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INTERNATIONAL ECONOMIC REVIEW 
Vol. 42, No. 3, August 2001 

PERPETUAL LEAPFROGGING IN BERTRAND DUOPOLY* 

BY EMANUELE GIOVANNETTI1 

University of Cambridge, United Kingdom 
and University of Rome "La Sapienza" Italy 

We consider different patterns of infinite technological adoption choices by 
firms in a Bertrand duopoly. Every period technological progress provides a 

sequence of cost reducing innovations. The equilibrium concept is Markov per- 
fect equilibrium. We analyze conditions for which equilibrium adoption leads 
to persistent leadership and those where firms alternate in adoption inducing 
leapfrogging. Only leapfrogging leads to technological improvement in the long 
run. Demand conditions play a crucial role in determining whether leapfrogging 
can be perpetual in Bertrand duopoly. 

1. INTRODUCTION 

In this article we focus on the intertemporal aspects of technological adoption. 
We consider a simplified model: firms produce an homogeneous good and adoption 
decisions concern a cost reducing technology. We focus on the issue of industrial 
leadership reversal. 

Imagine an industry facing a sequence of cost reducing innovations; the appear- 
ance of newer generations of PC processors provides a good example of the sort of 
improvements we have in mind. 

Individual firms can upgrade by adopting the most recent improvement. This 
improvement comes at a cost, for example, of installing the new processors. Will 
firms choose to make these costly adoptions? How do adoption rates depend on the 
product market competition? Which adoption patterns will be sustainable in equilib- 
rium? Will these adoption strategies reduce aggressive competition? 

We consider a duopoly where firms set prices; i.e., there is Bertrand competition 
in the product market. In an intertemporal, infinite horizon setting, firms can adopt 
alternative and complicated dynamic adoption strategies. We study Markov perfect 
equilibria (MPEs) and in addition restrict attention to equilibria with relatively sim- 
ple but economically relevant patterns. These are: (1) alternating adoptions and (2) 
increasing asymmetry. An increasing asymmetry pattern of adoptions is such that the 
firm with the lowest unit cost adopts, while the high cost firm does not, so that exist- 
ing cost asymmetry is reinforced. An alternating adoptions pattern is such that the 

*Manuscript received June 1998; revised August 1999. 
'I thank Jayasri Dutta for her help and suggestions at many different stages of this work, Andrew 

Postlewaite and an anonymous referee for their useful comments and suggestions during the referee- 
ing process, and Vincenzo Denicolo', Ramon Marimon, Colin Rowat, Emanuela Sciubba, and Jean 
Pierre Vidal for useful comments. The usual disclaimer applies. 
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firm with high unit cost adopts, while the low cost firm does not, existing cost asym- 
metry is reversed, and leapfrogging takes place. 

We find that if adoption is profitable at a given date, and the price elasticity of 
demand is greater than, or equal to, one, then no asymmetry can be absorbing and 
technological adoption goes on forever through an infinite sequence of leapfroggings. 
For this case we characterize the adoption cost region where a pattern of alternating 
adoptions is an MPE. In this setting increasing asymmetry is never an MPE. 

Perpetual leapfrogging emerges therefore as a set of simple adoption strategies 
allowing implicit and sustainable coordination between two firms. Such coordination 
helps in avoiding the most aggressive aspects of duopolistic price competition. Only 
with high price elasticity, and a market size large enough compared to adoption costs, 
this can go on forever.2 

If adoption is profitable at a given date but the elasticity of demand is below one, 
there is a date in which the adoption process will stop. Alternating adoptions up to 
this date is an MPE for a range of adoption costs. Increasing asymmetry can also be 
an equilibrium in this case, but under very restrictive conditions. 

In an oligopolistic industry demand conditions play an essential role in determining 
both the continuation or the end of the technological adoption and the identity of the 
adopters. When adoption continues, long run technological improvements are only 
made by high cost firms, which emerge as the engine of productivity growth. This is 
mainly due to the nature of the incentives for the adoption of a new technology under 
Bertand competition. For any downward sloping demand function the increments in 

period profits, due to the adoption of a new cost reducing technology, are larger for 
the follower than for the leader, because market demand when the follower adopts 
is higher than when the leader adopts. In this last case there is, indeed, a higher 
equilibrium price.3 

With isoelastic demand functions the value of the elasticity determines whether the 
adoption process will go on forever or not. With more general demand functions one 
would need to study the limit behavior of the profits' increments, due to adoption, 
when the equilibrium price tends to zero. Only if demand grows proportionally faster 
than the decrease of the price-cost margin can adoption of new technologies go on 
forever. 

After a brief review of some related literature, the remainder of the article is 

organized as follows: in Section 2 we describe the model industry: market demand, 
technology evolution and costs, and firms' decision sets and objective functions. In 
Section 3 we analyze adoption decisions in a Bertrand duopoly, first with myopic 
firms and then with discounting. Finally Section 4 contains the conclusions of the 
article. All the proofs are contained in the Appendix. 

1.1. Related Literature. Most of the literature studying innovation decisions in 
a strategic context has considered the problem of invention. The prototype model 

2 The idea of perpetual leapfrogging as a coordination device to avoid aggressive competition is 
due to a very appreciated comment by an anonymous referee. 

3 The equilibrium price is given by the unit cost of the nonadopter and this is higher when the 

nonadopter is the follower. 
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is the patent race (Lee and Wilde, 1980). Players involved in the race have often 
distinct roles,4 an incumbent monopolist and a challenger, or two firms with different 
initial unit costs. 

The conclusions about which equilibrium prevails in the incumbent/challenger case 
have been twofold: Gilbert and Newbery (1982) proved that the monopolist preempts 
the challenger and wins the patent because of the dissipation of industry profits 
associated with a less concentrated market structure. Reinganum (1983) shows that, 
when winning the race gives sufficiently high post innovation profits,5 the challenger 
is more likely to win because of the profit replacement effect. 

A testable implication of Reinganum's result, similar to our conclusions, is that 

"challengers contribute disproportionately more large innovations." Considering a 
finite sequence of drastic innovations, Reinganum (1985) obtains an industry with 
turnover of technological leadership. 

Analyzing a finite sequence of bidding games for nondrastic innovations Vickers 

(1986) shows that under Bertrand competition persistent dominance is the only pos- 
sible equilibrium. 

