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Abstract

We present a dynamic extension of the classic static modBédfand price competition that allows
competing duopolists to undertake cost-reducing investei@ an attempt to “leap frog” their rival
and attain, at least temporarily, low-cost leadership. Mioelel resolves a paradox about investing in
the presence of Bertrand price competition: if both firmsudtemeously invest in the current state-of-
the-art production technology and thereby attain the sarugimal cost of production, the resulting
price competition drives the price down to marginal cost prafits to zero. Thus, it would seem that
neither firm can profit from undertaking the cost-reducingstment, so the firms should not have any
incentive to undertake cost-reducing investments if theyBertrand price competitors. We show this
simple intuition is incorrect. We formulate a dynamic modgprice and investment competition as
a Markov-perfect equilibrium to a dynamic game. We show #vain when firms start with the same
marginal costs of production there are equilibria whereaifrtae firms invests first, and leap frogs its
opponent. In fact, there are many equilibria, with some ldaria exhibiting asymmetries where there
are extended periods of time where only one of the firms doest ofdhe investing, and other equi-
libria where there are staggered or alternating investsignthe two firms as they vie for temporary
production-cost leadership. Our model provides a new pnétation of the concept of a “price war”.
Instead of being a sign of a breakdown of tacit collusion,unmodel price wars occur when one firm
leap frogs its opponent to become the new low cost leader.
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1 Introduction

This paper provides a dynamic extension of the static “todth Bertrand-Nash duopoly game by allowing

firms to make investment decisions as well as pricing detssiét any point in time, firms are assumed to
have the option to replace their current production faesgitwith a new state-of-the-art production facility.

If the state-of-the-art has improved since the time the fimmes$ted in its current production facility, the

investing firm will be able to produce at a lower marginal cesboth relative to its own previous costs and
potentially also lower than its rival. We use the term “leagghing” to describe the longer run competition
over investments between the two duopolists when an inedtivy one firm enables it to produce at a
lower cost than its rival and attain, at least temporarilgpaition of low cost leadership.

When the competing firms set prices in accordance with th&@w®r equilibrium under constant re-
turns to scale production technologies, then in the absehcapacity constraints, the high cost firm will
earn zero profits. Thus, the motivation for the high cost fionudertake a leap frogging investment is,
of course, to obtain a production cost advantage over i&. rivhe firm that is the low cost leader does
earn positive profits by charging a price equal to the matgiosat of production if its higher cost rival.
However, if both firms have the same marginal cost of produagtboth firms set a price equal to their
common marginal cost and earn zero profits. Baye and Kovedestribe this as thBertrand paradox.

A new paradox arises when we try to extend the static Bertpaiog competition to a dynamic con-
text where the firms are free at any time to invest in the siftbe-art production technology. Whenever
both firms invest the same time, then both will have the sammgimad cost of production, and the re-
sulting Bertrand price competition will ensure that neitfien can earn positive profits that would justify
undertaking the investment in the first place. Thereforeuaghreasoning would suggest ttizdrtrand
duopolists would not have any incentive to undertake cadiicing investmentdiVe refer to this as the
Bertrand investment paradox.

We show that this simplistic reasoning is incorrect and jgf@a resolution of the Bertrand investment
paradox by solving a dynamic, infinite horizion extensionttté Bertrand model of price competition.

The extended version of the Bertrand model allows the camgpétms to invest in improved technology

IAccording to Baye and Kovenock, Bertrand did not realizet the perfectly competitive outcome emerges as the
equilibrium solution to price competition. In Bertrand'883 review of Cournot’'s 1838 book, “Bertrand described hiow,
Cournot’s duopoly environment where identical firms pralaciomogeneous product under a constant unit cost teclynolog
price competition would lead to price undercutting and ameerd spiral of prices. Bertrand erroneously reasonedthit
process would continue indefinitely, thereby precludingekistence of an equilibrium.” (p. 1).



in addition to setting prices. We solve for Markov-perfequidibria to this dynamic game, including
extensions where where each firm has private informatiomitaid@syncratic adjustment costs/benefits
associated with undertaking an investment at any partiq@dat in time. However we show that even
in complete information versions of this model, and evenmfiens start with the same marginal costs
of production, there are many equilibria that result in @asi types of leap frogging behavior by the two
firms.

Simulations of the solution of the model reveal that the idguium realizations typically involve stag-
gered or alternating investments by the two firms as theyorieetporary production-cost leadership over
their opponent. However we show that there are also eqailtinere one firm exhibits persistent low cost
leadership over its opponent, and equilibria involvingpsmg where a high cost opponent displaces the
low cost leader to become the new (permanent) low cost leaden though it has spent a long period of
time as the high cost follower.

Our model yields a new interpretation of the concept pfiae war. Price paths in the equilibria of
our model are piece-wise flat, with periods of significanterileclines just after one of the firms invests
and displaces its rival to become the low cost leader. Wetltallarge drop in prices when this happens a
“price war”. However in our model these periodic price waesgart of a fully competitive outcome where
the firms are behaving as Bertrand price competitors in eperipd. Thus, our notion of a price war is
very different from the standard interpretation of a pric w the industrial organization literature, where
price wars are a punishment device to deter tacitly collgdiims from cheating. The key difference in the
prediction of our model compared to the standard model d@f¢altusion is that price paths are piece-wise
flat and monotonically declining in our model and price waes\eery brief, lasting only a single period in
our model, whereas in the model of tacit collusion, pricesizn extend over multiple periods and prices
are predicted toise at the end of a price war.

We present the model in section 2, and solve what we refer thea%end game” in section 3 and
show that this leads to key insights into the form of the fgjuéibria of the model which we solve and
illustrate in section 4. In section 5 we formulate and sohe gocial planner’s problem and characterize
the investment strategy that maximizes total surplus. Vidaghat generally, the equilibria of our model
result in inefficient investments relative to the socialimpim. So unlike the simple static Bertrand model
of price competition, a simple dynamic generalization lovalfor investments shows that oligopolistic

equilibria are generally inefficient. We discuss relatéeféiture and offer some concluding comments and



conjectures in section 6.

2 The Model

Suppose there are two firms producing an identical good. Tives fare price setters and have no fixed
costs and can produce the good at a constant marginal cost(fair firm 1), andc, (for firm 2). Later
we will add time subscripts to these marginal costs, sindb boms will have the option of replacing
their current production facilities with state-of-thg-@roduction facilities that have a potentially lower
marginal cost of productiorg. Shortly we will describe dynamics by which the state-a#-#rt marginal
costc evolves over time. In this case, the marginal costs of eaghwiill also depend on time, since the
firms may choose to replace their current production féeslitvith a state-of-the-art one.

We assume the production technology is such that neitheffdices capacity constraints, so that effec-
tively, both firms can produce at any given time at what am®tma constant returns to scale production
technology. In the conclusion we will discuss an extensiooun model to allow for capacity constraints,
where investments can be used both to lower the cost of ptioduand/or to increase the production
capacity of the firm. The famous paper by Kreps and Scheink{h883) showed that in a two period
game, if duopolists set prices in period two given capaciyestment decisions made in period one, then
the equilibrium of this two period Bertrand model is ideatito the equilibrium of the static model of
Cournot quantity competition. We are interested in whethés logic will persist in a multiple period
extension.

However we believe that it is of interest to start by consigthe simplest possible extension of the
classic Bertrand price competition model to a multiperiettisg under the assumption that neither firm
faces capacity constraints. Binding capacity constrgintside a separate motivation for leap frogging
investments than the simpler situation that we consideg.hkris considerably more difficult to solve a
model where capacity constraints are both choices andstatdbles, and we anticipate the equilibria of
such a model will be considerably more complex than the oreefing in the simpler setting studied here,
and we already find a very complex set of equilibrium outcames

We note that in most real markets, firms are rarely capacihstcained. To our thinking, the more
problematic aspect of the Bertrand model is not the assomtiat firms have no capacity constraints, but

rather, the assumption that one of the firms can capture tire emarket by slightly undercutting its rival.



Real world markets involves switching costs and other ighosatic preference factors that lead demand
to be more inelastic than the perfectly elastic demand asdumthe standard Bertrand model of price
competition. We think that one reason why firms are rarelyacty constrained is that contrary to the
assumption underlying the classic Bertrand model, a firrmotoapture all of its opponent’s customers
by slightly undercutting its price.

Our model does allow for switching costs and idiosyncraictdrs to affect consumer demand, so that
demand can be less than perfectly elastic in our model. Bidase, when one of the firms undercuts
its rival’s price, it does not succeed in capturing all ofritsal’'s market share. In these versions of the
model, leap frogging behavior does not result in the largagsvin market share that occur in the standard
Bertrand model when demand is assumed to be infinitely elasti

However we believe it is of interest to consider whether igagging is possible even in the limiting
“pure Bertrand” case where consumer demand is perfectitielarhis represents the most challenging
case for leap frogging, since the severe price cutting imeEsiunleashed by Bertrand price competition
in this case leads directly to the “Bertrand investment ghaxa that we noted in the Introduction. The
ability of both firms to acquire (at a cost) the current staft¢he-art production technology, combined with
the lack of any “loyalty” or inertia in their customers thatables one firm to steal all of its opponent’s
customers by slighly undercutting its price means that g se#ong form of “contestability” holds in this
case.

That is, neither firm has any inherent advantage in beingdiecbst leader other than the profits
they can earn by virtue of their temporarily lower marginastcof production. At any time the high cost
follower can to acquire the current state-of-the-art potidim technology, and thereby assure itself of a
marginal cost of production that is at least as low as the lost leader. The only reason the high cost firm
may not want to pay the cost necessary to acquire the state-a@frt production technology is the fear
than the rival will also do this and the resulting Bertranitg@icompetition would eliminate or reduce any
temporary profits that it would need to justify incurring tiiveed costs of investing in the state-of-the-art
production technology.

In this model, we rule out the possibility of entry and exidaamssume that the market is forever a
duopoly. Ruling out entry and exit can be viewed as a worst sasnario for the viability of leap frogging
equilibrium, since the entry of a new competitor providestaar mechanism by which high cost firms can

be leap frogged by lower cost ones (i.e. the new entrants)al¥deassume that the firms do not engage in



explicit collusion. The equilibrium concept does not rutg the possibility of tacit collusion, although as
we show below, the use of the Markov-perfect solution conheéfpctively rules out many possible tacitly
collusive equilibrium that rely on history-dependent &igges and incredible threats to engage in price
wars as a means of deterring cheating and enabling the tws faricoordinate on a high collusive price.

