Equality of opportunity and optimal effort decision under uncertainty

Aitor Calo-Blanco

http://merlin.fae.ua.es/aitor

University of Alicante

XXXIII Economic Analysis Symposium
December 12, 2008. Zaragoza
My general research

- Equality of opportunity (EOP). Roemer’s approach:

 Outcome: "Opportunity" and "Responsibility"
My general research

\[F_\theta(x) \]

\[F_{\overline{\theta}}(x) \]
My general research

- Equality of opportunity (EOp). Roemer’s approach:

 Outcome: "Opportunity" and "Responsibility"

- Non-observability of effort: Roemer’s statistical solution.
My general research
My general research

- Equality of opportunity (EOp). Roemer’s approach:
 Outcome: "Opportunity" and "Responsibility"

- Non-observability of effort: Roemer’s statistical solution.

- I focus on education: mainly theoretical, but empirical evaluation as well.

- Role of new features like uncertainty. Which are the problems of the Roemer’s solution?
My objective here

1. I analyse the effect of uncertainty (luck) on income distribution.

2. I characterise the individual’s optimal effort decision as a solution of an explicit intertemporal utilitarian maximization problem.

3. The planner’s optimal EOOp policy is also studied.
My results here

1. Luck affects income distribution in a biased and persistent way.

2. Therefore, opposite to the to generally assumed neutral effect of luck on income, we assume that such an effect does call for social compensation.

3. Traditional results in the literature also fit within our setting.

4. The planner:
 4.1 She can affect the individuals’ effort decision so as to smooth down the effect of luck on income.
 4.2 As usual, the optimal EOp policy implies compensations just within effort groups.
1. Luck affects income distribution in a biased and persistent way.

2. Therefore, opposite to the to generally assumed neutral effect of luck on income, we assume that such an effect does call for social compensation.

3. Traditional results in the literature also fit within our setting.

4. The planner:
 4.1 She can affect the individuals’ effort decision so as to smooth down the effect of luck on income.
 4.2 As usual, the optimal EOp policy implies compensations just within effort groups.
My results here

1. Luck affects income distribution in a biased and persistent way.

2. Therefore, opposite to the to generally assumed neutral effect of luck on income, we assume that such an effect does call for social compensation.

3. Traditional results in the literature also fit within our setting.

4. The planner:
 4.1. She can affect the individuals’ effort decision so as to smooth down the effect of luck on income.
 4.2. As usual, the optimal EOp policy implies compensations just within effort groups.
My results here

1. Luck affects income distribution in a biased and persistent way.

2. Therefore, opposite to the to generally assumed neutral effect of luck on income, we assume that such an effect does call for social compensation.

3. Traditional results in the literature also fit within our setting.

4. The planner:
 4.1 She can affect the individuals’ effort decision so as to smooth down the effect of luck on income.
 4.2 As usual, the optimal EOp policy implies compensations just within effort groups.
My results here

1. Luck affects income distribution in a biased and persistent way.

2. Therefore, opposite to the to generally assumed neutral effect of luck on income, we assume that such an effect does call for social compensation.

3. Traditional results in the literature also fit within our setting.

4. The planner:
 4.1 She can affect the individuals’ effort decision so as to smooth down the effect of luck on income.
 4.2 As usual, the optimal EOp policy implies compensations just within effort groups.
My results here

1. Luck affects income distribution in a biased and persistent way.

2. Therefore, opposite to the generally assumed neutral effect of luck on income, we assume that such an effect **does call** for social compensation.

3. Traditional results in the literature also fit within our setting.

4. The planner:
 4.1 She can affect the individuals’ effort decision so as to smooth down the effect of luck on income.
 4.2 As usual, the optimal EOp policy implies compensations just within effort groups.
Aim

Circumstances → Effort → Outcome → Social Compensation

Responsibility
Aim

Circumstances → Luck → Effort → Outcome → Social Compensation

Responsibility
Aim

Circumstances → Luck → Effort → Outcome → Social Compensation

Responsibility

Aitor Calo-Blanco (U.Alicante) EOOp and optimal effort decision December 12, 2008. Zaragoza
Preliminaries I

- The society is made up of a finite number of individuals: \(\mathcal{M} = \{1, \ldots, m, \ldots, M\} \).

- Finite income space: \(X \in \mathbb{R}_+^n \), with \(x_1 < \ldots < x_i < \ldots < x_n \).

- \(\mathcal{M}(w_j) \) is the set of agents with circumstances \(j \in \{1, \ldots, J\} \).

