LEGAL ENFORCEMENT, PUBLIC SUPPLY OF LIQUIDITY AND SOVEREIGN RISK

Filippo Brutti

Universitat Pompeu Fabra

December 2008
Introduction

- Sovereign debt crises in emerging markets are usually associated with liquidity crises and banking crises within the economy. A clear example is the Argentine default in 2001-2002.

- Conventional view: domestic financial turmoil is the result of foreign creditors’ retaliation. Empirical evidence on “classic” penalties is subject to debate (e.g., trade sanctions or exclusion from international capital markets).

- I propose a novel mechanism linking sovereign defaults and liquidity and banking crises without any intervention of foreign creditors.

- The model considers a standard unwillingness-to-pay problem assuming that:

 (i) the enforcement of private contracts is limited and, as a result, public debt represents a source of liquidity (Holmstrom and Tirole 1998);

 (ii) the government cannot discriminate between domestic and foreign agents (Broner and Ventura 2006).

- I present cross-country, cross-industry empirical evidence that is suggestive of the mechanism emphasized by my model.
Introduction

Sovereign debt crises in emerging markets are usually associated with liquidity crises and banking crises within the economy. A clear example is the Argentine default in 2001-2002.

Conventional view: **domestic financial turmoil is the result of foreign creditors’ retaliation.** Empirical evidence on “classic” penalties is subject to debate (e.g., trade sanctions or exclusion from international capital markets).

I propose a novel mechanism linking sovereign defaults and liquidity and banking crises **without any intervention of foreign creditors.**

The model considers a standard unwillingness-to-pay problem assuming that:

(i) the enforcement of private contracts is limited and, as a result, public debt represents a source of liquidity (Holmstrom and Tirole 1998);

(ii) the government cannot discriminate between domestic and foreign agents (Broner and Ventura 2006).

I present cross-country, cross-industry empirical evidence that is suggestive of the mechanism emphasized by my model.
Introduction

Sovereign debt crises in emerging markets are usually associated with liquidity crises and banking crises within the economy. A clear example is the Argentine default in 2001-2002.

Conventional view: domestic financial turmoil is the result of foreign creditors’ retaliation. Empirical evidence on “classic” penalties is subject to debate (e.g., trade sanctions or exclusion from international capital markets).

I propose a novel mechanism linking sovereign defaults and liquidity and banking crises without any intervention of foreign creditors.

The model considers a standard unwillingness-to-pay problem assuming that:

(i) the enforcement of private contracts is limited and, as a result, public debt represents a source of liquidity (Holmstrom and Tirole 1998);

(ii) the government cannot discriminate between domestic and foreign agents (Broner and Ventura 2006).

I present cross-country, cross-industry empirical evidence that is suggestive of the mechanism emphasized by my model.
Introduction

- Sovereign debt crises in emerging markets are usually associated with liquidity crises and banking crises within the economy. A clear example is the Argentine default in 2001-2002.

- Conventional view: **domestic financial turmoil is the result of foreign creditors’ retaliation.** Empirical evidence on “classic” penalties is subject to debate (e.g., trade sanctions or exclusion from international capital markets).

- I propose a novel mechanism linking sovereign defaults and liquidity and banking crises **without any intervention of foreign creditors.**

- The model considers a standard unwillingness-to-pay problem assuming that:

 (i) the enforcement of private contracts is limited and, as a result, public debt represents a source of liquidity (Holmstrom and Tirole 1998);

 (ii) the government cannot discriminate between domestic and foreign agents (Broner and Ventura 2006).

- I present cross-country, cross-industry empirical evidence that is suggestive of the mechanism emphasized by my model.
OUTLINE

1. A Simple Model of Public Debt as a Source of Liquidity

2. Sovereign Risk and Liquidity Crises

3. Institutional and Policy Reforms

4. Final Remarks and Empirical Evidence
Technology

- Small open economy. Three periods: $t = 0, 1, 2$. Two goods: private good (consumption and investment) and public good (consumption).

- Private Technology:
 - Investment k in project $j \in [0, 1]$ at date 0 delivers a final output $f_{s,j}(k)$ at date 2.
 - Investment returns are subject to two independent shocks observed at date 1:
 - an aggregate shock, θ_s, which I call “productivity” shock;
 - an idiosyncratic shock, A_j, which I call “expenditure” shock.

- Public Technology:
 - Investment g in a public project at date 0 delivers a public good at date 2, from which domestic agents get utility $\nu(g)$, where $\nu'(g) > 0$ and $\nu''(g) < 0$.
Technology

- Small open economy. Three periods: $t = 0, 1, 2$. Two goods: private good (consumption and investment) and public good (consumption).

- **Private Technology:**
 - Investment k in project $j \in [0, 1]$ at date 0 delivers a final output $f_{s,j}(k)$ at date 2.

 - Investment returns are subject to two independent shocks observed at date 1:
 - an aggregate shock, θ_s, which I call “productivity” shock;
 - an idiosyncratic shock, A_j, which I call “expenditure” shock.