On the other hand, we will show that the set of Markov-peréaqtilibria is very large, and equilibria
exist that enable firms to coordinate their investments iysihat are in some respects reminiscent of tacit
collusion, but in other respects very different. For example show there are equilibria where one of the
firms attains persistent low cost leadership and the oppaaesly or never invests. This enables that low
cost leader firm to charge a high price (equal to the margiostl @f production of the high cost follower)
that generates considerable profits. This outcome is sitoildne behavior of a monopolist where there is
an “outside good” with a price equal to the marginal cost afoition of the high cost follower firm. The
low cost leader undertakes periodic investments to redsamst of production, but the consumers never
benefit from these investments. Instead, the benefits floWgxely to the low cost leader during these
long “leadership” epochs. Unlike a tacitly collusive outo®, however, the high cost follower firm does
not benefit in this equilibria either: it earns zero profitalhperiods and the low cost leader receives all
the profits and benefits from cost-reducing investments.

On the other hand, there are much more “competitive” eqialityhere the firms undertake alternating
investments that are accompanied by a series of price watsstitcessively drive down prices to the
consumer, while giving each firm temporary intervals of tiwtgere it is the low cost leader and thereby
the ability to earn positive profits.

In section 5 we formulate the social planner’s problem arsttatterize the optimal investment strategy.
We then compare the optimal investment strategy to the imesgs that occur in the Bertrand duopoly
equilibrium and show that generally the equilibria resuiiniefficient investments and a lower total surplus.
This result stands in contrast to the outcome of the statitr&el equilibrium, which results in a fully

efficient solution that delivers full surplus to the consusn@nd no profits to the competing firms).

2.1 Consumers

As is typically done in the industrial organization litereg, we extend the usual textbook model of com-
petition between producers of homogeneous goods to allove stegree of monopolistic competition or

switching costs. The simplest way to do this is to allow faogyncratic benefits or costs that each con-



sumer experiences when they purchase one or the produeteafiy the two firms. Let the net (or price)
payoff for a customer who buys from firm 1 e = o1, — p1 and the net benefit from buying from firm
2 beup = o1, — p2. We can think of the vectoft;,T2) as denoting the “type” of a particular consumer.
Assume there are a continuum of consumers and that the piopudistribution of(t1,T2) in the popula-
tion has a Type 1 extreme value distribution andolet 0 be a scaling parameter. Then, as is well known
from the literature on discrete choice (see, e.g. AnderdeRalma and Thisse, 1992), the probability a
consumer buys from firm 1 is

exp{—p1/0}
exp{—p1/0} +exp{—pz/0}

M1(p1, p2) =

Now, assuming that the mass (humber) of consumers in theemerlormalized to 1, we can define
Bayesian-Nash equilibrium prices, profits, market shavedifims 1 and 2 in the usual way. That is, we
assume that in each period of the dynamic game, the two firmgltsineously choose prices and p;
that constitute mutual best responses, in the sense of rnzxgmeach firm’s profit taking into account the
price set by the firm’s opponent.

The Bertrand equilibrium pricing rules are defined by thecfioms pj (c1,¢2) andp5(cy, ¢,) that solve

the following fixed-point problem

pi(c1,c2) = argmaxli(pa, p5(c1,C2))(P1—C1)

P1
p5(C1,C2) = argmaxla(pi(C1,Cz), P2)(P2 — C2).
P2

The classic Bertrand equilibrium arises as a special cageeitimit aso | 0. Then we havej(c1,C2) =

p5(C1,C2) = p(cy,C2) where the equilibrium pric@(cy, cz) is given by

p(c1,C2) = maxcy, cy]. 1)

This is the usual textbook Bertrand equilibrium where the fivith the lower marginal cost of production
sets a price equal to the marginal cost of production of tgédri cost firm. Thus, the low cost firm can
earn positive profits whereas the high cost firm earns zerfitar@®nly in the case where both firms have
the same marginal cost of production do we obtain the claesidt that Bertrand price competition leads
to zero profits for both firms at a price equal to their commomgimal cost of production.

It is simple to extend this model to the case where there isuaside goodj.e. each consumer has

the option of not buying the good. In this case we assume flgatonsumer receives a utility af =



0Tp — Yo. For concreteness, We assume {hat1s,12) has a trivariate Type | (standardized) extreme value
distribution. We assume these types are independentlybdittd across consumers, and in the dynamic
version of the model, independently distributed over tioreainy specific consumer (thus, referringrtas
indexing the “type” of a consumer is an abuse of terminolagy;e the type of the consumer is changing
over time in an unpredictable way).

Itis not difficult to show that in the presence of the outsided) the probability a consumer buys from
firm 1 is given by the classic logit formula:

exp{—p1/0}
exp{—Yo/0} +exp{—p1/0} +exp{—pz2/0}

M1(p1, P2) = (2)

whereyp is a component of the utility of the outside good that doesvaog over consumers.

2.2 Production Technology and Technological Progress

We now introduce our dynamic extension of the classicalcsBetrtrand model of price competition by
allowing the marginal costs of the two firms vary, endogehouser time. The evolution of their marginal
costs of production will cause the prices charged by the tmosfito vary over time as well. We assume
that the two firms have the ability to make an investment tameca new production facility (plant) to
replace their existing plant. Exogenous stochastic tdolgieal progress drives down the marginal cost
of production of the state-of-the-art production plantraime. We assume that technological progress is
an exogenous stochastic process: however the decisiongirms of whether and when to adopt the
state-of-the-art production technology is fully endogemno

We start with the case where there isn’t an outside good jptiesent. It is not difficult to extend the
analysis to account for the presence of an outside goodngsas the common component of its utility,
Vo, IS time-invariant. Ifyp evolves over time, it would complicate the analysis, siteevalue of this time-
varying variable would have to be carried as one of the sttables in the game, and we would need to
confront questions as to whether consumers have perfedifiit about its evolution, or whether they are
uncertain about future values but know the probability lawegning its evolution.

Suppose that over time the technology for producing the goguioves, decreasing according to an
exogenous first order Markov process specified below. If tiveeat state-of-the-art marginal cost of
production isc, let K(c) be the cost of investing in the machinery/plant to acquiis $tate-of-the-art

production technology.



We assume that for any value g@fthe production technology is such that there are constangimal
costs of production (equal t©) and no capacity constraints. Assume there are no costspbshl of
an existing production plant, or equivalently, the dispasests do not depend on the vintage of the ex-
isting machinery and are embedded as part of the new invastoostK (c). If either one of the firms
purchases the state-of-the-art machinery, then after geried lag (constituting the “time to build” the
new production facility), the firm will be able to produce hétmarginal cost of.

We allow the fixed investment cost(c) to depend orc. This can capture different technological
possibilities, such as the possibility that it is more exgdemto invest in a plant that is capable of producing
at a lower marginal cost. This situation is reflected by choosifkgto be a decreasing function of
However it is also possible that technological improversdotver both the cost of the plant and the
marginal cost of production. This situation can be captung@llowing K to be an increasing function
of ¢c. Then asc drops over time, so too will the associated fixed costs ofsting in the state-of-the-art
production technology.

If K is a decreasing function @f then asc drops over time, the cost of investing in new production
facilities increase over time. We can imagine that thereatane a point where it is no longer economic
to invest in the state-of-the-art because the degree ottiedun the marginal cost of production is insuf-
ficient to justify the fixed investment cost of the new plant Wl show below via numerical solution of
the model, whether leap frogging competition will resulsteady price declines to consumers, or whether
investment competition will eventually stop at some poitgpends critically on both the level and slope
of K(c).

Clearly, even in the monopoly case, if investment costsardigh, then there may be a point at which
the potential gains from lower costs of production are lothan the cost of purchasing the state-of-the-
art production plant at a cost &f(c). This situation is even more complicated in a duopoly, siftiee
competition between the firms leads to leap frogging bemath@n neither firm will be able to capture
the entire benefit of investments to lower its cost of productsome of these benefits will be passed on
to consumers in the form of lower prices.dll of the benefits are passed on to consumers, the duopolists
may not have an incentive to invest fmy positive value oK (c). This is the Bertrand investment paradox
that we discussed in the introduction.

Let ¢, be the marginal cost of production under the state-of-thg@duction technology at time

Each period the firms simultaneously face a simple binargstment decision: firnj can decide not to



invest and continue to produce using its existing produdiawility at the marginal costjt. Or firm j can
pay the investment cogt(c) in order to acquire the state-of-the-art production plahicév will allow it to
produce at the marginal cost

Given that there is a one period lag to build the new prodactaility, if a firm does invest at the
start of period, it will not be able to produce using its new state-of-thegsoduction facility until period
t+ 1. If there has been no improvement in the technology sinedithe firm 1 acquired its production
machinery, thery; = ¢;, and similarly for firm 2. If there has been a technologicalowation since either
firm acquired their current production facilities, we haye> ¢;. Thus, in general the state spa8éor
this model is a cone iR®, S= {(cy,¢y,c)|c; > candc, > c}.

Suppose that both firms believe that the technology for prioguthe good evolves stochastically
and that the state-of-the-art marginal cost of productioavolves according to a Markov process with
transition probabilityr(c;1|c;). Specifically, suppose that with probabilip(c;) we havec.1 = ¢ (i.e.
there is no improvement in the state-of-the-art technolagty+ 1), and with probability 1- p(c;) the
technology does improve, so tl@t; < ¢ andc 1 is a draw from some distribution over the inter{@ic;|.
An example of a convenient functional form for such a distiitn is the Beta distribution. However for
the general presentation of the model, making specific foimat form assumptions aboris not required.

For example, suppose the probability of a technologicarawpment is

_ 0lg
T 110G

The timing of events in the model is as follows. At the startiofe t each firm learns the current

p(c) (3)

value ofc; and decides whether or not to invest. Both firms know eachr’sthrearginal cost of production,
i.e. there is common knowledge €€y, cx). Each firm also knows that the cost of buying the current
state-of-the-art technolodg(c; ), but each firm also incurs idiosyncratic “disruption co#s*= (€, €1t)
associated with each of the choices of not to inveg) &nd investing ).

These costs, if negative, can be interpreted as benefitgdsting. Benefits may include things such as
temporary price cuts in the investment cBgt), tax benefits, or government subsidies that are unique to
each firm. Lengt be the idiosyncratic disruption costs involved in acqugjrine state-of-the-art production
technology for firm 1, and leye? be the corresponding costs for firm 2, wheris a scaling parameter.

For tractability, we assume thét!,€?) is anlID Type 1 bivariate extreme value process, and that
each firm knows its own idiosyncratic cost to investment khbat does does not know it's opponent’s

idiosyncratic investment cost shocks. However we assunte firoms have common knowledge of the

9



stochastic process for these idiosyncratic investmentsgcasd believe that they evolve as D Type

1 extreme value process, and both kngw After each firm independently and simultaneously decides
whether or not to invest in the latest technology, the firnesmittnake a decision of which prices to sell their
products at, where production is done in petiauth their existing production machinery.

The one period time-to-build assumption implies that eveloth firms invest in new production
machinery at time, their marginal cost of production in periddarecy; andcy, respectively, since they
have to wait until periodi+ 1 for the new machinery to be installed, and must produceringeusing their
old machines that they already have in place. However irogér- 1 we havecy 11 = ¢ andcati 1 = G,
since in period + 1 the new plants the firms purchased in petiddve now become operational. Notice
that these new plants reflect the state-of-the-art prooluaostc; from periodt when they ordered the
new machinery. Meanwhile further technological progremda have occurred that drives down 1 to a

value even lower thag.

