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The goal of this paper is to illustrate the potential usefulness of econometrics as a tool to assist private
policy makers. We provide a case study and detailed econometric analysis of the automobile replacement
policy adopted by a large car rental company. Unlike public policy making - where the benefits from using
econometric models and “science-based” approaches to policy making are hard to quantify because the
outcomes of interest are typically subjective quantities such as “social welfare” - in the case of firms there
is an objective, easily quantifiable criterion for judging whether policy A is better than policy B: profits. We
introduce and estimate an econometric model of the rental histories of individual cars in the company’s
fleet. Via stochastic simulations, we show that the model provides a good approximation to the company’s
actual operations. In particular, the econometric model is able to reproduce the extraordinarily high
rates of return that the company obtains on its rental cars, with average internal rates of return between
purchase and sale of approximately 50%. However, the econometric model can simulate outcomes under
a range of counterfactual vehicle replacement policies. We use the econometric model to simulate
the profitability of an alternative replacement policy under pessimistic assumptions about the rate
maintenance costs would increase and rental rates would have to be decreased if the company were
to keep its rental cars longer than it does under the status quo. Depending on the vehicle type, we find
that the company’s expected discounted profits would be between 6% to over 140% higher under the
suggested alternative operating strategy where vehicles are kept longer and rental rates of older vehicles
are discounted to induce customers to rent them. The company found this analysis to be sufficiently
convincing that it undertook an experiment to verify the predictions of the econometric model.
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Executive summary

in car prices. We study the profitability of the “rapid replacement
policy” using an econometric model of the operations of a specific

This paper illustrates the use of econometrics as a tool to
improve policies chosen by private policy makers. We argue
that one of the most convincing demonstrations of the value of
econometric modeling is to show how it can be used to help firms
find more profitable operating policies. This point is illustrated
with a case study of the vehicle replacement policy of a large rental
car company.

Most major rental car companies (e.g. Hertz, National, etc.)
typically sell cars after only 20,000 miles. However, this is an
extremely costly policy due to the well known rapid depreciation
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rental car company. This model is sufficiently detailed that it
can account for individual rental contracts (including short term
rental and long term rentals, i.e. monthly lease contracts), and
durations of cars on the lot waiting to be rented. In addition to
this multistate semi-Markov model of the car’s contract status,
we also estimate submodels that predict maintenance costs and
the secondary market (resale) price the company receives when it
decides to sell their cars. The model is found to be a remarkably
accurate description of the overall operations of this firm with
simulations of the model accurately predicting a wide range of
operating and financial outcome variables of different makes and
models of vehicles in the company’s fleet.

Our econometric model predicts that the company can
significantly increase its profits by keeping its rental cars longer
than it currently does — even under pessimistic or “worst case”
assumptions. We find that profits can be significantly increased if
vehicles are replaced after roughly 90,000 miles (or about 5 years)
instead of 3 years (or about 45,000 miles) under the company’s
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current replacement policy. Depending on the vehicle type, the
simulations predict that expected discounted profits would be 6%
to over 140% higher, depending on the type of vehicle.

The company that we studied found our analysis to be
sufficiently convincing that it decided to undertake an experiment
to test our prediction that keeping cars longer will significantly
increase its profits. The results from the experiment found that
profits were in fact increased. Thus, this paper provides a concrete
example of a how an econometric model can improve policy
making.

In this case, the ability to demonstrate that a suggested
counterfactual policy really is “better” is a result of the fact that the
policymaker agrees on the objective function - maximizing profits
- and the fact that “profits” is an objectively measurable quantity.
But our study also illustrates another important point: to be taken
seriously, an econometric model needs to be credible. If our model
was not credible, the company would have never been persuaded
to undertake an experiment to verify the predictions of the model
in the first place.

Ultimately, the most important test of the credibility and
usefulness of an econometric model is not just whether policy
makers will undertake the data gathering necessary to build
them and the experiments necessary to test them, but whether
policy makers will actually be guided and change their policies
in response to the feedback provided by these models. While
the experiment undertaken by the company in response to the
predictions of our model is an encouraging first step, it remains to
be seen whether our work will really change the operating polices
of the rental car company we studied.

1. Introduction

The goal of this paper is to illustrate the potential usefulness
of econometrics as a tool to improve policies chosen by private
policy makers. We provide a case study and detailed econometric
analysis of the vehicle replacement policy of a large rental car
company. Contrast this with public policy making where the
benefits from using econometric models and “science-based”
approaches to decision making are hard to quantify because the
outcomes of interest are typically subjective quantities such as
“social welfare”. However in the case of firms there is an objective,
easily quantifiable criterion for judging whether policy A is better
than policy B: profits. Thus, one way to demonstrate the value of
econometric models is to use them to help firms increase their
profits.

In a related article, Rust (2007) presents a separate case study
that focuses on whether econometrics is useful for improving
public policymaking. That paper draws on Rust’s experience as
a former consultant to the US Social Security Administration.
Unfortunately in that application, which involved predicting the
welfare and cost/benefit impact of a proposed change in the U.S.
Disability Insurance system, Rust concludes that the prospect that
econometric models will have any measurable role or impact
on public policymaking is bleak — at least in the short term
under the current regime in Washington, DC where “faith based”
policymaking and political considerations typically dominate
scientific advice. In our view, the best chance to interest public
policymakers in the value of econometric models in the long run is
to start by providing clear-cut demonstrations of the usefulness of
econometric models in improving policymaking in private sector
applications in the short run. While the issue of rental policy is
admittedly less interesting, ambitious, or important per se than
Social Security policy, it is also far less politically sensitive. Also,
because firms often have stronger incentives to improve outcomes
and have more control over their own actions than do government
bureaucrats, there is a greater chance that private policymakers

will pay attention and actually take concrete actions in response
to predictions and policy recommendations from econometric
models than generally is the case in public sector applications.

We illustrate these points using a new data set on rental car
histories that we obtained from a major rental car company. These
data provide a unique opportunity to test the hypothesis that this
company has adopted a profit maximizing vehicle replacement
policy. We are not aware of previous studies that have questioned
the widely adopted policy by rental car companies of replacing
their cars frequently. Indeed many major rental car companies (e.g.
Hertz, National, etc.) typically sell cars after only 20,000 miles.
However, this is an extremely costly policy due to the well known
rapid depreciation in car prices.

The econometric model predicts that the company can signifi-
cantly increase its profits by keeping its rental cars longer than it
currently does - even under pessimistic or “worst case” assump-
tions to be described below. We build on results from Cho and
Rust (2008) who used numerical dynamic programming to cal-
culate optimal replacement policies under these worst case as-
sumptions. Their findings indicate that profits can be significantly
increased if vehicles are replaced after roughly 90,000 miles (or
about 5 years) instead of 3 years (or about 45,000 miles) under the
company’s current replacement policy. We use their econometric
model to conduct stochastic simulations of the company’s profits
under this suggested counterfactual replacement policy. Depend-
ing on the vehicle type, the simulations predict that expected dis-
counted profits would be 6% to over 140% higher, depending on the
type of vehicle. These predictions were made under pessimistic as-
sumptions about the degree maintenance costs will increase and
the amount rental rates of older vehicles would have to be de-
creased (to induce customers to rent them) if the company were
to keep its vehicles significantly longer than it currently does. The
company found this analysis to be sufficiently convincing that it
decided to undertake an experiment to verify our prediction that
keeping its cars longer would significantly increase its profits.

This study also illustrates the limitations of simple “reduced-
form” econometric approaches to testing the profitability of the
company’s current rental car replacement policy, similar to the
“freakonomics” approach adopted by Levitt (2006). The main value
added from constructing a more explicit econometric model of the
rental histories of individual cars in the company’s fleet is that a
wide range of outcomes can be simulated under both the status
quo and a range of counterfactual replacement policies. This is
not possible under Levitt’s approach. Our simulations demonstrate
that the econometric model provides good approximation to the
company’s actual operations — at least under the status quo.
In particular, simulations of the econometric model are able
to reproduce the extraordinarily high rates of return that the
company obtains on its rental cars, with average internal rates of
return between purchase and sale of approximately 50% under the
company’s current replacement policy.

The methods used in this paper are an extension and
specialization of work on optimal replacement of durable goods
(Rust (1985, 1987) and Cho (2008)). The main difference between
the approach taken in this paper and this previous work is
that these previous studies assumed that firms are behaving
optimally, whereas in this study we relax and empirically test this
assumption. It is possible for us to relax and test the maintained
assumption of profit maximizing behavior in this case precisely
because the firm’s objective, expected profit maximization, does
not involve subjective quantities that need to be estimated.
This stands in stark contrast to most political or public policy
applications, where the behavior of individuals or organizations
depends critically on what their objectives are. Economists
typically presume that these agents are acting “as if”’ they were
maximizing the expected value of well-defined utility function
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or a social welfare function. However, unlike profits, utility and
social welfare functions are typically not known explicitly, even by
the decision makers in question. As a result, strong assumptions
have to be imposed in order to estimate them, including the
hypothesis of expected utility maximization. Rust (1994) has shown
that the hypothesis of expected utility maximization per se is
not sufficient to uniquely identify an agent’s underlying utility
function. Indeed, there is a fundamental identification problem: it
is often possible to “rationalize” many types of behavior as being
optimal for some appropriately defined objective function. The
identification problem is another reason why it is so difficult to
apply econometric models to help improve public policymaking,
because it is very hard to be sure what the “true objectives”
of citizens and policymakers really are, and given incomplete
knowledge of payoffs/rewards and how to aggregate and resolve
conflicting objectives of the many different individuals who are
affected by public policy decisions, it is hard to provide an objective
basis for judging whether policy A is “better” than policy B.