- **Public Technology:**
 - Investment g in a public project at date 0 delivers a public good at date 2, from which domestic agents get utility $u(g)$, where $u'(g) > 0$ and $u''(g) < 0$.

Production function
Technology

- Small open economy. Three periods: $t = 0, 1, 2$. Two goods: private good (consumption and investment) and public good (consumption).

- Private Technology:
 - Investment k in project $j \in [0, 1]$ at date 0 delivers a final output $f_{s,j}(k)$ at date 2.
 - Investment returns are subject to two independent shocks observed at date 1:
 - an aggregate shock, θ_s, which I call “productivity” shock;
 - an idiosyncratic shock, A_j, which I call “expenditure” shock.

- Public Technology:
 - Investment g in a public project at date 0 delivers a public good at date 2, from which domestic agents get utility $v(g)$, where $v'(g) > 0$ and $v''(g) < 0$.

Production function
Agents

- Two private domestic agents:
 - **Entrepreneurs**, with zero endowment at date 0 and access to the private technology.
 - **Workers**, with zero endowment at date 0 and income w at date 1.

Both types include a continuum of competitive and risk neutral individuals, with mass one and consuming only in period $t = 2$. Preferences:

$$U = c + v(g).$$

- A benevolent government, which:
 - maximizes the average utility of domestic agents;
 - can issue non-contingent bonds (short or long term) and collect lump-sum taxes.

- International financial market (**IFM**), competitive and risk neutral, deep pocketed and with storage technology with rate of return $r = 1$.
Agents

- Two private domestic agents:
 - **Entrepreneurs**, with zero endowment at date 0 and access to the private technology.
 - **Workers**, with zero endowment at date 0 and income w at date 1.

Both types include a continuum of competitive and risk neutral individuals, with mass one and consuming only in period $t = 2$. Preferences:

$$U = c + v(g).$$

- A benevolent government, which:
 - maximizes the average utility of domestic agents;
 - can issue non-contingent bonds (short or long term) and collect lump-sum taxes.

- International financial market (IFM), competitive and risk neutral, deep pocketed and with storage technology with rate of return $r = 1$.
Agents

- Two private domestic agents:
 - **Entrepreneurs**, with zero endowment at date 0 and access to the private technology.
 - **Workers**, with zero endowment at date 0 and income w at date 1.

Both types include a continuum of competitive and risk neutral individuals, with mass one and consuming only in period $t = 2$. Preferences:

$$U = c + v(g).$$

- A **benevolent government**, which:
 - maximizes the average utility of domestic agents;
 - can issue non-contingent bonds (short or long term) and collect lump-sum taxes.

- **International financial market (IFM)**, competitive and risk neutral, deep pocketed and with storage technology with rate of return $r = 1$.
FINANCIAL FRICTIONS

- Limited enforcement within the small open economy:

 \textbf{(A1)} \textit{Domestic entrepreneurs can pledge as collateral only a fraction} γ \textit{of projects’ output, while workers cannot pledge their future labor income.}

- No private insurance provision:

 \textbf{(A2)} \textit{Domestic entrepreneurs cannot enter into contracts that are contingent on the expenditure shock.}

- No redistribution schemes:

 \textbf{(A3)} \textit{The government cannot make positive transfers between domestic agents.}
FINANCIAL FRICCTIONS

• Limited enforcement within the small open economy:

 \((A1) \) Domestic entrepreneurs can pledge as collateral only a fraction \(\gamma \) of projects’ output, while workers cannot pledge their future labor income.

• No private insurance provision:

 \((A2) \) Domestic entrepreneurs cannot enter into contracts that are contingent on the expenditure shock.

• No redistribution schemes:

 \((A3) \) The government cannot make positive transfers between domestic agents.
Financial Frictions

- Limited enforcement within the small open economy:

 \[(A1)\] *Domestic entrepreneurs can pledge as collateral only a fraction γ of projects’ output, while workers cannot pledge their future labor income.*

- No private insurance provision:

 \[(A2)\] *Domestic entrepreneurs cannot enter into contracts that are contingent on the expenditure shock.*

- No redistribution schemes:

 \[(A3)\] *The government cannot make positive transfers between domestic agents.*
Benchmark Case

- **Equilibrium concept**: competitive equilibrium with fully rational agents and no asymmetric information.