2.3 Solution Concept

Assume that the two firms are expected discounted profit magmsmand have a common discount factor
B €(0,1). The relevant solution concept that we adopt for this dyeagame between the two firms is the
by now standard concept dfarkov-perfect equilibriun{MPE).

In a MPE, the firms’ investment and pricing decision rulesrastricted to be functions of the current
state, which igcy, Cx, G ). If there are multiple equilibria in this game, the Markavi@ssumption restricts
the “equilibrium selection rule” to depend only on the cuatrealue of the state variable. We will discuss
this issue further below.

To derive the equations characterizing the Markov-peréegtilibrium, we now drop the time sub-
scripts. We will be focusing initially on a symmetric investnt situation where each firm faces the same
costK(c) of investment. However it is straightforward to modify th@lplem to allow one of the firms to
have aninvestment cost advantagk this case there would be two investment cost functisisandKo,
and firm 1 would have an investment cost advantag@ (i€) < Ky(c) for all c> 0.

Suppose the current (mutually observed) stafe;isc,, €), i.e. firm 1 has a marginal cost of production
ci1, firm 2 has a marginal cost of productiog, and the marginal cost of production using the current best
technology isc. Since we have assumed that the two firms can both invest icutinent best technology

at the same cos((c), it is tempting to conjecture that there should be a “symimetuilibrium” where

10



by “symmetric” we mean an equilibrium where the decisiore rahd value function for firm 1 depends on
the state(cy, Cz, €), and similarly for firm 2, and these value functions and denisules areanonymous

(also calledexchangeablein the sense that
Vl(C17027C7 80781) = V2(027C1>Cv 80781) (4)

whereV1(cy, ¢y, ¢ €0,€1) is the value function for firm 1 when the mutually observedesta(cy,cp,c),
and the privately observed costs/benefits for firm 1 for itimgsand not investing in the current state-of-
the-art technology arey andey, respectively, ani¥? is the corresponding value function for firm 2. It is
important to note that in both functiohns' andV?, the first argument refers to firm 1's marginal cost of
production of firm 1, and the second argument to the margiost! @f firm 2.

What the symmetry condition in equation (4) says, is thav#tee function for the firms only depends
on the values of the state variables, not on their identitidbe arbitrary labels “firm 1” and “firm 2”. Thus
if firm 1 has cost of production; and firm 2 has cost of productianz, and if both firms were to have the
same private cost/benefit values of investing/not invgstir{€o, €1), respectively, then the expected profits
firm 1 would expect would be the same as what firm 2 would expedhk state vectofc,, ¢, C,€p,€1),
where we switch the order of the first two argumentsindc,. Conversely if firm 2 had marginal cost of
productionc; and firm 1 had marginal cost of productieg, then firm 2's expected discounted profits in
this state are the same as the discounted profits firm 1 copktex these marginal costs were swapped
(i.e. if firm 1 had marginal cost of productian and firm 2 had marginal cost of productioy).

Unfortunately, we will show below that there are interegtequilibria in the game for which the
symmetry condition doesot hold. In these equilibria, the nature of the equilibriumeséibn rules does
confer distinct identities to the two firms, so their “laefsatter and the symmetry condition (4) does
not hold. Instead, it is necessary to keep track of the sepamdue functions/! andV? in order to
correctly compute the equilibria of the game. We will refethiese equilibria agsymmetric equilibridgo
distinguish them fronsymmetric equilibriawhere the symmetry condition (4) holds. We will show that
the “interesting” equilibria of this model, including thanous types of equilibria with leap frogging, are
asymmetric.

Now, assume that the cost/benefits from investing or notsiivg (gl , €, ) for each firmi = 1,2 are
private information to each firm and ahi® over time and are alsbD across the two firms, and both

firms have common knowledge that these shocks have an extadoeedistribution with a common scale
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parameten as noted above. Then we can show that the value funciibris= 1, 2 take the form
Vi(C17027C7 Si078i1) = maX[Vio(Cl,Cz,C) + T]Sio,\/il(Cl,Cz,C) + n‘c‘ll] (5)

where \/b(cl,cz,c) is the expected value to firmif it does not invest in the latest technology, and
Vi (€1, €2, C) is the expected value to firiif it does invest.

Let ri(ci,c2) be the expected profits that firm 1 earns in a single periodliequim play of the
Bertrand-Nash pricing game when the two firms have costsadfymtionc; andc,, respectively. Note
that the static Bertrand-Nash price equilibrissnsymmetric. That is, firm 2's single period profits when
marginal costs of firms 1 and 2 afey,c,), respectively, is given by?(cy,c;) = ri(cp,c1). That is, the
profits firm 2 can earn in staie;,c;) are the same as what firm 1 can earn in stegec;). However in
order to maintain notational consistency, we willi§ty, c,) denote the profits earned by fiirwhen the
marginal costs of production of firms 1 and 2 dog,c;), respectively. In the limiting “pure Bertrand”

case (i.e. where consumer demand is infinitely elastic) we ha

" 0 ifci>cp
r*(C1,C2) = _ (6)
maxci,Cy] —c;  otherwise

It is easy to verify directly in this case that the symmetrpdition holds for the payoff functions' and
r2, and also it is clear that whem = ¢, we haver!(cy,cp) = r?(cy,c) = 0.

The formula for the expected profits associated witinvesting (after taking expectations over player
i's privately observed idiosyncratic shocfes, 1) but conditional on the publicly observed state variables
(c1,C2,0)) is given by:

Vh(C1,C2,C) = r'(cy, C2) + BEV'(C1, €2, €, 0). (7)

EVi(c1, ¢z, ¢,0) denotes firni's conditional expectation of its next period value funotid (cy, ¢z, ¢, €, €})
given that it does not invest this period, conditional(on c;, c).

The formula for the expected profits associated with inmgs{after taking conditional expectations
over firmi’s privately observed idiosyncratic shocﬂe%,s‘l) but conditional on the publicly observed state

variables(cy, Cy,€)) ) is given by
Vi(C1,C2,C) =1'(C1,C2) — K(C) + BEV'(C1, €2, C, 1) (8)

whereEV'(cy, ,, ¢, 1) is firmi’s conditional expectation of its next period value funofitl (c1, ¢z, ¢, €, €})

given that it invests, conditional dey, c;,C).
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To compute the conditional expectatioBY' (c1,¢2,¢,0) and EVi(Cl,Cg,C, 1) we invoke a well known
trick and property of the extreme value family of random ables — “max stability” (i.e. a family of
random variables closed under the max operator). The nadsditt property implies that the expectation
over the idiosyncratidlD cost shocks(aio,ail) is given by the standard “log-sum” formula when these
shocks have the Type-Ill extreme value distribution. Thaftgr taking expectations ovés‘o,sil) in the

equation foiV' in (5) above, we have

[, [V (er.ca.c..eh. ateb)a(eh dehdel = nlog [exp{vh(cr.cz.c)/n) + explvh (ex.c2.c)/n}] . (©)

wherej € {0,1}.

The log-sum formula provides a closed form expression fctimditional expectatiov' (i, ¢z, ¢, €}, € )
for each firmi, whereV' is the maximum of the value of not investijg= 0 or investingj = 1 as we can
see from equation (5) above. This means that we do not needad to numerical integration to compute
the double integral in the left hand side of equation (9) wétbpect to the next-period values (e, €} ).
However we do need to compute the two functigli&; , ¢z, ¢) andv; (c1, ¢z, ¢) for both firmsi = 1,2. We
will describe one algorithm for doing this below.

To simplify notation, we lety(vh(c1, ¢z, ), Vi (c1,C2,€)) be the log-sum formula given above in equa-

tion (9), that is defingpas
@(Vh(C1,C2,C), Vi (C1,C2,C)) = nlog [exp{Vh(cy,C2,C) /N } + exp{Vy(c1,Cz,c)/N}] - (10)
Theg@function is also sometimes called the “smoothed max” fuumcince we have
rlliTo(p(VO’Vl) = max|Vop, V1] . (11)

Further, for anyn > 0 we havep(vp, V1) > maxvo, vi].

Let P(c1,c2,c) be firm 2's belief about the probability that firm 1 will inveéthe mutually observed
state is(cy, Cp, €). Firm 1's investment decision is probablilistic from tharstipoint of firm 2 because firm
1’s decision depends on the cost benefits/shéeks}) that only firm 1 observes. But since firm 2 knows
the probability distribution of these shocks, it can cadtelP; as the following binary logit formula

eXp{V%(C]_, C2, C)/n}
exp{vi(C1,Cz,€)/n} + exp{vg(c, C2,¢) /n}

P{(c1,C2,C) = (12)
Firm 2's belief of firm 1's probability of not investind3(c, ¢z, ¢) is of course simply & Pi(cy, ¢z, ).
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Firm 1's belief of the probability that firm 2 will invesB?(cy, ¢, ¢), is given by

exp{Vi(c1,Cz,¢)/Nn} (13)

Pr(c1,C2,€) = exp{Vi(Cy,C2,0)/n} +exp{v3(c1,cz,¢)/n}

If the symmetry condition holds, then we ha?fa(cl,cz, Pl(cz,cl,c)
Now we are in position to write the recursion formulas for ¢heditional expectationgV'(cy, ¢, ¢, 0)

andEV'(cy, ¢, ¢, 1), corresponding to firmnot investing and investing, respectively. For firm 1 we have

EVl(C]_,Cz,C,O) [PE(C]_,CZ,C)H:L(C]_,C,C/) (1 Pl(Cl,Cz, )) (C]_,Cz, )] (dd|C)
( ) = /OC [P{(c1,c2,0)HY(c,c,¢) + (1~ PZ(C1,Co,€))H (C, Cp, ¢ )] (AL [c)
EV?(c1,cp,c,0) = /oc[ ¢))H?(cy, cp, )] T(dC[c)
( ) [ )

EV2(c,C,C, 1

EVi(ci,coc, 1
P%(CLCZ?C)H (C Cz,C ) (1 P]_(C]_,Cz,

P (c1,C2,0)H?(c,c,¢) + (1— Pi(cy, C2,€))H?(c,c2,¢ )| T(dC[c),  (14)
whereH! andH? are given by

Hl(CbCZvC) = (p(V%(CLCZvC)vV%(Cl?CZvC))
H?(c1,62,0) = @(VB(C1,C2,C),V5(C1,C2,C)). (15)

Substituting these expressions into the equations (7) &)ndie(fining\/"o and\/"1 respectively, results in the

following set of recursive equations for the equilibrium

VA(c1,02,0) = rl(cl,c2)+[3/c P2(cy, G2, €)@(V3(c1, &, ¢ ), VA (c1, €, )
(1—Pg(c1,¢2,0)0(Vg(c1, €2, ¢ ), vi(C1, €2,€)) | T(dCc).

vi(ci,c2,c) = ri(cr,c) —K(c) +B/o PZ(cy,C2,0)@(Va(c,c,c),vi(c,c,c))
(1—Pf(c1,¢2,0)0(v5(c, 2, ¢ ), vi(c, €2,¢)) | m(dC[c). (16)

V3(C1,60,0) = rl(cz,c1)+[3/c PL(c1,Co,0)@(VE(C,C2,C ), V2 (C, C2,C))
(1—Pi(c1,2,¢))@(vg(c1, €2, €'), Vi (c1, €2, €)) | T(dC[c).