Rental car companies are an ideal testing ground for an
econometric approach to policymaking since these companies
have large fleets, make frequent replacement decisions, and have
good records of their operations and decisions. Furthermore, there
is little disagreement that their basic objective is to maximize
expected discounted profits, and it is is straightforward to measure
profits in this application. We feel extremely fortunate to have
been able to earn the trust of a large rental car company, which
has provided their operational data to us, and allowed us to study
and dialog with them. In order to protect the confidentiality of
this firm and continue our relationship with them, we cannot
provide any further information about the firm or its operations
or exchange the data we obtained from the company with other
researchers. However, we would like to make clear that we have
no financial relationship with this company and have not received
any monetary compensation for our services. In effect, we are
consulting for data and the fact that we are doing this work
with a scientific rather than financial objective in mind enables
us to conduct a more independent and unbiased analysis of the
company’s operations.

Section 2 describes the rental car data and Section 3 introduces
and estimates an econometric model of the rental company’s
operations. In Section 4 we show, via stochastic simulations, that
this model provides a good approximation to actual outcomes for
this company. Section 5 shows how the econometric model can
be used to evaluate counterfactual operating strategies. We show
that an alternative replacement policy of keeping rental cars longer
results in significantly higher profits. We make some concluding
remarks in Section 6.

2. Data and preliminary regression analysis

We obtained data from a large syndicated rental car company
that owns and rents a large fleet of rental vehicles. The company
provided us with data on over 3900 individual vehicles at various
rental locations. These do not represent the entire fleet at any point
in time, but they do represent a significant share of the company’s
holdings. All of these vehicles were first acquired (i.e. registered)
after 1999, and almost all of these vehicles were purchased brand
new from auto manufacturers. While there are occasional “group
purchases” of particular brands and models of vehicles on the
same date, when these group purchases did occur, they typically
amounted to only 4 or 5 vehicles of the same brand/model at the
same time. Thus, this company by in large follows an individual
vehicle replacement and acquisition strategy, as opposed to “block
acquisitions and replacements” i.e. simultaneously acquiring and
disposing of large groups of vehicles of the same make and model
at the same time.

The data include the date and purchase price for each vehicle
the company acquired, the date and odometer value when the
vehicle was sold, and the complete history of maintenance and
rentals between the purchase and sale dates. The rental contract
data record the dates each contract started and ended, and
(sometimes) the odometer value of the vehicle at the start and
end of the rental contract. We found (with the exception of the
odometer value at the date each vehicle was sold, which was
accurately recorded), the company’s data on odometer values at
the beginning and end of each rental contract to be frequently
missing or based on guesses by the company’s rental agents. This
was especially true for long term contracts that were “rolled over”
(i.e. where the contract was renewed by the customer without
returning it back to the lot). Many of the company’s rental agents
appear to have filled in rough estimates of the out and in odometer
values at the roll over dates when customers informed them of
their to keep their car another month. As a result, we did not
trust most of the in or out odometer readings in the company’s
rental records. In order to infer the driving patterns and number
of kilometers typically traveled during each rental contract we
relied on some (we believe reasonable) econometric modeling
assumptions that we will describe shortly.?

The company rents its cars on two types of contracts: a long
term contract or a short term contract. Long term contracts
are typically written with a maximum duration of one month,
combined with a right to automatically renew the previous
contract for another month. Rental contracts are at a daily rate with
no additional charges for distance traveled during the contract. The
daily rate for a long term contract is typically lower than the daily
rate for short term contracts. There is a penalty for early returns of
vehicles in long term contracts, generally equal to 20% of the lost
rental revenue for the unfinished remaining days in the contract.

Fig. 1 illustrates typical rental histories for three different cars
in the company’s fleet: (1) a compact car rented from one of
the company’s urban locations, (2) a luxury car rented from an
urban location, and (3) recreational vehicle rented from a “tourist”
location. In the graphs, a value of ‘0’ denotes a car that is on the lot
waiting to be rented, a value of 1 denotes a long term contract, and
avalue of 2 denotes a short term contract.

We see that the compact and luxury cars that were rented from
the urban location started out in a series of long term rentals,
with no intervening “lot spells” between the successive monthly
rental contracts. It is possible that a succession of unbroken long
term contracts might represent a customer who rolled over their
monthly contracts into the de facto equivalent of a lease, lasting
nearly one year in the case of the compact and two years in the
case of the luxury vehicle. After these long term contracts came
to an end, these vehicles were rented on a series of short term

2 The data include records on the date of accidents and the cost of repairing
accident damage, as well as decisions to scrap (versus sell) vehicles that were
sufficiently badly damaged as a result of accidents. Although 2543 of the 3908
vehicles in the data set experienced one or more accidents over their service lives,
only 123 vehicles were sufficiently badly damaged that they had to be scrapped. In
almost all cases where accidents have occurred, the cost of repairing the damage
to the vehicle is covered by the insurance of the renter (if the renter was at
fault), the insurance of the other party to the accident (if they were at fault), or
by the company’s insurance (if the party at fault has no insurance). There is a
potential indirect source of financial loss due to accidents that the company is
not compensated for, namely, if the resale price for cars with accidents is lower.
However this effect can be expected to be small, since whenever an accident is
repairable, the insurance pays all necessary repairs to restore the car to its pre-
accident condition. The company is required to report the number of accidents and
information on the nature of each accident (severity, cost of repair and so forth) that
a vehicle experienced at the time it is sold. However the econometric evidence we
offer below shows that neither the total number of accidents, nor the total cost of
repairing these accidents is a significant predictor of resale prices.
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Table 1
Regression results for dependent variable IRR
Variable Compact Luxury RV

All locations All locations All locations

Estimate (t-stat) Estimate (t-stat) Estimate (t-stat)
Constant 0.575 (2.33) —0.006 (—0.02) 0.999 (1.74)
Utilization rate 0.003 (0.02) 0.522 (4.14) 1.366 (4.52)
Fraction rented long term —0.220 (—2.52) —0.076 (—0.88) —0.876 (—4.79)
Total maintenance costs ($000) —7.46e~° (—2.81) —2.00e~° (—1.64) 6.978e° (0.22)
Odometer (000 km) 0.0007 (1.23) —0.0004 (—0.56) —0.001 (—0.79)
Age at sale (years) 0.151 (3.98) 0.072 (1.54) —0.154 (—1.11)
New price ($000) —0.104 (—4.98) —0.036 (—4.22) —0.082 (—3.22)
Sale price ($000) 0.008 (0.37) —0.002 (—0.23) 0.063 (1.68)
Short term rental rate 0.003 (2.83) 0.0006 (2.07) 0.004 (3.84)
Long term rental rate 0.037 (19.09) 0.020 (7.25) 0.009 (1.12)
Observations, R? 167 0.806 40 0.776 31 0.859

Rental History for Compact, urban location (service life: 1115 days, IRR=78.6%)
T T

I

100 200 300 400 500 800 700 800 900 1000
Day in Life of Car
Rental History for Luxury 1, urban location (service life: 995 days, IRR=57.6%)

:

100 200 300 400 500 600 700 800 900
Day in Life of Car
Rental History for RV, tourist location (service life: 810 days, IRR=96.6%)

Rental State

o

Rental State

Rental State

100 200 300 400
Day in Life of Car

Fig. 1. Typical rental histories for three cars in the company fleet.

contracts, except that the compact car was rented for a final long
term contract episode for 30 days near the end of its service life. On
the other hand, all of the rentals of the recreational vehicle (RV) in
the tourist location were short term rentals, with most contracts
lasting only a few days.

Fig. 1 also shows the exact service life and the realized internal
rate of return (IRR) that the company earned on the vehicle over
its service life. The IRR is defined at the discount rate r (where r is
measured on an annual basis) that sets the net present value of the
cash flow stream earned by the company over the vehicle’s service
life equal to zero:

T
0= Zexp{—a[r/365}ct, (1)
t=0

where T is the number of days over which cash inflows or outflows
occurred for the vehicle, ¢; is the cash inflow (if positive) or outflow
(if negative), and a; is the number of days after the initial purchase
of the vehicle that the tth cash flow occurred. Thus, ¢c¢ < 0
and ap = O represent the initial purchase of the car, and then
subsequent cash flows would be rental revenues received when
the car returned at the end of each rental contract, and cash
outflows for maintenance on the dates they occurred. The final
cash flow, c; > 0, is the resale price the company receives from
selling the car in the used car market, or at an auction. Thus, ar
represents the service life, i.e. the actual age of the car in days at
which it was sold, assuming its initial age was ay = 0 (since all
cars were purchased brand new).

We see that for each of the cars illustrated in Fig. 1, the realized
rates of return are extraordinarily high. The firm earned a 78.6%
rate of return on the compact car, a 57.6% rate of return on the
luxury car, and a 96.6% rate of return on the recreational vehicle.
The undiscounted profits are also high - $16,683 for the compact,

$24,753 for the luxury car, and $27,654 for the RV - especially in
relation to the initial purchase prices of these cars: $9011, $22,808,
and $17,889, respectively. The odometer values (in kilometers) on
these cars at time of sale were approximately the same, 66,300,
61,000, and 63,265, respectively. However the depreciation rates
experienced in the resale values (i.e. the ratio of resale price to
new price) of the three cars was quite different: 39%, 56%, and
56%, respectively. The fact that the compact experienced relatively
greater price depreciation could be due to having been driven
longer (with a terminal odometer of 66,300 and service life of 1115
days, it was approximately 10% older at time of sale than the other
two vehicles), or it could just reflect a lower level of durability and
thus a greater level of price depreciation for any given odometer
value.

The internal rates of return earned by these three example cars
in Fig. 1 are not atypical: the mean IRRs for all compacts, luxury,
and RV’s of the same make, model and vintage as these were
77%, 49%, and 53%, respectively. Table 1 presents the results of a
regression of the internal rate of return on various explanatory
variables to see which factors are most important predictors of
high returns for rental vehicles. We report three regressions for the
vehicle types: compact, luxury, and recreational vehicle, pooling
over all rental locations.? The predicted signs of the coefficients are
mostly consistent with intuition: the utilization rate should have a
positive coefficient for reasons discussed above, maintenance costs
and the new purchase price should have negative coefficients, the
sale price should have a positive coefficient, and the daily rental
rates for long and short term rental rates should have positive
coefficients.