- **Benchmark case**: the government has good reputation.

 \[(A4)\] The government can credibly commit to fulfill its debt obligations.
EQUILIBRIUM WITH SOVEREIGN COMMITMENT (I)

The representative entrepreneur chooses \(\{k, b, f, i\} \) to solve:

\[
\Pi = \max_{k, b, f, i} \sum_{\theta_s \in \{\theta, \bar{\theta}\}} \pi(\theta_s) \left[\frac{y_l(\theta_s) - r_l(\theta_s)(k + b + f)}{2} + \frac{y_u(\theta_s) - r_u(\theta_s)(k + b + f)}{2} \right]
\]

s.t.

\[
y_l(\theta_s) = \theta_s Ak + b + f; \quad y_u(\theta_s) = \theta_s \left(ak + (A - a)i\right) + b + f - i; \quad i \leq k \quad \text{(Technology)}
\]

\[
i \leq b + f; \quad b \geq 0; \quad f \geq 0 \quad \text{(Ex-post fin.)}
\]

\[
\gamma y_l(\theta_s); \quad r_u(\theta_s)(k + b + f) \leq \gamma y_u(\theta_s) \quad \text{(Ex-ante fin.)}
\]

\[
\frac{r_l(\theta_s) + r_u(\theta_s)}{2} \geq 1 \quad \text{(IFM)}
\]
The government chooses \(\{g, b, b^*, \tau\} \) to solve:

\[
W = \max_{g, b, b^*, \tau} \Pi + w + v(g) - \tau
\]

s.t.

\[
g = b + b^* \quad \text{and} \quad \tau = b + b^* \quad (\text{Gov’t BC})
\]
Equilibrium with Sovereign Commitment (III)

- **Technical assumption 1:**

 \[(i) \quad \gamma > \frac{1}{A + a}, \]
 \[(ii) \quad \bar{\theta} < \frac{1}{\gamma (A - a)}, \]
 \[(iii) \quad \gamma < \frac{A + a}{2} + \frac{1}{2}[1 + (A - a)]. \]

- **Efficient Initial Investment**: \((i) \gamma > \frac{1}{A + a}, \)
- **Liquidity Needs**: \((ii) \bar{\theta} < \frac{1}{\gamma (A - a)}, \)
- **Insufficient Liquidity**: \((iii) \gamma < \frac{A + a}{2} + \frac{1}{2}[1 + (A - a)]. \)

- **Equilibrium conditions:**

 - optimal investment and saving decisions of the entrepreneur,
 \[
 k = \bar{k} \quad \text{and} \quad b + f = \frac{\gamma \frac{A + a}{2} - 1}{1 - \gamma \frac{1}{2}[1 + (A - a)]} \bar{k} \leq \bar{k}.
 \]

 - optimal government policy,
 \[
 v'(g) = 1 \quad \text{and} \quad g = \tau = b + b^*.
 \]

- **Two alternative equilibrium outcomes:**

 - \(g \leq b + f \Rightarrow \exists \) at least one equilibrium where \(b = g \) and \(b^* = 0; \)

 - \(g > b + f \Rightarrow \) in equilibrium \(b \geq 0 \) and \(b^* > 0. \)
EQUILIBRIUM WITH SOVEREIGN COMMITMENT (III)

- Technical assumption 1:

 \((i) \quad \gamma > \frac{1}{A + a}, \)

 Efficient Initial Investment

 \((ii) \quad \bar{\theta} < \frac{1}{\gamma(A - a)}, \)

 Liquidity Needs

 \((iii) \quad \gamma < \frac{A + a}{2} + \frac{1}{2}[1+(A-a)]. \)

 Insufficient Liquidity

- Equilibrium conditions:

 - optimal investment and saving decisions of the entrepreneur,

 \[k = \bar{k} \quad \text{and} \quad b + f = \frac{\gamma \frac{A + a}{2} - 1}{1 - \gamma \frac{1}{2}[1+(A-a)]} \bar{k} \leq \bar{k}. \]

 - optimal government policy,

 \[v'(g) = 1 \quad \text{and} \quad g = \tau = b + b^* \]

- Two alternative equilibrium outcomes:

 - \(g \leq b + f \Rightarrow \exists \) at least one equilibrium where \(b = g \) and \(b^* = 0; \)

 - \(g > b + f \Rightarrow \) in equilibrium \(b \geq 0 \) and \(b^* > 0. \)
Equilibrium with Sovereign Commitment (III)

- **Technical assumption 1:**

 (i) \[\gamma > \frac{1}{A + a}, \quad \text{Efficient Initial Investment} \]

 (ii) \[\bar{\theta} < \frac{1}{\gamma(A - a)}, \quad \text{Liquidity Needs} \]

 (iii) \[\gamma < \frac{A + a}{2} + \frac{1}{2}[1 + (A - a)], \quad \text{Insufficient Liquidity} \]

- **Equilibrium conditions:**

 - optimal investment and saving decisions of the entrepreneur,

 \[k = \bar{k} \quad \text{and} \quad b + f = \frac{\gamma}{1 - \gamma\frac{1}{2}[1 + (A - a)]} \bar{k} \leq \bar{k}. \]

 - optimal government policy,

 \[v'(g) = 1 \quad \text{and} \quad g = \tau = b + b^*. \]

- **Two alternative equilibrium outcomes:**

 - \(g \leq b + f \Rightarrow \exists \ at least one equilibrium where \(b = g \) and \(b^* = 0; \)

 - \(g > b + f \Rightarrow \text{in equilibrium} \ b \geq 0 \ \text{and} \ b^* > 0. \)
Implications

 - Government debt enhances private liquidity provision:
 - the lack of private collateral restricts both firms’ access to credit and ability to save (under-supply of financial assets);
 - a credible government can expand the supply of liquidity (e.g. easily tradable financial securities) above collateral limits thanks to its assumed ability to commit workers’ future income through taxation.

