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Abstract

We present a dynamic extension of the classic static model ofBertrand price competition that allows
competing duopolists to undertake cost-reducing investments in an attempt to “leap frog” their rival
and attain, at least temporarily, low-cost leadership. Themodel resolves a paradox about investing in
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the-art production technology and thereby attain the same marginal cost of production, the resulting
price competition drives the price down to marginal cost andprofits to zero. Thus, it would seem that
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incentive to undertake cost-reducing investments if they are Bertrand price competitors. We show this
simple intuition is incorrect. We formulate a dynamic modelof price and investment competition as
a Markov-perfect equilibrium to a dynamic game. We show thateven when firms start with the same
marginal costs of production there are equilibria where oneof the firms invests first, and leap frogs its
opponent. In fact, there are many equilibria, with some equilibria exhibiting asymmetries where there
are extended periods of time where only one of the firms does most of the investing, and other equi-
libria where there are staggered or alternating investments by the two firms as they vie for temporary
production-cost leadership. Our model provides a new interpretation of the concept of a “price war”.
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1 Introduction

This paper provides a dynamic extension of the static “textbook” Bertrand-Nash duopoly game by allowing

firms to make investment decisions as well as pricing decisions. At any point in time, firms are assumed to

have the option to replace their current production facilities with a new state-of-the-art production facility.

If the state-of-the-art has improved since the time the firm invested in its current production facility, the

investing firm will be able to produce at a lower marginal cost— both relative to its own previous costs and

potentially also lower than its rival. We use the term “leap frogging” to describe the longer run competition

over investments between the two duopolists when an investment by one firm enables it to produce at a

lower cost than its rival and attain, at least temporarily, aposition of low cost leadership.

When the competing firms set prices in accordance with the Bertrand equilibrium under constant re-

turns to scale production technologies, then in the absenceof capacity constraints, the high cost firm will

earn zero profits. Thus, the motivation for the high cost firm to undertake a leap frogging investment is,

of course, to obtain a production cost advantage over its rival. The firm that is the low cost leader does

earn positive profits by charging a price equal to the marginal cost of production if its higher cost rival.

However, if both firms have the same marginal cost of production, both firms set a price equal to their

common marginal cost and earn zero profits. Baye and Kovenockdescribe this as theBertrand paradox.1

A new paradox arises when we try to extend the static Bertrandprice competition to a dynamic con-

text where the firms are free at any time to invest in the state-of-the-art production technology. Whenever

both firms invest the same time, then both will have the same marginal cost of production, and the re-

sulting Bertrand price competition will ensure that neither firm can earn positive profits that would justify

undertaking the investment in the first place. Therefore, casual reasoning would suggest thatBertrand

duopolists would not have any incentive to undertake cost-reducing investments.We refer to this as the

Bertrand investment paradox.

We show that this simplistic reasoning is incorrect and provide a resolution of the Bertrand investment

paradox by solving a dynamic, infinite horizion extension ofthe Bertrand model of price competition.

The extended version of the Bertrand model allows the competing firms to invest in improved technology

1According to Baye and Kovenock, Bertrand did not realize that the perfectly competitive outcome emerges as the
equilibrium solution to price competition. In Bertrand’s 1883 review of Cournot’s 1838 book, “Bertrand described how,in
Cournot’s duopoly environment where identical firms produce a homogeneous product under a constant unit cost technology,
price competition would lead to price undercutting and a downward spiral of prices. Bertrand erroneously reasoned thatthis
process would continue indefinitely, thereby precluding the existence of an equilibrium.” (p. 1).
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in addition to setting prices. We solve for Markov-perfect equilibria to this dynamic game, including

extensions where where each firm has private information about idiosyncratic adjustment costs/benefits

associated with undertaking an investment at any particular point in time. However we show that even

in complete information versions of this model, and even when firms start with the same marginal costs

of production, there are many equilibria that result in various types of leap frogging behavior by the two

firms.

Simulations of the solution of the model reveal that the equilibrium realizations typically involve stag-

gered or alternating investments by the two firms as they vie for temporary production-cost leadership over

their opponent. However we show that there are also equilibria where one firm exhibits persistent low cost

leadership over its opponent, and equilibria involving sniping where a high cost opponent displaces the

low cost leader to become the new (permanent) low cost leader, even though it has spent a long period of

time as the high cost follower.

Our model yields a new interpretation of the concept of aprice war. Price paths in the equilibria of

our model are piece-wise flat, with periods of significant price declines just after one of the firms invests

and displaces its rival to become the low cost leader. We callthe large drop in prices when this happens a

“price war”. However in our model these periodic price wars are part of a fully competitive outcome where

the firms are behaving as Bertrand price competitors in everyperiod. Thus, our notion of a price war is

very different from the standard interpretation of a price war in the industrial organization literature, where

price wars are a punishment device to deter tacitly colluding firms from cheating. The key difference in the

prediction of our model compared to the standard model of tacit collusion is that price paths are piece-wise

flat and monotonically declining in our model and price wars are very brief, lasting only a single period in

our model, whereas in the model of tacit collusion, price wars can extend over multiple periods and prices

are predicted torise at the end of a price war.

We present the model in section 2, and solve what we refer to asthe “end game” in section 3 and

show that this leads to key insights into the form of the full equilibria of the model which we solve and

illustrate in section 4. In section 5 we formulate and solve the social planner’s problem and characterize

the investment strategy that maximizes total surplus. We show that generally, the equilibria of our model

result in inefficient investments relative to the social optimum. So unlike the simple static Bertrand model

of price competition, a simple dynamic generalization to allow for investments shows that oligopolistic

equilibria are generally inefficient. We discuss related literature and offer some concluding comments and
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conjectures in section 6.

2 The Model

Suppose there are two firms producing an identical good. The firms are price setters and have no fixed

costs and can produce the good at a constant marginal cost ofc1 (for firm 1), andc2 (for firm 2). Later

we will add time subscripts to these marginal costs, since both firms will have the option of replacing

their current production facilities with state-of-the-art production facilities that have a potentially lower

marginal cost of production,c. Shortly we will describe dynamics by which the state-of-the-art marginal

costc evolves over time. In this case, the marginal costs of each firm will also depend on time,t, since the

firms may choose to replace their current production facilities with a state-of-the-art one.

We assume the production technology is such that neither firmfaces capacity constraints, so that effec-

tively, both firms can produce at any given time at what amounts to a constant returns to scale production

technology. In the conclusion we will discuss an extension of our model to allow for capacity constraints,

where investments can be used both to lower the cost of production and/or to increase the production

capacity of the firm. The famous paper by Kreps and Scheinkman(1983) showed that in a two period

game, if duopolists set prices in period two given capacity investment decisions made in period one, then

the equilibrium of this two period Bertrand model is identical to the equilibrium of the static model of

Cournot quantity competition. We are interested in whetherthis logic will persist in a multiple period

extension.

However we believe that it is of interest to start by considering the simplest possible extension of the

classic Bertrand price competition model to a multiperiod setting under the assumption that neither firm

faces capacity constraints. Binding capacity constraintsprovide a separate motivation for leap frogging

investments than the simpler situation that we consider here. It is considerably more difficult to solve a

model where capacity constraints are both choices and statevariables, and we anticipate the equilibria of

such a model will be considerably more complex than the ones we find in the simpler setting studied here,

and we already find a very complex set of equilibrium outcomes.

We note that in most real markets, firms are rarely capacity constrained. To our thinking, the more

problematic aspect of the Bertrand model is not the assumption that firms have no capacity constraints, but

rather, the assumption that one of the firms can capture the entire market by slightly undercutting its rival.
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Real world markets involves switching costs and other idiosyncratic preference factors that lead demand

to be more inelastic than the perfectly elastic demand assumed in the standard Bertrand model of price

competition. We think that one reason why firms are rarely capacity constrained is that contrary to the

assumption underlying the classic Bertrand model, a firm cannot capture all of its opponent’s customers

by slightly undercutting its price.

Our model does allow for switching costs and idiosyncratic factors to affect consumer demand, so that

demand can be less than perfectly elastic in our model. In this case, when one of the firms undercuts

its rival’s price, it does not succeed in capturing all of itsrival’s market share. In these versions of the

model, leap frogging behavior does not result in the large swings in market share that occur in the standard

Bertrand model when demand is assumed to be infinitely elastic.

However we believe it is of interest to consider whether leapfrogging is possible even in the limiting

“pure Bertrand” case where consumer demand is perfectly elastic. This represents the most challenging

case for leap frogging, since the severe price cutting incentives unleashed by Bertrand price competition

in this case leads directly to the “Bertrand investment paradox” that we noted in the Introduction. The

ability of both firms to acquire (at a cost) the current state-of-the-art production technology, combined with

the lack of any “loyalty” or inertia in their customers that enables one firm to steal all of its opponent’s

customers by slighly undercutting its price means that a very strong form of “contestability” holds in this

case.

That is, neither firm has any inherent advantage in being the low cost leader other than the profits

they can earn by virtue of their temporarily lower marginal cost of production. At any time the high cost

follower can to acquire the current state-of-the-art production technology, and thereby assure itself of a

marginal cost of production that is at least as low as the low cost leader. The only reason the high cost firm

may not want to pay the cost necessary to acquire the state-of-the-art production technology is the fear

than the rival will also do this and the resulting Bertrand price competition would eliminate or reduce any

temporary profits that it would need to justify incurring thefixed costs of investing in the state-of-the-art

production technology.

In this model, we rule out the possibility of entry and exit and assume that the market is forever a

duopoly. Ruling out entry and exit can be viewed as a worst case scenario for the viability of leap frogging

equilibrium, since the entry of a new competitor provides another mechanism by which high cost firms can

be leap frogged by lower cost ones (i.e. the new entrants). Wealso assume that the firms do not engage in
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explicit collusion. The equilibrium concept does not rule out the possibility of tacit collusion, although as

we show below, the use of the Markov-perfect solution concept effectively rules out many possible tacitly

collusive equilibrium that rely on history-dependent strategies and incredible threats to engage in price

wars as a means of deterring cheating and enabling the two firms to coordinate on a high collusive price.

On the other hand, we will show that the set of Markov-perfectequilibria is very large, and equilibria

exist that enable firms to coordinate their investments in ways that are in some respects reminiscent of tacit

collusion, but in other respects very different. For example, we show there are equilibria where one of the

firms attains persistent low cost leadership and the opponent rarely or never invests. This enables that low

cost leader firm to charge a high price (equal to the marginal cost of production of the high cost follower)

that generates considerable profits. This outcome is similar to the behavior of a monopolist where there is

an “outside good” with a price equal to the marginal cost of prodution of the high cost follower firm. The

low cost leader undertakes periodic investments to reduce its cost of production, but the consumers never

benefit from these investments. Instead, the benefits flow exclusively to the low cost leader during these

long “leadership” epochs. Unlike a tacitly collusive outcome, however, the high cost follower firm does

not benefit in this equilibria either: it earns zero profits inall periods and the low cost leader receives all

the profits and benefits from cost-reducing investments.

On the other hand, there are much more “competitive” equilibria where the firms undertake alternating

investments that are accompanied by a series of price wars that successively drive down prices to the

consumer, while giving each firm temporary intervals of timewhere it is the low cost leader and thereby

the ability to earn positive profits.

