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In many dynamic programming problems, a mix of state variables exists – some

exhibiting stochastic cycles and others having deterministic cycles. We derive a formula

for the value function in infinite-horizon, stationary, Markovian decision problems by

exploiting a special partitioned-circulant structure of the transition matrix P. Our

strategy for computing the left-inverse of the matrix ½I� bP�, which is central to

implementing Howard’s policy iteration algorithm, yields significant improvements in

computation time and major reductions in memory required. When the deterministic

cycle is of order n, our cyclic inversion algorithm yields an Oðn2Þ speed-up relative to the

usual policy iteration algorithm.

& 2008 Published by Elsevier B.V.
1. Introduction

Many dynamic programming problems encountered in practice involve a mix of state variables, some exhibiting
stochastic cycles (such as unemployment rates) and others having deterministic cycles. Examples of the latter include the
day of the week as well as the month and the season of the year. It is common practice in economics to remove trend and
seasonal components from stochastic processes in an attempt to make them stationary and, thus, to simplify the analysis.
In many problems, however, these transformations can cause important distortions: the real features of the data can be
altered as can the behavior implied by empirical models estimated from those data. Most real-world problems involve
complicated interactions between variables that evolve according to deterministic cycles and those that evolve according to
stochastic cycles. In many nonlinear models, no simple method exists to isolate the deterministically evolving components
from the stochastically evolving ones, especially when agents are responding endogenously to both kinds of components.

While it is possible (and generally preferable) to analyse dynamic models without inducing distortions using unjustified
transformations of the underlying stochastic processes, doing things ‘correctly’ typically implies a substantial cost: model
complexity. Extra state variables are required in order to capture nonstationarities and deterministic cycles, but the curse of
dimensionality makes it costly in terms of the extra time and memory required to solve the models.

We derive a formula for the value function in infinite-horizon, stationary, Markovian decision problems that contain
deterministic cycles – i.e., an integer-valued state variable ct that evolves according to simple modulo arithmetic,
ctþ1 ¼ ct þ 1 mod n. We exploit the special partitioned-circulant structure of the overall transition probability matrix P for
Elsevier B.V.

.au (H.J. Paarsch), jrust@gemini.econ.umd.edu (J. Rust).

ust, J., Valuing programs with deterministic and stochastic cycles. Journal of
doi:10.1016/j.jedc.2008.08.007

www.sciencedirect.com/science/journal/dyncon
www.elsevier.com/locate/jedc
dx.doi.org/10.1016/j.jedc.2008.08.007
mailto:hjp@paarsch.ecom.unimelb.edu.au
mailto:jrust@gemini.econ.umd.edu
dx.doi.org/10.1016/j.jedc.2008.08.007


ARTICLE IN PRESS

H.J. Paarsch, J. Rust / Journal of Economic Dynamics & Control ] (]]]]) ]]]–]]]2
Markovian decision problems containing both deterministic and stochastic cycles to derive a formula for the left-inverse of
the matrix ½I� bP� which is central to solving infinite-horizon dynamic programming problems using the policy iteration
algorithm of Howard (1960). This formula constitutes the policy valuation step of the policy iteration algorithm, and yields
significant improvements in the computation time as well as major reductions in the memory required when solving
infinite-horizon dynamic programming problems with deterministic cycles. In particular, if the problem contains a
deterministic cycle of order n, then we demonstrate that our cyclic inversion algorithm for solving the linear system
V ¼ uþ bPV for the value function V results in an Oðn2Þ speed-up relative to the usual policy iteration algorithm that
solves the linear system function V without taking into account the special structure of P.

Thus, the cyclic inversion algorithm enables us to capture nonstationarities arising from deterministic cycles at
relatively low marginal cost. Instead of increasing the cost of solving a dynamic program that explicitly accounts for a
deterministic cycle in the underlying problem by a factor of Oðn3Þ (the rate that is relevant if the standard policy iteration is
used), the cost increases only linearly – by a factor OðnÞ – when the cyclic inversion algorithm is used to value candidate
policies using the policy valuation step of the policy iteration algorithm. Another important feature of the cyclic inversion
algorithm is that it requires less memory than the usual application of the policy iteration algorithm.