- In the previous setup (small open economy and government commitment), government does not enhance private liquidity provision:
 - the interest rate on government bonds is set by the world interest rate ⇒ entrepreneurs are indifferent between b and f;
 - when sovereign commitment is relaxed, government debt becomes an imperfectly substitutable source of liquidity.
OUTLINE

1. A Simple Model of Public Debt as a Source of Liquidity

2. Sovereign Risk and Liquidity Crises

3. Institutional and Policy Reforms

4. Final Remarks and Empirical Evidence
In the same setup as before, I consider a classic unwillingness-to-pay problem.

\[(A4-A)\] The government cannot commit to service its debt and creditors cannot enforce the government repayment.

\[(A4-B)\] The government cannot discriminate between domestic and foreign bond holders (as in Broner and Ventura 2006).

As a consequence of \((A4-A)\) and \((A4-B)\), it is possible to study the connection between sovereign defaults and liquidity crises.
EQUILIBRIUM WITH SOVEREIGN RISK - DATE 1

- The government behaves strategically:
 - it chooses repayment/default to maximize domestic agents’ consumption.
 - it repays if entrepreneurs’ benefits (LHS) exceed workers’ costs (RHS),
 \[
 (1 - \gamma) \left[1 + \frac{1}{2} \left(\theta_s (A - a) - 1 \right) \right] b \geq b^* + b.
 \]

- Suppose \(b^* \in [\tilde{b}^*(b), \bar{b}^*(b)] \), where
 \[
 \begin{align*}
 \tilde{b}^*(b) & \equiv \left[(1 - \gamma) \left(1 + \frac{1}{2} (\theta(A - a) - 1) \right) - 1 \right] b, \\
 \bar{b}^*(b) & \equiv \left[(1 - \gamma) \left(1 + \frac{1}{2} (\bar{\theta}(A - a) - 1) \right) - 1 \right] b.
 \end{align*}
 \]

- Then, the government repays/defaults in the good/bad time, i.e.
 \[
e = \begin{cases}
 1 & \text{if } \theta_s = \bar{\theta} \\
 0 & \text{if } \theta_s = \theta
 \end{cases}.
 \]
 and the bond yields \(\rho = \frac{1}{\pi(\theta)} \).
EQUILIBRIUM WITH SOVEREIGN RISK - DATE 1

- The government behaves strategically:
 - it chooses repayment/default to maximize domestic agents’ consumption.
 - it repays if entrepreneurs’ benefits (LHS) exceed workers’ costs (RHS),
 \[
 (1 - \gamma) \left[1 + \frac{1}{2} \left(\theta_s (A - a) - 1 \right) \right] b \geq b^* + b.
 \]

- Suppose \(b^* \in [\underline{b}^*(b), \overline{b}^*(b)] \), where
 \[
 \begin{align*}
 \underline{b}^*(b) & \equiv \left[(1 - \gamma) \left(1 + \frac{1}{2} (\theta (A - a) - 1) \right) - 1 \right] b, \\
 \overline{b}^*(b) & \equiv \left[(1 - \gamma) \left(1 + \frac{1}{2} (\bar{\theta} (A - a) - 1) \right) - 1 \right] b.
 \end{align*}
 \]

- Then, the government repays/defaults in the good/bad time, i.e.
 \[
 e = \begin{cases}
 1 & \text{if } \theta_s = \bar{\theta} \\
 0 & \text{if } \theta_s = \bar{\theta}
 \end{cases},
 \]

 and the bond yields \(\rho = \frac{1}{\pi(\theta)} \).
EQUILIBRIUM WITH SOVEREIGN RISK - DATE 1

- The government behaves strategically:
 - it chooses repayment/default to maximize domestic agents’ consumption.
 - it repays if entrepreneurs’ benefits (LHS) exceed workers’ costs (RHS),

 \[
 (1 - \gamma) \left[1 + \frac{1}{2} \left(\theta_s(A - a) - 1 \right) \right] b \geq b^* + b.
 \]

- Suppose \(b^* \in [\underline{b}^*(b), \overline{b}^*(b)] \), where

 \[
 \begin{align*}
 \underline{b}^*(b) & \equiv \left[(1 - \gamma) \left(1 + \frac{1}{2} \left(\theta(A - a) - 1 \right) \right) - 1 \right] b, \\
 \overline{b}^*(b) & \equiv \left[(1 - \gamma) \left(1 + \frac{1}{2} \left(\bar{\theta}(A - a) - 1 \right) \right) - 1 \right] b.
 \end{align*}
 \]

- Then, the government **repays/defaults** in the good/bad time, i.e.