In section 5 we formulate the social planner’s problem and characterize the optimal investment strategy.

We then compare the optimal investment strategy to the investments that occur in the Bertrand duopoly

equilibrium and show that generally the equilibria result in inefficient investments and a lower total surplus.

This result stands in contrast to the outcome of the static Bertrand equilibrium, which results in a fully

efficient solution that delivers full surplus to the consumers (and no profits to the competing firms).

2.1 Consumers

As is typically done in the industrial organization literature, we extend the usual textbook model of com-

petition between producers of homogeneous goods to allow some degree of monopolistic competition or

switching costs. The simplest way to do this is to allow for idiosyncratic benefits or costs that each con-
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sumer experiences when they purchase one or the products offered by the two firms. Let the net (or price)

payoff for a customer who buys from firm 1 beu1 = στ1− p1 and the net benefit from buying from firm

2 beu2 = στ2− p2. We can think of the vector(τ1,τ2) as denoting the “type” of a particular consumer.

Assume there are a continuum of consumers and that the population distribution of(τ1,τ2) in the popula-

tion has a Type 1 extreme value distribution and letσ ≥ 0 be a scaling parameter. Then, as is well known

from the literature on discrete choice (see, e.g. Anderson,dePalma and Thisse, 1992), the probability a

consumer buys from firm 1 is

Π1(p1, p2) =
exp{−p1/σ}

exp{−p1/σ}+exp{−p2/σ}
.

Now, assuming that the mass (number) of consumers in the market is normalized to 1, we can define

Bayesian-Nash equilibrium prices, profits, market shares for firms 1 and 2 in the usual way. That is, we

assume that in each period of the dynamic game, the two firms simultaneously choose pricesp1 and p2

that constitute mutual best responses, in the sense of maximizing each firm’s profit taking into account the

price set by the firm’s opponent.

The Bertrand equilibrium pricing rules are defined by the functionsp∗1(c1,c2) andp∗2(c1,c2) that solve

the following fixed-point problem

p∗1(c1,c2) = argmax
p1

Π1(p1, p
∗
2(c1,c2))(p1−c1)

p∗2(c1,c2) = argmax
p2

Π2(p
∗
1(c1,c2), p2)(p2−c2).

The classic Bertrand equilibrium arises as a special case inthe limit asσ ↓ 0. Then we havep∗1(c1,c2) =

p∗2(c1,c2) = p(c1,c2) where the equilibrium pricep(c1,c2) is given by

p(c1,c2) = max[c1,c2]. (1)

This is the usual textbook Bertrand equilibrium where the firm with the lower marginal cost of production

sets a price equal to the marginal cost of production of the higher cost firm. Thus, the low cost firm can

earn positive profits whereas the high cost firm earns zero profits. Only in the case where both firms have

the same marginal cost of production do we obtain the classicresult that Bertrand price competition leads

to zero profits for both firms at a price equal to their common marginal cost of production.

It is simple to extend this model to the case where there is anoutside good,i.e. each consumer has

the option of not buying the good. In this case we assume that the consumer receives a utility ofu0 =
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στ0− γ0. For concreteness, We assume that(τ0,τ1,τ2) has a trivariate Type I (standardized) extreme value

distribution. We assume these types are independently distributed across consumers, and in the dynamic

version of the model, independently distributed over time for any specific consumer (thus, referring toτ as

indexing the “type” of a consumer is an abuse of terminology,since the type of the consumer is changing

over time in an unpredictable way).

It is not difficult to show that in the presence of the outside good, the probability a consumer buys from

firm 1 is given by the classic logit formula:

Π1(p1, p2) =
exp{−p1/σ}

exp{−γ0/σ}+exp{−p1/σ}+exp{−p2/σ}
. (2)

whereγ0 is a component of the utility of the outside good that does notvary over consumers.

2.2 Production Technology and Technological Progress

We now introduce our dynamic extension of the classical static Bertrand model of price competition by

allowing the marginal costs of the two firms vary, endogenously, over time. The evolution of their marginal

costs of production will cause the prices charged by the two firms to vary over time as well. We assume

that the two firms have the ability to make an investment to acquire a new production facility (plant) to

replace their existing plant. Exogenous stochastic technological progress drives down the marginal cost

of production of the state-of-the-art production plant over time. We assume that technological progress is

an exogenous stochastic process: however the decisions by the firms of whether and when to adopt the

state-of-the-art production technology is fully endogenous.

We start with the case where there isn’t an outside good option present. It is not difficult to extend the

analysis to account for the presence of an outside good, as long as the common component of its utility,

γ0, is time-invariant. Ifγ0 evolves over time, it would complicate the analysis, since the value of this time-

varying variable would have to be carried as one of the state variables in the game, and we would need to

confront questions as to whether consumers have perfect foresight about its evolution, or whether they are

uncertain about future values but know the probability law governing its evolution.

Suppose that over time the technology for producing the goodimproves, decreasing according to an

exogenous first order Markov process specified below. If the current state-of-the-art marginal cost of

production isc, let K(c) be the cost of investing in the machinery/plant to acquire this state-of-the-art

production technology.
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We assume that for any value ofc, the production technology is such that there are constant marginal

costs of production (equal toc) and no capacity constraints. Assume there are no costs of disposal of

an existing production plant, or equivalently, the disposal costs do not depend on the vintage of the ex-

isting machinery and are embedded as part of the new investment costK(c). If either one of the firms

purchases the state-of-the-art machinery, then after a oneperiod lag (constituting the “time to build” the

new production facility), the firm will be able to produce at the marginal cost ofc.

We allow the fixed investment costK(c) to depend onc. This can capture different technological

possibilities, such as the possibility that it is more expensive to invest in a plant that is capable of producing

at a lower marginal costc. This situation is reflected by choosingK to be a decreasing function ofc.

However it is also possible that technological improvements lower both the cost of the plant and the

marginal cost of production. This situation can be capturedby allowing K to be an increasing function

of c. Then asc drops over time, so too will the associated fixed costs of investing in the state-of-the-art

production technology.

If K is a decreasing function ofc, then asc drops over time, the cost of investing in new production

facilities increase over time. We can imagine that there cancome a point where it is no longer economic

to invest in the state-of-the-art because the degree of reduction in the marginal cost of production is insuf-

ficient to justify the fixed investment cost of the new plant. We will show below via numerical solution of

the model, whether leap frogging competition will result insteady price declines to consumers, or whether

investment competition will eventually stop at some point,depends critically on both the level and slope

of K(c).

Clearly, even in the monopoly case, if investment costs are too high, then there may be a point at which

the potential gains from lower costs of production are lowerthan the cost of purchasing the state-of-the-

art production plant at a cost ofK(c). This situation is even more complicated in a duopoly, sinceif the

competition between the firms leads to leap frogging behavior, then neither firm will be able to capture

the entire benefit of investments to lower its cost of production: some of these benefits will be passed on

to consumers in the form of lower prices. Ifall of the benefits are passed on to consumers, the duopolists

may not have an incentive to invest foranypositive value ofK(c). This is the Bertrand investment paradox

that we discussed in the introduction.

Let ct be the marginal cost of production under the state-of-the-art production technology at timet.

Each period the firms simultaneously face a simple binary investment decision: firmj can decide not to
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invest and continue to produce using its existing production facility at the marginal costc jt . Or firm j can

pay the investment costK(c) in order to acquire the state-of-the-art production plant which will allow it to

produce at the marginal costct .

Given that there is a one period lag to build the new production facility, if a firm does invest at the

start of periodt, it will not be able to produce using its new state-of-the-art production facility until period

t + 1. If there has been no improvement in the technology since the time firm 1 acquired its production

machinery, thenc1t = ct , and similarly for firm 2. If there has been a technological innovation since either

firm acquired their current production facilities, we havec jt > ct . Thus, in general the state spaceS for

this model is a cone inR3, S= {(c1,c2,c)|c1 ≥ c andc2 ≥ c}.

Suppose that both firms believe that the technology for producing the good evolves stochastically

and that the state-of-the-art marginal cost of productionct evolves according to a Markov process with

transition probabilityπ(ct+1|ct). Specifically, suppose that with probabilityp(ct) we havect+1 = ct (i.e.

there is no improvement in the state-of-the-art technologyat t + 1), and with probability 1− p(ct) the

technology does improve, so thatct+1 < ct andct+1 is a draw from some distribution over the interval[0,ct ].

An example of a convenient functional form for such a distribution is the Beta distribution. However for

the general presentation of the model, making specific functional form assumptions aboutπ is not required.

For example, suppose the probability of a technological improvement is

p(ct) =
.01ct

1+ .01ct
. (3)

The timing of events in the model is as follows. At the start oftime t each firm learns the current

value ofct and decides whether or not to invest. Both firms know each other’s marginal cost of production,

i.e. there is common knowledge of(c1t ,c2t). Each firm also knows that the cost of buying the current

state-of-the-art technologyK(ct), but each firm also incurs idiosyncratic “disruption costs”εt = (ε0t ,ε1t)

associated with each of the choices of not to invest (ε0t ) and investing (ε1t ).

These costs, if negative, can be interpreted as benefits to investing. Benefits may include things such as

temporary price cuts in the investment costK(c), tax benefits, or government subsidies that are unique to

each firm. Letηε1
t be the idiosyncratic disruption costs involved in acquiring the state-of-the-art production

technology for firm 1, and letηε2
t be the corresponding costs for firm 2, whereη is a scaling parameter.

For tractability, we assume that(ε1
t ,ε2

t ) is an IID Type 1 bivariate extreme value process, and that

each firm knows its own idiosyncratic cost to investment shock, but does does not know it’s opponent’s

idiosyncratic investment cost shocks. However we assume both firms have common knowledge of the
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stochastic process for these idiosyncratic investment costs, and believe that they evolve as anIID Type

1 extreme value process, and both knowη. After each firm independently and simultaneously decides

whether or not to invest in the latest technology, the firms then make a decision of which prices to sell their

products at, where production is done in periodt with their existing production machinery.

The one period time-to-build assumption implies that even if both firms invest in new production

machinery at timet, their marginal cost of production in periodt arec1t andc2t , respectively, since they

have to wait until periodt+1 for the new machinery to be installed, and must produce in period t using their

old machines that they already have in place. However in period t +1 we havec1,t+1 = ct andc2,t+1 = ct ,

since in periodt +1 the new plants the firms purchased in periodt have now become operational. Notice

that these new plants reflect the state-of-the-art production costct from periodt when they ordered the

new machinery. Meanwhile further technological progress could have occurred that drives downct+1 to a

value even lower thanct .

2.3 Solution Concept

Assume that the two firms are expected discounted profit maximizers and have a common discount factor

β ∈ (0,1). The relevant solution concept that we adopt for this dynamic game between the two firms is the

by now standard concept ofMarkov-perfect equilibrium(MPE).

In a MPE, the firms’ investment and pricing decision rules arerestricted to be functions of the current

state, which is(c1t ,c2t ,ct). If there are multiple equilibria in this game, the Markovian assumption restricts

the “equilibrium selection rule” to depend only on the current value of the state variable. We will discuss

this issue further below.