In Section 2, we define the class of dynamic programming problems we study, while in Section 3, we show how the
presence of a cyclical state variable results in a dynamic programming problem whose transition probability matrix P has a
special form – a partitioned circulant matrix. We derive an expression for the left-inverse of ½I� bP� as well as for
the solution V to the linear system V ¼ uþ bPV which is the key equation underlying the policy iteration algorithm. In
Section 4, we discuss the computational cost of the policy iteration algorithm when a cyclical state variable is present and
then show that our algorithm, which exploits the special structure of P, obtains an Oðn2Þ speed-up relative to standard
policy iteration algorithms which treat P as an unstructured, dense matrix. In Section 5, we illustrate the utility of our
algorithm by applying it to solve an optimal timber-harvesting problem which involves harvest costs that vary significantly
across different months of the year.

2. Definition of dynamic programming problem

Consider an infinite-horizon, stationary, Markovian dynamic programming problem with state variables ðxt ; ctÞ, decision
variable dt , and pay-off function uðxt ; ct ; dtÞ. We assume that xt evolves according to a transition density gðxtþ1jxt ; ct ; dtÞ that
depends on ct and dt , but that ct is a deterministically and cyclically evolving state variable taking the integer values
f0;1; . . . ;n� 1g according to standard modulo arithmetic

ctþ1 ¼ ct þ 1 mod n.

The deterministically cycling state variable ct is also known as a directed circuit; see Kalpazidou (2006). As noted above,
examples of cyclical state variables include the day of the week as well as the month and the season of a year. Cyclical
variables can, therefore, be introduced into dynamic programming problems to capture seasonal or ‘calendar effects’ in an
environment that is otherwise time stationary. Let Dðx; cÞ denote the set of feasible choices for the control variable d when
the state is ðx; cÞ and let b 2 ð0;1Þ denote the discount factor. For the purposes of this paper, suppose that xt , which
contained in the set X, can assume only a finite number of possible values m � jXj, the cardinality of the set X. Thus, without
loss of generality, we can identify the number of possible values of xt with the set of integers f0;1; . . . ;m� 1g. Similarly, we
assume that the number of feasible decisions is finite for each ðx; cÞ and we let jDðx; cÞj denote the number of choices in state
ðx; cÞ. Thus, there is no loss of generality if we identify this choice set by a subset of integers – e.g., Dðx; cÞ ¼

f0;1; . . . ; jDðx; cÞj � 1g.
The Bellman equation for this dynamic programming problem is

Vðx; cÞ ¼ max
d2Dðx;cÞ

uðx; c; dÞ þ b
X

x0
Vðx0; c þ 1 mod nÞgðx0jx; c; dÞ

" #
, (1)

where Vðx; cÞ represents the present discounted value of pay-offs under an optimal policy.
Under the well-known policy iteration algorithm, the key step in solving this program involves computing the value

function corresponding to any given feasible trial policy d. A policy is feasible if dðx; cÞ 2 Dðx; cÞ for all possible values of ðx; cÞ.
Letting Vdðx; cÞ denote the value function associated with the policy d for state ðx; cÞ, we then have

Vdðx; cÞ ¼ u½x; c; dðx; cÞ� þ b
X

x0
Vdðx

0; c þ 1 mod nÞg½x0jx; c; dðx; cÞ�.

If we array Vd as an m � n� 1 vector and, similarly, let ud be a conformable m � n� 1 vector, then we can write Eq. (1) as the
following matrix equation:

Vd ¼ ud þ bPdVd, (2)

where Pd is an m � n�m � n transition matrix which will be described further below. As is well known, the solution to the
linear system (2) is given by

Vd ¼ ½I� bPd�
�1ud,
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where the left-inverse of ½I� bPd� is guaranteed to exist because Pd is a transition matrix (and, therefore, has a matrix
norm satisfying kPdkp1) and because b 2 ð0;1Þ. In this case, the left-inverse has the following infinite-series (or Neumann)
expansion:

½I� bPd�
�1 ¼

X1
t¼0

bt
½Pd�

t .

As is also well known, the numerical solution to linear systems such as Eq. (2), using standard LU decompositions which do
not exploit any special structure of the matrix, requires Oð½m � n�3Þ floating point operations. In the next section, we
illustrate that the presence of the cyclical state variable induces a special structure that can be exploited to reduce the
solution to Eq. (2) to the solution to n linear systems of order m. Thus, after exploiting this special structure, the total work
involved in solving for Vd is Oðnm3Þ – a speed-up of Oðn2Þ relative to standard policy iteration which ignores the special
structure of Pd.
3. Structure of P matrix

In this section, we characterize the special structure of the matrix Pd which is induced by the cyclical state variable ct .
Suppose the state variables are arranged so that the x variables are ordered from 0 to m� 1 in an inner do-loop and the
cyclical state variable is ordered from 0 to n� 1 in the outer do-loop. Thus, we define

Vd ¼

Vdð�;0Þ

Vdð�;1Þ

..