- The effort level chosen by agent \(m \) is a real number \(\tilde{e} \) in the closed interval \([\tilde{e}_w^L, \tilde{e}_w^H] \).
Preliminaries II

- Conditional probability:

\[
\Pr \left[x = x_i \mid \tilde{e}, w \right] = p_i (\tilde{e}, w) ; \forall i \in \{1, \ldots, n\} \\
= ep_i^H (w) + (1 - e) p_i^L (w)
\]

- Expected income:

\[
\bar{x}_m (e_m (t), w_m (t)) \\
= \sum_{i=1}^{n} \left[e_m (t) p_i^H (w_m (t)) + (1 - e_m (t)) p_i^L (w_m (t)) \right] x_i
\]
Preliminaries III

- Individual’s utility:

\[U_m(e_m(t), w_m(t)) = u_m(x_i) - c_m(e_m(t)) \]

- Income utility and effort cost functions:

\[u_m(x_i) = x_i \]

\[c_m(e_m(t)) = \left[(1 - e_m(t))^{-\sigma_m} - 1\right] \]

- Every period, a fraction \(\alpha \) of the present income is saved as next period initial wealth.
Preliminaries III

- Individual’s utility:

\[U_m(e_m(t), w_m(t)) = u_m(x_i) - c_m(e_m(t)) \]

- Income utility and effort cost functions:

\[u_m(x_i) = x_i \]

\[c_m(e_m(t)) = \left[(1 - e_m(t))^{-\sigma_m} - 1 \right] \]

- Every period, a fraction \(\alpha \) of the present income is saved as next period initial wealth.
Optimal effort decision I

The individual maximises her intertemporal expected utility:

\[
\max_{\{e_m(s)\}} \sum_{s=t}^{T} \beta^{s-t} \left((1 - \alpha) \left[\bar{x}_m(e_m(s), w_m(s)) \right] - \left[(1 - e_m(t))^{-\sigma_m} - 1 \right] \right) \\
\text{s.t.: } e_m(s) \in [0, 1] \\
\bar{w}_m(s + 1) = \alpha \left[\bar{x}_m(e_m(s), w_m(s)) \right] \\
w_m(0) = w_0^m; \forall m \in \mathcal{M}
\]
Optimal effort decision II

Proposition

The individual’s optimal effort decision at any period \(t \in [0, T] \) is given by the following expression:

\[
e_m^* (t) = 1 - \left[\frac{1 - \alpha}{\sigma_m} \sum_{i=1}^{n} k_i (w_m (t)) x_i (1 + \Delta_t) \right]^{-1} \frac{1}{(\sigma_m + 1)}
\]

where: \(w_m (t) \sim \Phi (w_0^m, \sigma_m) \).
Claim

-Circumstances, personal choices and luck are the determinants of the individual’s income.
-The luck factor has a biased and persistent effect on income, and hence it calls for social compensation in order to assure equality of opportunity.

Corollary

If circumstances are required to be fixed, the individual would make a constant level of effort. Moreover, the planner could infer exactly the individuals’ level of responsibility by means of a simple updating of beliefs mechanism.
Optimal effort decision III

Claim

- Circumstances, personal choices and luck are the determinants of the individual’s income.
- The luck factor has a biased and persistent effect on income, and hence it calls for social compensation in order to assure equality of opportunity.

Corollary

If circumstances are required to be fixed, the individual would make a constant level of effort. Moreover, the planner could infer exactly the individuals’ level of responsibility by means of a simple updating of beliefs mechanism.
I introduce a social planner that is concerned about inequality of opportunity.

Such a planner aims at equalizing incomes of those agents who exert a comparable degree of effort.

The planner cannot infer exactly the individuals’ level of responsibility.

Function $g_m(t) = f(\bar{x}(\cdot, t))$ summarizes the planner’s beliefs about all her past experiences with agent m up to period t.
The individual’s optimal effort decision at any period $t \in [0, T]$ is given by the following expression:

$$e^*_m (t) = 1 - \left[\frac{1 - \alpha}{\sigma_m} \sum_{i=1}^{n} k_i (w_m (t)) x_i [1 + \Delta_t + \Psi_t] + \Gamma_t \right]^{-\frac{1}{\sigma+1}}$$

where: $w_m (t) \sim \Phi (w_0^m, \sigma_m)$.
EOp problem I

Definition

There is EOp in the society if and only if \(\forall m, m' \in M : g_m(t) = g_{m'}(t) \) *the following condition holds:*

\[
\bar{x}_m(\hat{e}_m^*(t), w_m(t)) = \bar{x}_m(\hat{e}_{m'}^*(t), w_{m'}(t))
\]
Proposition

- The social planner can affect the individuals’ optimal choice of effort, and hence the income distribution, in order to assure equal opportunity within the society.

- As usual, the equal opportunity feature is concerned about income inequalities within effort groups. Income differences between those groups only represent diverse rewards of people's autonomous choices and will not be considered unfair.
Concluding remarks I

- EOp is generally considered the *fairest* principle at the time of evaluating outcome and opportunity.

- Optimal effort decision depends on: the individual’s circumstances, her preferences, and the sort of luck experienced in the past.

- The introduction of luck through the uncertainty of income exhibits here very interesting features.
Concluding remarks II

- Social planner concerned about inequality in opportunity terms.

- She can design a redistribution policy so as to affect the individuals’ distribution of income.