 \[
 e = \begin{cases}
 1 & \text{if } \theta_s = \bar{\theta} \\
 0 & \text{if } \theta_s = \underline{\theta}
 \end{cases},
 \]

 and the bond yields \(\rho = \frac{1}{\pi(\bar{\theta})} \).
EQUILIBRIUM WITH SOVEREIGN RISK - DATE 0 (I)

The representative entrepreneur chooses \(\{k, b, f, i\} \) to solve:

\[
\Pi(e) = \max_{k, b, f, i} \sum_{\theta_s \in \{\theta, \bar{\theta}\}} \pi(\theta_s) \left[\frac{y_l(\theta_s, e) - r_l(\theta_s, e)(k + b + f)}{2} + \frac{y_u(\theta_s, e) - r_u(\theta_s, e)(k + b + f)}{2} \right]
\]

s.t.

\[
y_l(\theta_s, e) = \theta_s Ak + e \rho b + f; \quad y_u(\theta_s, e) = \theta_s \left(ak + (A - a)i(e) \right) + e \rho b + f - i(e);
\]

(Thumbology)

\[
i(e) \leq k
\]

(Ex-post fin.)

\[
i(e) \leq e \rho b + f; \quad b \geq 0; \quad f \geq 0
\]

(Ex-ante fin.)

\[
r_l(\theta_s, e)(k + b + f) \leq \gamma y_l(\theta_s, e); \quad r_u(\theta_s, e)(k + b + f) \leq \gamma y_u(\theta_s, e)
\]

(IFM)
The government chooses \(\{g, b, b^*, \tau(e)\} \) to solve:

\[
W(e) = \max_{g, b, b^*, \tau} \Pi(e) + w + v(g) - \tau(e)
\]

s.t.

\[
g = b + b^* \quad \text{and} \quad \tau(e) = \pi(\tilde{\theta}) \rho(b + b^*) \quad \text{(Gov’t BC)}
\]

\[
g \leq b + \bar{b}^*(b) \quad \text{(Ex-post Repayment)}
\]
Equilibrium with Sovereign Risk - date 0 (III)

- Technical assumption 2:
 \[(iv) \quad \gamma < \frac{1+\pi}{\frac{A+a}{2} + \pi \frac{1}{2} [1+\bar{\phi}(A-a)]} \cdot \]
 Insufficient Liquidity

- Equilibrium conditions:
 - optimal investment and saving decisions of the entrepreneur,
 \[k = \bar{k}, \quad b = \frac{\gamma \frac{A+a}{2} - 1}{1 - \gamma \frac{1}{2} [1+\bar{\phi}(A-a)]} \bar{k} \leq \bar{k} \quad \text{and} \quad f = 0.\]
 - optimal government policy,
 \[g = b + \bar{b}^*(b) \quad \text{and} \quad \tau(e) = \pi(\bar{\phi}) \rho \left(b + \bar{b}^*(b) \right) \]
Equilibrium with Sovereign Risk - date 0 (III)

- **Technical assumption 2:**

 \[(iv)\]
 \[
 \gamma < \frac{1+\pi}{\frac{A+a}{2} + \pi \frac{1}{2} [1+\theta (A-a)]}.
 \]

 Insufficient Liquidity

- **Equilibrium conditions:**

 - optimal investment and saving decisions of the entrepreneur,

 \[k = \bar{k}, \quad b = \frac{\gamma \frac{A+a}{2} - 1}{1 - \gamma \frac{1}{2} [1 + \bar{\theta} (A-a)]} \bar{k} \leq \bar{k} \quad \text{and} \quad f = 0.

 - optimal government policy,

 \[g = b + \bar{b}^*(b) \quad \text{and} \quad \tau(e) = \pi(\bar{\theta}) \rho \left(b + \bar{b}^*(b) \right)\]
Implications

- Government debt is an imperfectly substitutable source of liquidity.

- External debt emerges in absence of “classic” penalties or reputational costs.
 - The government repays its debt to avoid a disruption of private investment, as a result of the drying up of domestic liquidity.

- Alternative mechanism with respect to previous studies:
 - The government repays its debt to avoid a redistribution of resources among domestic agents (Broner and Ventura 2006).
 - The government repays its debt to avoid an information disclosure about the state of the economy, which might ultimately lead to a disruption of private investment (Sandleris 2004).

- Twin-crises (sovereign defaults and liquidity crises) are more likely in economies with volatile business cycles.

- Crises resolution policies:
 - The source of dead-weight losses is the internal liquidity crisis and not foreign penalties ⇒ the paper provides theoretical underpinning for crises resolution policies that refuse to sacrifice domestic claims in order to service external debt.
IMPLICATIONS

• Government debt is an imperfectly substitutable source of liquidity.

• External debt emerges in absence of “classic” penalties or reputational costs.
 - The government repays its debt to avoid a disruption of private investment, as a result of the drying up of domestic liquidity.

• Alternative mechanism with respect to previous studies:
 - The government repays its debt to avoid a redistribution of resources among domestic agents (Broner and Ventura 2006).
 - The government repays its debt to avoid an information disclosure about the state of the economy, which might ultimately lead to a disruption of private investment (Sandleris 2004).