Fudenberg et al. (1983) studied a race made by a sequence of bids to obtain a 
patent. In their model the follower has a chance to leapfrog only if he can overtake 
the leader in one step, but there is a maximum level of cumulated asymmetry leading 
the follower to drop out of the contest, while Harris and Vickers (1985, 1987), by 
assuming that the follower has to go through all the steps of the existing gap with 
the leader, find that the identity of the winner depends on the distance between the 
state of each firm and the finishing line of the race. 

A setting closer to ours is one in which firms race for a sequence of innovations. 
Beath et al. (1994) consider both the case in which the follower can compete for the 
"state of the art technology" (they call this setting a leapfrog technology) and the case 
in which each firm has to discover every technology step by step (they call this case 
a catch-up technology). 

By running stochastic simulations they observe, for a Bertrand duopoly, the emer- 
gence of persistent dominance both under catch-up and leapfrog technology. 

The question of whether asymmetries between firms tend to increase or decrease 
during a multiple stage race has been addressed by Budd et al. (1993). In their 
analysis firm profit flows depend on the gap between their technology levels and effort 
rates are functions of the level of technological asymmetry. The solution concept 
employed for the analysis of the resulting dynamic stochastic game is a subgame 
perfect equilibrium in stationary Markov strategies. 

A second strand of literature emphasizes the demand side of the innovative activity. 
Strategic models of adoption focus on the timing of adoption of an innovation which 
is otherwise available to all firms in the industry. For a survey of the literature on 
the timing of adoption in a strategic context see Reinganum (1989); for more recent 
contributions which use the Markov perfect equilibrium concept see Kapur (1995a, 
1995b). 

4 For a survey see the section on asymmetric models in Reinganum (1989). 
5 And of course in the case of drastic innovation. 
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In this article we focus on adoption of cost reducing technologies instead than 
on invention. In this we follow Jovanovic (1997) who emphasized that considering 
learning-based adoption costs, schooling and on-the-job training, and applied R&D 
spending as total adoption costs, these "amount to at least 10-15% of U.S. output.... 
[A]doption costs outweigh invention costs roughly 20 or 30 to 1. In LDCs the ratio 
must be astronomical" (1997: p. 332). 

2. THE MODEL 

We introduce a specification of the demand and technology conditions that we will 
maintain throughout the article. 

* Time t is discrete. 
* There is an isoelastic demand function 

(1) D(pt) = Apt7 

where Pt is the price of one unit of the industry's homogeneous good at time 
t, y > 0, is the elasticity of demand, and A is a parameter representing market 
size. 

* The evolution of a cost reducing technology is described by the deterministic 

process 

Ct 
f -- wif a firm has adopted at t - 1 

(2) t+l g C) otherwise 

where ct+1 is the cost of producing one unit of an homogeneous good with 
the state of the art technology available for adoption at time t and g > 0 is 

exogenously given.6 

6 Note that if c is the initial unit cost at time zero, and if there is adoption by any firm at any 
period between t = 0 and t - 1 then at time t the state of the art technology available for adoption 
is given by 

C 

t+l= (1 + g)t+l 

In this case technological clock and time proceed together. If on the contrary at a given time t, there 
have been less adoptions than periods, then 

c 

ct+l = (1 + 
g)+ 

where r is the number of periods in which adoption occurred. In this last case technological and 

chronological clocks are following different timings. 
Given the description of the evolution of the technology, in equilibrium there is either one firm 

adopting the new innovation or adoption has stopped forever. Any discount factor less than one 
will indeed make the simultaneous postponing of future adoptions, with no change of technology 
occurring, meaningless. 

The characterization of the equilibrium conditions for a date to be an "absorbing technological 
state" where adoption stops forever and the two clocks start diverging are analyzed in the following 
sections. 
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* For every firm i, technology adoption is a binary choice 

wi,t E {0,1} V t 

and adoption costs are constant 

qi, t = q i, t 

with q > 0. 
* Firms' objective functions are the sum of their discounted period profits minus 

adoption costs, 
00 

3 ('i, t - qwi, t) 
t=O 

where p E [0,1) is a common discount factor and 

7Ti,t = D(pt)(p, - ci,t) 

represents period profits. 

3. BERTRAND COMPETITION 

3.1. Myopic Equilibria. At any date t, given (1) and (2) two competing firms 
decide whether to adopt a new technology: 

Owi E {0, 1} i= A,B 

If firm A has last adopted at time t - 1 technology ct and firm B has last adopted at 
time t - k - 1, technology ct_k, k > 0, we know that CA = c, < CB = Ct_k. 

Under Bertrand competition the payoff matrix of the stage game in adoption is 

BBA =B0 B,t = 1 

WA,t = 0 Act_(cl_k - ct), 0 0, Act (c, -+) - q 

onA,t = 1 Ac_tk(ct-k - ct+l) - q, 0 -q, - 

Let us define: 

* G -= {A,t 1, B, tB = 1} as a strategy combination of global adoption; 
* Ft {oA, t = 1, WrB,t = 0} as a strategy combination leading to forging ahead; 
* Lt {(A,t , B, = 1} as a strategy combination leading to leapfrogging; 

and 
* St {tA, t = O WB,t = 0} as a strategy combination of status quo. 

In the next proposition we consider the necessary and sufficient conditions for 
different period strategy combinations to be a Nash equilibrium of the stage game 
described by the payoff matrix (3). 