However, we are unable to draw any clear conclusions about
the effect of age and odometer value on the IRR: in some cases
the coefficients of these variables are positive, and in others
negative, and the coefficient estimates are generally statistically
insignificant. The results for the maintenance cost variable are
also ambiguous. There are a number of possible reasons why
the coefficients of age, odometer, and maintenance costs have
variable signs and are frequently statistically insignificant. One
reason is that these variables have a high degree of collinearity,
especially age and odometer. When we re-run the regressions
and include only age or odometer individually, the results are
still ambiguous, and the coefficients are generally statistically
insignificant. Only in one case, for the luxury vehicle, are both
age and maintenance statistically significant when odometer is
omitted from the regression, and we see in Table 1 that age has

3 The results are basically unchanged if we use the logarithm of the internal rate
of return as the dependent variable: the R? statistics are slightly lower but the
same pattern of signs and significance levels for the coefficients emerges for this
alternative specification for the dependent variable in the regression.
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a positive coefficient and total maintenance cost has a negative
coefficient. But even in this case, the effect of age on IRR is small:
the regression results predict that keeping a luxury car for 100
more days increases the IRR by only 0.03 (i.e. by about 5% of the
mean IRR of 0.533).

One potential interpretation of the small and statistically
insignificant coefficients on age and odometer is that it is an
indication of optimizing behavior by the firm. That is, if the firm
is choosing age and/or odometer value approximately optimally,
we would expect that any variations in these variables about their
optimal values should be small. Let [7(0) denote the expected
discounted profits from keeping a car until it reaches the odometer
threshold o before selling it. The optimal odometer threshold o* is
the solution to

o,
5o (0 =0. 2)

It follows that if the odometer values at which the company
sells its cars are approximately equal to the optimal threshold
o*, we would not detect any significant effect on discounted
profits from small variations in the realized odometer value about
its optimal value o* at the time the car is sold. Since IRR is
monotonically related to discounted profits, it follows that if the
firm is behaving approximately optimally, the effect of small
deviations in odometer value from o* on IRR should also be
approximately zero.

However there are a number of reasons why this interpretation
may not constitute convincing evidence of optimal behavior on the
part of the company. First, as we will show in the next section,
the range of odometer values at which the company replaces its
vehicles is very wide, more than 100,000 km wide. The argument
we made above will only be valid for relatively small deviations of
o from its optimal value o*, and a 50,000 km deviation on either
side of 0* seems too large for our argument to apply.*

Indeed, as we will show in Section 5, the optimal threshold
is generally not a single value o*, but rather a function o*(d, r)
that depends on the rental state of the car r and the duration
d in this state. Under the optimal policy (which we calculate
by numerical dynamic programming) there is a wide range
of odometer thresholds at which replacement can be optimal
depending on the values of (d, r). While it is true that small
deviations of replacements about 0*(d, r) have small effects on
infinite horizon discounted profits, it does not follow that such
deviations necessarily have small effects on the internal rate of
return of the current car, since this ignores the effects of delaying
replacing the current car on the stream of profits from the car
that replaces the current car, the one after that, and so on into
the infinite future. Clearly, if we fail to consider that the firm is
interested in maximizing expected discounted value of the stream
of current and future profits and not just the profits on the currently
held vehicle, we can get very misleading results. In particular,
keeping the current car longer will nearly always increase profits
on the margin since even for older cars incremental maintenance
costs from keeping a current car a little bit longer are generally
far lower than the incremental rental revenues, but keeping the
current car longer comes at an opportunity cost in terms of higher
profits that might be earned by replacing a currently held old car
with a new one. We need to calculate the infinite horizon profit

4The argument could also be made that the company is choosing an optimal
replacement age a*, but as we will see, there is also a wide range of ages over
which the company replaces its vehicles. So the same problem would apply if we
hypothesized that the company’s replacement threshold was defined in terms of
vehicle age rather than odometer value.

function (i.e. the value function) to properly account for this trade-
off, and this is why a naive approach to calculation of an optimal
replacement threshold o* in Eq. (2) is likely to be misleading.

There is also reason to believe that the coefficient estimates
for age and odometer in Table 1 are untrustworthy because these
variables are endogenous. That is, the company’s replacement
decisions clearly determine how old and how high the odometer
is on its vehicles before they are replaced. If there are unobserved
factors associated with a car that lead it to be more profitable (i.e.
have higher IRR) these same factors could also lead the company
to want to keep the car longer. As a result, one might expect that
age and odometer to be positively correlated with unobserved
factors affecting profitability and IRR, and this correlation can lead
to a spurious upward bias in the coefficient estimates for age and
odometer value.

As a result, it is difficult to draw any firm conclusions from
Table 1 about whether the company is behaving approximately
optimally or not. We would need some sort of instrumental variable
to deal with this endogeneity problem, but there are no obvious
candidates for valid instruments in the data set. What we want
would be one or more variables that resulted in exogenous shifts
in the age at which the company replaced some of its vehicles.
An example of such a variable might be a recall variable, that is,
if there was some major problem in one of the types of cars that
the company owned that leads to a recall to the manufacturer,
or convinces the company to sell these vehicles before it had
intended to sell them. In such case, the “premature” sales of the
vehicles could be regarded as a “quasi experiment” that could
provide information on how exogenous reductions in vehicle
age or odometer values at time of sale would affect the IRR.
Unfortunately, there were no recalls of vehicles in the dataset.

The only alternative instrument that we are aware of is an
accident dummy. If we assume that accidents are purely random
events, then an accident is a premature truncation in the intended
lifespan of a rental vehicle and serves as a de facto randomized
experiment that can be used to infer the effect of adopting a shorter
replacement threshold on profitability. The average internal rate
of return on the 123 vehicles that were scrapped due to accidents
in the data set was 36%, which is statistically significantly below
the 47% average internal rate of return for all cars in the data
set. However there are reasons to be suspicious of accidents as an
instrumental variable: if there are “lemons” problems (unobserved
problems with certain cars) that make certain vehicles both less
profitable and less safe to drive, then the occurrence of an accident
could be an indicator of a lemon, and not necessarily evidence
that replacing cars earlier reduces profits. Personally, we find
this argument a bit far-fetched, but the other major limitation of
the instrumental variable approach is something we find more
compelling: the accident “experiments” only tell us the effects
on profitability of replacing cars too early, but it does not tell us
how profits would change if the company kept its cars longer then it
currently does.

Thus, there are are only two other remaining possibilities for
how we might go about testing the hypothesis that this company
is a profit maximizer. One is to undertake one or more controlled
experiments, that is, to pick one or more car types at one or more
of the company’s locations, and randomly assign some cars to
the treatment group, where the “treatment” would correspond
to keeping cars longer that the company currently does, and
cars in the control group would continue to be subject to the
company’s existing replacement policy. By following the cars in
the treatment and control group for a sufficient length of time (i.e.
from their initial purchase until they are sold), we can compare
their profits/returns. If the cars in the treatment group have higher
average profits or returns, this would constitute evidence against
the hypothesis that the company’s existing operating policy is
optimal (i.e. profit maximizing).
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The drawback of controlled experiments is that they are
costly and time-consuming. Further, there are many possible
“treatments” that one could imagine testing: the treatments could
involve various combinations of keeping cars longer for various
durations in terms of age or odometer relative to the status quo
as well as various choices about how to discount rental rates for
older vehicles. We need sufficiently many vehicles in the treatment
and control group to make statistically significant inferences, so
the number of possible experiments that the firm could undertake
at any point in time is strictly limited. For these reasons, it appears
that an experimental approach to testing whether the company is
profit-maximizing is not very promising.

The only remaining approach (at least of which we are aware)
is to construct an econometric model of the firm’s operations. This
model can be simulated to generate predicted outcomes both under
the status quo and under a variety of alternative hypothetical
replacement and operating strategies. The key advantage of
the modeling/simulation approach is that simulations are very
cheap, and a large number of alternative scenarios and operating
strategies can be evaluated extremely rapidly. The key limitation
to this approach is that if the econometric model does not provide
a good approximation to the actual operations of this company, its
predictions of the effects on the firm’s profits from implementing
various hypothetical alternative operating strategies will not be
trustworthy.

In this paper we adopt the modeling/simulation approach.
In the next section we present the econometric model of the
company’s operations, and in the section after that we simulate
the model and show that it provides a good approximation to the
actual outcomes for this company under its status quo operating
strategy. Thus, we argue that the modeling/simulation approach
is trustworthy, although we still recommend that the predictions
of the model be validated by conducting a controlled experiment
to evaluate whether the optimal replacement strategy implied by
this model really does lead to the significant increase in profits that
the model predicts.

3. An econometric model

In order to get more insights into the behavior of the
rental company and to evaluate the profitability of its vehicle
replacement decisions, this section describes an econometric
model of the company’s vehicle rental operations. We introduce
a semi-Markov model in which cars that the company owns can be
in one of four possible states at any given time: (1) in a long term
rental contract (i.e. a “long term rental spell”), (2) in a short term
rental contract (i.e. a “short term rental spell”), (3) in the lot waiting
to be rented when the previous rental state was a long term rental
spell, and (4) in the lot waiting to be rented when previous rental
state was a short term rental spell. We refer to the latter two states,
3 and 4, as lot spells. We differentiate between these states since it
turns out empirically that the duration distribution of a car in a lot
spell is quite different depending upon whether it had previously
been in a long or short term rental contract.

A semi-Markov process is a stochastic process that can be in one
of a finite number of possible states at any given time, but where
the duration distributions in each of these states (also called the
holding time distributions) can be arbitrary distributions. A Markov
process is a special case of a semi-Markov process where the
duration distributions in each state are restricted to be exponential
(or geometric, in the case of discrete time models). In this study
we use a discrete time model, with the relevant time unit being
one day. Let r; denote the rental state of a given car on day t. From

the discussion above, r; can assume one of the four possible values
{1,2,3,4)°

In addition to the rental state, other relevant state variables
for modeling the decisions of the rental company are the vehicle’s
odometer value, which we denote by o, and the duration in the
current rental state, which we denote by d;. Thus, we seek to model
the joint stochastic process {r, o, d;}. There is another potential
state variable of interest, the vehicle’s age which we denote by a;.
If we let t = 0 denote the date at which a car was bought, and if
ap = 0 (when acar is acquired, it is a brand new car), then we have
a; = t,i.e. the age of the car in days is the same as the time index t.

