, we can generate different types of equilibrium in
the “supergame.”
We will initially deterministic equilibrium selection rules, i.e.
a function that picks out one of the set of equilibria in each
possible state of the game, (c1, c2, c).
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Leapfrogging equilibrium selection rules

Leapfrogging behavior can be generated via state-specific
equilibrium selection rules of the following form:
If c1 > c2 ≥ c, then only firm 1 invests when c is sufficiently
low
If c2 > c1 ≥ c, then only firm 2 invests when c is sufficiently
low
If c1 = c2, then firms play the mixed strategy equilibrium.
The zero expected future profits implied under the mixed
strategy equilibrium serves the role of a “punishment
threat” if either firm deviates and invests when it is not its
“turn”
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Solving the Bellman equations in the full game

In order to solve the full game, it is helpful to rewrite the
firms’ Bellman equations in the following way,

v1
0 (c1, c2, c) = r1(c1, c2)

+ β
[
P2

1 (c1, c2, c)H1(c1, c, c)

+ (1− P2
1 (c1, c2, c))H1(c1, c2, c)

]
v1

1 (c1, c2, c) = r1(c1, c2)− K (c)

+ β
[
P2

1 (c1, c2, c)H1(c, c, c)

+ (1− P2
1 (c1, c2, c))H1(c, c2, c)

]
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Solving the full game Bellman equations, cont.

The function H1 is given by

H1(c1, c2, c) = p(c)

∫ c

0
φ(v1

0 (c1, c2, c′), v1
1 (c1, c2, c′))f (c′)dc′

+ (1− p(c))φ(v1
0 (c1, c2, c), v1

1 (c1, c2, c)),

where p(c) is the probability that a cost-reducing
innovation will occur, and f (c′) is the Beta/uniformm
density of the new (lower) cost of production under the
current state of the art conditional on an innovation having
occurred.
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If we set the arguments (c1, c2, c) to the equation for v1
0 to

(c, c, c), and similarly in equation for v1
1 , we deduce that

v1
1 (c, c, c) = v1

0 (c, c, c)− K (c).

Clearly, if the firms have all invested and have in place the
state of the art production technology, there is no further
incentive for either firm to invest.
For the same reasons we have

v1
1 (c, c2, c) = v1

0 (c, c2, c)− K (c).
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Solving the full game Bellman equations, cont.

Similar to the strategy we used to solve the value functions
(v i

0, v
i
1) i = 1,2 in the end game, we can Newton’s method

to compute the unique fixed point v1
0 (c, c, c).

Similarly, we can solve for v1
0 (0, c2,0). Finally, to solve for

v1
0 (c1, c2, c) we note that we can use the solutions for

v1
0 (c, c, c) and v1

0 (c, c2, c) to obtain v1
1 (c, c, c) and

v1
1 (c, c2, c), we can compute v1

1 (c1, c2, c) by substituting
these values into the Bellman equation for v1

1 (c1, c2, c).
Then we use this solution and Newton’s method to
compute v1

0 (c1, c2, c).
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The state-specific fixed point problem

Following the procedure we used to solve for equilibria in
the end game, the set of “pointwise” equilibria for each
state (c1, c2, c) can be computed from the following fixed
point equation

P1
1 =

exp{v1
1 (c1, c2, c,P2

1 (c1, c2, c,P1
1 ))/η}

D(c1, c2, c,P2
1 (c1, c2, c,P1

1 ))

where

D(c1, c2, c,P2
1 (c1, c2, c,P1

1 ))

= exp{v1
0 (c1, c2, c,P2

1 (c1, c2, c,P1
1 ))/η}

+ exp{v1
1 (c1, c2, c,P2

1 (c1, c2, c,P1
1 ))/η}.
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Equilibrium realization with leap frogging
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Another equilibrium with leap frogging
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Another equilibrium without leap frogging
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An equilibrium with persistent leadership and “sniping”
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An equilibrium where firm 2 leads and firm 1 snipes
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Socially optimal investment

We compare investment and pricing outcomes from
various possible equilibria of the Bertrand duopoly game to
those that would emerge under the social planning solution
In the simple static model of Bertrand price competition,
the duopoly solution is well known to be efficient and
coincide with the social planning solution: both firms earn
zero profits and produce at a price equal to marginal cost.
But a static analysis begs the question of potential
redundancy in production costs among the two firms. The
static model treats the investment costs necessary to
produce the production plant of the two firms as a sunk
cost, and it is ignored in the social planning calculation.
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Socially optimal investment, cont.