(3) 
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PROPOSITION 1. Let 13 = 0 and cA t- c < CB = Ct-k. At any stage, t, of the game: 

(a) Gt is never an equilibrium 
(b) Ft is an equilibrium if and only if 

q < (t - ct+l)ActYk 

(c) Lt is an equilibrium if and only if 

q < (Ct - ct+)Ac7t 

and 

(d) St is an equilibrium if and only if 

q > (ct- ct+1)Act' 

From the previous proposition we can see that at any time t,7 the adoption costs 

space can be partitioned into three disjoint regions, 

(4) Q, = [0, K(1 + g)Y(t-k)-t-1) 

(5) Q2 = [K(1 + g)(t-k)-t-1, K(1 + g)7t-1) 

(6) Q3 = [K(1 +g)t-t-, co) 

with K = Ac1-yg and 

q {Q1 U Q2 U Q3} 

so that, under myopic behavior, for low adoption costs, q e Ql, we are in a multi- 

ple equilibria region where both leapfrogging and forging ahead are equilibria; for 
intermediate adoption costs, q E Q2, leapfrogging is the only equilibrium; for high 
adoption costs, q E Q3, status quo is the only equilibrium.8 

7 We are assuming that in the past periods there has been adoption so that technological and 

chronological clocks are synchronized. This implies that the costs at time t are 

CB = C,k = c(1 + g)-t+k 

given that B has last adopted at time t - k - 1, and 

CA = t = c(1 + g)-t 

given that A has last adopted at time t - 1. 
8When status quo is an equilibrium the technological clock stops. The moment in which such 

equilibrium is reached we should therefore substitute r for t in expression (6). 
Moreover it is easy to see that, under myopic behavior, if y = 1, the three equilibrium regions 

specified by (4), (5), and (6) change in time following the evolution of the latest adopted technology, 
ct. More precisely if y < 1 and there is adoption from any firm, both the region with multiple 
equilibria, Ql, and the region where leapfrogging is the unique equilibrium, Q2 , shrink toward zero. 

Eventually, given constant adoption costs q, the status quo equilibrium will prevail and technological 
progress halts. If y > 1 and there is adoption, the boundaries between (4) and (5) and (6) all shift 
to the right. This means that if at time t a given adoption cost falls within the leapfrogging region 
there will be a time in which the same cost will fall into the multiple equilibria region. If otherwise 
the adoption cost is too high and falls within the status quo region, there is no technological growth 
and the equilibrium will remain unchanged as there is no technological growth without adoption. 
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3.2. Equilibria with Discounting. In the following we analyze sequences of adop- 
tion decisions in a Bertrand duopoly where firms have a positive discount rate 8. 

Starting from period t = 0 each firm selects an infinite sequence of adoption deci- 
sions for all the future dates and states of the payoff relevant variables. At any time, 
t, the action set of a firm is, as before, wi , E {0, 1} and the previous history of play, 
the history of previous adoptions, defines the value of a state variable specifying the 
two current cost levels of firms A and B, CA and CB, defined by the last adoptions 
for each firm. The available new cost reducing technology, ct+,, is given by the past 
adoption history as specified in (2). 

Let us define each firm's strategy 

o-i: (CA, CB) {0, 1} 

as a mapping from the set of states, of the history dependent state variables, to the 
set of actions wi, {0, 1}. Strategies characterized in this way are known as Markov 

strategies. From each stage t the continuation game forms a proper subgame and the 
state variable has a fixed value given by the previous history of adoption decisions. 
If we define a strategy profile composed by Markov strategies which form a Nash 
equilibrium for all the possible subgames starting at any value of the state variable 
on which the strategies are defined, such a strategy profile would form a MPE of the 
entire intertemporal game.9 

In the next sections we will focus on the parameter conditions required for 
specifically interesting strategy profiles (where adoption decisions follow a regular 
periodicity10) to be MPEs of the intertemporal game. 

3.3. Alternating Adoptions. Consider the dynamic strategy profile generating a 
finite or infinite sequence of alternating adoptions: 

A(CA, CB) = 1 if A > CB and CB(1 + g)- > c* 

(7) L O- rA(CA, CB) = 0 otherwise 
* 

B(CA, CB) = 1 if CA < CB and CA(1 + g)-1 > ct* 

JB(CA, CB) = 0 otherwise 

This strategy profile generates the following outcome path in adoption choices: 

{ Zt o 1 1 o 1 
. until t -1 

I oBt 0,1,0,1,0,1,... 

and w(o a w = 0 for t > t* 

with no halting if t* = oo. 

9 For a more rigorous definition and motivation of the Markov perfect equilibrium concept see 
Fudenberg and Tirole (1991). 

10 There may of course be other equilibria of irregular periodicity which we do not characterize 
here. 
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Notice that: 

* Our strategy profile specifies that if there are symmetric initial conditions firm 
A makes the first move. The parameters of the model (setting t* to be even 
or odd) determine which player moves last. 

* ct is an absorbing technological level after which adoption stops and asym- 
metry is preserved. 

* Whether t* < oc or t* = oc depends on the limit behavior of the period 
profits of the adopting firm associated to the strategy profile (7) as t tends 
to infinity and, as the next lemma shows, this critical property is dependent 
upon the elasticity of demand. 

LEMMA 1. Given the expression of the adopter's period profits associated with a 
strategy profile of alternating adoptions, 

(8) 7T, = ACt 7(c - Ct+]) 

we have that 

y > 1 == lim Tt = 
t-->00 

y = 1 == lim 7Tt = rr V t > 0 where rr = A - 
t--+o o l+ g 

0<7<1 = lim rt= 0 
t-->00 

In the following we define the set of adoption costs and discount rates such 
that, starting from initial symmetric cost conditions, the two duopolists will keep 
on leapfrogging each other by following the alternating adoption strategy profile. We 
consider the two cases when the demand elasticity is greater than or equal to one, 
and when it is between zero and one. As we have seen in Lemma 1 the stage game 
profits associated to alternating adoptions have different asymptotic behavior in these 
two cases and therefore the equilibrium requirements will also differ. 

PROPOSITION 2. If y > 1, the strategy profile of alternating adoptions, Lt., with 
t* = oc, defined in (7) is an MPE for the entire game starting in state 

So, o = {CA = C, CB = C} 

if and only if 

(9) q e Qfi(O) = (, (1 + g)2(1-) _ 2 K(1 + g)-2+1] 

and 
1 

< (1 + g)Y- 
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In the next corollary we study how the alternating adoptions equilibrium region, 
defined in Proposition 2, and calculated from any initial date t, and any initial adop- 
tion gap k, as well as from the initial state, s, 0 = {CA = c, CB = C}, changes with the 
discount factor 3. 

Let 

t,t-k = {CA = Ct, CB = Ct-k} 

be a state where firm A has lower unit costs than firm B and, similarly, let 

t, t-k {CB = Ct, CA = Ct-k} 

be a state where firm B has lower unit costs than firm A. 

COROLLARY 1. If y > 1 the adoption cost region for which alternating adoptions is 
an equilibrium starting at any state sA_k or sB,_, 

QL() (t) o1 + - 2K(1 + g)y(t-2)-t+l 

is continuous and increasing in 3, for ,3 E [0, 1). 