To derive the equations characterizing the Markov-perfectequilibrium, we now drop the time sub-

scripts. We will be focusing initially on a symmetric investment situation where each firm faces the same

costK(c) of investment. However it is straightforward to modify the problem to allow one of the firms to

have aninvestment cost advantage.In this case there would be two investment cost functions,K1 andK2,

and firm 1 would have an investment cost advantage ifK1(c)≤ K2(c) for all c≥ 0.

Suppose the current (mutually observed) state is(c1,c2,c), i.e. firm 1 has a marginal cost of production

c1, firm 2 has a marginal cost of productionc2, and the marginal cost of production using the current best

technology isc. Since we have assumed that the two firms can both invest in thecurrent best technology

at the same costK(c), it is tempting to conjecture that there should be a “symmetric equilibrium” where

10



by “symmetric” we mean an equilibrium where the decision rule and value function for firm 1 depends on

the state(c1,c2,c), and similarly for firm 2, and these value functions and decision rules areanonymous

(also calledexchangeable) in the sense that

V1(c1,c2,c,ε0,ε1) =V2(c2,c1,c,ε0,ε1) (4)

whereV1(c1,c2,c,ε0,ε1) is the value function for firm 1 when the mutually observed state is (c1,c2,c),

and the privately observed costs/benefits for firm 1 for investing and not investing in the current state-of-

the-art technology areε0 andε1, respectively, andV2 is the corresponding value function for firm 2. It is

important to note that in both functionsV1 andV2, the first argument refers to firm 1’s marginal cost of

production of firm 1, and the second argument to the marginal cost of firm 2.

What the symmetry condition in equation (4) says, is that thevalue function for the firms only depends

on the values of the state variables, not on their identitiesor the arbitrary labels “firm 1” and “firm 2”. Thus

if firm 1 has cost of productionc1 and firm 2 has cost of productionc2, and if both firms were to have the

same private cost/benefit values of investing/not investing of (ε0,ε1), respectively, then the expected profits

firm 1 would expect would be the same as what firm 2 would expect for the state vector(c2,c1,c,ε0,ε1),

where we switch the order of the first two argumentsc1 andc2. Conversely if firm 2 had marginal cost of

productionc1 and firm 1 had marginal cost of productionc2, then firm 2’s expected discounted profits in

this state are the same as the discounted profits firm 1 could expect if these marginal costs were swapped

(i.e. if firm 1 had marginal cost of productionc1 and firm 2 had marginal cost of productionc2).

Unfortunately, we will show below that there are interesting equilibria in the game for which the

symmetry condition doesnot hold. In these equilibria, the nature of the equilibrium selection rules does

confer distinct identities to the two firms, so their “labels” matter and the symmetry condition (4) does

not hold. Instead, it is necessary to keep track of the separate value functionsV1 andV2 in order to

correctly compute the equilibria of the game. We will refer to these equilibria asasymmetric equilibriato

distinguish them fromsymmetric equilibriawhere the symmetry condition (4) holds. We will show that

the “interesting” equilibria of this model, including the various types of equilibria with leap frogging, are

asymmetric.

Now, assume that the cost/benefits from investing or not investing (εi
0t ,εi

1t) for each firmi = 1,2 are

private information to each firm and areIID over time and are alsoIID across the two firms, and both

firms have common knowledge that these shocks have an extremevalue distribution with a common scale
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parameterη as noted above. Then we can show that the value functionsV i, i = 1,2 take the form

V i(c1,c2,c,εi
0,ε

i
1) = max[vi

0(c1,c2,c)+ηεi
0,v

i
1(c1,c2,c)+ηεi

1] (5)

where vi
0(c1,c2,c) is the expected value to firmi if it does not invest in the latest technology, and

vi
1(c1,c2,c) is the expected value to firmi if it does invest.

Let r1(c1,c2) be the expected profits that firm 1 earns in a single period equilibrium play of the

Bertrand-Nash pricing game when the two firms have costs of productionc1 andc2, respectively. Note

that the static Bertrand-Nash price equilibriumis symmetric. That is, firm 2’s single period profits when

marginal costs of firms 1 and 2 are(c1,c2), respectively, is given byr2(c1,c2) = r1(c2,c1). That is, the

profits firm 2 can earn in state(c1,c2) are the same as what firm 1 can earn in state(c2,c1). However in

order to maintain notational consistency, we will letr i(c1,c2) denote the profits earned by firmi when the

marginal costs of production of firms 1 and 2 are(c1,c2), respectively. In the limiting “pure Bertrand”

case (i.e. where consumer demand is infinitely elastic) we have

r1(c1,c2) =







0 if c1 ≥ c2

max[c1,c2]−c1 otherwise
(6)

It is easy to verify directly in this case that the symmetry condition holds for the payoff functionsr1 and

r2, and also it is clear that whenc1 = c2 we haver1(c1,c2) = r2(c1,c2) = 0.

The formula for the expected profits associated withnot investing (after taking expectations over player

i’s privately observed idiosyncratic shocks(ε0,ε1) but conditional on the publicly observed state variables

(c1,c2,c)) is given by:

vi
0(c1,c2,c) = r i(c1,c2)+βEVi(c1,c2,c,0). (7)

EVi(c1,c2,c,0) denotes firmi’s conditional expectation of its next period value functionV i(c1,c2,c,εi
0,ε

i
1)

given that it does not invest this period, conditional on(c1,c2,c).

The formula for the expected profits associated with investing (after taking conditional expectations

over firm i’s privately observed idiosyncratic shocks(εi
0,ε

i
1) but conditional on the publicly observed state

variables(c1,c2,c)) ) is given by

vi
1(c1,c2,c) = r i(c1,c2)−K(c)+βEVi(c1,c2,c,1) (8)

whereEVi(c1,c2,c,1) is firm i’s conditional expectation of its next period value functionV i(c1,c2,c,εi
0,ε

i
1)

given that it invests, conditional on(c1,c2,c).
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To compute the conditional expectationsEVi(c1,c2,c,0) andEVi(c1,c2,c,1) we invoke a well known

trick and property of the extreme value family of random variables — “max stability” (i.e. a family of

random variables closed under the max operator). The max-stability property implies that the expectation

over the idiosyncraticIID cost shocks(εi
0,εi

1) is given by the standard “log-sum” formula when these

shocks have the Type-III extreme value distribution. Thus,after taking expectations over(εi
0,ε

i
1) in the

equation forV i in (5) above, we have

∫
εi

0

∫
εi

1

V i(c1,c2,c,εi
0,ε

i
1, j)q(εi

0)q(ε
i
1)dεi

1dεi
0 = η log

[

exp{vi
0(c1,c2,c)/η}+exp{vi

1(c1,c2,c)/η}
]

, (9)

where j ∈ {0,1}.

The log-sum formula provides a closed form expression for the conditional expectationV i(c1,c2,c,εi
0,ε

i
1)

for each firmi, whereV i is the maximum of the value of not investingj = 0 or investingj = 1 as we can

see from equation (5) above. This means that we do not need to resort to numerical integration to compute

the double integral in the left hand side of equation (9) withrespect to the next-period values of(εi
0,ε

i
1).

However we do need to compute the two functionsvi
0(c1,c2,c) andvi

1(c1,c2,c) for both firmsi = 1,2. We

will describe one algorithm for doing this below.

To simplify notation, we letφ(vi
0(c1,c2,c),vi

1(c1,c2,c)) be the log-sum formula given above in equa-

tion (9), that is defineφ as

φ(vi
0(c1,c2,c),v

i
1(c1,c2,c))≡ η log

[

exp{vi
0(c1,c2,c)/η}+exp{vi

1(c1,c2,c)/η}
]

. (10)

Theφ function is also sometimes called the “smoothed max” function since we have

lim
η→0

φ(v0,v1) = max[v0,v1] . (11)

Further, for anyη > 0 we haveφ(v0,v1)> max[v0,v1].

Let P1
1(c1,c2,c) be firm 2’s belief about the probability that firm 1 will investif the mutually observed

state is(c1,c2,c). Firm 1’s investment decision is probablilistic from the standpoint of firm 2 because firm

1’s decision depends on the cost benefits/shocks(ε1
0,ε1

1) that only firm 1 observes. But since firm 2 knows

the probability distribution of these shocks, it can calculateP1
1 as the following binary logit formula

P1
1(c1,c2,c) =

exp{v1
1(c1,c2,c)/η}

exp{v1
1(c1,c2,c)/η}+exp{v1

0(c1,c2,c)/η}
(12)

Firm 2’s belief of firm 1’s probability of not investing,P1
0(c1,c2,c) is of course simply 1−P1

1(c1,c2,c).
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Firm 1’s belief of the probability that firm 2 will invest,P2
1(c1,c2,c), is given by

P2
1(c1,c2,c) =

exp{v2
1(c1,c2,c)/η}

exp{v2
1(c1,c2,c)/η}+exp{v2

0(c1,c2,c)/η}
(13)

If the symmetry condition holds, then we haveP2
1(c1,c2,c) = P1

1(c2,c1,c).

Now we are in position to write the recursion formulas for theconditional expectationsEVi(c1,c2,c,0)

andEVi(c1,c2,c,1), corresponding to firmi not investing and investing, respectively. For firm 1 we have:

EV1(c1,c2,c,0) =
∫ c

0

[

P2
1(c1,c2,c)H

1(c1,c,c
′)+ (1−P2

1(c1,c2,c))H
1(c1,c2,c

′)
]

π(dc′|c)

EV1(c1,c2,c,1) =

∫ c

0

[

P2
1(c1,c2,c)H

1(c,c,c′)+ (1−P2
1(c1,c2,c))H

1(c,c2,c
′)
]

π(dc′|c)

EV2(c1,c2,c,0) =
∫ c

0

[

P1
1(c1,c2,c)H

2(c,c2,c
′)+ (1−P1

1(c1,c2,c))H
2(c1,c2,c

′)
]

π(dc′|c)

EV2(c1,c2,c,1) =

∫ c

0

[

P1
1(c1,c2,c)H

2(c,c,c′)+ (1−P1
1(c1,c2,c))H

2(c,c2,c
′)
]

π(dc′|c), (14)

whereH1 andH2 are given by

H1(c1,c2,c) = φ(v1
0(c1,c2,c),v

1
1(c1,c2,c))

H2(c1,c2,c) = φ(v2
0(c1,c2,c),v

2
1(c1,c2,c)). (15)

Substituting these expressions into the equations (7) and (8) definingvi
0 andvi

1 respectively, results in the

following set of recursive equations for the equilibrium

v1
0(c1,c2,c) = r1(c1,c2)+β

∫ c

0

[

P2
1(c1,c2,c)φ(v1

0(c1,c,c
′),v1

1(c1,c,c
′))

(1−P2
1(c1,c2,c))φ(v1

0(c1,c2,c
′),v1

1(c1,c2,c
′))

]

π(dc′|c).

v1
1(c1,c2,c) = r1(c1,c2)−K(c)+β

∫ c

0

[

P2
1(c1,c2,c)φ(v1

0(c,c,c
′),v1

1(c,c,c
′))

(1−P2
1(c1,c2,c))φ(v1

0(c,c2,c
′),v1

1(c,c2,c
′))

]

π(dc′|c). (16)

v2
0(c1,c2,c) = r1(c2,c1)+β

∫ c

0

[

P1
1(c1,c2,c)φ(v2

0(c,c2,c
′),v2

1(c,c2,c
′))

(1−P1
1(c1,c2,c))φ(v2

0(c1,c2,c
′),v2

1(c1,c2,c
′))

]

π(dc′|c).

v2
1(c1,c2,c) = r1(c2,c1)−K(c)+β

∫ c

0

[

P1
1(c1,c2,c)φ(v2

0(c,c,c
′),v2

1(c,c,c
′))

(1−P1
1(c1,c2,c))φ(v2

0(c1,c,c
′),v2

1(c1,c,c
′))

]

π(dc′|c). (17)

These are the functional equations that need to be solved to compute a Markov-perfect equilibrium to this

dynamic duopoly investment problem.
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To our knowledge, there is no analytic closed-form solutionto the set of functional equations (16) and

(17). Instead, in the remainder of this paper we attempt to solve them by a modified method of successive

approximations using numerical interpolation and quadrature to undertake the calculations in equations

(16) and (17). Once solutions are calculated, the model can be simulated to reveal the behavior implied by

this dynamic extension of the Bertrand model.