In a dynamic analysis, the social planner does/should
account for these investment costs. Clearly, under our
assumptions about production technology (any plant has
unlimited production capacity at a constant marginal cost
of production) it only makes sense for the social planner to
operate just a single plant.
Thus, we expect that duopoly equilibria are typically
inefficient in the sense that there is redundant investment
costs that would not be incurred by a social planner.
However there are “monopoly” and near-monopoly
equilibria where one or the other of the firms does all of the
investing.
How close to full efficiency are these monopoly equilibria?
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Socially optimal investment, cont.

If we assume that consumers have quasi-linear
preferences so that the surplus they receive from
consuming the good at a price of p is u − p, then the social
planning solution involves selling the good at marginal cost
of production, and adopting an efficient investment strategy
that minimizes the expected discounted costs of
production.
Let c1 be the marginal cost of production of the current
(and only) production plant operated by the social planner
Let c be the marginal cost of production of the current state
of the art production process, which we continue to
assume evolves as an exogenous first order Markov
process with transition probability π(c′|c) and its evolution
is beyond the purview of the social planner.
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Socially optimal investment, cont.

The social planning problem reduces to solving for an
optimal investment strategy that minimizes the expected
discounted costs of producing the good.
Since consumers are in effect risk-neutral with regard to
the price of the good (due to the quasi linearity
assumption), there is no benefit to “price stabilization” on
the part of the social planner.
The social planner merely solves and adopts the optimal
investment strategy that determines when the current plant
should be replaced by a new, cheaper state of the art plant,
and it should provide the good to consumers in each period
at a price equal to the current marginal cost of production.
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The Planner’s Bellman Equation

Let V (c1, c) be the present discounted value of costs of
production when the existing plant operated by the social
planner has marginal cost c1 and c is the marginal cost of
state of the art production technology
As in the duopoly problem, the social planner can acquire
the state of the art technology with one period delay after
incurring an investment cost of K (c).
The Bellman equation for the social planner is

V (c1, c) = min
[
c1 + β

∫ c

0
V (c1, c′)π(dc′|c),

c1 + K (c) + β

∫ c

0
V (c, c′)π(dc′|c)

]
.
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Characterizing the optimal investment strategy

The optimal investment strategy can be easily seen to take
the form of a cutoff rule
The social planner invests in the state of the art technology
when the current state of the art c falls below a cutoff
threshold c(c1), and keeps producing using its existing
plant with marginal cost c1 otherwise.
The optimal threshold c(c1) is the solution to the following
equation

K (c(c1)) = β

∫ c(c1)

0

[
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]
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Marginal cost pricing in the social optimum

This equation tells us that at the optimal cutoff c(c1), the
social planner is indifferent between continuing to produce
using its current plant with marginal cost c1 or investing in
the state of the art plant with marginal cost of production
c(c1).
This implies that the decrease in expected discounted
production costs is exactly equal to the cost of the
investment when c is equal to the cutoff threshold c(c1).
When c is above the threshold, the drop in operating costs
is insufficiently large to justify undertaking the investment,
and when c is below the threshold, there is a strictly
positive net benefit from investing.
Note that the pure monopoly solution is socially efficient,
although all surplus is captured by the monopolist.
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Goettler and Gordon (2010) “Does AMD Spur Intel to
Innovate More?”.
The authors solve and estimate a very ambitious dynamic
duopoly model with Bertrand pricing and continuous R&D
expenditures that increase the chance of technological
innovation in processor technology
The paper is innovative in having forward looking
consumers as well as forward looking firms.
Consumers solve optimal stopping problems of when to
upgrade their processor, with rational expectations of the
probability distribution over innovations
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Goettler and Gordon

Authors claim that equilibrium of their model is unique as
R&D investment satisfies the UIC condition of Doraszelski
and Satterthwaite
They show that a monopolist chip producer innovates
faster (and spends more on innovation) compared to the
duopoly equilibrium.
Equilibrium R&D investment is lower under either duopoly
or monopoly than the social optimum investment
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Giovannetti

The paper by Emanuele Giovannetti (2001 IER) “Persistent
Leapfrogging in Bertrand Duopoly” is the closest previous
work to this paper.
We were unaware of this work until after we had completed
the first draft of this paper
Giovannetti considers a framework very close to ours, with
pure Bertrand price competition and a discrete choice of
whether to acquire the state of the art production
technology in discrete time, infinite horizon framework
The major differences are: 1) technological progress is
deterministic with marginal costs decreasing at a
geometric rate in each period, 2) aggregate demand for the
good is given by an exogenously specified constant
elasticity demand function