In the empirical analysis below, it turns out that a vehicle’s age
t is strongly correlated with its odometer value o;. Because of this
“collinearity problem” it is difficult to identify the independent ef-
fects of these two variables on decisions to sell a car, or on mainte-
nance costs, state transition probabilities, durations in states, and
even on the resale price of used vehicles. Since there are numerical
and computational advantages to minimizing the number of differ-
ent variables we include in the dynamic programming model, we
have opted to exclude vehicle age from the list of variables that
we use to predict the company'’s selling decision, vehicle resale
prices, transitions and durations in spells, and so forth. However,
the model does in fact keep track of vehicle age, and as we demon-
strate in Section 4, simulations of the model accurately predict the
mean age at which the company sells vehicles, even when we re-
strict the model of the company’s sales policy to depend only on
the vehicle’s odometer o; and not its age a;.

Using the three key variables {r;, o, d;} we will also be able
to simulate realizations of rental revenues and also maintenance
costs using the data that the company provided us. With this
information, we can construct a complete econometric model
of the company’s rental operations, and conduct stochastic
simulations of the model to see how accurately it can represent
the company’s actual operations. The econometric model requires
us to specify and estimate the following objects: (1) a model of the
resale price the company receives if it were to sell one of its cars,
(2) a model of the random durations of a car in each of the rental
and lot states, (3) a model of a car’s transition to the next rental
spell at the end of the current rental or lot spell, (4) a model of the
utilization (kilometers driven) on a particular car during a long or
short term rental contract, (5) a model of rental revenues received
and maintenance costs incurred by the company over the life of the
car, and (6) a model of the company’s selling decision.

We will now discuss each of these components in turn,
describing the econometric model and our empirical findings. The
first model is a regression equation to predict the resale price of
a rental car when it is sold. We have data on both the new price
P(t) as well as the realized sales price P; (o, t) of each car, where
T denotes a particular make and model of vehicle, which we will
also call a car type. The econometric analysis will focus on the three
car types discussed in Section 2, i.e. a particular make/model of
compact, luxury, and RV. We wish to emphasize that in order to
maintain confidentiality of the data, we are not able to disclose
the specific brand and model of these three car types, and instead
use the rather vague car type designations to refer to them. Thus,
whenever we refer to one of these car types, such as “compact”, we are
not referring to the class of all compact cars owned by this company,
but instead to a specific brand and model of compact.

5 Actually we could distinguish a fifth possible state, r, = 5, denoting a brand
new car that is in its first lot spell. Empirically we have found that the duration
distributions for the initial lot spell can be well approximated as a mixture of the
duration distributions for lot spells r, = 3 and r; = 4, and so to reduce the size of
the state space, we use only four possible values for r; and probabilistically assign
new cars to lot states 3 and 4 in such a way that the initial duration distribution
closely matches the distribution of initial lot spells that we observe in the data.
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Table 2
Regression results for dependent variable log(P; (o, t)/ﬁ(r))
Variable Compact Luxury RV

All locations All locations All locations

Estimate (t-stat) Estimate (t-stat) Estimate (t-stat)
Constant —0.4789 (—=7.61) —0.6201 (—20.85) —0.8521 (—4.04)
Age (days) —0.0001 (—2.53) —0.0004 (—5.67) —0.0004 (—=2.17)
Odometer (000 km) —0.0007 (—2.11) —0.0011 (—=2.10) 0.0016 (1.91)
Number of accidents —0.0112 (—1.05) 0.0006 (0.04) 0.0371 (1.00)
Accident repair costs —0.8.88e (—1.04) —4.672e7° (—0.57) —1.654e~% (—0.56)
Internal Rate of Return 0.1629 (12.21) 0.067 (0.99) 0.394 (4.43)
Maintenance cost per day 0.0092 (0.64) —0.0039 (—=0.31) —0.0053 (—0.33)
N, R? 288 0.389 91 0.420 41 0.481

Predicted versus Actual Resale Prices for Compact, all locations
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Fig. 2. Predicted versus actual resale prices: Compact — all locations.

For each of the three car types t, we estimated a simple linear
regression model with the logarithm of the depreciation rate,
P¢(o¢, T)/P(7), as the dependent variable

g <P[(Ota T)
P(1)

The results from this model can be interpreted as a regression with
type-specific “depreciation coefficients” («1(7), a2 (7)) where a5
measures the effect of the car’s odometer value on its resale price.
We also estimated regressions where we included the vehicle age
and other variables, such as the number of accidents and the total
accident repair cost as predictors of the resale price of a car. These
results are presented in Table 2.

The constant term in the regressions is a measure of how
much depreciation a vehicle experiences the “minute it goes off
of the new car lot”. We see that this predicted “instantaneous
depreciation” is huge for all three vehicle types, but is significantly
lower for the compact, which retains 62% of its original value
(=exp(—.48)) the instant it is driven off the lot, compared to only
52% for the luxury vehicle and 43% for the RV. Fig. 2 provides a
scatter plot of the resale prices for the compacts, graphed against
their odometer value at time of sale (the results for the luxury
and RV are similar but not shown due to space constraints). The
rapid early depreciation in car prices is evident in these graphs.
While a number of cars are sold quite “early” after their initial
purchase (measured either in terms of their age or odometer
value), we do not have any observations of sale prices the company
might have received if it were to have sold vehicles in only a
matter of a few weeks or months after the initial purchase. For
the purposes of our modeling, we did not feel we could trust
the regression extrapolations for used vehicle prices for age or

):aMﬂ+mUm+q. (3)

odometer values very close to zero. Therefore, we made a simple
linear extrapolation to predict the prices that very new used cars
would sell for (i.e. used cars with fewer than 10,000 miles). Fig. 2
show that even for relatively low odometer values the regression
accurately predicts the mean resale price. It is immaterial whether
we use a straightline extrapolation or assume that the resale
function has a discontinuity at zero, since the company almost
never sells cars that have fewer than several thousand kilometers
on their odometers.

Next we consider the econometric estimation vehicle usage
during rental spells. The company does not have mileage charges,
and places no constraints on its customers’ choice of how far to
drive during their rental contracts. The intensity of utilization by
rental customers is obviously an important consideration because
it determines how quickly a car will “age” in terms of its odometer
value, and the odometer is in turn a a key predictor of the resale
value of the car. However the difficulty, noted above, is that the
firm frequently does not accurately record the in and out odometer
values for its vehicles, making it hard for us to determine how
far a car was driven on particular rental spells. To get around this
problem and make inferences about the conditional probability
distribution of the number of kilometers driven of a rental contract
oftyper € 1, 2 and duration d, we need to impose some additional
assumptions.

Let F(o'|o,d,r) denote the conditional distribution of the
(frequently unobserved) odometer value on a rental car that has
returned from a rental contract of type r, lasting d days, when the
out odometer value was o (i.e. the car had an odometer reading of
o at the start of the rental spell). Thus, Vo = o’ — o is the number
of kilometers driven by the customer during the rental spell. We
assume that the number of kilometers traveled each day by a rental
customer are IID (Independent and Identically Distributed) draws
from an exponential distribution with parameter A,. Conditional
on spell length d, it follows that F(0’|d, r) is a gamma distribution,
since a sum of IID exponential random variables has a gamma
distribution.® The probability density function corresponding to F
is given by

[0 — 0] exp{—(0' — 0)/A+}
[A-19T(d, A;)

f@lo.d. 1) = o—o=0

otherwise
(4)

where I'(d) is the Gamma function. Thus, 0’ — o is the actual number
of kilometers traveled by the customer during the rental contract.
We have E{0’ —o|o, d, r} = dA,, so we can interpret A, as the mean
number of kilometers traveled per day in a rental contract of type
r. For notational consistency, we set A, = 0if r > 2, i.e. cars do

6 Actually, the distribution is part of a special subclass of the Gamma family
known in renewal theory as the Erlang distribution since the parameter « of the
Gamma distribution is an integer « = d.
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Empirical CDF of Kilometers at Sale: Compact, all locations
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Fig. 3. Cumulative fractions of cars replaced: Compact — all locations.

not travel any kilometers when they are on the lot waiting to be
rented.

In order to estimate kilometers traveled per day under short
term and long term contracts, it would be natural to look to
the rental contract data directly and take the average kilometers
traveled per day for short term and long term contracts separately.
Since the in and out odometer values for rental contracts do not
appear to be accurately recorded in the company’s data, we cannot
use this approach. If we had such data, it might even be possible
for us to estimate the conditional distributions F(o’|o, d, ) non-
parametrically or semi-parametrically, and thus, not have to rely
on the parametric assumption that kilometers traveled per each
day of a rental contract are IID exponential variables. In the absence
of contract-specific mileage data, we can still estimate the two
A parameters necessary for us to determine the distributions
F(0'|o, d, r) using the accurate records we do have on the odometer
value of each vehicle at time of sale.

Suppose that at time of sale, a rental car had been rented for
N° days under short term rental contracts and N' days under long
term rental contracts. Then the odometer value on the car is given
by

N! NS
6=y Vol+Y Vo (5)
i=1 i=1

where Voﬁ and Vo; are the realized number of kilometers traveled
under long and short term contracts, respectively. Under our
assumptions that kilometers traveled per day are exponential
random variables with parameters X, (for long term contracts) and
A, (for short term contracts), we have

E{8|N', N°} = A{N' 4+ A,N°. (6)

Since we do observe the odometer at sale 0 and number of days a
vehicle is rented, N and N°, this implies that we can estimate A,
and X, as coefficients on a simple linear regression

0i = AN} + AoN; + g (7

where o; is the odometer at time of sale on the ith rental car sold
by the company, and N} and Ni’ are the number of days the ith car
had been in short and long term rentals over its service life. These
results are presented in Table 3.