Although the system appears to resemble a pair of “Bellman equations” (one for firm 1 and one for firm

2) and the Bellman equation typically has a unique solution,in this case the resemblance is only superficial.

We will show below that the set of functional equations (16) and (17) isnot a type of contraction mapping.

So far from having a unique solution, there can be many different solutions to equations (16) and (17). The

various solutions to these equations correspond to different equilibria of the dynamic duopoly game.

Another implication of the fact that equations (16) and (17)do not define the equilibrium values of the

two firms as a fixed point to a contraction mapping is that the method ofsuccessive approximations(also

known as backward induction) — is not guaranteed to converge. However it is easy to see that if successive

aproximations does converge, it converges a fixed point of the functional equations (16) and (17), and

thus to a particular equilibrium of the dynamic game. We willshow that the successive approximations

algorithm can converge, but it will converge to different equilibria depending on theequilibrium selection

rule we use to select an equilibrium in the investment “stage game” and also on the values from which

the algorithm is intialized. We do not yet have a way to fully characterizeall equilibria of this game, or

bound the possible set of payoffs to consumers and the two firms. In contrast, the literature on theFolk

Theoremin repeated games has succeeded in characterizing the set ofpossible equilibria and bounds on

the set of equilibrium payoffs. We hope that eventually bounds and better characterization theorems can

be estasblished for the class of dynamic games we consider here.

3 Solving the “End Game”

Under our assumptions the Markov process governing exogenous improvements in production technology

has an absorbing state, where we assume (without loss of generality) that the minimum possible production

cost isc= 0. This is also the absorbing state of the game, so that once costs of the firms reach zero, they

can go no lower, and there is no forgetting or knowledge depreciation in our model that would ever cause

them to go back up in the future.
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3.1 The(0,0,0) End Game

The simplest “end game” corresponds to the state(0,0,0), i.e. when the zero cost absorbing has been

reached and both firms have adopted this state-of-the-art production technology. In the absence of random

IID shocks(εi
0,ε

i
1) corresponding to investing or not investing, respectively, neither of the firms would

have any further incentive to invest since we assume there isis no depreciation in their capital stock, and

they have both already achieved the lowest possible state-of-the-art production technology.

In the absence of privately observed idiosyncratic shocks,(εi
0,ε

i
1), i = 1,2 (i.e. whenη = 0), the

(0,0,0) end game would simply reduce to an infinite repetition of the zero-price, zero-profit Bertrand

equilibrium outcome. No further investment would occur. Thus if this state were ever reached via the

equilibrium path, the Bertrand investment paradox will hold, but in a rather trivial sense. There is no point

in investing any further once technology has attained the lowest possible marginal cost of production,c= 0

since in this absorbing state the investment cannot enable one of the firms to leap frog its opponent.

When there are idiosyncratic shocks affecting investment decisions, there may be some short term

reason (e.g. a temporary investment tax credit) that would induce one or both of the firms to invest, but

such investments would be purely idiosyncratic unpredictable events with no real strategic consequence to

their opponent, since the opponent has already achieved theminimum cost of production and thus, there is

no further possibility of leap frogging its opponent. In this zero-cost absorbing state the equations for the

value functions(vi
0,v

i
1) can be solved “almost” analytically.

vi
0(0,0,0) = r i(0,0)+βP∼i

1 (0,0,0)φ(vi
0(0,0,0),v

i
1(0,0,0))

+ β[1−P∼i
1 (0,0,0)]φ(vi

0(0,0,0),v
i
1(0,0,0))

= r i(0,0)+βφ(vi
0(0,0,0),v

i
1(0,0,0)) (18)

whereP∼i
1 (0,0,0) is a shorthand for firmi’s opponent’s probability of investing,

P∼i
1 (0,0,0) =

exp{v∼i
1 (0,0,0)/η}

exp{v∼i
0 (0,0,0)/η}+exp{v∼i

1 (0,0,0)/η}
(19)

Due to the fact that(0,0,0) is an absorbing state, it can be easily shown that the value ofinvesting,

vi
1(0,0,0), is given by

vi
1(0,0,0) = vi

0(0,0,0)−K(0), (20)

which implies via equation (19) that

P∼i
1 (0,0,0) =

exp{−K(0)/η}
1+exp{−K(0)/η}

. (21)
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Thus, asη → 0, we haveP∼i
1 (0,0,0)→ 0 andvi

0(0,0,0) = r i(0,0)/(1−β), and in the limiting case where

the two firms are producing perfect substitutes, thenr i(0,0) = 0 andvi
0(0,0,0) = 0. For positive values of

η we have

vi
0(0,0,0) = r i(0,0)+βφ(vi

0(0,0,0),v
i
0(0,0,0)−K(0)). (22)

This is a single non-linear equation for the single solutionvi
0(0,0,0). The derivative of the right hand side

of this equation with respect tovi
0(0,0,0) is 1 whereas the derivative of the right hand side is strictlyless

than 1, so ifr i(0,0) > 0, this equation has a unique solutionvi
0(0,0,0) that can be computed by Newton’s

method.

Note that symmetry property forr i(0,0) implies that symmetry also holds in the(0,0,0) end game:

v1
0(0,0,0) = v2

0(0,0,0) andv1
1(0,0,0) = v2

1(0,0,0).

3.2 The(c,0,0) End Game

The next simplest end game state is(c,0,0). This is where firm 1 has not yet invested to attain the state-

of-the-art zero cost plant, and instead has an older plant with a positive marginal cost of productionc.

However firm 2 has invested and has attained the lowest possible marginal cost of production 0. In the

absence of stochastic shocks, in the limiting Bertrand case, it is clear that firm 1 would not have any

incentive to invest since the investment would not allow it to leap frog its opponent, but only to match

its opponent’s marginal cost of production. But doing this would unleash Bertrand price competition and

zero profits for both firms. Therefore for any positive cost ofinvestmentK(0) firm 1 would choose not

to invest, leaving firm 2 to have a permanent low cost leader position in the market and charge a price of

p= c.

In the case with stochastic shocks, just as in the(0,0,0) endgame analyzed above, there may be

transitory shocks that would induce firm 1 to invest and thereby match the 0 marginal cost of production

of its opponent. However this investment is driven only by stochasticIID shocks and not by any strategic

considerations, given that once the firm invests, it will generally not be in much better situation than if

it had not invested (that is, even thoughr1(0,0) > r1(c,0), both of these will be close to zero and will

approach zero asη ↓ 0). In the general case whereη > 0 we have

v1
0(c,0,0) = r1(c,0)+βφ(v1

0(c,0,0),v
1
1(c,0,0))

v1
1(c,0,0) = r1(c,0)−K(0)+βφ(v1

0(0,0,0),v
1
1(0,0,0)). (23)
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Note that the solution forv1
1(c,0,0) in equation (23) is determined from the solutions(v1

0(0,0,0),v
1
1(0,0,0))

to the(0,0,0) endgame in equations (22) and (20) above. Substituting the resulting solution forv1
1(c,0,0)

into the first equation in (23) results in another nonlinear equation with a single unique solutionv1
0(c,0,0)

that can be computed by Newton’s method. Note that, as we showbelow, the probability that firm 2 invests

in this case,P2
1(c,0,0) is given by

P2
1(c,0,0) =

exp{−K(0)/η}
1+exp{−K(0)/η}

(24)

since firm 2 has achieved the lowest possible cost of production and its decisions about investment are

governed by the same idiosyncratic temporary shocks, and result in the same formula for the probability

of investment as we derived above in equation (21) for the(0,0,0) endgame.

It is not hard to see that the symmetry condition holds in the(c,0,0) end game as well:v2
0(c,0,0) =

v1
0(0,c,0), andv2

1(c,0,0) = v1
1(0,c,0), where the solutions for the latter functions are presentedbelow.

3.3 The(0,c,0) End Game

In this end game, firm 1 has achieved the lowest possible cost of productionc= 0 but firm 2 hasn’t yet. Its

marginal cost of production isc> 0. Clearly firm 1 has no further incentive to invest since it has achieved

the lowest possible cost of production. However in the presence of random cost shocks (i.e. in the case

whereη > 0), firm 1 will invest if there are idiosyncratic shocks that constitute unpredictable short term

benefits from investing that outweigh the cost of investmentK(0). But since this investment confers no

long term strategic advantage in this case, the equations for firm 1’s values of not investing and investing,

respectively, differ only by the cost of investmentK(0). That is,

v1
1(0,c,0) = v1

0(0,c,0)−K(0). (25)

The equation forv1
0(0,c,0) is more complicated however, due to the chance that firm 2 might invest,

P2
1(0,c,0). We have

v1
0(0,c,0) = r1(0,c) + βP2

1(0,c,0)φ(v
1
0(0,0,0),v

1
0(0,0,0)−K(0))

+ β[1−P2
1(0,c,0)]φ(v

1
0(0,c,0),v

1
0(0,c,0)−K(0)). (26)
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The probability that firm 2 will invest,P2
1(0,c,0) is given by

P2
1(0,c,0) =

exp{v2
1(0,c,0)/η}

exp{v2
1(0,c,0)/η}+exp{v2

0(0,c,0)/η}

=
exp{v1

1(c,0,0)/η}
exp{v1

1(c,0,0)/η}+exp{v1
0(c,0,0)/η}

, (27)

where we used the symmetry condition thatv2
j (0,c,0) = v1

j (c,0,0), j = 0,1. Using the solution for

v1
0(c,0,0) and v1

1(c,0,0)) in the (c,0,0) end game in equation (23) above, these solutions can be sub-

stituted into equation (27) to obtain the probability that firm 2 invests, and then this probability can be

substituted into equation (26) to obtain a unique solution for v1
0(0,c,0), and finally the value of investing

v1
1(0,c,0) is given by equation (25).

Once again, it is not hard to see that the symmetry condition holds in the (0,c,0) end game:

v2
0(0,c,0) = v1

0(c,0,0) andv2
1(0,c,0) = v1

1(c,0,0).

3.4 The(c1,c2,0) End Game

The final case to consider is the end game where both firms have positive marginal costs of production,c1

andc2, respectively. We will show that in this end game, asymmetric equilibrium solutions are possible.