.

Vdð�;n� 1Þ

2
666664

3
777775,

where Vdð�; jÞ is the m� 1 vector given by

Vdð�; jÞ ¼

Vdð0; jÞ

Vdð1; jÞ

..

.

Vdðm� 1; jÞ

2
666664

3
777775.

Assume that ud is arrayed in a conformable fashion. Under this ordering of the state variables, we can represent the
mn�mn transition matrix Pd as follows:

Pd ¼

0 P0 0 � � � 0

0 0 P1 � � � 0

0 � � � � � � . .
.

0

0 � � � � � � 0 Pn�2

Pn�1 � � � � � � 0 0

2
66666664

3
77777775

, (3)

where 0 is an m�m matrix of zeros, and Pj is an m�m matrix given by

Pj ¼

g½0j0; j; dð0; jÞ� g½1j0; j; dð0; jÞ� � � � g½m� 1j0; j;dð0; jÞ�
g½0j1; j; dð1; jÞ� g½1j1; j; dð1; jÞ� � � � g½m� 1j1; j;dð1; jÞ�

..

. ..
. . .

. ..
.

g½0jm� 2; j; dðm� 2; jÞ� g½1jm� 2; j; dðm� 2; jÞ� � � � g½m� 1jm� 2; j;dðm� 2; jÞ�

g½0jm� 1; j; dðm� 1; jÞ� g½1jm� 1; j; dðm� 1; jÞ� � � � g½m� 1jm� 1; j;dðm� 1; jÞ�

2
66666664

3
77777775

.

Lemma 1. If Pd is a matrix given in Eq. (3), then for any b 2 ð0;1Þ a left-inverse, Q, of the matrix ½I� bPd� exists and can be

partitioned as

Q ¼

Q0;0 Q0;1 � � � Q0;n�1

Q1;0 Q1;1 � � � Q1;n�1

..

. ..
. . .

. ..
.

Qn�2;0 Qn�2;1 � � � Qn�2;n�1

Qn�1;0 Qn�1;1 � � � Qn�1;n�1

2
66666664

3
77777775

,
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where Qj;k is an m�m matrix given by

Qj;k ¼

Aj if j ¼ k;

bk�jAj

Qk�1

i¼j

Pi

" #
if k4j;

bkþn�jAj

Qn�1

i¼j

Pi

" # Qk�1

i¼0

Pi

" #
if koj

8>>>>>>>><
>>>>>>>>:

and Aj is an m�m matrix given by

Aj ¼ I� bn
Yn�1

i¼j

Pi

Yj�1

i¼0

Pi

0
@

1
A

2
4

3
5
�1

. (4)

Lemma 2. If Pd is a matrix given in Eq. (3), then for any b 2 ð0;1Þ the unique solution Vd to the linear system (2) is given by

Vdð�; jÞ ¼ Ajuj þ Aj

Xn�1

k¼jþ1

bk�j
Yk�1

i¼j

Pi

0
@

1
Auk

2
4

3
5þ Aj

Xj�1

k¼0

bkþn�j
Yn�1

i¼j

Pi

0
@

1
A Yk�1

i¼0

Pi

 !
uk

2
4

3
5, (5)

where uk ¼ udð�; kÞ.

Comment 1. Formula (5) has an intuitive interpretation: first, consider a dynamic programming problem without the
cyclical state variable ct , so the value function is given by

Vd ¼ ½I� bPd�
�1ud ¼

X1
t¼0

bt
½Pd�

tud (6)

which expresses Vd directly as an infinite discounted sum of expected future pay-offs because ½Pd�
tud is the conditional

expectation of pay-offs t periods ahead. To wit, the kth element of this vector is Efu½~xt ; dð~xtÞ�jx0 ¼ kg – the conditional
expectation of the pay-off at time t given that the state at time t ¼ 0 is x0 ¼ k, where the ~’s signify random quantities.