We use the regression estimates and the information on
(Nt’, N?) for each car, now indexed by the day in its service life,
t, to compute a predicted value for the car’'s odometer, 6, =

Table 3
OLS estimates of A1 and A, in the regression equation (7)
Variable Compact Luxury RV
All locations All locations All locations
A 78.7 86.6 95.4
Ay 157.1 140.8 167.7

)A»th’ + )A»st, at day t in the car’s life. The high R? values for
the odometer regressions in Eq. (7) give us confidence that the
predicted odometer values are reasonably accurate.” With 6;, the
next step is to analyze the determinants of the company’s decision
to sell its cars.

We estimated a reduce-form binary logit model to capture the
company’s status quo replacement policy. We do not report the
detailed results here: it suffices to note that the only significant
predictors are the age and odometer of the vehicle. Fig. 3
summarizes the firm’s replacement policy for compact cars (the
replacement policy for luxury and compact is very similar). It
shows the cumulative distribution for replacements as a function
of the odometer value (left hand panel), and the cumulative
distribution of the vehicle age (right hand panel). The right hand
column confirms the company’s claim that the target replacement
age forits vehicles is 3 years. The mean age of the three types of cars
at replacement is fairly close to this three year target: 2.8, 2.9 and
2.7 years for the compact, luxury and RV, respectively. However
the left hand panel shows that in terms of odometer values at
replacement, there is greater variability. The mean odometer value
atreplacement for the three vehicle typesis 78, 75 and 89 thousand
kilometers, respectively. The fact that mean replacement ages vary
much less across the three car types than the mean odometer
values at replacement may be taken as evidence that the company
bases its replacement decision more on the “three year rule” than
on a rule based on number of kilometers driven. As we will see in
the next section, due to the high degree of collinearity between age
and odometer values, a replacement rule based on odometer value
can provide a good approximation to an age-based replacement
rule and vice versa.

7 We also tested the accuracy of the regression predictions by comparing the
actual odometer reading that was recorded at dates where maintenance was
performed with the predicted values 6 on these same dates. The distribution of
prediction errors is centered at zero with small variance, indicating our regression
model is a very good predictor of actual vehicle usage.
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The remaining objects to be estimated are the spell durations
and the spell transition probabilities. As is well known, there is
a duality between duration distributions and the corresponding
hazard functions. We chose to work with hazard functions and let
h(d, r) denote the hazard rate for the rental state r, i.e. it is the
conditional probability that the car that has been in rental state r
for d days will exit the state d on the next day, d + 1, and with the
complementary probability 1 — h(d, r) it will continue to remain
in state r. Since we have sufficiently many observations of rental
spells, we were able to estimate the hazard functions for these
spells non-parametrically. The longest duration for any rental spell
is 31 days, i.e. the maximum duration of a monthly rental. As one
might expect, the duration distributions of long and short term
rental spells are very different: most short term rentals last only a
few days, whereas most long term rentals last for an entire month.
There is only minor variation in the durations of long term rentals,
i.e. some rentals are for 29 days, 30, or 31 days. Most long term
rentals last more than 15 days, perhaps in part due to the 20%
penalty the company imposes on early return of vehicles in a long
term contract.

We have far fewer observations on lot spell durations, especially
for type 3 lot spells, i.e. where the previous rental spell was
a long term contract. This is due to the high probability of
roll overs in longer term contracts, leading to relatively few
observations on intervening lot spells with positive durations.
Due to the relatively small number of observations, the non-
parametrically estimated hazard functions are quite jagged. Also,
unlike rental contracts, there is no a priori upper bound on the
duration of a lot spell. As a result we needed some method of
extrapolation to predict durations given that we have only a
small number of cases with extremely long lot durations. Our
solution to this problem was to assume that the hazard function
is constant after d = 31 days, which implies a geometric upper
tail for the distribution of lot spells. We estimated this constant
upper tails of the hazard function by imposing the constraint
that the implied duration distribution (with a smoothed, non-
parametrically estimated lower tail and the geometric upper tail)
has a mean duration that equals the actual mean duration for type
3 and 4 lot spells, respectively.

When a spell in a given rental state ends, there is a transition
to a new rental state. Let 77 (1’|r, d, 0) denote the probability that
the new rental state for a car will be r’ given that the current rental
state is r, the odometer value is o, and the duration in state r is
d. We call v the rental state transition probability. Recall that if
r > 2, the car is in a lot spell. We rule out the possibility of “self
transitions” to the lot (that is, we assume that 7 (r|r,d,0) = 0
for r > 2) because the hazard function h(d, r) already provides
the probability that the lot spell has ended, and there is no
conceptual difference between a lot spell continuing for one more
day, versus the case where a lot spell terminates and immediately
re-enters the lot via a self-transition r’ = r. Thus the restriction
n(rlr,d,o) = 0 forr > 2 can be viewed as an econometric
identification normalization.

However, for rental spells, there is a conceptual distinction
between a rental spell that terminates with an immediate
transition to a new rental spell versus the case where an existing
rental contract continues for one more day. The former case can be
viewed as an immediate roll over of one rental contract to another
one, such as when a previous customer renews or extends their
previous rental contract by one more month (in the case of a long
term contract), or by another day (in the case of a short term
contract). Thus, we allow 7 (r|r,d,0) > 0 forr € {1,2}, and
interpret this probability as a probability of a contract extension
or roll over.

The rental spell transition probability can also accommodate
transitions from a rental spell to a lot spell, except that by our

definition of the two types of lot spells, it must be the case that
m(4|1,0,d) = 0and 7 (3|2, 0,d) = 0, i.e. if a car is leaving a long
term rental spell, it can only transition into a lot spell of type 3
which is defined as a lot spell where the previous rental spell was a
long term contract. Similarly, a car leaving a short term rental spell
can only transition into a lot spell of type 4. The reason why we
distinguish the two types of lot spells is that the hazard functions
and mean durations for type 3 lot spells are different than for type
4 lot spells. In particular, for all three types of cars, hazard rates for
type 3 lot spells are lower and mean durations are higher. In plain
language, if a car had previously been in a long term rental that did
not immediately roll over, one would expect the car to be on the
lot for a longer period of time compared to the case where the car
has returned to the lot from a previous short term rental.

Since there are three possible destination states for transitions
out of a rental spell i.e. immediate return to a long term or short
term rental, or back to the lot, we used a trinomial logit model to
estimate these probabilities. This probability is given by

exp{v(r, d, 0)0,/}

Z exp{v(rvdv 0)6/)}’
pe{1,2,1(r}

7(r'|r,d,0) =

(8)

where v(r, d, 0) is a vector-valued function of the variables (r, d, 0)
and 6, is an alternative-specific vector of parameters, for p =
{1, 2, I(r)} (where I(r) denotes a lot spell, either of type 3ifr = 1
or type 4 if r = 2) with the same dimension as v. As is well known,
itis not possible to identify all three of the 6, vectors. Therefore we
make an identifying normalization that 6; = 0, i.e. we normalized
the parameters for transition to long term contract to zero.

Since our identification normalization rules out “self-
transitions,” there are only two possible destinations from a lot
spell: i.e. to either a long term or short term rental spell. We used
a binary logit model to estimate transition probabilities out of lot
spells. Similar to the trinomial logit specification, we used transi-
tion probabilities specified as

exp{v(o, d)6;}
1+ exp{v(o, d)6;}’

We do not report the actual estimation results here, but there are
two main findings we think are noteworthy: (1) for all car types,
there is a very high probability that cars will be initially rented
in long term contracts, (2) the results provide clear evidence of
“contract age effects”. That is, as the odometer value increases
(i.e. the age of the car increases) the probability of transitions into
long term rental contracts decreases, the probability of transitions
into short term rental contracts increases, and the probability of
remaining on the lot unrented increases.

The remaining objects in the econometric model of this
company are the daily rental rates and maintenance costs. Daily
rental rates do not need to be estimated since we can simply
access the company’s published tariff rate. However there is a
small amount of variability in daily rental rates due to variations in
optional equipment and features on cars (e.g. some cars have larger
engines that the standard size, etc.). To account for this variation,
we simply computed the mean daily rental rate by dividing the
total rental revenues earned in long and short term rental spells
by the number of days in these spells.

Maintenance costs are incurred on a episodic basis. The com-
pany appears to adhere to a fairly regular periodic maintenance
schedule with operations such as oil changes, brake pad replace-
ment and so forth occurring at regular intervals (either intervals
of time such as every 3 months, or in terms of odometer values,
such as every 50,000 km, etc). However, there is also evidence of a
high frequency of “unexpected maintenance” resulting from ran-
dom malfunctions or problems in particular cars. While we could
have tried to model the durations between successive maintenance

(' =1jr,d, 0) = r e {3,4}. (9)
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Distribution of Kilometers at Sale (in thousands) Luxury 2, all locations
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Fig. 4. Simulated versus actual odometer and age at sale: Luxury — all locations.

visits, with a conditional distribution of maintenance costs that are
incurred at each maintenance event, we opted for a simpler ap-
proach that appears to work just as well. Our approach is simply to
charge a daily equivalent maintenance rate, where we estimate the
daily maintenance charge by taking the mean of the ratios of total
maintenance costs over the service life of the vehicle divided by
the age of the vehicle at the time it was sold. In the next section we
will now show, via the stochastic simulations, that this simplified
treatment of maintenance costs does not compromise our ability
to provide a good overall model of the firm’s operations.

The final issue we address is whether there is evidence of aging
effects in vehicle maintenance costs. Scatter plots of the average
daily maintenance costs incurred by the company on its vehicles
as a function of the predicted odometer value show no evidence
that daily maintenance costs increase with the odometer value of
the vehicle, at least over the range of odometer values observed in
this company’s fleet. Thus, we conclude that the only aging effects
that we can detect in the econometric analysis are: (1) the rapid
decline in resale values of vehicles as a function of their age and
odometer value, and (2) the “rental composition aging effect”, i.e.
the tendency for cars to be initially rented on long term contracts,
but to gradually transition to an increasing share of short term
rental contracts and to spend more time on the lot as the vehicle
ages.