V2(c1,C2,€) = ri(cy,cr)—K(c) +B/o PL(ct,c2,0)@V3(c,c,c),v3(c,c,c))
(1—P{(c1,C2,C))@(V3(c1,€,¢),VE(cy,¢,¢))] Ti(dd [c). (17)

These are the functional equations that need to be solveahtpute a Markov-perfect equilibrium to this

dynamic duopoly investment problem.
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To our knowledge, there is no analytic closed-form solutmthe set of functional equations (16) and
(17). Instead, in the remainder of this paper we attemptliegbem by a modified method of successive
approximations using numerical interpolation and quadleato undertake the calculations in equations
(16) and (17). Once solutions are calculated, the model eambulated to reveal the behavior implied by
this dynamic extension of the Bertrand model.

Although the system appears to resemble a pair of “Bellmaatans” (one for firm 1 and one for firm
2) and the Bellman equation typically has a unique solufiothis case the resemblance is only superficial.
We will show below that the set of functional equations (1) &17) isnota type of contraction mapping.
So far from having a unique solution, there can be many @iffesolutions to equations (16) and (17). The
various solutions to these equations correspond to diffexguilibria of the dynamic duopoly game.

Another implication of the fact that equations (16) and ([A@not define the equilibrium values of the
two firms as a fixed point to a contraction mapping is that théhotkof successive approximatiorfalso
known as backward induction) — is not guaranteed to convéigeever it is easy to see that if successive
aproximations does converge, it converges a fixed point e@ffdinctional equations (16) and (17), and
thus to a particular equilibrium of the dynamic game. We wfilbw that the successive approximations
algorithm can converge, but it will converge to differentigipria depending on thequilibrium selection
rule we use to select an equilibrium in the investment “stage §and also on the values from which
the algorithm is intialized. We do not yet have a way to fulhactacterizeall equilibria of this game, or
bound the possible set of payoffs to consumers and the twa.fifmcontrast, the literature on tielk
Theoremin repeated games has succeeded in characterizing the paggble equilibria and bounds on
the set of equilibrium payoffs. We hope that eventually lmsuand better characterization theorems can

be estasblished for the class of dynamic games we consider he

3 Solving the “End Game”

Under our assumptions the Markov process governing exagantgprovements in production technology
has an absorbing state, where we assume (without loss afadjgy)ethat the minimum possible production
cost isc = 0. This is also the absorbing state of the game, so that orste abthe firms reach zero, they
can go no lower, and there is no forgetting or knowledge degatien in our model that would ever cause

them to go back up in the future.
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3.1 The(0,0,0) End Game

The simplest “end game” corresponds to the stat®,0), i.e. when the zero cost absorbing has been
reached and both firms have adopted this state-of-the-@duption technology. In the absence of random
IID shocks(s‘o,sil) corresponding to investing or not investing, respectivasither of the firms would
have any further incentive to invest since we assume thasenis depreciation in their capital stock, and
they have both already achieved the lowest possible sfdteeeart production technology.

In the absence of privately observed idiosyncratic shot¥sg}), i = 1,2 (i.e. whenn = 0), the
(0,0,0) end game would simply reduce to an infinite repetition of teeozrice, zero-profit Bertrand
equilibrium outcome. No further investment would occur. u$hf this state were ever reached via the
equilibrium path, the Bertrand investment paradox willhdiut in a rather trivial sense. There is no point
in investing any further once technology has attained tivesb possible marginal cost of productian; 0
since in this absorbing state the investment cannot enalgl®fthe firms to leap frog its opponent.

When there are idiosyncratic shocks affecting investmegisibns, there may be some short term
reason (e.g. a temporary investment tax credit) that woxddde one or both of the firms to invest, but
such investments would be purely idiosyncratic unpretietavents with no real strategic consequence to
their opponent, since the opponent has already achievadittimum cost of production and thus, there is
no further possibility of leap frogging its opponent. Inghiero-cost absorbing state the equations for the

value functiong Vi, v; ) can be solved “almost” analytically.

Vh(0,0,0) = r'(0,0)+BP;(0,0,0)¢(V5(0,0,0),V; (0,0,0))
+ B[1—P;'(0,0,0)]p(v,(0,0,0),V;(0,0,0))
= 1(0,0) + Bp(v5(0,0,0),V; (0,0,0)) (18)

wherePfi(O, 0,0) is a shorthand for firni's opponent’s probability of investing,
exp{v;'(0,0,0)/n}

exp{v5'(0,0,0)/n} +exp{v;'(0,0,0)/n}

Due to the fact that0,0,0) is an absorbing state, it can be easily shown that the valuevesting,

Vv41(0,0,0), is given by

P;(0,0,0) = (19)

v1(0,0,0) = (0,0,0) — K(0), (20)
which implies via equation (19) that

v __exp{—K(0)/n}
P(0,0,0) = Tt oo —K(O)/n]" (21)
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Thus, ag) — 0, we haveP;(0,0,0) — 0 andv,(0,0,0) =r'(0,0)/(1— B), and in the limiting case where
the two firms are producing perfect substitutes, tHéd 0) = 0 and\/"0(0, 0,0) = 0. For positive values of
n we have

Vh(0,0,0) = r'(0,0) + Bp(V5(0,0,0),5(0,0,0) — K(0)). (22)

This is a single non-linear equation for the single soluﬁg)(m, 0,0). The derivative of the right hand side
of this equation with respect M{))(O, 0,0) is 1 whereas the derivative of the right hand side is strieths
than 1, so ifr'(0,0) > 0, this equation has a unique solutiwziﬂo, 0,0) that can be computed by Newton’s
method.

Note that symmetry property fat(0,0) implies that symmetry also holds in tti6,0,0) end game:
v3(0,0,0) = v3(0,0,0) andvi(0,0,0) = v2(0,0,0).

3.2 The(c,0,0) End Game

The next simplest end game statéds0,0). This is where firm 1 has not yet invested to attain the state-
of-the-art zero cost plant, and instead has an older platht avpositive marginal cost of productian
However firm 2 has invested and has attained the lowest pessi@irginal cost of production 0. In the
absence of stochastic shocks, in the limiting Bertrand,ciss clear that firm 1 would not have any
incentive to invest since the investment would not allowoitdap frog its opponent, but only to match
its opponent’s marginal cost of production. But doing thimwd unleash Bertrand price competition and
zero profits for both firms. Therefore for any positive costrvestmentk(0) firm 1 would choose not

to invest, leaving firm 2 to have a permanent low cost leadsitipa in the market and charge a price of
p=c.

In the case with stochastic shocks, just as in t0@,0) endgame analyzed above, there may be
transitory shocks that would induce firm 1 to invest and thgmmatch the 0 marginal cost of production
of its opponent. However this investment is driven only lyckasticllD shocks and not by any strategic
considerations, given that once the firm invests, it willgtly not be in much better situation than if
it had not invested (that is, even though0,0) > rl(c,0), both of these will be close to zero and will

approach zero a3 | 0). In the general case whefe> 0 we have

v§(¢,0,0) = ri(c,0)+Be(vs(c,0,0),vi(c,0,0))
vi(c,0,0) = r*(c,0)—K(0)+Be(v5(0,0,0),v;(0,0,0)). (23)
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Note that the solution for}(c,0,0) in equation (23) is determined from the solutigu}(0,0,0),v1(0,0,0))
to the(0,0,0) endgame in equations (22) and (20) above. Substitutingethéting solution fox} (c,0,0)
into the first equation in (23) results in another nonlineagion with a single unique solutiog(c,0,0)
that can be computed by Newton’s method. Note that, as we bbtow, the probability that firm 2 invests

in this caseP?(c,0,0) is given by

el K(0)/n)
PHE0.0) = I e —K(0)/n) 2

since firm 2 has achieved the lowest possible cost of pramtuetnd its decisions about investment are
governed by the same idiosyncratic temporary shocks, audtii@ the same formula for the probability
of investment as we derived above in equation (21) for€)6,0) endgame.

It is not hard to see that the symmetry condition holds in(th8,0) end game as well(c,0,0) =

v3(0,¢,0), andv2(c,0,0) = vi(0,c,0), where the solutions for the latter functions are presehédolw.

3.3 The(0,c,0) End Game

In this end game, firm 1 has achieved the lowest possible ¢psbductionc = 0 but firm 2 hasn'’t yet. Its
marginal cost of production is> 0. Clearly firm 1 has no further incentive to invest since & hahieved
the lowest possible cost of production. However in the preseof random cost shocks (i.e. in the case
wheren > 0), firm 1 will invest if there are idiosyncratic shocks thanhetitute unpredictable short term
benefits from investing that outweigh the cost of investméf@). But since this investment confers no
long term strategic advantage in this case, the equatiorfsrfol’s values of not investing and investing,

respectively, differ only by the cost of investmeé€t0). That is,
v1(0,¢,0) = v5(0,¢,0) — K(0). (25)

The equation fong(0,c,0) is more complicated however, due to the chance that firm 2 tiiylest,

P2(0,c,0). We have

v3(0,¢,0) =r1(0,c) + PBP(0,c,0)¢(v3(0,0,0),v5(0,0,0) — K(0))
+ B[l_ Pf(ov C> O)](p(V%(O, C> 0)7V%(0> C, O) - K(O)) (26)
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The probability that firm 2 will investP?(0, ¢, 0) is given by

) exp(2(0.¢,0)/1}
PHO.CO) = 20,600} + ep(R(0.0.0)/1]
_ exp{vi(c,0,0)/n} 27
exp(VI(C.0.0)/n} + exp(VA(c.0.0)/n}

where we used the symmetry condition thr%(O,c,O) = vjl(c,0,0), j = 0,1. Using the solution for

v3(c,0,0) andvi(c,0,0)) in the (c,0,0) end game in equation (23) above, these solutions can be sub-
stituted into equation (27) to obtain the probability thatnfi2 invests, and then this probability can be
substituted into equation (26) to obtain a unique solutmnv§(0,c,0), and finally the value of investing
v}(o, c,0) is given by equation (25).

Once again, it is not hard to see that the symmetry conditioldshin the (0,c,0) end game:

v3(0,¢,0) = v}(c,0,0) andv2(0,c,0) = vi(c,0,0).