Lemma 1 showed that if the elasticity of demand is between zero and one, stage 
period profits tend to zero under the alternating adoption strategy profile. This 
implies that adoption will not go on forever. To study the conditions under which 
a finite number of alternating adoptions is an equilibrium of the infinite horizon 
game we need to start by the characterization of the state/date where adoption stops. 

Suppose we are in a state, sA_, where firm A has lower unit costs than firm B. 
We define absorbing asymmetry as a strategy profile for the subgame starting at state 
sA such that t,t-k 

(OA, t+i = 0B,t+i =? Vi =0, 12, ... 

PROPOSITION 3. If 

< y < 

a strategy profile of absorbing asymmetry is a Markov perfect equilibrium for the game 
starting at any state 

tt-k = {CA = Ct, CB = Ct-k} 

if and only if 

d(10) q E QA(t) =[(1 /) ) 
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Two points are worth noticing: first in deriving the necessary and sufficient cost 
condition for a state of asymmetry to be absorbing'l we find that only the follower's 
deviation matters and, second, the amount of the previously cumulated difference 
expressed by k does not play any role in the equilibrium condition. This is explained 
by the fact that the profit for the follower is zero given the Bertrand structure, irre- 

spective of the number of periods it has been lagging behind, expressed by k. 
We are finally ready to study the conditions under which a strategy profile of 

alternating adoptions is an equilibrium when 0 < y < 1. In this case we have seen 
that there is a finite number of adoptions followed by absorbing asymmetry. In the 
following lemma we characterize the date t* from which adoption stops. 

LEMMA 2. If 0 < y < 1 there is a date 

(11) t* ( min t O, ,...,oo} : t> ln( + g)(- 
1) 

such that for any t > t* nobody adopts if the history of the game up to t* has been 

generated by the strategy profile of alternating adoption, Lt*, defined by (7). 

In the next proposition we find a sufficient condition for alternating adoptions to 
be an MPE when 0 < y < 1. 

PROPOSITION 4. For 0 < y < 1 the strategy profile 

Lt*: S {0, 1}2 

defined by (7), for t* given by (11), is an MPE if 

P 1 
(12) (12) 

(1 - p) 
< 

(1 + g)- 

and 

(13) qE Q1 =- (QK(1 + g)Yt*-t*-I K(1 + g)Y'*-t*-Y 

Note that for 8 -* 0 condition (12) is always satisfied: 

/ 1 
lim = 0 < 
8-40 (1 -/3) (1 + g)Y-' 

I See the Appendix for the proof of Proposition 3, in particular, Lemma A.2. 
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3.4. Increasing Asymmetry. The last pattern of adoptions we consider is one 

leading to increasing asymmetry between the two firms. Consider the following strat- 

egy profile: 

( OA(CA,CB)=- if CA > Ci 
(14) Fi, = 0 =0 otherwise 

OB(CA, CB)= 0 t 
This implies that the outcome path will be 

(15) (OA, t O O O O OOB , until t - t - 1 
B t ,/~ 01,0,0, 0, 0, 0, 0 

(16) WA, t= (B, t = 0, for t > t* 

with no halting if i* = oo. 
In the next proposition we will see that the conditions for this strategy profile 

leading to increasing asymmetry between the duopolists are very restrictive. Further- 
more the number of periods in which asymmetry cumulates cannot be longer than 
the inverse of the demand elasticity, which therefore has to be smaller than one. 

PROPOSITION 5. For y < 1, the strategy profile Fi*: S -- {0, 1}2 defined by (14) is 
a MPE for the entire game starting from the state 

So,0 = C, CB = C } 

if and only if 

(17) q E (s0 ) ( K(l + 
g)(7-l)*-i K(1 + g)-* 

and 
1 

i* < - 

Note that 0 < y < 1 is a necessary condition for the strategy profile of increasing 
asymmetry to be an MPE of the game. 

Remark.'2 By comparing the equilibrium regions for alternating adoptions up 
to a finite date, as defined in Propositions 4, and for increasing asymmetry, as seen 
in Proposition 5, it is easy to see13 that, when 0 < y < 1, the two equilibria may 
coexist and when increasing asymmetry is an equilibrium alternating adoption is an 

equilibrium too. 

The intuition of this result can be extended for more general downward sloping 
demand functions. The profit's increment for an adopting firm when the other is not 

2 This remark addresses a question raised by an anonymous referee. 
13 Characterizing the equilibrium conditions for an equal number of adoptions, either through 

alternating adoptions or through increasing asymmetry, one can see that the lower bounds of the two 
equilibrium regions coincide. The upper bound of the alternating adoption equilibrium region, in 
Equation (13), is larger than that of the increasing asymmetry equilibrium region in Equation (17). 
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adopting is indeed given by the product of two components: 
* the difference, due to adoption, in the equilibrium price-cost margin, which 

under Bertrand competition, is the same, (ct - ct+1), if the adopter is the 
present leader or follower, and 

* the quantity demanded at the new equilibrium price. This last quantity is 
always larger if the follower is the adopter. The adopting follower, when 
becoming the new leader, will indeed charge a price equal to the unit cost of 
the previous leader, while the adopting leader will charge a price equal to the, 
unchanged, unit cost of the follower. By definition the leader has a lower unit 
cost, so that the previous period follower will charge a lower price and have, 
through a demand effect, a higher incentive to adopt the new technology. 

4. CONCLUSIONS 

In this paper we analyzed firm adoption decisions about an infinite sequence of 
innovations. In a Bertrand duopoly with myopic firms we characterized the cost 
regions leading to forging ahead, leapfrogging, and status quo. For low adoption costs 
both forging ahead and leapfrogging are equilibria, for intermediate costs leapfrog- 
ging is the unique equilibrium, and for higher costs status quo is the only equilibrium. 
These equilibrium regions change with the evolution of the cost reducing technology 
if the elasticity of the market demand is not equal to one. When the elasticity is below 
one both the forging ahead and the leapfrogging equilibria disappear and technolog- 
ical adoption stops, while if the demand elasticity is greater than one, adoption, once 
started, will never stop. 

With discounting we analyzed the conditions under which a strategy profile of 
alternating adoptions, inducing perpetual leapfrogging, is sustainable as a Markov 
perfect equilibrium. Two cases again arise: when the demand elasticity is greater 
than or equal to one, an alternating adoption strategy profile can go on forever. 