Comment 2. The formula for Aj in Eq. (4) and the solution for Vd in Eq. (5) are also valid when the dynamic programming
problem contains continuous state variables, or discrete-valued state variables that can assume an infinite number of
possible values. In this case, the Pj’s are not matrices, but rather Markov operators (i.e., linear operators that represent the
conditional expectation operation) whose domain is an infinite-dimensional linear space. We have emphasized the discrete/
finite case because, in any actual implementation, a discretization of continuous state variables would be employed
resulting in Pj’s which are finite-dimensional matrices that approximate the true infinite-dimensional Markov operators.

In the presence of a cyclical state variable ct , in addition to the state variable xt , the value function depends on the n possible
values for c as well as the m possible values for x. We have written Vdð�; jÞ to denote the m� 1 vector providing the value as a
function of the m possible values of x when the current stage of the cycle is c ¼ j. The formula for Vdð�; jÞ given in Eq. (5) shows
that this discounted pay-off can be decomposed into n terms, corresponding to the infinite expected discounted sum of the
stream of pay-offs in each of the n possible values of the cyclical variable c. If the current state of the cycle is c ¼ j, then the
leading term in Vdð�; jÞ is the infinite discounted expected stream of uj pay-offs. These pay-offs are received every n periods
from the current period, and the expected present value of the stream of pay-offs for the ‘current cycle value’ c ¼ j is just Ajuj,
by direct analogy to Eq. (6), except that the transition probability is not a single-period transition probability, but rather an
n-stage transition probability. For example, in state c ¼ j, this n-stage transition probability is

Pj ¼
Yn�1

i¼j

Pi

2
4

3
5 Yj�1

i¼0

Pi

" #
, (7)

where the first product in this equation is the transition probability matrix for the transition between c ¼ j to c ¼ n� 1 (i.e.,
the ‘first part of the cycle’), and the second product is the transition from c ¼ 0 to c ¼ j� 1, representing the crossing of the
maximum value that the cyclical state variable can assume c ¼ n� 1, and resetting it to c ¼ 0 in accordance with the modulo-
arithmetic law of motion for the cyclical state variable. For example, if n were 12 and the values of the cyclical state variable are
then interpreted as months of the year (with c ¼ 1 being treated as January), then when c ¼ 3 (March), the first term of
the product on the right-hand side of the equal sign in Eq. (7) is the transition probability for March through December, while
the second term is the transition probability for the months January and February. Thus, Pjuj would be an m� 1 vector that
gives the expected pay-off received when c ¼ j one year from now, as a function of the current value of x today.

The other terms in Eq. (5) are the discounted pay-offs corresponding to the other n� 1 values of the cyclical state
variable other than c ¼ j. The formula reflect computing the expected discounted value of the pay-offs for other values of
the cycle, say c ¼ k back to the ‘reference value’ c ¼ j, and then taking the expected discounted sum of this stream of pay-
offs into the infinite future. We do this by multiplying by Aj. In this way, formula (5) represents the contribution to the
expected discounted value Vdð�; jÞ of the infinite stream of pay-offs from the other n� 1 values of the cycle except c ¼ j, but
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to do this the formula shifts the other pay-offs appropriately, so they can be treated as if they were being received in future
values when the cycle equals its reference value c ¼ j instead of the actual values of the cycle c ¼ k in which these other
pay-offs are received. Thus, in terms of the example, where the cycle represents months of the year, Eq. (5) decomposes
Vdð�; jÞ into the sum of 12 terms where each terms is the infinite discounted stream of pay-offs received in each separate
month of the year.

4. Speed-up from exploiting special structure of P

As is well known, using standard algorithms to solve a system of m linear equations in m unknowns requires Oðm3Þ

operations – multiplications and additions. For example, Gauss–Jordan elimination requires ðm3=2Þ þm2 � ð5m=2Þ þ 2
multiplications and ðm3=2Þ � ð3m=2Þ þ 1 additions – approximately m3 floating point operations in total. Solving the linear
system using the LU decomposition requires approximately 2

3 m3 floating point operations.
If the model has a cyclical state variable, which can assume n possible values, and if the remaining state variables can

assume m possible values, then the policy valuation step of the policy iteration algorithm requires solving a system of m � n

equations in as many unknowns – the value function Vd. Thus, any of the standard algorithms for solving this system will
require Oð½m � n�3Þ operations.