• Twin crises (sovereign defaults and liquidity crises) are more likely in economies with volatile business cycles.

• Crises resolution policies:
 - The source of dead-weight losses is the internal liquidity crisis and not foreign penalties ⇒ the paper provides theoretical underpinning for crises resolution policies that refuse to sacrifice domestic claims in order to service external debt.
IMPLICATIONS

- Government debt is an imperfectly substitutable source of liquidity.

- External debt emerges in absence of “classic” penalties or reputational costs.
 - The government repays its debt to avoid a disruption of private investment, as a result of the drying up of domestic liquidity.

- Alternative mechanism with respect to previous studies:
 - The government repays its debt to avoid a redistribution of resources among domestic agents (Broner and Ventura 2006).
 - The government repays its debt to avoid an information disclosure about the state of the economy, which might ultimately lead to a disruption of private investment (Sandleris 2004).

- Twin-crises (sovereign defaults and liquidity crises) are more likely in economies with volatile business cycles.

- Crises resolution policies:
 - The source of dead-weight losses is the internal liquidity crisis and not foreign penalties ⇒ the paper provides theoretical underpinning for crises resolution policies that refuse to sacrifice domestic claims in order to service external debt.
IMPLICATIONS

- Government debt is an imperfectly substitutable source of liquidity.

- External debt emerges in absence of “classic” penalties or reputational costs.
 - The government repays its debt to avoid a disruption of private investment, as a result of the drying up of domestic liquidity.

- Alternative mechanism with respect to previous studies:
 - The government repays its debt to avoid a redistribution of resources among domestic agents (Broner and Ventura 2006).
 - The government repays its debt to avoid an information disclosure about the state of the economy, which might ultimately lead to a disruption of private investment (Sandleris 2004).

- Twin-crises (sovereign defaults and liquidity crises) are more likely in economies with volatile business cycles.

- Crises resolution policies:
 - The source of dead-weight losses is the internal liquidity crisis and not foreign penalties ⇒ the paper provides theoretical underpinning for crises resolution policies that refuse to sacrifice domestic claims in order to service external debt.
Implications

- Government debt is an imperfectly substitutable source of liquidity.

- External debt emerges in absence of “classic” penalties or reputational costs.
 - The government repays its debt to avoid a disruption of private investment, as a result of the drying up of domestic liquidity.

- Alternative mechanism with respect to previous studies:
 - The government repays its debt to avoid a redistribution of resources among domestic agents (Broner and Ventura 2006).
 - The government repays its debt to avoid an information disclosure about the state of the economy, which might ultimately lead to a disruption of private investment (Sandleris 2004).

- Twin-crises (sovereign defaults and liquidity crises) are more likely in economies with volatile business cycles.

- Crises resolution policies:
 - The source of dead-weight losses is the internal liquidity crisis and not foreign penalties ⇒ the paper provides theoretical underpinning for crises resolution policies that refuse to sacrifice domestic claims in order to service external debt.
OUTLINE

1. A Simple Model of Public Debt as a Source of Liquidity

2. Sovereign Risk and Liquidity Crises

3. Institutional and Policy Reforms

4. Final Remarks and Empirical Evidence
• Previous results depend crucially on the interaction between:
 - private capital markets imperfections (limited enforcement);
 - sovereign debt markets imperfections (sovereign risk).

• More specifically,
 (i) the lack of firms’ collateral, as in (A1);
 (ii) the missing market for private insurance, as in (A2);
 (iii) the unwillingness-to-pay problem, as in (A4-A) and (A4-B).
Endogenous Insurance Provision

- Substitute Assumption (A2), i.e. the missing market for private insurance, with:

 \[(A2-A) \text{ A fraction } \lambda \text{ of domestic firms (good firms) can enter into state-contingent contracts with the IFM. The remaining fraction of domestic firms (bad firms) cannot enter into state-contingent contracts. The government can costlessly increase the fraction } \lambda \text{ by improving domestic regulation.} \]

- Consider only the idiosyncratic expenditure shock. The difference between good and bad firms is independent on the aggregate shock.

- Findings:
 - private insurance provision is *positively* related to the returns on *private* investment and *negatively* to the returns on *public* investment.
CONCLUSION

- This paper analyzes the connection between sovereign defaults and liquidity crises without considering foreign intervention.

- The model assumes:
 - a lack of private collateral and, as a result, public debt represents a source of liquidity;
 - non-discrimination in sovereign default.

- The model predicts:
 - government debt is an imperfectly substitutable source of liquidity;
 - external debt emerges in absence of classic penalties;
 - sovereign defaults occur in bad states and trigger liquidity crises.

- Policy implications:
 - Crises resolution policies, institutional and policy reforms.

- Suggestive Evidence:
 - Financially dependent sectors experience sharper slowdowns in the event of sovereign defaults.
SOVEREIGN DEFAULTS AND BANKING CRISSES: EVIDENCE

Borezstein and Panizza 2008 show that sovereign defaults often predict a banking crisis in the economy.