- Education (health) as outcome. Investment in early stages of education has a deeper impact on the students’ future success.
Thank you very much

Muchas gracias
Additional slide 2
Static solution

- If there is no relation between periods, the individual’s optimal effort turns into:

\[e_m^*(t) = 1 - \left[\frac{1}{\sigma_m} \sum_{i=1}^{n} k_i (w_0^m) x_i \right]^{-\frac{1}{1+\sigma_m}} \]

Corollary

Under incomplete information, if individuals are making a constant level of effort, the planner can infer exactly (after a certain finite number of periods) the individual’s level of responsibility by means of a simple updating of beliefs process.
The planner maximises the following program:

$$\max \left\{ \sum_{m=1}^{M} \left((1 - \alpha) \left[\bar{x}_m(\cdot, t) + g_m(t) \gamma_m^{w_j(t)}(t) \right] - \left[(1 - \hat{e}_m^*(t)) \sigma_{t,m} - 1 \right] \right) \right\}$$

subject to:

$$\sum_{m=1}^{M} g_m(t) \gamma_m^{w_j(t)}(t) = \kappa$$

$$\hat{e}_m^*(t) = 1 - \left[\frac{Y_m}{\sigma_{t,m}} \right]^{1/\sigma_{t,m}} ; \forall m \in \mathcal{M}$$

$$\bar{x}_m(\hat{e}_m^*(t)) = \bar{x}_m'(\hat{e}_m'(t)) ; \forall m, m' \in \mathcal{M} : g_m(t) = g_{m'}(t)$$
Proposition

The individual’s optimal effort decision at any period $t \in [0, T]$ is given by the following expression:

$$e^*_m(t) = 1 - \left[\frac{(1 - \alpha)}{\sigma_m} \sum_{i=1}^{n} k_i (w_m(t)) x_i (1 + \Delta_t) \right]^{\frac{-1}{(\sigma_m+1)}}$$

where: $k_i (\cdot) = p_i^H (\cdot) - p_i^L (\cdot)$; $\Delta_t = \sum_{j=t+1}^{T} (\beta\rho)^{j-t}$, $\rho = \alpha \left[\frac{\partial x_m(\cdot, t+1)}{\partial w_m(t+1)} \right]$, and $w_m(t) = \Phi (w^m_0, \sigma_m, \alpha)$.

Proposition

The individual’s optimal effort decision at any period $t \in [0, T]$ is given by the following expression:

$$e^*_m(t) = 1 - \left[\frac{(1 - \alpha)}{\sigma_m} \sum_{i=1}^{n} k_i(w_m(t)) x_i \left[1 + \Delta_t + \Psi_t \right] + \Gamma_t \right]^{-1}$$

where:

$$\Delta_t = \sum_{j=t+1}^{T} (\rho \beta)^{j-t}$$

$$\Psi_t = \frac{1}{\alpha} \frac{\partial \bar{x}}{\partial w_m(t+1)} \sum_{j=t+1}^{T} \rho^{j-t} \sum_{j=t+2}^{T} \beta^{j-t} \gamma_{wm}(j)$$

$$\Gamma_t = f_x \left(\sum_{i=1}^{n} k_i(w_m(t)) x_i \right) \sum_{j=t+1}^{T} \beta^{j-t} \gamma_{wm}(j)$$
Proposition

There is EOp in the society if and only if $\forall m, m' \in \mathcal{M}: g_m(t) = g_{m'}(t)$ the following condition holds:

$$
\sum_{i=1}^{n} \left[\left(1 - \left(\frac{1}{\hat{\sigma}_t} \right)^{\frac{-1}{(\hat{\sigma}_t+1)}} \right) k_i \left(w_m(t) \right) + p_i \left(w_m(t) \right) \right] x_i
\]

$$

where $Y_m = (1 - \alpha) \left(\sum_{i=1}^{\gamma} k_i \left(w_m(t) \right) x_i \left[1 + \Delta_t + \Psi_t \right] + \Gamma_t \right)$, and $\hat{\sigma}_{t,m}$ is the level of disutility of effort that in period t the planner guesses from agent m.
The individual maximises her intertemporal expected utility:

\[
\max_{\{ e_m(s) \}} \sum_{s=t}^{T} \beta^{s-t} \left((1 - \alpha) \left[\bar{x}_m(\cdot) + g_m(s) \gamma^{w_m(s)} \right] - \left[(1 - e_m(t))^{-\sigma_m} - 1 \right] \right)
\]

s.t.:
- \(e_m(s) \in [0, 1] \)
- \(\bar{w}_m(s + 1) = \alpha \left[\bar{x}_m(e_m(s), w_m(s)) \right] \)
- \(w_m(0) = w_0^m; \forall m \in M \)
- \(g_m(s + 1) - g_m(s) = f(\bar{x}(\cdot, s)) \)
- \(g_m(0) = g_0^m \in \mathbb{R}_+ \)