When the demand elasticity is below one, alternating adoptions stop at an endoge- 
nously derived terminal date and the last adopter remains the leader in the industry. 

Finally we considered a strategy of increasing asymmetry in which the leader adopts 
for a finite number of periods and the follower does not. When the elasticity of the 
demand is less than one we have that the maximum cumulated asymmetry is bounded 
above by the inverse of the demand elasticity, while if the demand elasticity is greater 
than one increasing asymmetry is never a Markov perfect equilibrium. 

In conclusion when considering an infinite sequence of adoption decisions, the 
resulting technological dynamics is determined by the interaction of demand factors 
(both the elasticity and the size of the market), adoption costs, pace of technical 

progress, and the discount rate. When, given these parameters, there are incentives 
to adopt we might expect the challenger/follower firms to account for the majority of 
the innovative activity. 

APPENDIX 

PROOF OF PROPOSITION 1. These are just the Nash equilibria of the game 
described by the matrix (3). 
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PROOF OF LEMMA 1. This is obvious by taking the limit of the increments in 
period profits in expression (8). 

PROOF OF PROPOSITION 2. We prove Markov perfection in two steps: first we 
characterize, in Lemma A.1, the necessary and sufficient conditions for an alternating 
adoptions strategy profile, L,., as defined in (7) to be a Nash equilibrium in Markov 
strategies for the subgames starting from any given state of technological asymmetry, 
when y > 1, and then we show that if Lt, is a Nash equilibrium from the origin of 
the game then it is an equilibrium starting from any other subgame. 

LEMMA A.1. Let the strategy profile 

Lt*:S - {0, 1}2 

be defined by (7), where S is the set of all possible payoff relevant states. Then, for y > 1, 
Lt*, is a Nash equilibrium in Markov strategies with t* = oo, for all the subgames starting 
from any state, 

t,t-k = {CA = Ct, CB = Ct-k} 

or 

SB t,t-k = CB = Ct, CA = Ct-k} 

t > O, k <t 

if and only if 
1 

(1 + g)Y-1 

and 

q E Qj(t) = (o _ / K(I + g)y(t-2)-t+l 
(1 +g)2(l-y) -32( + 

PROOF OF LEMMA A.1. At any t, define: 

* , i as the value to firm i of following (the prescription of) strategy Lt* and 
Vt i as the value to firm i of a one period deviation from strategy Lt,. 

When firm A is the current leader and the state of the system is 

t t-k = CA = CB = Ct-k} 

the strategy profile dictates that o), = 0 and )B, 
= 1, because ct < ct_k. 
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The value of sticking to the strategy for firm A in state sA -k given that firm B is 
following the same strategy, is 

Vt A(0) = 0 + /(7Tt+l - q) + /3'(t+3 - q) + 3S(rTT+5 - q) +. 

= 
7 _ _q 2 = vt+l, A(1) 

- 
Vt+l 

I (l+g)2(1-y) 

while the value associated with a one period deviation, i.e., by adopting in period t, is 

Vt, A() = -q + pVt+l 

This implies that in state sA_k firm A has no incentive to deviate from the strategy 
Lt, whenever there are positive adoption costs: 

Vt, A(0) > Vt A (0) for any q > 0 

In the same state sA-k the value that firm B derives from sticking to the strategy 
given that firm A is following the same strategy is 

(18) Vt,B() = (Tt - q) + 0 + f2(T t+2 - q) + 4(T+4 - q) + 

TT, _ q 

1-i_ ( P2 1 - /2 
(l+g),2(-y) J 

= (7t - q) + PVt+,,B(O) - Vt 

while by deviating, by not adopting in spite of having higher costs, firm Bs value 
will be 

(19) , (1) = 0 + /3 max [t, B(1), V] 

We need to prove that 

Vt,B(1) > Vt,B(1) 

if and only if the adoption cost, q, falls in the region: 

(20) q E Q, (t) = 
(o, (1 + )2(1) 

2 K(1 + g)(t-2)-t+] 

Suppose that 

Vt,B(1) > Vt,B(1) 

From (19) we know that 
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but if (20) holds, 

VB(1) = V > 0 

which leads to the contradiction 

t,B(1) > Vt,B(1) 

Let us now consider a state where firm B is a leader: 

t t-k = {CA = Ct-k, CB C 

Following the same reasoning we find that for firm A 

V,A(1) = (-T ) - q ) + A(0) _ 

(l+g)2( 1 - 

V,A(1) = 0 + /3 max [V, A(1), V] 

and 

K,A(1) > Vt,A(1) 

again if (20) is satisfied. This is because 

, A(1) = Vt,B(1)> Vt,A(1) = t,B(1) 

while for firm B we have 

B()- 3rt+1 q/3 
Vt,B(O) - 1 

(32/(1 + g)2(1-)) 1 - 2 V t+ 

Finally 

V,B(O) = -q + (3VtI,B(0)) -q + Vt+2 

and clearly 

Vt,B(O) > V,,B(0) 

Finally the condition /3 < 1/((1 + g)y7-) is required for the convergence of the 
equilibrium values. ? 

Having found the conditions under which the strategy profile of alternating adop- 
tions, L,*, is a Nash equilibrium for any subgame starting at any given state of the 
system, we are ready to check for Markov perfection. 

If (9) holds the condition for L,t to be a Nash equilibrium is met at t = 0, in state 

So 0 CA = C, C{ = C} 
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Furthermore, if y > 1, from (20) we can see that if the condition for Lt, to be a 
Nash equilibrium is met at so 0 then it is met at sB_ and s_, V t and V k < t. This 
is because the upper bound of the cost region Qf (t) is increasing in t. 

PROOF OF COROLLARY 1. The continuity of the alternating adoption region for 
/3 = 0 is clear by comparing the expression of the myopic leapfrogging equilibrium 
region in (5) and the limit for 8 -- 0 of (20). 

To see the increasing relation between /3 and the region of adoption costs for 
which Lt, is an equilibrium we note that the partial derivative of (20) is positive for 

> 1. ? 

PROOF OF PROPOSITION 3. To prove Proposition 3 we start by proving 
Lemma A.2, where we see that a given state of technological asymmetry is absorb- 
ing if and only if the firm with the higher unit cost has no incentive to adopt any 
number of new technologies. 