- Using the same methodology of Kaminsky and Reinhart 1999, these authors show that:

 (i) the probability of a *banking crisis* conditional on a *sovereign default* in the same year or in the year before is 14 percent, and is statistically different to the unconditional probability which is 2 percent.

 (ii) the probability of a *sovereign default* conditional on a *banking crisis* is not statistically different from the unconditional probability.

- Then, sovereign default might lead to a banking crisis while the contrary is in general not true.
Empirical evidence on foreign penalties is under debate (Sturzenegger and Zettelmeyer 2006, Borenzstein, Levy-Yeyati and Panizza 2007).

Trade channel:

- **No official trade restrictions after default** (Martinez and Sandleris 2006). Alternative channels: Unofficial ("sub rosa") restrictions or trade credit.

- **No disproportional contraction in bilateral trade between a debtor country and its creditor countries** when a country default on its debt, after controlling for the decline in overall trade (Rose 2005 and Martinez and Sandleris 2006).

- **Export-oriented industries experience sharper growth slowdown during default episodes** (Borenzstein and Panizza 2006 and Lanau 2008). Lanau 2008 controls for additional industry characteristics and argues that the underperformance of export-oriented industries is related to the dry up of trade finance.
Foreign credit channel:

- **Market access**: average time from default to regain access in international capital markets was **four years** in the 1980s and **less than one year** in the 1990s (Gelos *et al.* 2004).

- **Borrowing costs**: The impact of default on borrowing costs can be identified using **indirect** and **direct** measures.

 - **Indirect measures**: default history has a negative effect on a country’s credit rating (Cantor and Packer 1996 and Reinhart *et al.* 2003). Yet, this effect is short-lived. Borenzstein and Panizza (2008) show that only defaults in the 1995-2002 period are significantly correlated with credit ratings over the 1999-2002 period.

 - **Direct measures**: effects of default on borrowing costs (measured by sovereign spreads). Brief taxonomy of past work:

 - no effects of default on borrowing costs (Lindert and Morton 1989, Chowdry 1991 and Ades *et al.* 2000);
 - long-lasting but small effects (Eichengreen and Portes 1995 and Dell’Ariccia *et al.* 2002);
Production Function

- Production function features stepwise decreasing returns to scale:

\[f_{s,j}(k) = \begin{cases}
\theta_s A_j k & \text{if } k \leq \bar{k} \\
\theta_s A_j \bar{k} & \text{if } k > \bar{k}
\end{cases} \]

- Idiosyncratic and aggregate shocks are observed at date 1:

\[t = 0 \quad t = 1 \quad \text{LUCKY} \quad t = 2 \]

- Investment

\[k \]

- Idiosyncratic Shock

\[\left(\text{prob. } \frac{1}{2} \right) \]

- Output

\[\theta_s Ak \]

- Re-investment

\[i \]

\[(i \leq k) \]

\[\theta_s = \begin{cases}
\bar{\theta} > 1 & \text{prob. } \pi(\bar{\theta}) \quad \text{(GOOD STATE)} \\
\bar{\theta} < 1 & \text{prob. } 1 - \pi(\bar{\theta}) \quad \text{(BAD STATE)}
\end{cases} \]

with \(\sum_{\theta_s \in \{\bar{\theta}, \theta\}} \pi(\theta_s) \theta_s = 1 \) and \(\theta(A - a) > 1. \)
PRODUCTION FUNCTION

- Production function features stepwise decreasing returns to scale:

\[
f_{s,j}(k) = \begin{cases}
\theta s A_j k & \text{if } k \leq \bar{k} \\
\theta s A_j \bar{k} & \text{if } k > \bar{k}
\end{cases}
\]

- Idiosyncratic and aggregate shocks are observed at date 1:

\[
\begin{align*}
\theta_s &= \begin{cases}
\bar{\theta} > 1 & \text{prob. } \pi(\bar{\theta}) & \text{(GOOD STATE)} \\
\theta < 1 & \text{prob. } 1 - \pi(\bar{\theta}) & \text{(BAD STATE)}
\end{cases} \\
\text{with } \sum_{\theta_s \in \{\bar{\theta}, \theta\}} \pi(\theta_s) \theta_s &= 1 \quad \text{and} \quad \theta(A - a) > 1.
\end{align*}
\]
Liquidity Needs

Initial investment is profitable for both entrepreneurs and external investors:

\[
\frac{A + a}{2} > 1 \quad \text{and} \quad \gamma > \gamma \equiv \frac{2}{(A + a)}.
\]

Additional investment is profitable for entrepreneurs but not for external investors.