4. Evaluating the econometric model: Simulated versus actual
outcomes

In the previous section we described and estimated an
econometric model of the rental company’s operations. In order
to determine if this is a good model that accurately captures the
key features of the behavior of this company, this section presents
comparisons of simulated outcomes from the econometric model
to the actual outcomes for each of the tree vehicle types analyzed
in Section 3.

Our approach to simulating the econometric model is concep-
tually straightforward. Starting with a new car on the lot with an
odometer value of zero, we simulate arrival of customers using the
estimated transition probabilities discussed in Section 3. Once a
car is rented (either in a long or short term rental spell), we use
the estimated hazard functions to determine the duration of the
rental spell, and the estimated regression coefficients (from the
regression Eq. (7) that determines average daily kilometers trav-
eled in short and long term rental contracts, respectively) to predict

the number of kilometers driven during the rental spell. More pre-
cisely, we use the fact that under the assumption that daily kilome-
ters traveled are IID draws from an exponential distribution with
parameter Aq (for short term rentals) or A, (for long term rentals),
and the total duration of the rental spell to generate a random draw
of the total number of kilometers driven during that spell. We con-
tinue this process until the first time a simulated car re-enters the
lot with an odometer reading o, that exceeds its replacement thre-
holdo.1fo; > 0, the car is sold (where we use a draw from a lognor-
mal distribution determined by the used car sale price regression to
predict its sales proceeds), a new car is purchased for a price P(t),
and the life of the new simulated car begins. Finally, we draw the
replacement thresholds o at the start of the life of each newly pur-
chased car, using the empirical distribution of odometer values at
which the company actually replaces its cars in the left hand panel
of Fig. 3.

Fig. 4 presents comparisons between simulated and actual
distributions of the odometer and vehicle age (in days) at which
vehicles are replaced. We present the results for the luxury car
type only, although the results for the compact and RV are similar.
The left hand panel of Fig. 4 compares the actual distribution of
odometer values (solid blue line) with the simulated distribution
(dashed red line). We see that the two distributions are close to
each other, which is a result we would expect given that we have
drawn the odometer thresholds that determine when vehicles
are to be replaced in the simulations from the actual (empirical)
distribution. Thus, the differences in the two distributions in the
left hand panel of Fig. 4 are entirely due to sampling error in our
random sample of 100 simulated cars.

The right hand panel of Fig. 4 compares the actual distribution of
replacement ages to the one implied by the econometric model. In
this case we do not directly draw the age at which a car is replaced
from the empirical distribution of replacement ages, so there is no
guarantee that the simulated distribution of ages at replacement
is close to the actual distribution. Indeed, the simulated age at
replacement is a result of a more complicated set of interactions
that depend on other estimated objects in the econometric model
that determine the number of times a vehicle was rented, the
durations of these rental spells, and the numbers of kilometers
driven per rental spell. This implies a particular co-evolution of
vehicle age and odometer values, so that when the simulated
odometer value exceeds the replacement threshold o that we
randomly drew from the empirical distribution in the left panel of
Fig. 4 at the start of each car’s simulated history, the random time
at which the car’s simulated odometer exceeds o determines the
simulated lifetime (age) of the vehicle in question.
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Table 4
Comparison of actual versus simulated outcomes — luxury

Variable Actual mean (standard error) Simulated mean (standard error)
Number of long term rental spells 24.7 (9.3) 22.8(7.0)

Days in long term rental spells 697 (271) 643 (213)
Number of short term rental spells 15.2(18.7) 18.4(18.3)
Days in short term rental spells 100 (124) 101(104)
Number of lot spells 13.9(14.2) 14.2 (12.8)
Total days on the lot 193 (141) 129(110)

Car sales proceeds 12,283 (1667) 12,109 (1710)
Total maintenance costs 956 (932) 1,086 (360)
Revenue from long term rentals 28,207 (10,632) 28,622 (9606)
Revenue from short term rentals 6,106 (7.337) 7,446 (7588)
Total (undiscounted) profits 22,244 (6224) 22,212.7 (9608)
Internal rate of return 49.2% (10.4) 47.1% (6.9)
Number of observations 40 100

The simulated and actual distributions of ages at replacement
are further apart than the distributions of odometer values at
replacement, although we note that the mean simulated age at
replacement, 2.6 years, is very close to the actual value, 2.7 years.
In particular, the simulated distribution of replacement ages has a
larger variance, with more replacements at younger ages and also
at older ages compared to the actual distribution. This discrepancy
probably reflects the fact that the company’s replacement
decisions are based more on age than odometer value, and thus
actual replacements are more tightly concentrated around the
three year replacement target that we discussed in Section 3. Even
though age and odometer values are highly correlated with each
other, a purely odometer-based approximation to the company’s
replacement rule can be expected to result in a larger variation
in replacement ages. Thus, cars that have high simulated capacity
utilization and large numbers of simulated rentals will be younger
than average at time of replacement, whereas those with low
simulated utilization rates will be older than average at time of
replacement.

We did not adopt a more complex replacement rule based
both on age and odometer and other variables such as duration
in the lot spell before the vehicle was replaced because we feel
that the simpler odometer-based replacement rule provides a
sufficiently good approximation to the company’s behavior and
outcomes — as we verified by comparing simulated versus actual
distributions of outcomes for twelve different outcome variables
of interest. Another reason motivating our use of an odometer-
based approximation to the company’s status quo replacement
policy is that this enables us to adopt a stationary Markovian
decision process formulation to estimate the expected present
discounted value of the company’s profits over an infinite horizon.
We argue that the infinite horizon benchmark (which values the
discounted profits from an infinite sequence of rental cars, not just
the currently operating rental vehicle) provides a more reasonable
basis for comparing the profitability of alternative operating
strategies than a finite horizon benchmark, which calculates the
discounted profits earned only by the current generation of autos
over their lifetimes.

Table 4 compares actual versus simulated values of a number of
different moments of the various quantities of interest, including
the number of long term and short term rental spells, the number
of lot spells, and the total number of days spent in each of these
spells. The model not only does a good job of matching the mean
number of spells and durations of each spell type, but it also does
a good job of capturing the overall distribution as well. Matching
both the number and duration of the various types of spells turns
out to be the key to accurate predictions of revenues, profits, and
returns.

Table 4 also compares simulated versus actual moments of the
relevant financial variables, including the mean proceeds from
sales of cars, mean maintenance costs, and mean short and long

term revenues. The fact that simulations of the model match
actual mean proceeds from sales of vehicles suggests that the
simple lognormal regression model of vehicle price depreciation is
a good one. Similarly, we find that the model accurately predicts
mean maintenance costs, although the simulated distribution of
maintenance costs has lower variance than the actual distribution.
This is to be expected given our shortcut procedure for simulating
maintenance costs described in the previous section. That is,
instead of trying to estimate the durations between successive
maintenance episodes, we predicted cumulative maintenance
costs using the age of the car multiplied by the estimated
equivalent daily maintenance cost. Thus, total maintenance costs
simply equal the service life of the car (in days) times the average
maintenance cost expenditures per day. While it is certainly
possible to improve on the way we model maintenance costs,
maintenance costs are a distinctly second order aspect of the rental
car business, in the sense that these costs are dwarfed by rental
revenues and the purchase and resale price of the vehicle. Indeed,
we see that the total maintenance cost is only about 1/12th of the
average resale value for the luxury car type, and about 1/23rd of
the cost of a new car.

Table 4 compares simulated and actual mean values of a
number of quantities of interest for the luxury vehicle (results of
a comparison of the simulated and actual values for the compact
and RV lead to similar qualitative conclusions). If we plotted the
entire distributions of outcomes for each of these quantities, the
reader would see that the model does a good job of capturing the
overall distribution of outcomes and not just the mean values. For
example, the model accurately predicts that long term contracts
account for over 80% of the rental revenues earned. This is not
surprising given that of the approximately 800 days these cars
were rented on average over their 985 day service life, nearly
90% of the rental days were in long term contracts. However,
it may seem surprising in view of our finding that there is a
negative relationship between the fraction of time spent in long
term contracts and the IRR on the vehicle. This regression estimate
suggests that long term contracts are less profitable than short
term contracts. However, as we noted above, there are reasons
to distrust any conclusions based on the simple IRR regression
in Table 2. See Cho and Rust (2008) for further discussion of the
relative profitability of long versus short term rental contracts.

Fig. 5 compares the actual and simulated distributions of total
profits and internal rates of return, IRRs, for the luxury vehicle
type (results for the compact and RV car types are similar). Once
again the econometric model provides a good prediction of mean
total profits and mean IRR, although the simulation results show
that the distribution of simulated total profits has a larger variance
than the actual distribution, whereas distribution of simulated IRRs
has a lower variance than the the actual distribution. We are not
quite sure why the econometric model should overpredict the
variance of total profits and underpredict the variance of IRRs.
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Fig. 5. Simulated versus actual internal rates of return: Luxury — all locations.

However, the discrepancies might have significant implications for
the predictions of the effect of different strategies on expected
discounted profits if the company is an expected profit maximizer
(i.e. the company is not risk averse). In that case only the mean
values of profits matters and an expected profit maximizing firm
would be indifferent between two different operating strategies
that result in the same mean profits, even though one of the
strategies results in a larger variance of profits.