Now consider solving for Vd using formula (5) in Lemma 2. This requires solving n linear systems with m equations and
m unknowns for each of the ‘segments’ of Vd, Vdð�; jÞ, j ¼ 1; . . . ;n. Furthermore, one needs to construct the matrices Aj

defining these n linear systems. A total of 2n� 3 multiplications of the Pj transition matrices are required to construct the
Aj matrices. As is well known, multiplying two m�m matrices requires 2m3 �m2 multiplications and additions. Thus,
approximately 4nm3 floating point operations are required to create the Aj matrices. There are also n� 1 additional
matrix–vector multiplications required to compute the individual terms in the brackets in Eq. (5), but each of these
matrix–vector multiplications requires only 2m2 �m floating point operations. We conclude this discussion with

Lemma 3. The total number of operations required to compute Vd using formula (5) is Oðnm3Þ, whereas the number of

operations required to compute Vd using standard linear equation solvers that do not exploit the special structure created by the

presence of the cycle state variable is Oð½mn�3Þ. Thus, our cyclic inversion algorithm for solving for Vd in formula (5) results in a

speed-up of Oðn2Þ over standard policy iteration algorithms that do not exploit this special structure.

5. Application

Paarsch and Rust (2008) studied the problem of optimal timber harvesting by a large player in the timber market, in
their case the British Columbia Ministry of Forests and Range (MoFR). They formulated and solved the optimal harvesting
strategy – the policy that maximizes the discounted expected profits from timber harvesting over an infinite-horizon. Their
model accounted for the potential impact that large harvests could have on the price of lumber as well as on the cost of
harvesting timber and, à propos the topic of this paper, their model accounted for significant monthly variations in the cost
of harvesting timber.

Surprisingly (to some), the best time to harvest timber is in winter when the ground is frozen. When the ground is firm,
heavy machinery and large trucks can haul away felled trees easily. The most costly months in which to harvest are in
spring. In spring, the melting of snow is called ‘break-up’ by loggers. In muddy conditions, the costs of harvesting timber
increase significantly. Sometimes, it is impossible to harvest safely. In the summer, extreme heat as well as dry conditions
can make it costly to harvest because of the increased risk of forest fires. Consequently, a good portion of timber harvesting
is undertaken during the fall and winter months, so it is natural to include a state variable indexing the current month of
the year to reflect these natural variations in harvest costs as well as the resulting variation in the actual volumes harvested
which are observed in the data.

Let q denote the current volume of timber stewarded by the MoFR, and let p denote the current price of lumber. These
are naturally treated as continuous state variables, but they will be made discrete to facilitate numerical solution of the
harvesting problem below. Let n denote the current month. The Bellman equation for the optimal harvesting problem,
formulated at a monthly time interval, is

Vðp; q;nÞ ¼ max
0phpf ðq;nÞ

pðp;h;nÞ þ b
Z

p0
V ½p0; f ðq;nÞ � h;nþ 1 mod 12�gðp0jp;h;nÞdp0

� �
,

where b 2 ð0;1Þ is the MoFRs discount factor, p is the expected profit from harvesting, f is the law of motion for timber
growth, and gðp0jp;h;nÞ is a transition probability density function specifying the stochastic evolution of lumber prices.

The equation

qtþ1 ¼ f ðqt ;ntÞ � ht

is the ‘controlled’ law of motion for timber volume (measured in millions of cubic metres of timber), taking into account
harvesting ht . The current month nt affects timber growth; e.g., growth is slower in the winter than in the spring. Lumber
prices are assumed to evolve according to a Markov process with transition density gðptþ1jpt ;ht ;ntÞwhich depends not only
on the previous lumber price pt , but also on the volume harvested ht and, potentially, on the current month of the year nt.
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The dependence of future prices on the current harvest decision ht is the key avenue through which we account for the
impact on prices of harvesting unusually large volumes of timber in short periods of time. The model can account for
seasonal patterns in lumber prices and in timber growth through the state variable nt .

We assume that a timber-harvesting decision is made at the beginning of each month, while the actual harvesting does
not occur until the end of the month, reflecting delays involved in assembling logging crews and carrying out the harvest.
The profit function for harvesting is given by

pðp;h;nÞ ¼ h

Z
p0gðp0jp;h;nÞdp0 � cðh;nÞ,

where cðh;nÞ is the cost function for harvesting a total volume of timber h in month n. The cost function c is the primary
avenue through which the current month affects harvesting decisions: empirically, the other possible avenues – i.e., the
effect of the month on aggregate timber growth and on lumber prices – are negligible. In fact, we exclude them from the
model solved below. The only avenue through which the current month affects harvesting decisions is through the harvest
cost function for timber cðh;nÞ.