LEMMA A.2. A strategy profile of absorbing asymmetry is a Nash equilibrium for 
the subgame starting from state 

stt-k 
= {CA = Ct, CB = Ct-k} 

if and only if firm B has no incentive to deviate from it. 

PROOF OF LEMMA A.2. The values of halting the adoption once in state sAt-k 
are 

\(21) VOA k =A(C t-k)Y (Ct-k 
- Ct) 

(21) VOA(c,_k)= - 1-/3 

for firm A and 

(22) VOB(ct) = 0 

for firm B. 
By deviating from the strategy profile of absorbing asymmetry, and adopting in n 

more periods, As value is14 

n-I 
/nT(Ct+n?, Ct_k) 

(23) V,A(Ct-k) = i[T(Ct+i+l, Ct-k) - q] + 7- ) 
i=O 

(24) A[11 /c-,k - c-kct (1 + g)-(l (1- ') + ing(1 +-g)--)] 

1- -/" 
-q 

1-Pf 

14 Both VnA(Ct-k) and VnB(c,), defined in the next paragraph, can be seen as two values of the same 
function of the last technology CT, adopted by the opponent: V,A(c,_k) = VF(ct_k) and V,B(ct) = Vn(c,) 
where Vn(c,) is defined as 

=n-I C n_(Ct+n, CT) 
j,(cCl) = q 13i[+"(ct++, , c)+- q - + 

i=0 1- 
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Similarly, Bs value of deviating is 

(2) V-IC 13n7TT(Ct+n, 
Ct) 

(25) VnB(Ct) = E 8i[(c,(t+i+l ct) - q] + c) 
i=0 1 - 

= A '13 -+ c (1 + g)- '(1 - ) + n3g(l + g)-- 1 = A r -/+ -^LT^ 
' ' 

( -/3(1 + g)-')(i -/3) 
1 Ct " Ctt(l+g)-)(l-] 
1-fn 

-q 1 - 3 

Subtracting (21) from (24) we obtain the incentive to deviate from the absorbing 
asymme try strategy profile (the incentive for adopting n times from state sA_k) for 
firm A: 

(26) A,,(A) = VnA(ct-k)- VOA(Ctk) 

1- _ 
n 

[ -c(1 -( _ 
3(l + g)-")g(l + g)-' 

- - 
I i -/3 1 --3 (1 - (1 +g)-') 

Similarly, subtracting (22) from (25) we obtain the incentive for adopting n times 
from state sA for firm B: t, t-k 

(27) An(B) = Vn(ct)- () - VnOB(c,) 

- 3 r c+l (1 -3"(l + g)-n)g(l + g)- )1 - 
l- +AL1 lt (1 - (+g )-) 

Clearly 

(28) An(B) > A,(A) 

Note that 
n-I n-l t1 -I 

E 3'i(ct+i+,, c,) = A C 3 c (E + ) 
i=() 0 i =0 

= A ,[~PC -t 1 CT Ct + ( + 2) 
A [ f c-y+l _ -Y (1 +- g) "(1 + g)" 1 

1- ' 1- - 11 (1+ g)-' 

so that we can write 

V,(c) = A[ 
l - TY -_+ c--Y (1 + g)- - 3n(1 + g)- + 3 

C'y(C 
- c ) 1 

_, (c,.) = A, CI l + - ' -/ 
-" 

-^ ^1 - 
(1-( 

+ 
g)- 

+ 
1-/3 

1- - 

A[ 
1 
c_ +t _CTt ( (l 

g)c-' (1 + " + - (+g)--g)- )] 1 - 3" 

-Y+, I c 
(1+ g)- (l -) +,B)(l + g)-n(l - (1 + g)-') 

l 1 - 
IAL1 3cT - q (I- (l+g)-)( - 1-- - 
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since 

(29) ctk > t => ct < c- Vk < t 

This implies that An(B) < 0, Vn > 1 is a necessary and sufficient condition for 
t,t-k to be a state of absorbing asymmetry whatever the cost difference between 

leader and follower. 

This leads us to the next lemma. 

LEMMA A.3. A strategy profile of absorbing asymmetry is a Nash equilibrium for 
any subgame starting from a state 

St,t-k = {CA = Ct, CB = C-} k < t 

if and only if 

(30) ~q EQAA(t) =[ At -g( +g) ) 

PROOF OF LEMMA A.3. We have seen that a necessary and sufficient condition 
for an asymmetric state, sttk, to be an absorbing state is that the follower, firm B, 
has no incentive to deviate from a strategy profile in which no firm adopts a new 
technology. 

From (27) in Lemma A.2 we have seen that Bs incentive to adopt n innovations 
given the nonadoption of firm A is given by 

1n) -- 3nl (y+ (1 -( 1 + ng(l ( + g)-n)g)) 
(31) An(B)=-q 1-/ +A 1- (1(1g)') 

By taking the first difference of (31) one obtains Bs incentive of adopting the 
(n + l)th innovation after having adopted the previous n: 

(32) An(B) An+(B) - An(B) = Vn+,(c,)- Vn,(t) 

fin _ _-ty+ \ 

= 1_- (-1) + A( c ng (l + g)-n-l 

Equation (32) is negative if 

Acf-g(1 + g)-n- q 
(33) ) <q (1 - i) 
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Furthermore (33) is clearly decreasing in n. This implies that if the incentive to 
adopt the first innovation is negative, or 

Ac>-Yg(1 + g)-1 
q> (1-f) 

there is no incentive in adopting any further innovation. 
If on the contrary at St,k = CA = Ct, CB = Ctk}, 

Act-yg(1 + g)-n-1l 3n*: Vn < n* = > q 
(1 - /) 

then sAtk cannot be a state of absorbing asymmetry. 

We are now ready to prove Proposition 3. We have seen before that a strategy 
profile of absorbing asymmetry is a Nash equilibrium from any state sAt if and only 
if condition (30) is satisfied. 