3.4 The(cy,cp,0) End Game

The final case to consider is the end game where both firms luesivp marginal costs of productioo,
andcy, respectively. We will show that in this end game, asymrmegquilibrium solutions are possible.
We begin by showing how to solve the equations for the valadsm 1 of not investing and investing,

respectively, which reduce to

BP2(cy,C2,0)@(V5(c1,0,0),vi(cy,0,0))

B[1— Pf(c1,C2,0)]@(v5(C1, €2,0), Vi (C1, €2,0))

BPf(c1, C2,0)9(v5(0,0,0),v¢(0,0,0))

B[1— P?(cy,C2,0)]0(v3(0,¢2,0),vi(0,co,0)). (28)

v(C1,€2,0) = r(cy, cp)

+ (

+ ]
Vi(C1,C2,0) =rt(cy,c) —K(0) + (
+ ]
Given the equation fw}(cl, C2,0) in equation (28) depends on known quantities on the rightl lsate (the
values forv§ andv} inside thep functions can be computed in tii@ 0,0) and(0,c,0) end games already

covered above), we can tregt(c;, cz,0) as a linear function 0P12 which is not yet “known” because it

depends offv(cy, C2,0),V3(c1,Cy, 0)) via the identity:

eXp{V%(Clv C2, O)/n}
exp{vg(C1,C2,0)/n} +exp{vi(ci, c2,0)/n}

We write vi(cy, ¢, 0,P?) to remind the reader that it can be viewed as an implicit foncof P?: this is

P2(c1,C2,0) =

(29)

the value ol’v} that satisfies equation (28) for an arbitrary vaIuePf)fe [0,1]. Substituting this into the
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equation fonv, the top equation in (28), there will be a unique solutigtc;, c, 0, P?) for any P, € [0, 1]
since we have already solved for the val(esc;,0,0),vi(c1,0,0)) in the(c,0,0) end game (see equation
(23) above). Using these values, we can write firm 1's prditgloif investing P} (cy, c2,0) as

exp{V%(cl, C, 07 Pf)/n}

P{(c1.2,0,Pf) = '
1 (C1,C2,0,Pf) exp{Vd(c1,C2,0,P2)/n} + exp{vi(cy, c2,0,P2) /n}

(30)

Now, the values for firm Zv3(cy,c2,0),V3(c1,C2,0)) that determine firm 2’s probability of investing in
equation (29) can also be written as functionsP@ffor any Pll € [0,1]. This implies that we can write

firm 2's probablity of investing as a function of its percepis of firm 1's probability of investing, or as
P2(c1,C2,0,P}). Substituting this formula foP? into equation (30) we obtain the following fixed point
equation for firm 1’s probability of investing

1 exp{V%(Cl’Cz,O, Pf(C1702707 P%))/n}

pl_— : (31)
! eXp{Vcl)(Cla C, 07 Pf(C]_, C2, Ov P]:!'))/ﬂ} + eXp{Vi(Cl, C2, Ov Pf(clv C, 07 le_-))/n}

3.5 End Game Equilibrium Solutions

By Brouwer’s fixed point theorem, at least one solution tofiked point equation (31) exists. Further,
whenn > 0, the objects entering this equation (i.e. the value fansti3(cy, ¢z, 0, P?),vi(cy,c2,0,P?),V3(c1,C2,0,P), v (cy.
and the logit choice probability functioB? are allC* functions ofP? andP{, and standard topological
index theorems be applied to show that for almost all valdebeounderlying parameters, there will be
an odd number of separated equilibria. Furthemas 0, the results of Harsanyi (1973) as extended to
dynamic Markovian games by Doraszelski and Escobar (20a8y shatn serves as a “homotopy param-
eter” and for sufficiently small) the set of equilibria to the “perturbed” game of incompletfimation
converge to the limiting game of complete information.

However rather than using the homotopy approach, we found/@ve able to directly solve for equi-
libria of the problem in the limiting pure Bertrand case wége= 0 ando = 0. The case = 0 corresponds
to the case where demand is perfectly elastic and all consubuy from the firm with the lower price,
and the casg = 0 corresponds to the situation where there are no randonksladfecting the returns to
investing or not investing in the state-of-the-art produttechnology.

We find that there are either 1 or 3 equilibria in {log, c2,0) end game, depending on the values of the
parameters. The trivial equilibrium is a no-investmentiigrium that occurs when the cost of investment

K(0) is too high relative to the expected cost savings, and néiittme invests in this situation. However
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Figure 1 End Game Equilibria

wheneverK (0) is below a critical threshold, there will be 3 equilibria teetend game: two pure strategy
equilibria and an intermediate mixed strategy equilibrium

It turns out that the investment game is isomorphic woardination game.The two pure strategy
equilibria correspond to outcomes where firm 1 invests amd Zrdoesn’t and firm 2 invests and firm 1
doesn’'t. The mixed strategy equilibrium corresponds tosth&tion where firm 1 invests with probability
1y and firm 2 invests with probability. It is not hard to see that wheq = ¢, the game is fully symmetric
and we havay = . However whert; # ¢, then the game is asymmetric angd+ 1o. In general, we
can show that; > ¢, implies thatry > T, i.e. the cost-follower has a greater probability of investingdan
leap frogging the low-cost leaddfurther, from the standpoint of the firms, the mixed stratgyilibrium
is the “bad” equilibrium. In the symmetric casg,= ¢y, the mixed strategy results in zero expected profits
for both firms, whereas each of the pure strategy equililesalt in positive profits for the investing firm.
In the asymmetric case, the low cost leader reaps a posiifg: pntil one or the other of the firms invests
in the state-of-the-art production technology, and eaens profits thereafter.

Figure 1 plots the equilibria computed by plotting the besponse function in equation (31) against
the 45 degree line. We see that firm 1 is the low-cost leaddr avéubstantially lower marginal cost of
production than firm 2. In the mixed strategy equilibriumgrfit invests with probability @84, whereas
the firm 2, the high cost follower, invests with probability8@. Thus, the high cost follower has a signifi-
cantly higher chance of leap frogging its rival to attain plosition of low cost leadership. This leadership

is permanent (unless the firms happen to simultaneouslgtinsmce by assumption, the production tech-
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nology has reached the zero marginal cost absorbing stdtiare can be no further future improvements
in production cost.

To get further insight into the potentially counterintu@ifinding that the low cost leader hasoaver
probability of investing than the high cost follower, cattesi the payoff matrix for the simultaneous move
game in investment decisions by firms 1 and 2 in statecy,c) below. This matrix is for the special
case of the pure Bertrand case where the two firms producecgpestibstitutesa = 0) and there are
no unobserved shocks to the investment decisions Q). Further, we show the payoff matrix in the

asymmetric equilibrium case whecg > ¢, i.e. firm 2 is the low cost leader and firm 1 is the high cost

follower.
Firm 2
Invest Don't Invest
_ Invest —K,c1—co—K Bc/(1-B)—K,c1—C
Firm 1
Don't Invest | 0,c; —ca+Bc1/(1—B) —K BVi,c1 — o+ BVo

Figure 1: End Game Payoff Matrix in state;, c,0) with ¢ > ¢

To understand the formulas for the payoffs, it is easiestdd svith the upper left hand corner of
the payoff matrix when both firms decide to invest. In thisegagnce both firms attain the state-of-the-
art marginal cost ot = 0, Bertrand competition insures that both firms earn zerditpriollowing the
investment, which costk today. Since firm 2 is the low cost leader, it earns a profiti0f ¢, in the
current period, less its investment céstand zero profits thereafter, so its payoftis- ¢, — K. Firm 1 is
the high cost follower so it earns zero profits in the currettqal, incurs the investment cdst and earns
zero profits thereafter, so its payoff is jusk.

In the upper right hand corner, we have the payoffs in thetefilen 1 invests and firm 2 doesn’t. In
this case, once firm 1 has acquired the 0 marginal cost stdke-@rt production technology, it can charge
a price ofcy, the marginal cost of production of its rival. Once firm 1 h#aiaed this position, firm 2 will
clearly never have an incentive to try to invest in the futgethis investment will result in firm 1 having
leap frogged firm 2 to attaipermanentow-cost leadership. Since the profits it will earn come veitbne
period delay (due to the time to install the new productiorchirzery), firm 1's discounted profits after
the investment cost afec,/(1— B) — K. Firm 2 will earn profits ofc, — ¢; in the current period but zero

profits thereafter.
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In the lower left hand corner are the payoffs when firm 2 irv@sitd firm 1 doesn’t. In this case firm 2
invests and pre-empts firm 1 from undertaking any futurestments and thereby improves its profitability
and ensures that it has permanent low cost leadership. dfisspare given by, —c1 + pci/(1—B) — K,
since firm 2 will be able to set a price equal to the marginat obgs rival, c; and will have 0 marginal
costs of production following its investment. However ie tturrent period, while the new machinery is
being installed and firm 2 is still producing with its exigiimachinery with marginal cosb, firm 2 will
earn profits ofc; — ¢, and will have to pay the investment cdst Firm 1 will earn zero profits in the
current period and 0 profits in every future period after firimnv&sts, so its payoff is 0.

The remaining case to consider is the lower right hand soofairee payoff matrix, covering the case
where neither firm invests. While it is tempting to write thaypffs as simply 0 for firm 1 (since it is
the high cost follower and earns zero profits in the currenbgy andc; — ¢, for firm 2, this calculation
of the payoffs would be incorrect since it ignores the valti¢he future option to investlIf both firms
are playing a stationary, mixed strategy equilibrium, tiremny future period where neither of the two
firms have invested yet, the firms will continue to have theesatrategy of investing with probability
for firm 1 andty for firm 2. LetV;(my, ™) denote the expected present value of profits of firm 1 under
this stationary mixed strategy equilibrium avig{Ty, ) be the corresponding expected present value of

profits for firm 2,in the event that neither firm investor firm 1 we have
Vi =0+ pBVy (32)

which implies that/; = 0. Since firm 1’'s expected payoffs are zero when it doesn&shvegardless of
whether firm 2 invests or not, this implies that if firm 2 in&stith probabilityy, the expected payoff to

firm 1 from investing must also be 0, so we have
—Kmp + (1 - 1) [Bez/(1—B) — K] =0, (33)

or
o — Bco/(1-B)—K
Beo/(1-B)

From this formula we see that firm probability of investingais increasing function of its own marginal

(34)

costc, and a decreasing function of the cost of investmEnivhich seems emminently reasonable.

For firm 2 we have the following equation fu
Vo = T[]_(C]_ — Cz) + (1 — T[]_) (C]_ —Co+ BVZ) (35)
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which implies that

S >
1-B(1-m)

In order for firm 2 to be willing to pay a mixed investment stigy, its expected return from investing must

\A (36)

also be equal tv,, so we have
V2 = T[1(C1 —Co — K) —+ (l— T[l)(Cl —Co+ BCl/(l— B) — K). (37)

Combining equations (36) and (37) into a single equatioriferunknowrnry, we can solve this quadratic

equation, taking the positive root and ignoring the negabine.