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Giovannetti

The paper by Emanuele Giovannetti (2001 IER) “Persistent
Leapfrogging in Bertrand Duopoly” is the closest previous
work to this paper.
We were unaware of this work until after we had completed
the first draft of this paper
Giovannetti considers a framework very close to ours, with
pure Bertrand price competition and a discrete choice of
whether to acquire the state of the art production
technology in discrete time, infinite horizon framework
The major differences are: 1) technological progress is
deterministic with marginal costs decreasing at a
geometric rate in each period, 2) aggregate demand for the
good is given by an exogenously specified constant
elasticity demand function

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Giovannetti

The paper by Emanuele Giovannetti (2001 IER) “Persistent
Leapfrogging in Bertrand Duopoly” is the closest previous
work to this paper.
We were unaware of this work until after we had completed
the first draft of this paper
Giovannetti considers a framework very close to ours, with
pure Bertrand price competition and a discrete choice of
whether to acquire the state of the art production
technology in discrete time, infinite horizon framework
The major differences are: 1) technological progress is
deterministic with marginal costs decreasing at a
geometric rate in each period, 2) aggregate demand for the
good is given by an exogenously specified constant
elasticity demand function

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Giovannetti

The paper by Emanuele Giovannetti (2001 IER) “Persistent
Leapfrogging in Bertrand Duopoly” is the closest previous
work to this paper.
We were unaware of this work until after we had completed
the first draft of this paper
Giovannetti considers a framework very close to ours, with
pure Bertrand price competition and a discrete choice of
whether to acquire the state of the art production
technology in discrete time, infinite horizon framework
The major differences are: 1) technological progress is
deterministic with marginal costs decreasing at a
geometric rate in each period, 2) aggregate demand for the
good is given by an exogenously specified constant
elasticity demand function

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Giovannetti

The paper by Emanuele Giovannetti (2001 IER) “Persistent
Leapfrogging in Bertrand Duopoly” is the closest previous
work to this paper.
We were unaware of this work until after we had completed
the first draft of this paper
Giovannetti considers a framework very close to ours, with
pure Bertrand price competition and a discrete choice of
whether to acquire the state of the art production
technology in discrete time, infinite horizon framework
The major differences are: 1) technological progress is
deterministic with marginal costs decreasing at a
geometric rate in each period, 2) aggregate demand for the
good is given by an exogenously specified constant
elasticity demand function

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Giovannetti

The paper by Emanuele Giovannetti (2001 IER) “Persistent
Leapfrogging in Bertrand Duopoly” is the closest previous
work to this paper.
We were unaware of this work until after we had completed
the first draft of this paper
Giovannetti considers a framework very close to ours, with
pure Bertrand price competition and a discrete choice of
whether to acquire the state of the art production
technology in discrete time, infinite horizon framework
The major differences are: 1) technological progress is
deterministic with marginal costs decreasing at a
geometric rate in each period, 2) aggregate demand for the
good is given by an exogenously specified constant
elasticity demand function

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Giovannetti, cont.

However there are some qualitatively similar equilibrium
outcomes in Giovannetti’s model and our’s
Giovannetti obtains equilibria with leap frogging. However
the leap frogging involves alternating investments by firms
1 and 2 in every period.
Giovannetti also obtains equilibria with persistent
investment leadership by one of the firms, which she refers
to as increasing asymmetry
Giovannetti does not consider mixed strategy equilibria, or
other more complex forms of pure strategy equilibria in this
game

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Giovannetti, cont.

However there are some qualitatively similar equilibrium
outcomes in Giovannetti’s model and our’s
Giovannetti obtains equilibria with leap frogging. However
the leap frogging involves alternating investments by firms
1 and 2 in every period.
Giovannetti also obtains equilibria with persistent
investment leadership by one of the firms, which she refers
to as increasing asymmetry
Giovannetti does not consider mixed strategy equilibria, or
other more complex forms of pure strategy equilibria in this
game

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Giovannetti, cont.