If 0 < y < 1 such a strategy profile remains an equilibrium also for any subgame 
starting from any possible payoff relevant history, i.e., after any number of deviations, 
adoptions, of the leader, which from (10) define the only payoff relevant technology 
level. This is because if 0 < y < 1 the adoption cost region, QAA(t), is increasing in 
the number of deviations of the leader. Suppose for example that the leader deviated 
r times from the equilibrium path of absorbing asymmetry starting from state s_A t , t-k, 
and we are in the subgame starting from the out of equilibrium state: 

t+r, t-k = CA = t+, CB = Ct-k 

Then from (30) we know that the necessary and sufficient condition for absorbing 
asymmetry to be a Nash equilibrium for the game starting at S + t-k is that 

(34) q E 
QAA(t + ) = [ t+(1 

- 

If 0 < y < 1 we have that Q A(t + T) includes the region QeA(t), which in turn 

implies that firm B has no incentive to deviate from the absorbing asymmetry strategy 
profile for the subgame starting at t t-kif it had no incentive to deviate from the 
strategy profile in state sA_. If the strategy profile of absorbing asymmetry is a 
Nash equilibrium in Markov strategies starting from any possible subgame of the 
game starting at sAtk, then it is a Markov perfect equilibrium from the entire game 
starting at sA, t-k 

PROOF OF LEMMA 2. We have seen before that when 0 < y < 1 period profits 
for the adopter, along a history generated by alternating adoptions, converge to zero. 
This implies that, given a constant adoption cost, q, we can find a date t* from which 
time onward adoption is no longer profitable. 

Intertemporal profits when adopting at time t for the last time in the game after 
a history of alternating adoption (t = t* - 1), and with a non adopting opponent are 
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given by 

(35) K(1 + g)t(-q)- 
q 

(35) - _ 
1-f3 

The last adoption date is given by the smallest t such that (35) is positive. From t* 
onward we are in a state of absorbing asymmetry. ? 

PROOF OF PROPOSITION 4. This strategy profile implies alternating adoptions 
for t < t* and absorbing asymmetry thereafter. The remaining leader would be the 
firm which was the latest adopter. The identity of this firm depends on whether t* is 
an even or an odd number. 

Incentives to deviate at time t* 

We have seen in (30) the necessary and sufficient conditions for a given state st -k 

to be a state of absorbing asymmetry. If the absorbing asymmetry state has been 
reached after an alternating adoption strategy profile we know that for A to have 

adopted at time t* - 1 and for B not to adopt at time t* it must be that 

(36) q E K(1 + 
g)Y'*-t*-I 

K(1 + g)'(t*-l)-t* 

In the following, by knowing the continuation values in the two possible states, 

A - 
St,t*-l = {CA = Ct*, CB = Ct*-1} 

St,t* CA = C, = = c* 

we consider, by backward induction, the incentives firms have to deviate from the 

strategy profile before reaching the final state at t*. 

Incentives to deviate before t* 

We start by considering the case in which A is the last adopter so that the absorbing 
state is sA t*- 

Firm A 

In period t* - 1, by following the strategy Lt*, firm A is supposed to adopt the new 

technology, making positive period profits 

,(1) K(1 + g)Y(t -)-t* 
VA,t1-(1f3 -q>0 

by the definition of t* 
By deviating at this adoption stage (at time t* - 1) by not adopting, firm A would 

make zero period profits and would remain in a state in which its technology has not 

changed: 

VA,t_(1) = 0 + max {VA, *_i(), VA,t*-(1 )} = VA,t*-i(l) 

690 



PERPETUAL LEAPFROGGING 

As a result of deviating firm A would just postpone its intertemporal profits by adopt- 
ing in the next stage and therefore does not deviate. The same reasoning applies for 
any state in which firm A is supposed to adopt. 

When firm A is in any state sA = {CA < CB and ct+1 > ct*}, in which the strat- 

egy dictates not to adopt because A has lower costs, by sticking to the alternating 
adoption strategy firm A makes zero period profits and then goes to a new state 
in which it will adopt (because B has adopted now reverting the cost leadership). 
Again, by deviating in this stage and adopting, firm A makes negative period profits 
and reaches a state in which it would adopt under the candidate equilibrium strategy, 
as this deviation history gives the two firms the same cost conditions. This implies 
that firm A has no incentive to unilateral deviation at any state for t < t*. 

Firm B 

Firm Bs possible deviations are more interesting because by nondeviating B makes 
zero profits from time t* - 1 onward. Deviating at t* is too late; we have seen before 
that at t* the follower has no incentive to deviate because we are in a state of absorb- 
ing asymmetry. We want to see if, by deviating before t*, B is able to reverse the 
sequencing of adoptions so that it becomes the leader and dominates the industry 
forever. 

By backward induction when t* is even firm A adopts at t*- 1 and B does not 
deviate because it will face adoption costs plus zero profits forever. 

At t* - 2, and in any other state in which B is supposed to adopt, by deviating B 
is only postponing profits, so it will not deviate. 

At t* - 3, B is supposed not to adopt and the value of sticking to the strategy 
profile is 

VB,t3(0) = 0 + /3 max { VB,t-2(1), VB,t*_2(1)} 

= o + VB,t*-2(1) 

= 0 + 3(K(1 + g)y(t*-2)-t*+l q) + p2 max {VB t,i*(O), VB, *1(0)} 

= 0 + 3(K(1 + g)y(t*-2)-t*+ _ q) + 320 

so that 

(37) VB*-3(O) = /(K(1 + g)y(t*-2)-*+l1 q) 

If B deviates at t* - 3 when it is not supposed to adopt it first pays -q and then 
obtains zero period profit, because it has adopted together with A. Now, at time 
t* - 2, we are in a state where A adopts because both firms have the same cost level. 
At time t* - 1 then B finally adopts. 