Lemma 3.1. If c; > ¢, >0 and K< % then in the unique mixed strategy equilibrium of the pure

Bertrand dynamic investment and pricing game in staiec,,0) we havery > T,.

The proof of Lemma 3.1 is provided in the appendix. This rgstdvides a first taste of the possibility
of leap frogging since the high cost leader has a higher jbibityeof investing to become the (permanent)
low cost leader with the state-of-the-art plant with zeragirel costs of production. However the co-
ordination between the two firms in the mixed strategy elguiim is far from desirable, since it implies
a positive probability of inefficient simultaneous invesim by the two firms. The question is, can more

efficient coordination mechanisms be established as bggailio the full game?

4 Solving the Full Game

With the end game solutions in hand, we are now ready to pdomediscuss the solution of the full game.
The end game equilibria give us some insight into what capé@am the full game, but the possibilities in
the full game are much richer, since unlike in the end ganméf firm leap frogs its opponent, the game
does not end, but rather the firms must anticipate additileagl frogging and cost reducing investments
in the future. In particular, forms afynamic coordinationmay be possible that are not present in the end
game, which is closer to a “two stage” game than to an infindiézbon game.
We will assume initiallydeterministicequilibrium selection rules, i.e. a function that picks one of

the set of equilibria in each possible state of the gaimeg,,c). We now wish to analyze how different
state-contingent equilibrium selection rules can supgarider range of equilibria in the full game, includ-
ing a pattern of dynamic coordination between alternatimg |strategy equilibria that we have referred to

as leap frogging.

24



Specifically, we will focus on the following class of equiiié to the full gamethe cost follower invests
whenever the state-of-the-art production cost c falls geffitly below the marginal cost of the cost-leader
to justify the investment cost(K), otherwise no investment occuts.order to “enforce” this equilibrium,
we rely on a “credible threat” analogous to threats of a ‘gnicar” in the literature on tacit collusion in
supergames. Specifically, if the low cost leader should beepme too “greedy” and invest when it is
not “its turn”, then firm 2 will respond by investing. By sintaheously investing, the firms will move
to the symmetric state; = ¢, = ¢ where the equilibrium prescribes playing the “bad” mixedtggy
equilibrium. This results in zero expected profits and this be a sufficient “punishment” to deter the low
cost leader from deviating from the implicit coordinatidrat it should not invest when it is not its “turn.”

In order to solve the full game, i.e. the pair of functionaliatijons (16) and (17), it is helpful to rewrite

them in the following way,
Vé(Cl,Cz,C) = rl(CLCZ) + B [Pf(C17027C)H1(017C7 C) + (1_ Pf(CJ-»CZaC))Hl(Cva2>C)] (38)

vi(c1,C2,C) = ri(cy, c2) — K(c) + B [PZ(c1, c2,0)H(c, ¢, €) + (1 — PE(cr, 2, €))HE(C, 2, ) (39)
where the functiom® is given by
H (C17027 )_ p / (p(VO 017C2>C/) Vl(C17027 )) ( )dd+(l p( ))(p(Vg')(Cl,Cz,C),V%(C]_,Cz,C)),
(40)
wherep(c) is the probability that a cost-reducing innovation will agcandf (c’) is the density of the new

(lower) cost of production under the current state-ofdteconditional on an innovation having occurred.

For completeness, we present the corresponding equatidinnio2 below.
V(c1,C2,€) = r(cp, c1) + B [P(c1, 2, €)H?(c, €2, €) + (1 — Pi(C1,C2, €) ) HZ(C1, C2, C) ] (41)
V3(C1,C2,€) = r(cp, 1) — K(c) + B [P(c1, 2, )HZ(c, ¢, ¢) + (1 - Pi(c1,¢,¢))H?(c1, ¢, C)] (42)
where the functiom? is given by

H?(c1,¢2,¢) = D(C)/chp(\/%(clvczy ), Vi (€1, ¢2,¢)) F(c')de + (1 p(©))@(VG(ca, €2, ), VE(C1, €2, 0)),
(43)
If we set the argument&;, ¢, ) to Vg in equation (38) tqc,c,c), and similarly in equation (39) for
v1, we deduce that

vi(c,c,c) = vi(c,c,c) — K(c). (44)
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Clearly, if the firms have all invested and have in place theesbf-the-art production technology, there is

no further incentive for either firm to invest. For the sam@sans we have
V%(Q CZ>C) = V%)(C> CZ>C) - K(C) (45)

Similar to the strategy we used to solve the value functipfjsv}) i = 1,2 in the end game, we can
substitute equation (44) into equation (38) and use Newtoréthod to compute the unique fixed point
vé(c, c,c). Similarly, we can solve for/é(o, C2,0) by substituting equation (45) into equation (38) and
solving. Finally, to solve fow}(cy,c,, ) we note that using the solutions faj(c, c,c) andvg(c,c,,c) and
equations (44) and (45) to obtaifi(c,c,c) andvi(c,cy,c), we can compute’(cy,cy,c) by substituting
these values into equation (39). Then we substitgte;,c,,c) into equation (38) and use Newton’s
method to compute(cy, cz, C).

Note that we assume that the integral term in equation (4@nhimwvn”. This is because the successive
approximations solution algorithm is assumed to have caetpv3(cy,C2,¢),Vi(c1,Co,¢)) forall ¢ < ¢
(although in actuality for a finite number of and other values of needed to numerically compute the
integral in equation (40) are determined by interpolation)

Following the procedure we used to solve for equilibria ia @md game, the set of equilibria for the
investment “tage game” in each st&tg, c,,c) can be computed from the following fixed point equation

i _ exp{Vi(c1,C, ¢, P(c1,C2,C,PL))/n} .
exp{Vj(ca. 2, ¢, PZ(cy, C2. ¢, P1)) /n} + exp{vi(cy, ez, ¢, PF(c1, cz,¢,P])) /n}

Depending on the rule we choose to select among the possjbibea in each statéc;,c,,c) we can

(46)

construct a variety of equilibria for the overall game. Thstriction is that any equilibrium selection rule
must be such that the functional equations for equilibrisee(equations (38) and (39) above) are satisfied.
The following steps are used to solve for the set of all elqudi at each state poirits, cy,c) in the full

Bertrand/investment game.

1. For eachP} € [0,1] we compute the value function{s3(cz, c1, ¢, PL),v2(cz, c1,¢, PL) representing
firm 2's values of not investing and investing in stétg, cy,c), respectively, by solving the system

(41) and (42) for eacR} € [0, 1].

2. Compute firm 2's “best response”, i.e. its probabilitymiésting,Pf(cl,cz,c, Pll), in response to its
perception of firm 1’s probability of investing, via the equation

exp{vi(c1,C2,C.P{)/n}

. 47
exp{VA(Cr. C2.C. PL)/n} + exp(VA(cy, 2,6, PL) /) 47

P]?(Cly C2,C, le_.) =
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using the value functions for firm 2 computed in step 1 above.

3. Using firm 2's best response probablRy, calculate the value functiors}(cy, ¢z, ¢, P?),vi(c1, Co, ¢, P?)
representindirm 1's values of not investing and investing in stéte, c,, c), respectively, by solving

the system (38) and (39).

4. Using the values for firm 1, compute firm 1’s probability mfesting the second order best response

functionfor firm 1, and search for all fixed points in equation (46).

A madified version of the algorithm involves solving only fime values off the end game (as done in
section 3) and then solving for the values in the other s{ates;, c) for ¢ > 0 by the method of successive
approximations, iterating on equations (38), (39), (41 @2) until convergence is achieved. Any solution
to this system constitutes a Markov-perfect Nash equilibrito the dynamic investment/pricing game.
Although successive approximations is not guaranteed rieerge as is in the case when it is applied to
solving Bellman equations in dynamic programming problemiéch are “single agent” problems (i.e.
“games against nature”), when successive approximations donverge, it converges to an equilibrium
of the game as we noted earlier.

We have found that simple successive approximations, usie@gnodified approach where we do
not force the investment actions for the two firms to contitNash equilibria at each state configura-
tion (c1,Cp,C) ateach iteration of the successive approximations algorjtwiti sometimes converge and
sometimes not converge, depending on the initial condititbrat we start out the algorithm and other
details. When the successive approximations does conviergmverges to values and corresponding in-
vestment/pricing strategies that constitute mutual begtonses at evelyg;, ¢z, ¢) state point on the grid
that we used to compute the problem, and these values sadisfyfirm's Bellman equations (38), (39),
(41) and (42). Thus the converged values implies equilibratrategies for the full dynamic game, and
these strategies are “perfect” in the sense that they areaiiist responses in every subgame and at all
feasible states in the state space.

We have found that depending on how we initialize the sudsespproximations algorithm, when it
does converge, it can converge to many different types ofileda that have very different, interesting
properties. These equilibria are generally of the puréegisetype, i.e. each firm has a unique best response
to its opponent in each state;,cp,c). Some equilibria include the dynamic generalizations afffil

invests” and “firm 2 invests” that we observed in the end gamélibria in section 3, so these equilibria
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Realized Equilibrium Path with Leapfrogging
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Figure 2 Equilibrium realization with leap frogging

lead to only one of the firms undertaking investments andhgedt price equal to the initial price of their
opponent. We refer to these as “monopoly equilibria” sinoe of the firms captures all of the benefits
from the cost-reducing investments it undertakes and ifo@nt never challenges it by attempting to
undertake a cost-reducing investment of its own. Consumevrsr benefit from price reductions in these
equilibria and all of the benefit from the cost reducing inments flows to the firm that undertakes them,
in the form of successively lower costs of production. Wejecture that the investment paths in these
equilibria are identical to the investment paths of an dect@opolist whose pricing is constrained by the
existence of an “outside good” whose price is the same asttial imarginal cost of production of the
passive, non-investing firm in the duopoly equilibrium.

However there are also equilibria involving leap froggirghavior where the firms do compete dy-
namically by undertaking competing cost reducing investisie This causes prices to fall over time so
consumers do benefit from declining prices in these eqialibifigure 2 plots a realization of the equilib-
rium play in one such game, where both firms 1 and 2 undertaitereducing investments.

However note from the figure that firm 1 islaminant firmand it undertakes cost-reducing investments
most of the time. Starting from a symmetric situation wh@rec,,c) = (5,5,5), firm 1 undertakes the
first two cost-reducing investments, one at time period hefdimulation after the state-of-the-artalls
from 5t0 41667, and a second investment at time period 7 vafaiis again from 41667 to 125. During
this entire time, the prices to the consumer are equal tonite price, 5, since the low cost leader, firm

1, sets a price equal to the marginal cost of its rival, whamains at its initial value of 5. It is not until
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period 15, when there is a further technological innovatiat decreasesfrom 1.25 to Q8333 that firm

2 finally invests, leap frogging firm 1 to become the low-cestder. When firm 2 does this, the prices
to the consumer finally drop — tp = 1.25 — since firm 2 now sets a price equal to the marginal cost
of production of firm 1, its higher cost rival. The large prigep in period 15, frorp=5top=1.25
constitutes a price war caused by firm 2 when it invested amul fimgged firm 1 to become the new low
cost leader.