While we certainly do not claim that this is a perfect model of
all aspects of the company’s operations (we have not presented
Chi-square or Kolmogorov-Smirnov goodness of fit statistics since
we expect that the model would be formally rejected by such
specification test statistics), it does seem to provide a reasonable
first approximation to the company’s operations. Note that we did
not estimate the econometric model with the goal of trying to
minimize the distance between simulated and actual outcomes.
Instead, we estimated each component of the econometric model
separately, and evaluated the implications of the overall model
via simulations. If we had estimated all of the parameters of the
model jointly in order to maximize a likelihood function or a
simulated minimum distance (or method of moments) criterion,
we could no doubt produce simulations that result in an even
closer fit to the data. However, even in this case, we believe it
is likely that formal goodness of fit or specification test statistics
would reject the model, as typically happens for most parametric
econometric models when there are a sufficiently large number of
observations. We believe that econometric models can still have
credibility even if the models are rejected by formal specification
tests. The relevant question is whether there are alternative
models that fit significantly better. We are not aware of alternative
econometric models that could do a better job of fitting the data
than the model we estimated in the previous section while still
retaining the tractability and flexibility to make the discounted
profit calculations we present in the next section. In the remainder
of this paper, we will focus on the question of trying to determine
what new insights can be derived in the typical case where we
make a serious effort to find an econometric model that provides a
reasonable, but by no means perfect, approximation to the actual
data generating mechanism.

In any case, from our perspective, the econometric model we
have formulated provides a sufficiently good approximation to
the company’s actual operations that we think it should be a
credible model to use to evaluate the consequences of certain
modifications in the company’s operating strategy. That is, we
can simulate the econometric model under a range of alternative

hypothetical scenarios, and use it to predict profits and rates
of return and see how these compare to the company’s status
quo operating policy. However for reasons we will elaborate on
shortly, there are certain modifications to the company’s operating
strategy for which we have little data available to base a prediction.
An example would be the predicted effect of a large increase in
rental rates. Of course, we would expect a large rise in rental rates
would lead to fewer rentals, and this would change the stochastic
structure of durations and transitions between rental states. Since
we do not have any observations on large variations in rental
rates in the past, we have no basis for estimating or extrapolating
how the stochastic structure of the econometric model, and thus
the implied distribution of profits would change as a result of
significant increases or decreases in rental rates. Thus, we need to
exercise caution and clearly demarcate hypothetical simulations
for which we lack adequate data to make a reliable prediction
about how certain changes in the company’s operating strategy
would affect its expected revenues and profits.

5. Simulating profitability of counterfactual replacement
policies

While it is possible to evaluate specific hypothetical alterna-
tives to the company’s status quo operating policy using simulation
methods similar to the previous section, there are more efficient
methods available for characterizing the optimal replacement policy
that involve searching over what is effectively an infinite dimen-
sional space of all possible replacement policies. Mathematically, the
optimal replacement problem is equivalent to a specific type of
optimal stopping problem known as a regenerative optimal stopping
problem (see Rust (1987)). The term “regenerative” is used, since
the decision to replace a vehicle does not stop or end the decision
process, but rather results in a “regeneration” or “rebirth”, i.e. a
replacement of an old vehicle by a brand new one.

Cho and Rust (2008) use numerical dynamic programming to
formulate and solve the optimal stopping problem. The optimal
replacement policy takes the form of a threshold rule, i.e. the
optimal time to replace a car occurs when its odometer value o
exceeds a threshold value o(d, r, 7) that depends on the current
rental state r, the duration in that state d, and the car type 7.
Using numerical methods, they solved the dynamic programming
problem and calculate the optimal stopping thresholds o(d, r, )
for the compact, luxury and RV car types and the associated
optimal value functions V(r, d, o, t). The value function provides
the expected discounted profits (over an infinite horizon) under
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the optimal replacement policy for a vehicle of type t that is in
state (r, d, 0).

It is also possible to compute the value of any alternative
operating strategy u, which can include mixed or probabilistic
operating strategies where the decision to replace a car is
given by a conditional probability distribution w(r,d, o, 7). Let
V,(r,d, o, ) denote the expected discounted profits (again over
an infinite horizon) under the alternative replacement policy .
We will calculate both V and V,, where p is an approximation
to the company’s status quo operating policy. Thus, the difference
V(r,d,o,t)—V,(r,d, o, t) will represent our estimate of the gain
in profits from adopting an optimal replacement policy. As we
noted in the introduction, the optimal policy entails keeping cars
significantly longer than the company currently keeps them, but
by doing this we show that the company can significantly increase
its expected discounted profits.

If we were to solve the regenerative optimal stopping problem
under the assumption that the only aging effects are: (1) the
depreciation in vehicle resale values, and (2) the “rental contract
composition effect” described in Section 3, then the optimal
stopping threshold is o(r,d) = oo, i.e. it is never optimal to
sell an existing vehicle. These results are due to the assumption
that average daily maintenance costs EM do not increase as a
function of odometer value, and that rental rates do not decrease
as a function of odometer values. While there is substantial
empirical justification for these assumptions over the range of
our observations, it is questionable that these assumptions will
continue to be valid as a vehicle’s odometer and age increases
indefinitely, far beyond the range for which we have any
observations.

To make headway, we proceed to calculate the optimal
replacement policy under extremely conservative assumptions about
increases in maintenance costs and decreases in rental rates beyond
the range of the data. That is, we will assume that beyond the range
of the observations, maintenance costs increase at a very rapid rate
as odometer increases, and that to induce customers to rent older
vehicles, daily rental rates must be steeply discounted. Consistent
with the data, over the range from o < [0, 130,000] km, we
assume daily maintenance costs do not increase, however outside
the range of the data, we assume that daily maintenance costs start
increasing at a very rapid rate, reaching a level that is 11 times the
daily maintenance costs of vehicle with 130,000 km by the time
the vehicle reaches 400,000 km.

For rental rates, we assume that in order to induce consumers
to rent older vehicles, the company must reduce the daily rental
rates on the older vehicles in its fleet at a rate that is linear in
the vehicle’s odometer value. We assume a very steep decline in
rental rates, so that at the point a vehicle reaches 400,000 km the
daily rental rate would be zero. For a vehicle with 265,000 km,
the rental rate it can charge is only 1/2 the rate it charges for
vehicles that have 130,000 or fewer kilometers on their odometers.
As we noted, the firm does in fact have a small number of vehicles
in its fleet with odometer values in the range (130,000, 265,000]
yet it does not offer discounts on rentals of these vehicle and
nevertheless still succeeds in renting them to customers. We view
this as evidence that the rental discount function that we have
assumed is actually much steeper than necessary to induce some
of the firm’s customers to rent older vehicles.

Cho and Rust (2008) provide figures illustrating the calculated
optimal replacement thresholds o(d, r, ) and the associated value
functions V(d, r, o, 7) for the same three car types analyzed here.
Although we do not repeat these figures here, it suffices to relay
the general finding that the thresholds are roughly twice as large as
the mean odometer value at which the company currently replaces
its vehicles. The optimal replacement thresholds are roughly at
150,000 km whereas the company currently replaces its vehicles
after approximately 75,000 km.

For all three car types, the “rental value”, i.e. the difference in
the value of keeping rental car versus selling it for a new one is a
steeply decreasing function of odometer value. This is partly due
to the steep decrease in the resale value of a car except that the
depreciation in a vehicle’s rental value is an even steeper function of
its odometer value than its resale value. This result is an interesting
contrast to the relatively mild “aging effects” that we found in the
econometric analysis in Section 3. Note that our assumed sharp
drop off in rental rates and sharp rise in maintenance costs do
not start until a rental car’s odometer reaches 130,000 km, yet
the decline in the rental value of a car occurs immediately. The
only aging effects we uncovered in the econometric analysis before
130,000 km was a very mild tendency for cars to switch from long
term contract to short term contracts, and for the fraction of the
time they spend idle on the lot waiting to be rented gradually
increases. But this “rental contract composition aging effect” is not
steep enough to explain the sharp declines in the rental values of
rental vehicles.

The key explanation for the rapid drop in the value of a rental
car as a function of odometer is the horizon effect. Essentially, the
instant a company purchases a new car, it represents an large
investment that will be be earning the company a stream of profits
for a finite period of time until the car reaches its replacement
threshold at which time the first will have to incur another large
expenditure to buy another new vehicle. The value of keeping an
existing car depends on the expected future profits over the life
of the car, but the new purchase price of the current vehicle is
treated as a a “sunk cost”. As the vehicle’s odometer increases from
zero towards the optimal replacement threshold, the expected
discounted value of remaining profits for the current car necessarily
decreases since the remaining life of the current car decreases
quickly. When the company finally replaces the vehicle it must
incur the cost of buying a new replacement vehicle and the process
starts over again.

Note that the difference between the value of keeping a (just
purchased) new vehicle and immediately trading it for another
new vehicle, represents the expected discounted profit that the
firm expects to earn on the current vehicle over its lifetime. For
the luxury car type, the value of keeping a newly acquired brand
new car is $375,000, whereas the value of immediately selling it is
$366,000. Thus, the company expects to make a net discounted profit
of approximately $9,000 over the service lifetime of a single luxury
vehicle. The total discounted profits are higher, $375,000, since this
is the expectation of discounted profits earned from an infinite
sequence of rental vehicles. Note that the $9,000 figure represents
discounted profits for a single vehicle. The mean total undiscounted
profits over the life a compact vehicle are $35,970, which is nearly
three times larger than the actual mean undiscounted profits,
$13,719, under the status quo. However, as we discussed above, we
think it is misleading to compare policies in terms of their impact
on profits of a single vehicle, since it keeping a car longer would
nearly always increase the profitability of the current vehicle but
fail to account for the forgone higher profits that could be earned on
the next vehicle. By comparing expected discounted profits over an
infinite horizon, we can properly take the effects of extending the
age at replacement on the profits of all future vehicles into account.