We begin by showing how to solve the equations for the values to firm 1 of not investing and investing,

respectively, which reduce to

v1
0(c1,c2,0) = r1(c1,c2) + βP2

1(c1,c2,0)φ(v1
0(c1,0,0),v

1
1(c1,0,0))

+ β[1−P2
1(c1,c2,0)]φ(v1

0(c1,c2,0),v
1
1(c1,c2,0))

v1
1(c1,c2,0) = r1(c1,c2)−K(0) + βP2

1(c1,c2,0)φ(v1
0(0,0,0),v

1
1(0,0,0))

+ β[1−P2
1(c1,c2,0)]φ(v1

0(0,c2,0),v
1
1(0,c2,0)). (28)

Given the equation forv1
1(c1,c2,0) in equation (28) depends on known quantities on the right hand side (the

values forv1
0 andv1

1 inside theφ functions can be computed in the(0,0,0) and(0,c,0) end games already

covered above), we can treatv1
1(c1,c2,0) as a linear function ofP2

1 which is not yet “known” because it

depends on(v2
0(c1,c2,0),v2

1(c1,c2,0)) via the identity:

P2
1(c1,c2,0) =

exp{v2
1(c1,c2,0)/η}

exp{v2
0(c1,c2,0)/η}+exp{v2

1(c1,c2,0)/η}
. (29)

We writev1
1(c1,c2,0,P2

1) to remind the reader that it can be viewed as an implicit function of P2
1 : this is

the value ofv1
1 that satisfies equation (28) for an arbitrary value ofP2

1 ∈ [0,1]. Substituting this into the
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equation forv1
0, the top equation in (28), there will be a unique solutionv1

0(c1,c2,0,P2
1) for anyP2 ∈ [0,1]

since we have already solved for the values(v1
0(c1,0,0),v1

1(c1,0,0)) in the(c,0,0) end game (see equation

(23) above). Using these values, we can write firm 1’s probability of investingP1
1(c1,c2,0) as

P1
1(c1,c2,0,P

2
1) =

exp{v1
1(c1,c2,0,P2

1)/η}
exp{v1

0(c1,c2,0,P2
1)/η}+exp{v1

1(c1,c2,0,P2
1)/η}

. (30)

Now, the values for firm 2(v2
0(c1,c2,0),v2

1(c1,c2,0)) that determine firm 2’s probability of investing in

equation (29) can also be written as functions ofP1
1 for any P1

1 ∈ [0,1]. This implies that we can write

firm 2’s probablity of investing as a function of its perceptions of firm 1’s probability of investing, or as

P2
1(c1,c2,0,P1

1). Substituting this formula forP2
1 into equation (30) we obtain the following fixed point

equation for firm 1’s probability of investing

P1
1 =

exp{v1
1(c1,c2,0,P2

1(c1,c2,0,P1
1))/η}

exp{v1
0(c1,c2,0,P2

1(c1,c2,0,P1
1))/η}+exp{v1

1(c1,c2,0,P2
1(c1,c2,0,P1

1))/η}
. (31)

3.5 End Game Equilibrium Solutions

By Brouwer’s fixed point theorem, at least one solution to thefixed point equation (31) exists. Further,

whenη> 0, the objects entering this equation (i.e. the value functionsv1
0(c1,c2,0,P2

1),v
1
1(c1,c2,0,P2

1),v
2
0(c1,c2,0,P1

1),v
2
1(c1,

and the logit choice probability functionP2
1 are allC∞ functions ofP2

1 andP1
1 , and standard topological

index theorems be applied to show that for almost all values of the underlying parameters, there will be

an odd number of separated equilibria. Further, asη → 0, the results of Harsanyi (1973) as extended to

dynamic Markovian games by Doraszelski and Escobar (2009) show thatη serves as a “homotopy param-

eter” and for sufficiently smallη the set of equilibria to the “perturbed” game of incomplete information

converge to the limiting game of complete information.

However rather than using the homotopy approach, we found wewere able to directly solve for equi-

libria of the problem in the limiting pure Bertrand case whereη = 0 andσ= 0. The caseσ= 0 corresponds

to the case where demand is perfectly elastic and all consumers buy from the firm with the lower price,

and the caseη = 0 corresponds to the situation where there are no random shocks affecting the returns to

investing or not investing in the state-of-the-art production technology.

We find that there are either 1 or 3 equilibria in the(c1,c2,0) end game, depending on the values of the

parameters. The trivial equilibrium is a no-investment equilibrium that occurs when the cost of investment

K(0) is too high relative to the expected cost savings, and neither firm invests in this situation. However

20



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

End Game Equilibria
(c

1
,c

2
)=(0.714286,2.14286) k=7 beta=0.95

Firm 1’s probability of investing

2n
d 

or
de

r 
be

st
 r

es
po

ns
e 

fu
nc

tio
n

Figure 1 End Game Equilibria

wheneverK(0) is below a critical threshold, there will be 3 equilibria to the end game: two pure strategy

equilibria and an intermediate mixed strategy equilibrium.

It turns out that the investment game is isomorphic to acoordination game.The two pure strategy

equilibria correspond to outcomes where firm 1 invests and firm 2 doesn’t and firm 2 invests and firm 1

doesn’t. The mixed strategy equilibrium corresponds to thesituation where firm 1 invests with probability

π1 and firm 2 invests with probabilityπ2. It is not hard to see that whenc1 = c2 the game is fully symmetric

and we haveπ1 = π2. However whenc1 6= c2, then the game is asymmetric andπ1 6= π2. In general, we

can show thatc1 > c2 implies thatπ1 > π2, i.e. the cost-follower has a greater probability of investing and

leap frogging the low-cost leader.Further, from the standpoint of the firms, the mixed strategyequilibrium

is the “bad” equilibrium. In the symmetric case,c1 = c2, the mixed strategy results in zero expected profits

for both firms, whereas each of the pure strategy equilibria result in positive profits for the investing firm.

In the asymmetric case, the low cost leader reaps a positive profit until one or the other of the firms invests

in the state-of-the-art production technology, and earns zero profits thereafter.

Figure 1 plots the equilibria computed by plotting the best response function in equation (31) against

the 45 degree line. We see that firm 1 is the low-cost leader with a substantially lower marginal cost of

production than firm 2. In the mixed strategy equilibrium, firm 1 invests with probability 0.484, whereas

the firm 2, the high cost follower, invests with probability 0.82. Thus, the high cost follower has a signifi-

cantly higher chance of leap frogging its rival to attain theposition of low cost leadership. This leadership

is permanent (unless the firms happen to simultaneously invest) since by assumption, the production tech-
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nology has reached the zero marginal cost absorbing state and there can be no further future improvements

in production cost.

To get further insight into the potentially counterintuitive finding that the low cost leader has alower

probability of investing than the high cost follower, consider the payoff matrix for the simultaneous move

game in investment decisions by firms 1 and 2 in state(c1,c2,c) below. This matrix is for the special

case of the pure Bertrand case where the two firms produce perfect substitutes (σ = 0) and there are

no unobserved shocks to the investment decisions (η = 0). Further, we show the payoff matrix in the

asymmetric equilibrium case wherec1 > c2, i.e. firm 2 is the low cost leader and firm 1 is the high cost

follower.

Firm 1

Firm 2

Invest Don’t Invest

Invest −K,c1−c2−K βc2/(1−β)−K,c1−c2

Don’t Invest 0,c1−c2+βc1/(1−β)−K βV1,c1−c2+βV2

Figure 1: End Game Payoff Matrix in state(c1,c2,0) with c1 > c2

To understand the formulas for the payoffs, it is easiest to start with the upper left hand corner of

the payoff matrix when both firms decide to invest. In this case, since both firms attain the state-of-the-

art marginal cost ofc = 0, Bertrand competition insures that both firms earn zero profits following the

investment, which costsK today. Since firm 2 is the low cost leader, it earns a profit ofc1 − c2 in the

current period, less its investment costK, and zero profits thereafter, so its payoff isc1−c2−K. Firm 1 is

the high cost follower so it earns zero profits in the current period, incurs the investment costK, and earns

zero profits thereafter, so its payoff is just−K.

In the upper right hand corner, we have the payoffs in the event firm 1 invests and firm 2 doesn’t. In

this case, once firm 1 has acquired the 0 marginal cost state-of-the-art production technology, it can charge

a price ofc2, the marginal cost of production of its rival. Once firm 1 has attained this position, firm 2 will

clearly never have an incentive to try to invest in the future, so this investment will result in firm 1 having

leap frogged firm 2 to attainpermanentlow-cost leadership. Since the profits it will earn come witha one

period delay (due to the time to install the new production machinery), firm 1’s discounted profits after

the investment cost areβc2/(1−β)−K. Firm 2 will earn profits ofc2−c1 in the current period but zero

profits thereafter.

22



In the lower left hand corner are the payoffs when firm 2 invests and firm 1 doesn’t. In this case firm 2

invests and pre-empts firm 1 from undertaking any future investments and thereby improves its profitability

and ensures that it has permanent low cost leadership. Its profits are given byc2− c1+βc1/(1−β)−K,

since firm 2 will be able to set a price equal to the marginal cost of its rival, c1 and will have 0 marginal

costs of production following its investment. However in the current period, while the new machinery is

being installed and firm 2 is still producing with its existing machinery with marginal costc2, firm 2 will

earn profits ofc1 − c2 and will have to pay the investment costK. Firm 1 will earn zero profits in the

current period and 0 profits in every future period after firm 2invests, so its payoff is 0.

The remaining case to consider is the lower right hand squareof the payoff matrix, covering the case

where neither firm invests. While it is tempting to write the payoffs as simply 0 for firm 1 (since it is

the high cost follower and earns zero profits in the current period), andc1−c2 for firm 2, this calculation

of the payoffs would be incorrect since it ignores the value of the future option to invest.If both firms

are playing a stationary, mixed strategy equilibrium, thenin any future period where neither of the two

firms have invested yet, the firms will continue to have the same strategy of investing with probabilityπ1

for firm 1 andπ2 for firm 2. LetV1(π1,π2) denote the expected present value of profits of firm 1 under

this stationary mixed strategy equilibrium andV2(π1,π2) be the corresponding expected present value of

profits for firm 2,in the event that neither firm invests.For firm 1 we have

V1 = 0+βV1 (32)

which implies thatV1 = 0. Since firm 1’s expected payoffs are zero when it doesn’t invest regardless of

whether firm 2 invests or not, this implies that if firm 2 invests with probabilityπ2, the expected payoff to

firm 1 from investing must also be 0, so we have

−Kπ2+(1−π2)[βc2/(1−β)−K] = 0, (33)

or

π2 =
βc2/(1−β)−K

βc2/(1−β)
. (34)

From this formula we see that firm probability of investing isan increasing function of its own marginal

costc2 and a decreasing function of the cost of investment,K, which seems emminently reasonable.

For firm 2 we have the following equation forV2

V2 = π1(c1−c2)+ (1−π1)(c1−c2+βV2) (35)
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which implies that

V2 =
c1−c2

1−β(1−π1)
. (36)

In order for firm 2 to be willing to pay a mixed investment strategy, its expected return from investing must

also be equal toV2, so we have

V2 = π1(c1−c2−K)+ (1−π1)(c1−c2+βc1/(1−β)−K). (37)

Combining equations (36) and (37) into a single equation forthe unknownπ1, we can solve this quadratic

equation, taking the positive root and ignoring the negative one.