Prices remain gp = 1.25 until periodt = 32 whenc drops again to a value of@5. Now firm 1 leap
frogs firm 2 to regain the position of low cost leader, and theepto the consumer falls tp= 0.8333. In
periodt = 33 ¢ falls again to 04167 and firm 1 invests again to acquire this technology, leiprice to
the consumer remains pt= 0.8333. Then there is a long interval where there are no futdwdmological
innovations and the price remains at this level until petieel 105 whenc drops to 02083 and firm 1
invests once again. Finally, by periog= 188 there is a last technological innovation that decreases
its lowest possible value af= 0, where it remains forever aftérFirm 1 decides to invest one more time
and attain the best possible marginal cost of productiar ef c = 0, and secure a position permanent
low cost leadership over firm 2. The game then “ends” in an s state where firm 1 can produce at 0
marginal cost and sell to consumers at a pricp ef0.8333, which equals the marginal cost of production
of firm 2, the high cost “loser”.

Figure 3 illustrates a slightly different equilibrium ofeghmodel. To isolate the effect of the different
equilibrium on the simulated outcomes, we use the samezeehpath of{c;} in figure 3 as we used in
figure 2. This equilibrium realization is almost the samehasane shown in figure 2, except that in period
190, whenc; falls from c1g9 = .2 to c1990 = O, firm 2 doesinvest and leap frogs firm 1 one final time to
become the permanent low cost leader. This means that mace®rge top = 0.2 in this equilibrium
simulation rather thap = 0.8333 in the equilibrium simulation illustrated in figure 2.

Figure 4 illustrates a very different equilibrium, againngsthe same realized path f¢ } as in figures

2 and 3 above. In this equilibrium there is no leap froggind ao investment, except for a single pre-

2Note that for these simulations we discretized the possiliees that could take on into 50 possible values over the
interval [0,5]. When a simulated value of was off of this grid, we used the closest grid point insteaulisT this discretized
simulation process for the Markov process {af} can yield the absorbing state= 0 in a finite timet, whereas for the
actual process we described in section 3 of the paper, thingvalue 0 would only be obtained asymptoticallytas co.
However as noted, wheny becomes sufficiently small, the firms no longer have furtheeitive to invest. Thus, a more
accurate simulation of the process (something we plan to datire work) would reveal that investments continue uentil
small but positive value af; is reached, after which further investment stops. So in thedis, the reader should interpret
¢t = 0 as this small positive value of at which further investment is no longer economic.
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Figure 3 equilibrium realization with leap frogging
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Equilibrium with persistent leadership and leapfrogging
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Figure 5 equilibrium realization with leap frogging and persistent leadership

emptory investment by firm 2 in peridd= 190 when it invests, acquires the zero marginal cost pramtuct
technology, and achieves permanent low cost leadershidiovel. Notice that firm 1 never invests in this
equilibrium realization, and so prices to the consumer n&tk and remain at the initial value gg =5
forever. For the first 190 periods of the game, both firms anensgtric Bertrand price competitors and
therefore both earn profits of zero. However firm 2 investsdriqul 190, and starting in peridd= 191
onward, firm 1 earns profits of 5 by charging a pricepet 5. It has thus attained an outcome that is very
similar tolimit pricing by a monopolist. Recall that in limit pricing, a monopolistacges the maximum
price it can get away with, subject to the constraint that grice is not too high to induce entry. In this
case, the limit price is determined by the marginal cost ofipction of firm 1, since this firm plays the
same role as a new entrant in the limit pricing model: if firmmi@d to charge more than firm 1's marginal
cost of production, there would be room for firm 1 to underaum {2, take the entire market, and still earn
a profit. Note that there is also a mirror-image equilibriuatcome when we select another equilibrium
where firm 1 invests at= 190 instead of firm 2.

Figure 5 illustrates another equilibrium where firm 1 unakes nearly all of the cost-reducing in-
vestments and therefore attains a highly persistent rolevotost leader in this equilibrium realization.
Howver in periodt = 190 firm 2 does finally invest, leap-frogging firm 1 to attainearpanent position
of low cost leadership. From the standpoint of consumegsettuilibrium outcome in fiure 5 is identical
to the one displayed in figure 4 for the first 190 periods: theepis p = 5 in both cases. All of the cost-

reducing investments undertaken by the low cost leader, Ifjrim the first 190 periods accrue entirely to
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Equilibrium with persistent leadership and leapfrogging
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firm 1 and not consumers. However unlike figure 4, when firm 2lfinavests and leap frogs firm 1 to
become the new (permanent) low cost leader in periedl90, a price war breaks out that drives prices
from p=5 down top = 0.2, where they remain ever after. Firm 1’s profits fall to zeiarteng in period

t =191 and firm 2 is able to earn a small per profit ¢ for allt > 191.

Figure 6 illustrates yet another equilibrium where therke@p frogging and an alternating pattern of
low cost leadership that results in more of the benefits of-@ucing investments being passed on to
consumers. Starting from the symmetric situation where- ¢, = ¢ =5 in periodt = 1, firm 1 moves
first and invests in a new plant that produces at the new lotasz-sf-the-art marinal cost= 4.16667 in
periodt = 3. Then in period = 7 another large technological innovation occurs that reddice marginal
cost of production under the state-of-the-art from 4.16667 toc = 1.25. This large drop induces firm 2
to invest and leap frog firm1 to become the new low cost ledml#iths does not ignite a serious price war
since prices only fall fronp =5 to p=4.16667. Firm 2 remains a persistent low cost leader, undagak
all subsequent cost-reducinng investments until periedl90 when firm 1 invests and replaces its high
cost plant with a new state-of-the-art plant with a margi@dt of production ot = 0. At this point a
major price war erupts that drives down prices frpm: 4.16667 top = 0.2.

Figure 7 provides a final illustration of another equililniwith leap frogging and persistent leader-
ship, but where the low cost leader, firm 1, stops investind) “@nasts” for an extended period of time
after aggressively investing early on in peridds 3 andt = 7, where it drove down its marginal cost of

production successively from= 5 toc; = 4.1667 and then to; = 1.25. However firm 1 decided not to
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Equilibrium with persistent leadership and leapfrogging
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Figure 7 equilibrium realization with leap frogging and alt ernating leadership

undertake any further cost reducing investments after timail in periodt = 190 firm 2 invested and leap
frogged firm 1 to become the permanent low cost leader. Thigenymited a price war that reduced the
price fromp=>5to p= 1.25.

Each of the equilibrium simulations illustrated above espond to different equilibria of the dynamic
game. These are just a few of the many different ones we cauwiel shown. It shoud be clear that there are
many equilibria with a wide range of investment outcomes ks to consumers. It may be surprising
that such complexity can be obtained in such a simple exierwdithe classical static Bertrand model of
price competition, which has a very simple, unique solutidithough we noted above that we have yet
to systematically characterize the set of all equilibridhic model, and characterize the implied payoff
sets (profits for firms 1 and 2 and prices to consumers), ieardrom figures 2 to 7 above, there is a very
wide range of profits and prices that are consistent withlibgiuim in this model. Some equilibria result
in very high prices to consumers, little investment, anchhpgofits for one of the firms, other equilibria
can results in high prices, little investment and no proétsither firm, whereas still other equilbria result
in active investment by both firms that gives both modest grofhile passing the majority of the benefits
from these cost reducing investments on to consumers irothe df lower prices.

We have also seen that even when cost-reducing investmetus they do not always result in price
reductions to consumers. Only those investments thattriesahe firm leap froggingver its opponent
to become the new low cost leader result in price reductiorohsumers. However there are instances

where one firm undertakes a cost-reducing investmentrsgarom a situation where both firms have the
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same marginal cost of production. In these situations tis&m@mlucing investment generates no benefit
to consumers, similar to the situation where cost-reduirimgstments are undertaken by the firm that is
already the low cost leader. Although these investmentotiommediately benefit consumers in the form
of lower prices, they can eventually benefit consumers ifatimer firm eventually does invest and leap
frogs its opponent. This point is illustrated most dran@hjcin figure 5 where firm 1 undertakes a large
number of cost-reducing investments that it capturesedniin increased profits for the first 190 periods of
the game, but when firm 2 finally invests and leap frogs firm lenqut = 190, the price war that erupts
results in a new permanent low price regime for consumetsatha only possible due to aggressive prior
investments by firm 1. Compare this to figure 4, where abseihmast-reducing investments by either firm
in the first 190 periods implies that even when firm 2 finallyeisked at = 190, the prices would remain
forever atp = 5.

A final point to note is that behavior reminiscent of “snigifgequently appears in the equilibrium
simulations. By ths we mean a situation where one of the fiengins passive and takes the role of the
high cost follower for extended periods of time, but thedwaler does eventually “jump in” by investing at
a point when technology improves sufficiently that the firm oavest in a plant that has a sufficiently low
marginal cost of production that it deters its opponent fieamg further attempt to leap frog to regain the
low cost leadership position in the future. These casestilite the contestable nature of competition in
this model. Being a high cost follower for an extended pedbiime does not necessarily impair the firm'’s
ability to jump in and leap frog its opponent at any point ie thiture, provided that the low cost leader’s
own investments have not driven down its costs of produdtianlow in the interim. This propensity of
the high cost follower to “come from behind” is, we believelated to our conjecture in section 3 that in
the mixed strategy equilibrium of the;, c,,0) end game, the high cost follower has a greater probability

of investing than the low cost leader.

5 Socially Optimal Investment

It is of interest to compare investment outcomes from dupgoimpetition in pricing and investment
to those that would emerge under the social planning solwiibere the social planner is charged with
maximizing total expected discounted surplus. In the singphtic model of Bertrand price competition,

the duopoly solution is well known to be efficient and coircidith the social planning solution: both
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firms earn zero profits and produce at a price equal to margosdl

However the static model begs the question of potentialméduncy in production costs among the
two firms. The static model treats the investment costs sacgs$o produce the production plant of the
two firms as a sunk cost, and it is ignored in the social plapmalculation. However in a dynamic
model, the social planner does/should account for thessiment costs. Clearly, under our assumptions
about production technology (any plant has unlimited potidan capacity at a constant marginal cost of
production) it only makes sense for the social planner toaipeonly a single plant, and it would never be
optimal to operate two plants as occurs in the duopoly dayialiexcept for the two “monopoly” outcomes
where one or the other of the firms does all of the investindjusT the duopoly equilibria are typically
inefficientin the sense that there is redundant investment costs thatwot be incurred by a social
planner.