To learn more about the implications of the optimal replace-
ment policy, particularly about the distribution of ages at which
replacements occur, we compared simulated outcomes under the
optimal replacement policy to simulated outcomes under the sta-
tus quo. We found that under the optimal replacement policy, the
mean odometer value at replacement is more than twice as large
as the mean value under the status quo. The variance in odometer
values about the mean value is also less under the optimal replace-
ment policy than under the status quo, the mean age at replacement
ranges from 4.6 to 5.0 years under the optimal replacement policy
versus being between 2.6 and 2.7 years under the status quo.
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We emphasize that it is optimal to keep these vehicles longer
despite the rather substantial increases in maintenance costs and
reductions in rental rates that we have assumed occurs after
130,000 km. Indeed, almost all replacements that occur under
the optimal replacement policy occur well after 130,000 km,
when these “adverse” aging effects have kicked in. Note, however,
that all of the cars are replaced before they reach 265,000 km,
which is the point where rental rates are discounted to 50% of
the rate for a vehicle with 130,000 km. Also, according to our
assumptions daily maintenance costs are about 5 times higher
for vehicles at 265,000 km than the values for vehicles that have
fewer than 130,000 km. So the combination of the rental discounts
and rapid increase in maintenance cost greatly alter the optimal
replacement policy. Instead of being optimal to never replace its
existing vehicles, the assumptions of rapidly rising maintenance
costs and rapidly declining rental rates after 130,000 km lead to a
finite optimal replacement threshold. It is surprising is that despite
these extremely pessimistic assumptions, the optimal replacement
policy still entails keeping cars about twice as long as the company
currently does.

In order to compare the discounted profits under an infinite
horizon, we need to make extrapolations of the firm’s status
quo replacement policy into the indefinite future. Since the data
obviously only covers a relatively short time span of the firm'’s
operations, it is clear that certain “forecasting assumptions” are
required. In particular, we assume stationarity, i.e. that real prices
of cars, maintenance costs, rental rates and so forth will be constant
for the foreseeable future. Under these (strong) assumptions, we
can calculate the value of an infinite sequence of replacement vehicles
over an infinite horizon.

To simplify the analysis, we focus on comparing the value of a
newly purchased brand new car that has just entered the lot. In
Table 5 we report the value of a new car that has just arrived in the
lot under the optimal replacement policy, and compare it the value
of a new car that has just arrived in the lot under the the firm’s
status quo operating strategy. Table 5 also presents an “equivalent
daily profit rate” which is approximated as (1 — 8)V (0, ro, 0) and
(1 —=B)V,.(0, rp, 0) where B = exp{—r/365} is the daily discount
factor. For our calculations we have assumed that r = .03, and
this implies a daily discount factor that is quite close to 1, 8 =
0.99991781. Our conclusions are robust to fairly wide changes in
the discount rate.®

The first section of Table 5 presents the expected discounted
values and the daily expected profit equivalent values for the
optimal replacement policy for each of the three car types that we
analyzed. Also, to provide an measuring stick for these numbers,
the top line also presents the average price of a new vehicle for
each car type. We see that for the compact car, for example, the
expected present discounted value of profits is $268,963, which
is 27.8 times the cost of a new compact car. Applying the final
value theorem, we find that this discounted profit is equivalent
to about $22.11 in profits on a daily basis. The second section of
Table 5 presents the expected discounted value of profits under
the status quo. The expected discounted value of profits over
an infinite horizon is $196,589, which is equivalent to $16.16
on a daily basis. Thus, we see that according to the model’s
predictions, the firm could increase its discounted profits by 38%

8 According to the final value theorem, (see, e.g. Howard (1971), p. 46) for any
convergent sequence {a,} we have limg_,1(1 — B) Y g a¢ = limr_, o % 23:1 a.
There are stochastic extensions of this result that imply that for g close to 1,
(1 — B)V(d,r,o) is close to the “long run average profits”, which in our case
corresponds to an equivalent daily profit. The statement of the stochastic version
of the final value theorem is more complex and is omitted here, but the basic result
is the same as the deterministic version of the final value theorem given above.

Table 5
Comparison of profits/returns: Optimal policy versus status quo
Quantity Compact Luxury RV
All locations All locations All locations
Value Value Value
P 9668 23,389 18,774
Expected discounted values under optimal replacement policy
V(0, 0, ro) 268,963 374,913 327,057
(1—B)V(0,0, ro) 22.11 30.81 26.88
V(0, 0, rp)/P 27.8 16.0 17.4
Expected discounted values under status quo replacement policy
V,.(0, 0, o) 196,589 318,247 136,792
(1= B)V,(0,0,1o) 16.16 26.16 11.24
V(0,0,10),/P 20.3 13.6 7.3
Ratio of expected values: Optimal policy versus status quo
V(0,0,19)/V,(0, 0, r5) 1.37 1.18 2.39

(i.e. V(0,19,0)/V,(0,19,0) = 1.37), if it adopted the optimal
replacement policy, in combination with “deep discounts” in rental
prices of older vehicles.

We find that for the luxury car type, the firm’s replacement
strategy is closer to optimality: its profits would increase by 18%
under the optimal replacement strategy. However for the RV, the
firm’s existing policy appears to be far from optimal: the present
discounted profits are predicted to be 2.4 times higher under the
optimal replacement strategy.

We undertook another set of discounted profit calculations
to see if our conclusions are robust to even more conservative
assumptions about the increase in maintenance costs and required
discounts in rental rates. Under this even more conservative
scenario, we assumed that maintenance costs begin rising steeply
even earlier, at 60,000 km. We also assumed that rental rates would
have to start declining after 60,000 km at even a faster rate than we
previously assumed, so that by the time a car reaches 210,000 km,
its daily rental rate would be zero. As expected, it is optimal to
replace cars even sooner under this more pessimistic scenario.
Nevertheless, the optimal replacement policy still entails keeping
cars roughly twice as long as the company currently keeps them,
and even under these extremely pessimistic assumptions. Note
that our pessimistic assumptions do not apply in our calculation of
discounted profits under the status quo, nevertheless the optimal
replacement policy still results in significantly higher profits than
the status quo. We see that expected discounted profits for the
Compact, Luxury and RV vehicle types are predicted to increase
by 25%, 6% and 100%, respectively. Thus, our predictions are
quite robust to variations in the assumptions. Our estimates
of the increases in profitability from delaying replacements of
rental vehicles are likely to be fairly conservative: most likely the
company would not need to discount rental rates as steeply as we
have assumed, and if so, the gains it would realize from adopting an
optimal replacement strategy would be even larger than we have
estimated.

6. Conclusion

We view this paper as providing primarily a methodological
contribution, but as we discuss below, it is still not clear whether
the econometric model we developed will have practical value.
The methodological contribution is to show how to integrate
econometric duration models and (regenerative) optimal stopping
theory in order to evaluate the profitability of the operating
strategy of a firm. We have shown how this apparatus can be
used to test the hypothesis that the firm is profit maximizing and
we have provided evidence that the rental car company that we
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analyzed here is not maximizing discounted profits even though
we did show that the company is highly profitable.

Of course we always have to keep in mind the possibility that
the model is wrong and not interpret any deviation between the
model predictions and actual outcomes as prima facie evidence
that the firm is not behaving optimally. Instead, the discrepancy
should be treated as prima facie evidence that there is something
wrong with our model. Fortunately, there is a further way to test
this: namely by undertaking an experiment to test whether the
predictions of the econometric model are correct. The rental car
company was sufficiently convinced by the analysis in this paper
to undertake a small scale experiment to test the main predictions
that keeping rental cars longer would increase the firm’s profits.
We view this as a limited practical success.

We do not have sufficient space here to describe this
experiment in detail, but the experiment involved a combination
of discounting the rental prices of older cars and keeping the cars
longer before replacing them. We refer the reader to Cho and Rust
(2008) for an analysis and interpretation of the outcome of this
experiment.

At this point, this paper should be regarded primarily as a con-
crete illustration of the role that econometrics might be able to play
as a decision tool that could assist companies in improving out-
comes (e.g. profits) through the use of structural models as a tool
for simulating and systematically searching for improved policies
via dynamic programming methods and computer simulations (i.e.
computational experiments) rather than relying on ad hoc trial and
error methods, (i.e. real experiments) that are very costly and time
consuming. We still believe that a combination of econometric
modeling, computational experimentation, and real world exper-
imentation can be extremely effective: the econometric modeling
and computational experiments can be used to search for attrac-
tive policies at very low cost, but real world experiments should
be undertaken to verify that predictions of the econometric model
are accurate.

We feel that the structural approach taken in this paper, i.e.
developing an econometric model that can simulate the operations
of the company both under the status quo and under a range
of counterfactual alternative replacement policies, is both more
ambitious and promising than the reduced form econometric
methodology that currently dominates applied econometric work.
A severe limitation of the reduced-form methodology, including
the approach taken in the “treatment effects” literature, is that
it is fundamentally backward looking. The goal of most of these
studies is only to try to estimate the “treatment effect”, typically
treated as unidimensional variable, for some policy change that
has been taken in the past. The treatment effects literature
interprets significant historical changes in policies as quasi-
random “policy experiments” that can serve as nearly exogenous
policy shifters or “instruments” for determining “causal effects”
in their econometric analyses. However, it does not attempt
to predict how new, hypothetical policy changes might affect
outcomes in the future.

Most of the practitioners in the reduced-form and treatment
effects literatures are unwilling to undertake the econometric
modeling necessary to predict the outcomes of a range of
hypothetical counterfactual policy experiments in order to give
policy makers guidance on the policy experiments of most interest

(e.g. policy changes that optimize some well defined criterion). As
a result, the reduced-form and treatment effects approaches are
not very useful for practical decision making, at least in a real time,
forward looking environment. We believe that increasingly policy
makers need assistance to help them make better decisions going
forward, and that it is not enough to simply look backward and
evaluate the outcomes of decisions they took in the past, although
we certainly don’t deny that there is much to be learned from
evaluations of the success or failure of past decisions.

We believe that while structural econometric modeling is still in
its infancy, the models are rapidly evolving and improving and may
soon be sufficiently realistic and accurate to be able offer forward
looking guidance to policy makers to actually help them make
better decisions. But clearly the path to success will be littered
with many failed attempts along the way. While it is still too
early to determine whether our model and policy forecasts will
be a practical success in this case, we would like to acknowledge
the promising results obtained from previous studies by Paarsch
and Shearer (1999) and Shearer (2004) who used structural
economic models to design alternative compensation schemes
for firms and designed experiments to verify the predictions of
their models, and Todd and Wolpin (2006) who demonstrated that
structural econometric models can provide accurate out of sample
predictions of the treatment effects generated by randomized
experiments.
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