Lemma 3.1. If c1 > c2 > 0 and K< βc2
1−β , then in the unique mixed strategy equilibrium of the pure

Bertrand dynamic investment and pricing game in state(c1,c2,0) we haveπ1 > π2.

The proof of Lemma 3.1 is provided in the appendix. This result provides a first taste of the possibility

of leap frogging since the high cost leader has a higher probability of investing to become the (permanent)

low cost leader with the state-of-the-art plant with zero marginal costs of production. However the co-

ordination between the two firms in the mixed strategy equilibrium is far from desirable, since it implies

a positive probability of inefficient simultaneous investment by the two firms. The question is, can more

efficient coordination mechanisms be established as equilibria to the full game?

4 Solving the Full Game

With the end game solutions in hand, we are now ready to proceed to discuss the solution of the full game.

The end game equilibria give us some insight into what can happen in the full game, but the possibilities in

the full game are much richer, since unlike in the end game, ifone firm leap frogs its opponent, the game

does not end, but rather the firms must anticipate additionalleap frogging and cost reducing investments

in the future. In particular, forms ofdynamic coordinationmay be possible that are not present in the end

game, which is closer to a “two stage” game than to an infinite horizon game.

We will assume initiallydeterministicequilibrium selection rules, i.e. a function that picks outone of

the set of equilibria in each possible state of the game,(c1,c2,c). We now wish to analyze how different

state-contingent equilibrium selection rules can supporta wider range of equilibria in the full game, includ-

ing a pattern of dynamic coordination between alternating pure strategy equilibria that we have referred to

as leap frogging.
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Specifically, we will focus on the following class of equilibria to the full game:the cost follower invests

whenever the state-of-the-art production cost c falls sufficiently below the marginal cost of the cost-leader

to justify the investment cost K(c), otherwise no investment occurs.In order to “enforce” this equilibrium,

we rely on a “credible threat” analogous to threats of a “price war” in the literature on tacit collusion in

supergames. Specifically, if the low cost leader should everbecome too “greedy” and invest when it is

not “its turn”, then firm 2 will respond by investing. By simultaneously investing, the firms will move

to the symmetric statec1 = c2 = c where the equilibrium prescribes playing the “bad” mixed strategy

equilibrium. This results in zero expected profits and this can be a sufficient “punishment” to deter the low

cost leader from deviating from the implicit coordination that it should not invest when it is not its “turn.”

In order to solve the full game, i.e. the pair of functional equations (16) and (17), it is helpful to rewrite

them in the following way,

v1
0(c1,c2,c) = r1(c1,c2)+β

[

P2
1(c1,c2,c)H

1(c1,c,c)+ (1−P2
1(c1,c2,c))H

1(c1,c2,c)
]

(38)

v1
1(c1,c2,c) = r1(c1,c2)−K(c)+β

[

P2
1(c1,c2,c)H

1(c,c,c)+ (1−P2
1(c1,c2,c))H

1(c,c2,c)
]

(39)

where the functionH1 is given by

H1(c1,c2,c) = p(c)
∫ c

0
φ(v1

0(c1,c2,c
′),v1

1(c1,c2,c
′)) f (c′)dc′+(1− p(c))φ(v1

0(c1,c2,c),v
1
1(c1,c2,c)),

(40)

wherep(c) is the probability that a cost-reducing innovation will occur, andf (c′) is the density of the new

(lower) cost of production under the current state-of-the-art conditional on an innovation having occurred.

For completeness, we present the corresponding equation for firm 2 below.

v2
0(c1,c2,c) = r1(c2,c1)+β

[

P1
1(c1,c2,c)H

2(c,c2,c)+ (1−P1
1(c1,c2,c))H

2(c1,c2,c)
]

(41)

v2
1(c1,c2,c) = r1(c2,c1)−K(c)+β

[

P1
1(c1,c2,c)H

2(c,c,c)+ (1−P1
1(c1,c,c))H

2(c1,c,c)
]

(42)

where the functionH2 is given by

H2(c1,c2,c) = p(c)
∫ c

0
φ(v2

0(c1,c2,c
′),v2

1(c1,c2,c
′)) f (c′)dc′+(1− p(c))φ(v2

0(c1,c2,c),v
2
1(c1,c2,c)),

(43)

If we set the arguments(c1,c2,c) to v0 in equation (38) to(c,c,c), and similarly in equation (39) for

v1, we deduce that

v1
1(c,c,c) = v1

0(c,c,c)−K(c). (44)
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Clearly, if the firms have all invested and have in place the state-of-the-art production technology, there is

no further incentive for either firm to invest. For the same reasons we have

v1
1(c,c2,c) = v1

0(c,c2,c)−K(c). (45)

Similar to the strategy we used to solve the value functions(vi
0,v

i
1) i = 1,2 in the end game, we can

substitute equation (44) into equation (38) and use Newton’s method to compute the unique fixed point

v1
0(c,c,c). Similarly, we can solve forv1

0(0,c2,0) by substituting equation (45) into equation (38) and

solving. Finally, to solve forv1
0(c1,c2,c) we note that using the solutions forv1

0(c,c,c) andv1
0(c,c2,c) and

equations (44) and (45) to obtainv1
1(c,c,c) andv1

1(c,c2,c), we can computev1
1(c1,c2,c) by substituting

these values into equation (39). Then we substitutev1
1(c1,c2,c) into equation (38) and use Newton’s

method to computev1
0(c1,c2,c).

Note that we assume that the integral term in equation (40) is“known”. This is because the successive

approximations solution algorithm is assumed to have computed (v1
0(c1,c2,c′),v1

1(c1,c2,c′)) for all c′ < c

(although in actuality for a finite number ofc′ and other values ofc′ needed to numerically compute the

integral in equation (40) are determined by interpolation).

Following the procedure we used to solve for equilibria in the end game, the set of equilibria for the

investment “tage game” in each state(c1,c2,c) can be computed from the following fixed point equation

P1
1 =

exp{v1
1(c1,c2,c,P2

1(c1,c2,c,P1
1))/η}

exp{v1
0(c1,c2,c,P2

1(c1,c2,c,P1
1))/η}+exp{v1

1(c1,c2,c,P2
1(c1,c2,c,P1

1))/η}
. (46)

Depending on the rule we choose to select among the possible equilibria in each state(c1,c2,c) we can

construct a variety of equilibria for the overall game. The restriction is that any equilibrium selection rule

must be such that the functional equations for equilibrium (see equations (38) and (39) above) are satisfied.

The following steps are used to solve for the set of all equilibria at each state point(c1,c2,c) in the full

Bertrand/investment game.

1. For eachP1
1 ∈ [0,1] we compute the value functions(v2

0(c2,c1,c,P1
1),v

2
1(c2,c1,c,P1

1) representing

firm 2’s values of not investing and investing in state(c1,c2,c), respectively, by solving the system

(41) and (42) for eachP1
1 ∈ [0,1].

2. Compute firm 2’s “best response”, i.e. its probability of investing,P2
1(c1,c2,c,P1

1), in response to its

perception of firm 1’s probability of investing,P1, via the equation

P2
1(c1,c2,c,P

1
1) =

exp{v2
1(c1,c2,c,P1

1)/η}
exp{v2

0(c1,c2,c,P1
1)/η}+exp{v2

1(c1,c2,c,P1
1)/η}

. (47)
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using the value functions for firm 2 computed in step 1 above.

3. Using firm 2’s best response probablity,P2
1 , calculate the value functions(v1

0(c1,c2,c,P2
1),v

1
1(c1,c2,c,P2

1)

representingfirm 1’svalues of not investing and investing in state(c1,c2,c), respectively, by solving

the system (38) and (39).

4. Using the values for firm 1, compute firm 1’s probability of investing,the second order best response

functionfor firm 1, and search for all fixed points in equation (46).

A modified version of the algorithm involves solving only forthe values off the end game (as done in

section 3) and then solving for the values in the other states(c1,c2,c) for c> 0 by the method of successive

approximations, iterating on equations (38), (39), (41) and (42) until convergence is achieved. Any solution

to this system constitutes a Markov-perfect Nash equilibrium to the dynamic investment/pricing game.

Although successive approximations is not guaranteed to converge as is in the case when it is applied to

solving Bellman equations in dynamic programming problemswhich are “single agent” problems (i.e.

“games against nature”), when successive approximations does converge, it converges to an equilibrium

of the game as we noted earlier.

We have found that simple successive approximations, usingthe modified approach where we do

not force the investment actions for the two firms to constitute Nash equilibria at each state configura-

tion (c1,c2,c) at each iteration of the successive approximations algorithm, will sometimes converge and

sometimes not converge, depending on the initial conditions that we start out the algorithm and other

details. When the successive approximations does converge, it converges to values and corresponding in-

vestment/pricing strategies that constitute mutual best responses at every(c1,c2,c) state point on the grid

that we used to compute the problem, and these values satisfyeach firm’s Bellman equations (38), (39),

(41) and (42). Thus the converged values implies equilibrium strategies for the full dynamic game, and

these strategies are “perfect” in the sense that they are mutual best responses in every subgame and at all

feasible states in the state space.

We have found that depending on how we initialize the successive approximations algorithm, when it

does converge, it can converge to many different types of equilibria that have very different, interesting

properties. These equilibria are generally of the pure strategy type, i.e. each firm has a unique best response

to its opponent in each state(c1,c2,c). Some equilibria include the dynamic generalizations of “firm 1

invests” and “firm 2 invests” that we observed in the end game equilibria in section 3, so these equilibria
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Figure 2 Equilibrium realization with leap frogging

lead to only one of the firms undertaking investments and setting a price equal to the initial price of their

opponent. We refer to these as “monopoly equilibria” since one of the firms captures all of the benefits

from the cost-reducing investments it undertakes and its opponent never challenges it by attempting to

undertake a cost-reducing investment of its own. Consumersnever benefit from price reductions in these

equilibria and all of the benefit from the cost reducing investments flows to the firm that undertakes them,

in the form of successively lower costs of production. We conjecture that the investment paths in these

equilibria are identical to the investment paths of an actual monopolist whose pricing is constrained by the

existence of an “outside good” whose price is the same as the initial marginal cost of production of the

passive, non-investing firm in the duopoly equilibrium.

However there are also equilibria involving leap frogging behavior where the firms do compete dy-

namically by undertaking competing cost reducing investments. This causes prices to fall over time so

consumers do benefit from declining prices in these equilibria. Figure 2 plots a realization of the equilib-

rium play in one such game, where both firms 1 and 2 undertake cost reducing investments.

However note from the figure that firm 1 is adominant firmand it undertakes cost-reducing investments

most of the time. Starting from a symmetric situation where(c1,c2,c) = (5,5,5), firm 1 undertakes the

first two cost-reducing investments, one at time period 3 of the simulation after the state-of-the-artc falls

from 5 to 4.1667, and a second investment at time period 7 whenc falls again from 4.1667 to 1.25. During

this entire time, the prices to the consumer are equal to the inital price, 5, since the low cost leader, firm

1, sets a price equal to the marginal cost of its rival, which remains at its initial value of 5. It is not until
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period 15, when there is a further technological innovationthat decreasesc from 1.25 to 0.8333 that firm

2 finally invests, leap frogging firm 1 to become the low-cost leader. When firm 2 does this, the prices

to the consumer finally drop — top = 1.25 — since firm 2 now sets a price equal to the marginal cost

of production of firm 1, its higher cost rival. The large pricedrop in period 15, fromp= 5 to p = 1.25

constitutes a price war caused by firm 2 when it invested and leap frogged firm 1 to become the new low

cost leader.