The value of deviating at t* - 3 is then 

VB,t-3() = -q + 3 max iVB,t*2(O), VBt*-2(0)) 

= -q + 3VB t*-2(O) 
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=q?3pO /3 3maxjiB,t* ,(1), VBt*1(1)} 

= -q + 130+ P2,8V, (t) 

= -q ?0 + j2(K(l 
+ 

g)Y(t'*-'lyt* - ) 
so that 

(38) 
82 

K(l>= ,+?(( 
+ 

g)Y(t*-')- t*1- (38) ~~~VB,t*-3(0) = -q ? 1(K 1 +gY@1Y*- q) 

By deviating at t* - 3, B has reversed the final leadership of the industry. 
For the strategy profile Lt* with t* <c'c to be an equilibrium from time t = - 3 

we need 

(39)VBt*3 0 B *3 ) 

By subtracting (38) from (37) we have that (39) holds whenever'5 

/8K(1 + g)Y(t*'I)4t ((1 + g)Y+l I3p) 
(40) (-1?3(1-l))<q 

We have now two conditions on the lower bound for q, and we need to compare 
which one is more stringent between the lower bound of (36) required for having firm 
A adopting ct* and (40) required for the follower not to deviate from the equilibrium 
path before t*. It is possible to show16 that for y< 1 if 

/3 1 
(41) 

15 Or 

3K(1 + - g32 
K(l + g)Y(t*-)t* > (1 + 1(1 - 13)) 

1-13 

/K(I + g)Y('*-')t* ((1 + g)-Y+1 - 1iti) 

16 We want to prove that 
13 1 

(1?13) (1 + g)Y-' 
is a sufficient condition for (36) to be more stringent than (40). 

From the definition of t* we know that condition (36) implies 

K(1 + g)Y(*)- 
1-13 

Therefore if 

13K(1 + g)* 
- I)-'* (( + g)Y? [) K(l + g)'Y(t*)-t' 

(-1+ 3(1-1)) -1 3 

condition (40) is satisfied. 
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condition (36) is the most stringent and therefore L,. with t* < oo is an equilibrium 
for 

q C Q (K(1 + g)y'*-t*-' K(1 + g)('t*-l)-t* Q-t~ 
' 

1-t 

For any stage t* - k where k > 3, B will have a smaller incentive to deviate than at 
t* - 3, because the payoff for reverting the leadership order is further away in time. 
Therefore it is sufficient to examine the condition up to t* - 3.17 ? 

PROOF OF PROPOSITION 5. We start by studying the incentives of firm A starting 
from the beginning of the game or from a state: 

S,0 = C C = {A = = } 

The value of adopting i innovations for firm A and then stopping, given that firm 
B does not adopt, is given by 

i-I 13 

(42) 3i (42) JV(O, i) = L ft'(Ac-Y(c - c+) - q) + Ac-(c - ci) 
1=0 - P 

while the value of adopting i - 1 innovations is given by 

i-2 i-1 

(43) V(0, i - 1) = 31(Ac-(c - c,l+) - q) + Ac-7(c - i_) 
1=0 1-/ 

By subtracting (43) from (42) we obtain the incentive of adopting the ith innovation 
for firm A from state so: 

(44) (K( g)-i q(1-/)) 

This is positive for 

~~~~(45) ~K(1 
+ g)-i 

(45) ( 13) >q 

Condition (53) can be rewritten as 

(1 -3)3(l + g)-+l ((1 + g) +l_ ) 

(-1 + 3(1 -/3)) 
The denominator is negative so it is sufficient to have that 

(1 - /3)(1 + g)2(-y+) - 32(l + g)-y+' > 0 

or 
P/ 1 

(1 + 3) (1 + g)7-1 

17 It is easy to show that given the description of the strategy A has no power to revert the 
sequencing order of adoption so that A would not deviate from the equilibrium strategy even if it 
ends out of the market because B is the last adopter. 
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and decreases in i so ci* is determined by the maximum i such that (45) holds or by 
i such that 

(46) 
K(1 + g)-i*-l K(1 + g)-i* 

~(46) (1 - ) q (1-/3) 

Next we check that at any possible history of the game, from all the possible nodes 
out of the equilibrium path, firm A has no incentives in deviating from strategy Fi* 
defined in (14). 

Consider any state 

St,k = {CA = Ct, CB = Ck} 

where t and k are both less than or equal to i*. 
The value of adopting i - t further innovations for firm A is given by 

i*-t-1 .*-t 
(47) V(t, k, i -t) = y (Ack(ck - Ct+l+l) - q) + Ac7 (Ck - ci) 

1=0 1- 1 

while the value of adopting i* - t - 1 further innovations is given by 

i*-t-2 i*-t-l 

(48) V(t, k, i - t - 1) = L 31 (Ack-(Ck - c,++1) - q) + 1 Acu(ck -c 
1/ =0 

By subtracting (48) from (47) we obtain the incentive of adopting the (i* - t)th 
innovation, after having adopted the previous t, starting from an out of the equilib- 
rium path node, when firm B has deviated k times, 

f3i-tg-1 
(K(1 + g),k-i* _ q(l -3)) 

which is positive for 

K( + g)yk-i* 

(1-) >q 

So for adopting i* - t more times and then stopping from an out of equilibrium node, 

St, k, we need 

(49) K(1 + g)yk-i*- K(1 + g)yk-i* 

(1- 3) (1-13) 

By comparing condition (49) with condition (46) for state so we can see that the 

upper bound of (46) is more stringent than the upper bound of (49) and the lower 
bound of (49) is more stringent than the lower bound of (46). This implies that the 
condition for nondeviating from the strategy profile of increasing asymmetry for firm 
A from any subgame starting from any possible history of the game is given by 

K(1 + g)yk-i*-1 K(1 + g)-i* 
(50) (1-1) (-< 1) 

(1 -/5) (1-/5) 
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This interval is not empty if and only if yk < 1 and given that k < i* we need 
i* < 1/y. 

While firm A is adopting, firm B, by deviating, would only make negative profits 
before reverting to the candidate equilibrium strategy. 

The only interesting deviation for firm B occurs when firm A stops adopting at time 
i*. Therefore for the strategy Fi* defined in (14) to be an MPE we want the follower, 
firm B, not to have incentives to deviate and not to adopt the new technology ci*+l, 
once the leader has last adopted technology ci*. 

This condition has already been derived in the section on absorbing asymmetry 
and it is given by condition (30). 

In any state 

i*k = {CA = Ci, CB = Ck} 

for any k < i* firm B does not adopt the (i* + l)th innovation if and only if: 

K(1 + g)Yi*-i*-i 
(51) 

<1-) 

Finally, by comparing the leader and the follower conditions for the lower bound 
of the adoption cost, we have that given that (50) has to hold for any k < i* then it 
gives the same lower bound as (51). The adoption cost region for which strategy Fi* 
is a Markov perfect equilibrium is then given by 

K(1 + g)yi*-i*-l K(1 + g)-i* 
(52) (1<q (1- ) 

(1 -,3) O - P) 

which is nonempty if and only if 

i* I< 
y 
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