If we assume that consumers have quasi-linear preferendbsisthe surplus they receive from con-
suming the good at a price @f is u— p, then the social planning solution involves selling the dyad
marginal cost of production, and adopting an efficient ibvesnt strategy that minimizes the expected
discounted costs of production. L&tbe the marginal cost of production of the current productitamt,
and letc be the marginal cost of production of the current statehefdrt production process, which we
continue to assume evolves as an exogenous first order Mprkoess with transition probabilitg(c’|c)
and its evolution is beyond the purview of the social planmdl the social planner can do is determine
anoptimal investment stratedpr the production of the good. Since consumers are in effgktneutral
with regard to the price of the good (due to the quasi-lingassumption), there is no benefit to “price
stabilization” on the part of the social planner. The soplahner merely solves and adopts the optimal
investment strategy that determines when the current plamild be replaced by a new, cheaper state-of-
the-art plant, and it provide the goods produced by thiswgtplant to consumers in each period at a price
equal to the plant’s marginal cost of production.

Let V(ci,c) be the present discounted value of costs of production wherplant operated by the
social planner has marginal cagtand the state-of-the-art technology (which is availablénwine period
delay after incurring an investment costkofc) just as in the duopoly problem above) has a marginal cost

of ¢ < c¢;. We have
V(cg,c) = min {c1+ B/OCV(cl,c’)n(dd]c),clJr K(c)+ B/OCV(c, c’)n(dd\c)] . (48)

The optimal investment strategy can be easily seen to ta&kitm of acutoff rulewhere the firm invests
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in the state-of-the-art technology when the current stéttre-artc falls below a cutoff threshold(c;y ),
and keeps producing using its existing plant with margitskc; otherwise.

The optimal threshol@(c; ) is the solution to the following equation
C(Cl) , _ ,
K(e(e)) =B [ [V(er,) = V(eles).d)] mdee(cy)) (49)

This equation tells us that at the optimal cutoff{c; ), the social planner is indifferent between continuing
to produce using its current plant with marginal costor investing in the state-of-the-art plant with
marginal cost of production(c;). This implies that the decrease in expected discounteduptioth costs

is exactly equal to the cost of the investment whénequal to the cutoff threshoit{c; ). Whencis above
the threshold, the drop in operating costs is insufficielaige to justify undertaking the investment, and
whenc is below the threshold, there is a strictly positive net fiéfrem investing.

Comment: this section not yet complete. We intend to compaeeoverall efficiency of various
duopoly equilibria to the social planning optimum and hopshow that various equilibria involve more
efficient coordination in investment decisions betweent# firms, and thus get closer (but not equal)
to the social planning optimum. Duopoly will always involgeme redundancy, and hence inefficiency,

relative to the optimum that a social planner can achieve.

6 Conclusions

This draft is still preliminary and incomplete, so we hestto draw too many conclusions at this point.
However several conclusions are possible from the work we ldane so far. First, we have identified
and resolved th&ertrand invesment paraddxy showing that Bertrand duopolists do have incentive to
undertake cost-reducing invesments. The cost-reducirggiments can usually enable one of the firms to
attain a temporary period of low cost leadership during Whiee discounted profits it can expect to earn
are greater than the up-front fixed costs of undertakingriyestment.

Our paper is not the first to establish the possibility of [&agging equilibria in a dynamic extension
of the classic Bertrand model of price competition. After @zenpleted our analysis, we became aware
of the work of Giovannetti (2001), who appears to have predithe first analysis of Bertrand compeition
with cost-reducing investments in a framework similar to'@uThe main differences between our setup
and Giovannetti’s is that improvements in technology oct@ierministically in her model, with the cost of

investing in the state-of-the-art production facility tieimg geometrically in each period. She established
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in this environment that there are leap-frogging equiiin which investments occur in every period,
but with the two firms alternating in their investments. Tleeand main difference is the specification
of demand, where Giovannetti assumed that the demand fatsgsogiven by a constant elasticity of
substitution demand curve rather than deriving aggregateadd from micro aggregation of individual
discrete purchase decisions as we have done in our modestddteastic nature of technological progress
that is captured in our model leads to equilibria where tlaeeslong periods where there are no techno-
logical improvements and thus no investment by either firnmgtuated by technological break-throughs
that sometimes induce one or both of the firms to invest in tifile-©f-art production machinery, thereby
precipitating a price war.

Giovannetti also found there were equilibria with “pemigtleadership” an outcome she termed
creasing asymmetryThese equilibria are the analogs of the equilibria we findunrmodel where one of
the firms takes the role of “low cost leader” for extended qusiof time and does all of the investing at
every point in time where there is a sufficiently large regurcin the marginal cost of production in the
state-of-the-art technology, relative to its fixed invesiincost. However Giovannetti’'s analysis did not
trace out the rich set of possible equilibria that we havenébim our model, including the possibility of
“sniping” where a firm that has been the high cost followerdrtended periods of time suddenly invests
at the “last minute” (i.e. when the state-of-the-art maatjicost is sufficiently low that any further invest-
ments are no longer econommic), thereby displacing itd tivattain a permanent low cost leadership
position.

We also refer the reader to the very important paper by Goettid Gordon (2009) that studies leap-
frogging R&D and pricing decisions by the duopolists IntelaAMD. This model is considerably more
complex than our model in that AMD and Intel leapfrog eacleotty undertaking R&D investments to
produce faster microprocessors rather than by simply imgegn a cost reducing production technology
that evolves exogenously as in our model. In addition, thettBw and Gordon model has comsumers
that makedynamicrather than static choices about whether to purchase a neyuter with the latest
microprocessor, or keep their existing computer with arpgeneration microprocessor. This creates
considerable complexity and added interesting dynamiese gshe duopolists must consider as a relevant
state variableghe entire distributions of holdings of microprocessorgha consumer populationwhen
a sufficiently large fraction of consumers have sufficieotlydated microprocessors, conditions are more

opportune for gaining a large market share by introducingwenm, faster microprocessor. Interestingly,
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despite the substantial additional complexity of their glow) framework, Goettler and Gordon claim that
there model has anique equilibrium.It is of interest to us to better understand what features ledhe
huge plethora of equilibria in our much simpler framewortg &hich features of the Goettler and Gordon
framework lead to a unique equilibriufn.

We were surprised by how complex are the various tytpes dfilegum behavior that can emerge from
this simple model. Unlike the static Bertrand model of pigcenpetition where there is a single, simple,
ungiue and fully efficient equilibrium outcome — the Walasicompetitive outcome — in the simple
dynamic extension we have considered where firms competebotle price and investment strategies,
there appear to be a vast multiplicity of different equibbrvirtually all of which are inefficient. Some
of these equilibria can result in outcomes that are very baddnsumers even though the duopolists are
never colluding and behaving as Bertrand price competitoessery period. We have more work to do
to explore and characterize the set of equilibria in this ehodnd to better understand the dynamics of
price and investment competition when the two firms are pimgdugoods that are not perfect substitutes.
We would also like to add capacity constraints to the model amderstand whether the equilibria of
this extended model would exhibit the result discovered bgpk and Scheinkman (1983), namely, that
capacity investment followed by Bertrand price compatitigelds an outcome identical to the Cournot-
Nash equilibrium in a model where firms chooses quantitidg on

A final contribution is that we provide a new interpretaiom foice wars. In our model price wars
occur when a high cost firm leap frogs its opponent to becoraenéiwv low cost leader. It is via these
periodic price wars that consumers benefit from technofdgicogress and the competition between the
duopolists. However, what we find surprising is that theesemyuilibria of our model where cost-reducing
investments are relatively infrequent and leap frogginglyaoccurs, so that consumers obtain little or no
benefit from technological progress in the form of lower @siclt remains an open question as to whether
our results are simply theoretical curiosums, or whethisrftamework can be extended and the issues of
multiple equilibria be addressed in a satisfactory way thitwork might yield useful practical insights

and new tools for applied Industrial Organization.

SGoettler and Gordon appealed to tHaique Investment Choid@)IC) admissibility criterion of Doraszelski and Sat-
terthwaite (2010) to establish the uniqueness of equilibrin their model.
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7 Appendix: Proof of Lemma 1
Lemma3.1lfc; > c; > 0and K< % then in the unique mixed strategy equilibrium of the purgr@ad
dynamic investment and pricing game in st@g cz,0) we havery > To.

Proof. First, note that the conditioK < % in Lemma 3.1 ensures that investment is profitable in the

long term even for firm 1 whose potential pay-off is small@j%(< %). In other words, this condition
ensures that for both firms’ investment decisions are ecaadyjustified. Next, observe that wh@n=0

in the(cy, c2,0) end game there is unique pure strategy equilibrium whetheredf the companies invests.
Thus, we only consider the cae> 0.

The value functions of the two firms in tl{e;, c;,0) end game when; > ¢, are

VvV = T[1><<TT2'(—K)+(1—T[2)'<1BTCZB—K>>+
+(1-m) X (Th-0+ (1 —TR) - BV4)

Vo = n2><(nl'(cl—CZ—K)Jr(l—nl)-<c1—02+1BElB—K>>+
+(1-Tp) X (T~ (C1—C2) + (1) - (C1— 2+ BV2))

where the definition of the probabilityy, of investment by firm 1 in the mixed strategy equilibrium gve

Bco
1-B

and thus the value function itself becomes the weighted diequml parts, leading to

Vi=Tp (—K)+(1-Tp)- <1BTCZB—K> =Tp-0+(1-1m) -BV1

Using the second equality in the last expression, we\fing 0, and then using the first equality in the

T[2-(—K)+(1—T[2)-< —K):n2-0+(1—n2)'[3v1

same expression, we find-1mp, = %

The definition of the probabilityr, of investment by firm 2 in the mixed strategy equilibrium, garly

gives

Vo = T[1.(cl—cz—K)_|_(1_T[1),(Cl_cz_i_lBT(?lB_K)
= m-(c1—C)+(1—m)-(cp—Co+BV2)

Using the second equality in the last expression, we\fne % and using the it once again
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we get

T (cp —C2—K)+(1—Tm) <01—02+1Ble—K> = m(C1—C2)+ (1-T)(C1—Ca+PV2)
(Lﬂﬁ@%%A(—mK::u—mmw
C1 K .
B Fam

Combining the two expressions for the value funcbnwe get the following equation

C1—Cp C1 K

1-B-(1-m)  1-B B-(1-m)

Multiplying by 1 — 3 and incerting the expression forlrp, we have

ci—C 1-T11
1 . 2 _ Cl_l 202
1+rBT[1 —Tq
_1m
- - X
C1—C 1—|—1TBBT[1
1-—T1t
G-—c < -0
1-m
1-1m
> 1
1-m
m = T

The inequalities are due to the fact that0y < 1, 1TB[3 > 0,¢1 —Cp >0, ¢, > 0. The final inequality
is strict unlessty, = ™ = 0, which impliesK = % thus leading to a contrudiction. We conclude then that

m > Th. O
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