Prices remain atp= 1.25 until periodt = 32 whenc drops again to a value of 0.625. Now firm 1 leap

frogs firm 2 to regain the position of low cost leader, and the price to the consumer falls top= 0.8333. In

periodt = 33 c falls again to 0.4167 and firm 1 invests again to acquire this technology, but the price to

the consumer remains atp= 0.8333. Then there is a long interval where there are no furthertechnological

innovations and the price remains at this level until periodt = 105 whenc drops to 0.2083 and firm 1

invests once again. Finally, by periodt = 188 there is a last technological innovation that decreasesc to

its lowest possible value ofc= 0, where it remains forever after.2 Firm 1 decides to invest one more time

and attain the best possible marginal cost of production ofc1 = c= 0, and secure a position ofpermanent

low cost leadership over firm 2. The game then “ends” in an absorbing state where firm 1 can produce at 0

marginal cost and sell to consumers at a price ofp= 0.8333, which equals the marginal cost of production

of firm 2, the high cost “loser”.

Figure 3 illustrates a slightly different equilibrium of the model. To isolate the effect of the different

equilibrium on the simulated outcomes, we use the same realized path of{ct} in figure 3 as we used in

figure 2. This equilibrium realization is almost the same as the one shown in figure 2, except that in period

190, whenct falls from c189 = .2 to c190 = 0, firm 2 doesinvest and leap frogs firm 1 one final time to

become the permanent low cost leader. This means that pricesconverge top = 0.2 in this equilibrium

simulation rather thanp= 0.8333 in the equilibrium simulation illustrated in figure 2.

Figure 4 illustrates a very different equilibrium, again using the same realized path of{ct} as in figures

2 and 3 above. In this equilibrium there is no leap frogging and no investment, except for a single pre-

2Note that for these simulations we discretized the possiblevalues thatc could take on into 50 possible values over the
interval[0,5]. When a simulated value ofct was off of this grid, we used the closest grid point instead. Thus, this discretized
simulation process for the Markov process for{ct} can yield the absorbing statect = 0 in a finite timet, whereas for the
actual process we described in section 3 of the paper, the limiting value 0 would only be obtained asymptotically ast → ∞.
However as noted, whenct becomes sufficiently small, the firms no longer have further incentive to invest. Thus, a more
accurate simulation of the process (something we plan to do in future work) would reveal that investments continue untila
small but positive value ofct is reached, after which further investment stops. So in the figures, the reader should interpret
ct = 0 as this small positive value ofct at which further investment is no longer economic.

29



0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Realized Equilibrium Path with Leapfrogging

Time

M
ar

gi
na

l C
os

ts
, P

ric
es

 

 
c

1

c
2

c

Figure 3 equilibrium realization with leap frogging
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Figure 4 equilibrium realization without leap frogging
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Figure 5 equilibrium realization with leap frogging and persistent leadership

emptory investment by firm 2 in periodt = 190 when it invests, acquires the zero marginal cost production

technology, and achieves permanent low cost leadership over firm 1. Notice that firm 1 never invests in this

equilibrium realization, and so prices to the consumer never fall, and remain at the initial value ofp= 5

forever. For the first 190 periods of the game, both firms are symmetric Bertrand price competitors and

therefore both earn profits of zero. However firm 2 invests in period 190, and starting in periodt = 191

onward, firm 1 earns profits of 5 by charging a price ofp= 5. It has thus attained an outcome that is very

similar to limit pricing by a monopolist. Recall that in limit pricing, a monopolist charges the maximum

price it can get away with, subject to the constraint that this price is not too high to induce entry. In this

case, the limit price is determined by the marginal cost of production of firm 1, since this firm plays the

same role as a new entrant in the limit pricing model: if firm 2 tried to charge more than firm 1’s marginal

cost of production, there would be room for firm 1 to undercut firm 2, take the entire market, and still earn

a profit. Note that there is also a mirror-image equilibrium outcome when we select another equilibrium

where firm 1 invests att = 190 instead of firm 2.

Figure 5 illustrates another equilibrium where firm 1 undertakes nearly all of the cost-reducing in-

vestments and therefore attains a highly persistent role oflow cost leader in this equilibrium realization.

Howver in periodt = 190 firm 2 does finally invest, leap-frogging firm 1 to attain a permanent position

of low cost leadership. From the standpoint of consumers, the equilibrium outcome in fiure 5 is identical

to the one displayed in figure 4 for the first 190 periods: the price is p= 5 in both cases. All of the cost-

reducing investments undertaken by the low cost leader, firm1, in the first 190 periods accrue entirely to
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Figure 6 equilibrium realization with leap frogging and alt ernating leadership

firm 1 and not consumers. However unlike figure 4, when firm 2 finally invests and leap frogs firm 1 to

become the new (permanent) low cost leader in periodt = 190, a price war breaks out that drives prices

from p= 5 down top= 0.2, where they remain ever after. Firm 1’s profits fall to zero starting in period

t = 191 and firm 2 is able to earn a small per profit of 0.2 for all t ≥ 191.

Figure 6 illustrates yet another equilibrium where there isleap frogging and an alternating pattern of

low cost leadership that results in more of the benefits of cost-reducing investments being passed on to

consumers. Starting from the symmetric situation wherec1 = c2 = c = 5 in periodt = 1, firm 1 moves

first and invests in a new plant that produces at the new lower state-of-the-art marinal costc= 4.16667 in

periodt = 3. Then in periodt = 7 another large technological innovation occurs that reduces the marginal

cost of production under the state-of-the-art fromc= 4.16667 toc= 1.25. This large drop induces firm 2

to invest and leap frog firm1 to become the new low cost leader,but ths does not ignite a serious price war

since prices only fall fromp= 5 to p= 4.16667. Firm 2 remains a persistent low cost leader, undertaking

all subsequent cost-reducinng investments until periodt = 190 when firm 1 invests and replaces its high

cost plant with a new state-of-the-art plant with a marginalcost of production ofc = 0. At this point a

major price war erupts that drives down prices fromp= 4.16667 top= 0.2.

Figure 7 provides a final illustration of another equilibrium with leap frogging and persistent leader-

ship, but where the low cost leader, firm 1, stops investing and “coasts” for an extended period of time

after aggressively investing early on in periodst = 3 andt = 7, where it drove down its marginal cost of

production successively fromc= 5 to c1 = 4.1667 and then toc1 = 1.25. However firm 1 decided not to

32



0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Equilibrium with persistent leadership and leapfrogging

Time

M
ar

gi
na

l C
os

ts
, P

ric
es

 

 

c
1

c
2

c

Figure 7 equilibrium realization with leap frogging and alt ernating leadership

undertake any further cost reducing investments after that, until in periodt = 190 firm 2 invested and leap

frogged firm 1 to become the permanent low cost leader. This move ignited a price war that reduced the

price fromp= 5 to p= 1.25.

Each of the equilibrium simulations illustrated above correspond to different equilibria of the dynamic

game. These are just a few of the many different ones we could have shown. It shoud be clear that there are

many equilibria with a wide range of investment outcomes andprices to consumers. It may be surprising

that such complexity can be obtained in such a simple extension of the classical static Bertrand model of

price competition, which has a very simple, unique solution. Although we noted above that we have yet

to systematically characterize the set of all equilibria tothis model, and characterize the implied payoff

sets (profits for firms 1 and 2 and prices to consumers), it is clear from figures 2 to 7 above, there is a very

wide range of profits and prices that are consistent with equilibrium in this model. Some equilibria result

in very high prices to consumers, little investment, and high profits for one of the firms, other equilibria

can results in high prices, little investment and no profits to either firm, whereas still other equilbria result

in active investment by both firms that gives both modest profits while passing the majority of the benefits

from these cost reducing investments on to consumers in the form of lower prices.

We have also seen that even when cost-reducing investments occur, they do not always result in price

reductions to consumers. Only those investments that result in one firm leap froggingover its opponent

to become the new low cost leader result in price reductions to consumers. However there are instances

where one firm undertakes a cost-reducing investment starting from a situation where both firms have the
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same marginal cost of production. In these situations the cost-reducing investment generates no benefit

to consumers, similar to the situation where cost-reducinginvestments are undertaken by the firm that is

already the low cost leader. Although these investments do not immediately benefit consumers in the form

of lower prices, they can eventually benefit consumers if theother firm eventually does invest and leap

frogs its opponent. This point is illustrated most dramatically in figure 5 where firm 1 undertakes a large

number of cost-reducing investments that it captures entirely in increased profits for the first 190 periods of

the game, but when firm 2 finally invests and leap frogs firm 1 in period t = 190, the price war that erupts

results in a new permanent low price regime for consumers that was only possible due to aggressive prior

investments by firm 1. Compare this to figure 4, where absence of cost-reducing investments by either firm

in the first 190 periods implies that even when firm 2 finally invested att = 190, the prices would remain

forever atp= 5.

A final point to note is that behavior reminiscent of “sniping” frequently appears in the equilibrium

simulations. By ths we mean a situation where one of the firms remains passive and takes the role of the

high cost follower for extended periods of time, but the follower does eventually “jump in” by investing at

a point when technology improves sufficiently that the firm can invest in a plant that has a sufficiently low

marginal cost of production that it deters its opponent fromany further attempt to leap frog to regain the

low cost leadership position in the future. These cases illustrate the contestable nature of competition in

this model. Being a high cost follower for an extended periodof time does not necessarily impair the firm’s

ability to jump in and leap frog its opponent at any point in the future, provided that the low cost leader’s

own investments have not driven down its costs of productiontoo low in the interim. This propensity of

the high cost follower to “come from behind” is, we believe, related to our conjecture in section 3 that in

the mixed strategy equilibrium of the(c1,c2,0) end game, the high cost follower has a greater probability

of investing than the low cost leader.

5 Socially Optimal Investment

It is of interest to compare investment outcomes from duopoly competition in pricing and investment

to those that would emerge under the social planning solution where the social planner is charged with

maximizing total expected discounted surplus. In the simple static model of Bertrand price competition,

the duopoly solution is well known to be efficient and coincide with the social planning solution: both
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firms earn zero profits and produce at a price equal to marginalcost.

However the static model begs the question of potential redundancy in production costs among the

two firms. The static model treats the investment costs necessary to produce the production plant of the

two firms as a sunk cost, and it is ignored in the social planning calculation. However in a dynamic

model, the social planner does/should account for these investment costs. Clearly, under our assumptions

about production technology (any plant has unlimited production capacity at a constant marginal cost of

production) it only makes sense for the social planner to operate only a single plant, and it would never be

optimal to operate two plants as occurs in the duopoly equilibria (except for the two “monopoly” outcomes

where one or the other of the firms does all of the investing). Thus, the duopoly equilibria are typically

inefficient in the sense that there is redundant investment costs that would not be incurred by a social

planner.