However there are some qualitatively similar equilibrium
outcomes in Giovannetti’s model and our’s
Giovannetti obtains equilibria with leap frogging. However
the leap frogging involves alternating investments by firms
1 and 2 in every period.
Giovannetti also obtains equilibria with persistent
investment leadership by one of the firms, which she refers
to as increasing asymmetry
Giovannetti does not consider mixed strategy equilibria, or
other more complex forms of pure strategy equilibria in this
game

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Giovannetti, cont.

However there are some qualitatively similar equilibrium
outcomes in Giovannetti’s model and our’s
Giovannetti obtains equilibria with leap frogging. However
the leap frogging involves alternating investments by firms
1 and 2 in every period.
Giovannetti also obtains equilibria with persistent
investment leadership by one of the firms, which she refers
to as increasing asymmetry
Giovannetti does not consider mixed strategy equilibria, or
other more complex forms of pure strategy equilibria in this
game

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Practical Conclusions

What insights do we learn from this study that could help a
judge decide on the appropriate value of damage due to
collusion, such as in the collusion case? Does this study
yield any new insights of interest to Antitrust authorities?
The existence of so many equilibria in such a simple
extension to the classical Bertrand model is a problem
We have shown that leap frogging investments are possible
in a dynamic duopoly model with Bertand pricing. We have
provided a solution to the ‘Bertrand investment paradox’
However the plethora of equilibria makes it is difficult for an
economic expert to use this model to make a definitive
prediction of counterfactual outcomes,
What prices could firm C have expected if its input
suppliers, A and B, had behaved “competitively” instead of
colluded?Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments
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Theoretical Conclusions

In this model equilibrium prices paths are piecewise flat
Thus, there are long periods of price stability punctuated
by episodes of large price declines
These episodic price declines could be characterized as
price wars between the two duopolists
The standard interpretation of price wars is that it is a
punishment device for deviations from a tacitly collusive
equilibrium
In this model the interpretation is very different: it is
consequence of leap frogging and we argue that leap
frogging is an efficient dynamic coordination mechanism

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Theoretical Conclusions

In this model equilibrium prices paths are piecewise flat
Thus, there are long periods of price stability punctuated
by episodes of large price declines
These episodic price declines could be characterized as
price wars between the two duopolists
The standard interpretation of price wars is that it is a
punishment device for deviations from a tacitly collusive
equilibrium
In this model the interpretation is very different: it is
consequence of leap frogging and we argue that leap
frogging is an efficient dynamic coordination mechanism

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Theoretical Conclusions

In this model equilibrium prices paths are piecewise flat
Thus, there are long periods of price stability punctuated
by episodes of large price declines
These episodic price declines could be characterized as
price wars between the two duopolists
The standard interpretation of price wars is that it is a
punishment device for deviations from a tacitly collusive
equilibrium
In this model the interpretation is very different: it is
consequence of leap frogging and we argue that leap
frogging is an efficient dynamic coordination mechanism

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Theoretical Conclusions

In this model equilibrium prices paths are piecewise flat
Thus, there are long periods of price stability punctuated
by episodes of large price declines
These episodic price declines could be characterized as
price wars between the two duopolists
The standard interpretation of price wars is that it is a
punishment device for deviations from a tacitly collusive
equilibrium
In this model the interpretation is very different: it is
consequence of leap frogging and we argue that leap
frogging is an efficient dynamic coordination mechanism

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Theoretical Conclusions

In this model equilibrium prices paths are piecewise flat
Thus, there are long periods of price stability punctuated
by episodes of large price declines
These episodic price declines could be characterized as
price wars between the two duopolists
The standard interpretation of price wars is that it is a
punishment device for deviations from a tacitly collusive
equilibrium
In this model the interpretation is very different: it is
consequence of leap frogging and we argue that leap
frogging is an efficient dynamic coordination mechanism

Iskhakov, Rust, and Schjerning (2010) Betrand competition with leap frogging investments



Introduction
Empirical Motivation

Bertrand price competition with cost-reducing investments
Solving the Game

Related work and conclusions

Related work
Conclusions

Methodological Conclusions

We find that the algorithm used to compute equilibria
inadvertently acts as an equilibrium selection mechanism.
We want to find algorithms that can compute or at least
help us characterize all equilibria, and then use other,
more economically motivated equilibrium selection criteria
to select particular equilibria of interest
We have found that imposition of the symmetry restriction
on equilibria effectively knocks out all of the interesting
pure strategy equilibria in this model, leaving only a difficult
to compute and “bad” mixed strategy equilibrium.
Great care should be taken in using dynamic models and
Markov-perfect equilibria as a basis for policy
recommendations!
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