We solved the model for varying numbers of grid points for the continuous state variables x ¼ ðp; qÞ. For small numbers
of grid points (e.g., 10 grid points for p and 10 for q, so m ¼ 100), the implied transition matrices (Pj) are of dimension
100� 100, while the overall matrix ½I� bP� and the dimension of the linear system Vd ¼ ud þ bPdVd that must be solved
at each policy iteration step (where d is a candidate optimal harvesting rule) is of dimension mn ¼ 1200 ¼ 100� 12.
Systems of this size can be solved quickly on laptop computers in a matter of seconds, without exploiting the special
structure of P. However, for finer discretizations, say when p and q are discretized into 30 possible values each, then the
linear system that must be solved in each policy valuation step is of dimension 10 800 ¼ 900� 12. Sheer memory
requirements to store the matrix P rule out the direct of application of policy iteration on current laptops: storing a
10 800� 10 800 matrix requires over 933 megabytes of memory. By contrast, the cyclic inversion algorithm requires
storing 12 900� 900 matrices and a working space of at most 36 900� 900 matrices, just under 30 megabytes of memory.

Lemma 3 predicts improvements of Oðn2Þ or Oð144Þ. When we implemented our cyclic inversion algorithm, we only
obtained speed-ups of just over 14. We conjecture that the overhead involved in preparing the matrices relative to the time
required by the conventional policy iteration algorithm (e.g., when p and q were discretized into a product of only 100
points) was the cause. We must emphasize, however, that our result is correct: it applies asymptotically when the number
of possible values for the other state values m is sufficiently large. When m is sufficiently large, the overhead involved to
create the n matrices and to carry-out the 2n multiplications of m�m matrices as well as the other intermediate
calculations required to implement formula (5), becomes small relative to the time it takes to solve Vd ¼ ud þ bPdVd
directly as an unstructured, dense linear system: that requires Oð½12m�3Þ operations.

In our tests, we were unable to obtain speed-ups approaching 122
¼ 144 because memory constraints dominated. The

largest unstructured, dense system that we could solve on a laptop with two gigabytes of memory was m ¼ 400; i.e., p and
q were both discretized to assume 20 values each. The resulting linear system was then of dimension 4800 ¼ 12� 400. Of
course, we might have accessed more memory than this by using virtual memory, but this almost always comes at an
extremely high price in terms of elapsed time. In general, it is inadvisable to solve large systems in virtual memory:
swapping to the hard-drive will take more time than it is worth. Suffice it to say that the cyclic inversion algorithm we have
proposed makes it possible to solve the timber-harvesting problem for sufficiently fine discretizations that would have
been otherwise impossible – unless, of course, we resorted to solving the problem on a supercomputer. But even on a
supercomputer, we could undertake even finer discretizations that would rule out the methods currently used.

In Figs. 1 and 2, we depict the optimal harvesting decision rules

ht ¼ dðpt ; qt ;ntÞ

from the policy iteration algorithm when 30 point grids are used for both p and q, resulting in a discretized value function
and decision rule with 10 800 ¼ 12� 900 elements. In Fig. 1, we illustrate the harvesting policy for January, while in Fig. 2
we illustrate the harvesting policy in April. It is clear that the higher harvesting costs in April are reflected in the solution,
and significantly less timber is harvested in April than in January.

In Figs. 3 and 4, we plot a two-dimensional slice of the optimal harvest function for four months (January, March, May,
and July) when qt ¼ 83:26 and when qt ¼ 12:34. In both cases, the optimal volume harvested in January monotonically
dominates harvests in July, which dominate harvests in May, which dominate March. This pattern is a direct implication of
the ordering of harvesting costs because harvesting costs are the lowest in January followed by July, May, and then March.
For this example, the marginal harvesting costs in March were assumed twice those in January.

Most importantly, however, it should be evident that the solution is complicated and the relative position of the harvest
functions depends on the volume of timber qt. In particular, there is no simple uniform shift or transformation of the
January harvest policy that would result in valid harvest rules for the other months of the year, and for all volumes qt . This
implies that there is no simple way to ‘deseasonalize’ the timber- harvesting problem by simply shifting the decision rules
in some simple manner, such as a simple parallel shift of the January harvest rule by a pre-determined amount.