If we assume that consumers have quasi-linear preferences so that the surplus they receive from con-

suming the good at a price ofp is u− p, then the social planning solution involves selling the good at

marginal cost of production, and adopting an efficient investment strategy that minimizes the expected

discounted costs of production. Letc1 be the marginal cost of production of the current productionplant,

and letc be the marginal cost of production of the current state-of-the-art production process, which we

continue to assume evolves as an exogenous first order Markovprocess with transition probabilityπ(c′|c)

and its evolution is beyond the purview of the social planner. All the social planner can do is determine

anoptimal investment strategyfor the production of the good. Since consumers are in effectrisk-neutral

with regard to the price of the good (due to the quasi-linearity assumption), there is no benefit to “price

stabilization” on the part of the social planner. The socialplanner merely solves and adopts the optimal

investment strategy that determines when the current plantshould be replaced by a new, cheaper state-of-

the-art plant, and it provide the goods produced by this optimal plant to consumers in each period at a price

equal to the plant’s marginal cost of production.

Let V(c1,c) be the present discounted value of costs of production when the plant operated by the

social planner has marginal costc1 and the state-of-the-art technology (which is available with one period

delay after incurring an investment cost ofK(c) just as in the duopoly problem above) has a marginal cost

of c≤ c1. We have

V(c1,c) = min

[

c1+β
∫ c

0
V(c1,c

′)π(dc′|c),c1+K(c)+β
∫ c

0
V(c,c′)π(dc′|c)

]

. (48)

The optimal investment strategy can be easily seen to take the form of acutoff rulewhere the firm invests
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in the state-of-the-art technology when the current state-of-the-artc falls below a cutoff thresholdc(c1),

and keeps producing using its existing plant with marginal costc1 otherwise.

The optimal thresholdc(c1) is the solution to the following equation

K(c(c1)) = β
∫ c(c1)

0

[

V(c1,c
′)−V(c(c1),c

′)
]

π(dc′|c(c1)). (49)

This equation tells us that at the optimal cutoffc(c1), the social planner is indifferent between continuing

to produce using its current plant with marginal costc1 or investing in the state-of-the-art plant with

marginal cost of productionc(c1). This implies that the decrease in expected discounted production costs

is exactly equal to the cost of the investment whenc is equal to the cutoff thresholdc(c1). Whenc is above

the threshold, the drop in operating costs is insufficientlylarge to justify undertaking the investment, and

whenc is below the threshold, there is a strictly positive net benefit from investing.

Comment: this section not yet complete. We intend to comparethe overall efficiency of various

duopoly equilibria to the social planning optimum and hope to show that various equilibria involve more

efficient coordination in investment decisions between thetwo firms, and thus get closer (but not equal)

to the social planning optimum. Duopoly will always involvesome redundancy, and hence inefficiency,

relative to the optimum that a social planner can achieve.

6 Conclusions

This draft is still preliminary and incomplete, so we hesitate to draw too many conclusions at this point.

However several conclusions are possible from the work we have done so far. First, we have identified

and resolved theBertrand invesment paradoxby showing that Bertrand duopolists do have incentive to

undertake cost-reducing invesments. The cost-reducing investments can usually enable one of the firms to

attain a temporary period of low cost leadership during which the discounted profits it can expect to earn

are greater than the up-front fixed costs of undertaking the investment.

Our paper is not the first to establish the possibility of leapfrogging equilibria in a dynamic extension

of the classic Bertrand model of price competition. After wecompleted our analysis, we became aware

of the work of Giovannetti (2001), who appears to have provided the first analysis of Bertrand compeition

with cost-reducing investments in a framework similar to our’s. The main differences between our setup

and Giovannetti’s is that improvements in technology occurdeterministically in her model, with the cost of

investing in the state-of-the-art production facility declining geometrically in each period. She established
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in this environment that there are leap-frogging equilibria in which investments occur in every period,

but with the two firms alternating in their investments. The second main difference is the specification

of demand, where Giovannetti assumed that the demand for goods is given by a constant elasticity of

substitution demand curve rather than deriving aggregate demand from micro aggregation of individual

discrete purchase decisions as we have done in our model. Thestochastic nature of technological progress

that is captured in our model leads to equilibria where thereare long periods where there are no techno-

logical improvements and thus no investment by either firm, punctuated by technological break-throughs

that sometimes induce one or both of the firms to invest in the state-of-art production machinery, thereby

precipitating a price war.

Giovannetti also found there were equilibria with “persistent leadership” an outcome she termedin-

creasing asymmetry.These equilibria are the analogs of the equilibria we find in our model where one of

the firms takes the role of “low cost leader” for extended periods of time and does all of the investing at

every point in time where there is a sufficiently large reduction in the marginal cost of production in the

state-of-the-art technology, relative to its fixed investment cost. However Giovannetti’s analysis did not

trace out the rich set of possible equilibria that we have found in our model, including the possibility of

“sniping” where a firm that has been the high cost follower forextended periods of time suddenly invests

at the “last minute” (i.e. when the state-of-the-art marginal cost is sufficiently low that any further invest-

ments are no longer econommic), thereby displacing its rival to attain a permanent low cost leadership

position.

We also refer the reader to the very important paper by Goettler and Gordon (2009) that studies leap-

frogging R&D and pricing decisions by the duopolists Intel and AMD. This model is considerably more

complex than our model in that AMD and Intel leapfrog each other by undertaking R&D investments to

produce faster microprocessors rather than by simply investing in a cost reducing production technology

that evolves exogenously as in our model. In addition, the Goettler and Gordon model has comsumers

that makedynamicrather than static choices about whether to purchase a new computer with the latest

microprocessor, or keep their existing computer with a prior-generation microprocessor. This creates

considerable complexity and added interesting dynamics, since the duopolists must consider as a relevant

state variablethe entire distributions of holdings of microprocessors inthe consumer population.When

a sufficiently large fraction of consumers have sufficientlyoutdated microprocessors, conditions are more

opportune for gaining a large market share by introducing a newer, faster microprocessor. Interestingly,
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despite the substantial additional complexity of their modeling framework, Goettler and Gordon claim that

there model has aunique equilibrium.It is of interest to us to better understand what features lead to the

huge plethora of equilibria in our much simpler framework, and which features of the Goettler and Gordon

framework lead to a unique equilibrium.3

We were surprised by how complex are the various tytpes of equilibrium behavior that can emerge from

this simple model. Unlike the static Bertrand model of pricecompetition where there is a single, simple,

unqiue and fully efficient equilibrium outcome — the Walrasian competitive outcome — in the simple

dynamic extension we have considered where firms compete over both price and investment strategies,

there appear to be a vast multiplicity of different equilibria, virtually all of which are inefficient. Some

of these equilibria can result in outcomes that are very bad for consumers even though the duopolists are

never colluding and behaving as Bertrand price competitorsin every period. We have more work to do

to explore and characterize the set of equilibria in this model, and to better understand the dynamics of

price and investment competition when the two firms are producing goods that are not perfect substitutes.

We would also like to add capacity constraints to the model and understand whether the equilibria of

this extended model would exhibit the result discovered by Kreps and Scheinkman (1983), namely, that

capacity investment followed by Bertrand price competition yields an outcome identical to the Cournot-

Nash equilibrium in a model where firms chooses quantities only.

A final contribution is that we provide a new interpretaion for price wars. In our model price wars

occur when a high cost firm leap frogs its opponent to become the new low cost leader. It is via these

periodic price wars that consumers benefit from technological progress and the competition between the

duopolists. However, what we find surprising is that there are equilibria of our model where cost-reducing

investments are relatively infrequent and leap frogging rarely occurs, so that consumers obtain little or no

benefit from technological progress in the form of lower prices. It remains an open question as to whether

our results are simply theoretical curiosums, or whether this framework can be extended and the issues of

multiple equilibria be addressed in a satisfactory way thatthis work might yield useful practical insights

and new tools for applied Industrial Organization.

3Goettler and Gordon appealed to theUnique Investment Choice(UIC) admissibility criterion of Doraszelski and Sat-
terthwaite (2010) to establish the uniqueness of equilibrium in their model.
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7 Appendix: Proof of Lemma 1

Lemma 3.1If c1 > c2 > 0 and K< βc2
1−β , then in the unique mixed strategy equilibrium of the pure Bertrand

dynamic investment and pricing game in state(c1,c2,0) we haveπ1 > π2.

Proof. First, note that the conditionK < βc2
1−β in Lemma 3.1 ensures that investment is profitable in the

long term even for firm 1 whose potential pay-off is smaller (βc2
1−β < βc1

1−β ). In other words, this condition

ensures that for both firms’ investment decisions are economically justified. Next, observe that whenβ = 0

in the(c1,c2,0) end game there is unique pure strategy equilibrium where neither of the companies invests.

Thus, we only consider the caseβ > 0.

The value functions of the two firms in the(c1,c2,0) end game whenc1 > c2 are

V1 = π1×

(

π2 · (−K)+ (1−π2) ·

(

βc2

1−β
−K

))

+

+(1−π1)× (π2 ·0+(1−π2) ·βV1)

V2 = π2×

(

π1 · (c1−c2−K)+ (1−π1) ·

(

c1−c2+
βc1

1−β
−K

))

+

+(1−π2)× (π1 · (c1−c2)+ (1−π1) · (c1−c2+βV2))

where the definition of the probabilityπ1 of investment by firm 1 in the mixed strategy equilibrium gives

π2 · (−K)+ (1−π2) ·

(

βc2

1−β
−K

)

= π2 ·0+(1−π2) ·βV1

and thus the value function itself becomes the weighted sum of equal parts, leading to

V1 = π2 · (−K)+ (1−π2) ·

(

βc2

1−β
−K

)

= π2 ·0+(1−π2) ·βV1

Using the second equality in the last expression, we findV1 = 0, and then using the first equality in the

same expression, we find 1−π2 =
K(1−β)

βc2
.

The definition of the probabilityπ2 of investment by firm 2 in the mixed strategy equilibrium, similarly

gives

V2 = π1 · (c1−c2−K)+ (1−π1) ·

(

c1−c2+
βc1

1−β
−K

)

= π1 · (c1−c2)+ (1−π1) · (c1−c2+βV2)

Using the second equality in the last expression, we findV2 =
c1−c2

(1−β·(1−π1))
, and using the it once again
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we get

π1(c1−c2−K)+ (1−π1)

(

c1−c2+
βc1

1−β
−K

)

= π1(c1−c2)+ (1−π1)(c1−c2+βV2)

(1−π1)

(

βc1

1−β
−K

)

−π1K = (1−π1)βV2

c1

1−β
−

K
β · (1−π1)

= V2

Combining the two expressions for the value functionV2, we get the following equation

c1−c2

1−β · (1−π1)
=

c1

1−β
−

K
β · (1−π1)

Multiplying by 1−β and incerting the expression for 1−π2, we have

c1−c2

1+ β
1−βπ1

= c1−
1−π2

1−π1
c2

c1−
1−π2
1−π1

c2

c1−c2
=

1

1+ β
1−β π1

6 1

c1−
1−π2

1−π1
c2 6 c1−c2

1−π2

1−π1
> 1

π1 > π2

The inequalities are due to the fact that 06 π1 6 1, β
1−β > 0, c1−c2 > 0, c2 > 0. The final inequality

is strict unlessπ1 = π2 = 0, which impliesK = βc2
1−β thus leading to a contrudiction. We conclude then that

π1 > π2.
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