In Fig. 5, we illustrate the difference between the value of timber (in billions of Canadian dollars) in January and that in
April. That is, we display a plot of ½Vðp;q;1Þ � Vðp; q;4Þ�, where n ¼ 1 corresponds to January and n ¼ 4 corresponds to April.
It should be obvious here, too, that no simple uniform or parallel shift of the January value function (an approach that
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Fig. 2. Optimal harvest function in April.
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Fig. 1. Optimal harvest function in January.
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would be implied by most naı̈ve attempts to ‘deseasonalize’ data) can provide an accurate prediction of how timber values
actually shift across months of the year. The actual amount of the shift ranges from 0 for sufficiently low values of p (since
the optimal decision rule is not to harvest anything in either April or January when prices are sufficiently low) to a
difference approaching $1.5 billion dollars when prices are extremely high. Note, however, that the differences in values
do not vary in any simple monotonic fashion: the gain from harvesting in January relative to April actually falls as a function
of qt when qt exceeds seventy.

Fig. 6 depicts the deterministic cycle in the value of timber for three different values of lumber prices. No deterministic
cycles exist in the value of timber for sufficiently low lumber prices, the lowest line in Fig. 5 which corresponds to a lumber
price p ¼ 0:319. This is because it is not optimal to harvest in any month when lumber prices are this low; see the flat
sections of the optimal harvest functions in Figs. 1 and 2 which correspond to no harvesting at sufficiently low lumber
prices. We do, however, see a cycle when lumber prices are high. For example, the top line in Fig. 6 corresponds to a lumber
price of p ¼ 0:939; an obvious cycle exists in this case. The value of harvesting reaches its lowest point in the spring due to
the high costs of harvesting during this period of the year; soggy ground conditions make it difficult to access and to haul
Please cite this article as: Paarsch, H.J., Rust, J., Valuing programs with deterministic and stochastic cycles. Journal of
Economic Dynamics and Control (2008), doi:10.1016/j.jedc.2008.08.007
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Fig. 3. Two-dimensional slices of optimal harvest function, qt ¼ 83:26.
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logs from harvesting sites. The value is the highest in the fall when colder, dryer conditions make it much easier to fell trees
and to haul logs. It is, however, evident that the deterministic cycles in timber values are relatively minor compared to the
much large stochastic cycles induced by the stochastic cycles in lumber prices pt .

Fig. 7 depicts a time-series simulation which illustrates how closely the value of timber is related to the price of lumber.
The top panel illustrates a five-year realization of lumber prices that exhibits two large peaks in prices in the first and
second years of the simulation. The second panel illustrates that a large volume of timber is cut shortly after lumber prices
reach their peak value in the first year of the simulation. Then, at the time of the second slightly smaller peak in lumber
prices in the second year of the simulation, another large quantity of timber is harvested, although not as large a volume as
the first harvest around first year of the simulation. After the second year, lumber prices remain lower for the duration of
the five-year simulation period and the model predicts that it is not optimal to harvest any more at these prices.
Consequently, the volume of timber slowly grows, resulting in the slight positive slope of the volume of timber curve in the
middle panel of Fig. 7 after the last harvest in the second year of the simulation.

The bottom panel of Fig. 7 depicts the value of timber during this same simulation period: it is evident that the value of
timber has, generally, the same shape as the simulated price path for timber, including the peaks in the first and second
years. Even though there are no more harvests of timber after the second year, the simulated value of timber moves up and
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down with the price of lumber in a way that is roughly parallel to the lumber price, although the amplitude of fluctuations
in timber values is somewhat muted relative to the fluctuations in lumber prices. This is an indication that the value
function is not a simple product of the price of lumber and volume of timber; i.e., the value function does not have the form
Vðp; q;nÞ ¼ pq. It is clear, however, that the stochastic cycles in the value of timber induced by the stochastic cycles in the
price of lumber are far larger and more important than the much smaller deterministic cycles induced by variations in
harvesting costs at different months of the year.
6. Conclusions

Our cyclic inversion algorithm makes it possible to account for important deterministic cycles which exist in many real-
world problems. Once we account explicitly for these variables, we are likely to realize that there are generally complicated
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interactions between the deterministically and stochastically evolving variables that can make it very misleading to apply
the commonly used deseasonalizations and transformations often employed in macroeconomic analyses. Instead, we
believe that it is preferable to model directly the most important deterministic, regularly varying features present in many
economic problems. Even though the laws of motion for these variables are often trivial, we generally have no way of
knowing a priori how the deterministic variation interacts with the stochastic variation in other variables to affect the
optimal behavior of agents in these environments.
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