\[
\theta(A - a) > 1 \quad \text{and} \quad \gamma < \tilde{\gamma} \equiv \frac{1}{\theta(A - a)}.
\]
Precautionary savings

\[t = 0 \quad \text{Investment} \quad k + b + f \]

\[t = 1 \quad \text{Idiosyncratic Shock} \quad \left(\text{prob. } \frac{1}{2} \right) \]

\[\text{LUCKY} \quad \text{Output} \quad \theta_s A k + b + f \]

\[t = 2 \quad \text{UNLUCKY} \quad \text{Output} \quad \theta_s a k + \theta_s (A - a) i + (b + f - i) \]

\[t = 0 \quad \text{Re-investment} \quad i \quad (i \leq k) \]

\[(i \leq b + f) \]
Procylical payouts

Rearranging,

\[
\sum_{\theta_s \in \{\bar{\theta}, \theta\}} \pi(\theta_s) \left[\frac{y_l(\theta_s, e) - r_l(\theta_s, e)(k + b + f)}{2} + \frac{y_u(\theta_s, e) - r_u(\theta_s, e)(k + b + f)}{2} \right] = \\
= \frac{1}{2} \left[Ak + b + f \right] + \frac{1}{2} \left[ak + \bar{\theta}(A - a)b + (A - a)f \right] - (k + b + f).
\]

Due to procyclical payouts,

(i) the entrepreneur’s objective function is shifted upward;

(ii) the borrowing constraint is looser.
Equilibrium with Sovereign Risk and Endogenous Insurance

- **Bad firms** save in government bonds and get a revenue,

\[
\Pi_B = (1 - \gamma) \frac{A + a}{2} - \delta(A - a) \frac{\bar{k}}{1 - \gamma \delta(A - a)},
\]

where \(\delta = \frac{1}{2} \left(1 + \frac{1}{A - a}\right) < 1\) as \((A - a) > 1\).

- **Good firms** buy a contingent security from IFM and get a revenue,

\[
\Pi_G = (1 - \gamma) \frac{A + a}{2} - (A - a) \frac{\bar{k}}{1 - \gamma (A - a)}.
\]

As \(\gamma > \frac{1}{A + a}\), it is possible to show that \(\Pi_G > \Pi_B\).

- The **government** chooses \(\{\lambda, g, b, b^*, \tau\}\) to solve,

\[
W = \lambda \Pi_G + (1 - \lambda) \Pi_B + w + \nu(g) - \tau,
\]

s.t.

\[
g = (1 - \lambda)b + b^* \quad \text{and} \quad \tau(e) = \pi(\overline{\theta}) \rho \left((1 - \lambda)b + b^*\right)
\]

\[
g \leq (1 - \lambda)b + \bar{b}^* (1 - \lambda)b
\]

\[
\bar{b}^* (1 - \lambda)b \equiv \left[(1 - \gamma) \frac{1}{2} (1 + (A - a)) - 1\right] (1 - \lambda)b
\]
Equilibrium with Sovereign Risk and Endogenous Insurance

- **Bad firms** save in government bonds and get a revenue,\[\Pi_B = (1 - \gamma) \frac{A + a}{2} - \delta (A - a) \bar{k},\]

 where \(\delta = \frac{1}{2} \left(1 + \frac{1}{A - a}\right) < 1\) as \((A - a) > 1\).

- **Good firms** buy a contingent security from IFM and get a revenue,\[\Pi_G = (1 - \gamma) \frac{A + a}{2} - (A - a) \bar{k}.\]

 As \(\gamma > \frac{1}{A + a}\), it is possible to show that \(\Pi_G > \Pi_B\).

- The government chooses \(\{\lambda, g, b, b^*, \tau\}\) to solve,

 \[W = \lambda \Pi_G + (1 - \lambda) \Pi_B + w + v(g) - \tau,\]

 s.t.
 \[g = (1 - \lambda) b + b^* \quad \text{and} \quad \tau(e) = \pi(\bar{\theta}) \rho \left((1 - \lambda) b + b^*\right),\]

 \[g \leq (1 - \lambda) b + \bar{b}^* \left((1 - \lambda) b\right)\]

 \[\bar{b}^* \left((1 - \lambda) b\right) \equiv \left[(1 - \gamma) \frac{1}{2} \left(1 + (A - a)\right) - 1\right] (1 - \lambda) b\]
EQUILIBRIUM WITH SOVEREIGN RISK AND ENDOWENOUS INSURANCE

• Optimal government policy implies

\[\lambda = 1 - \Lambda^{-1} \nu^{-1} \left(\Lambda + (\Pi_G - \Pi_B) \right) \]

where \(\Lambda = (1 - \gamma) \delta \hat{b}_g > 0 \).

• As the function \(\nu(\cdot) \) is strictly increasing and concave,

\[\begin{cases}
\frac{A+a}{2} \uparrow & \Rightarrow & \lambda \uparrow \\
\nu(g) \uparrow & \Rightarrow & \lambda \downarrow
\end{cases} \]

• Alternative explanation for cross-country and cross-time variation in legal institutions with respect to studies stressing political economy issues (Rajan and Zingales 2003).
Sovereign Defaults and Liquidity Crises

- In the model, sovereign default disrupts firms’ reinvestment and final output. The model takes a representative agent perspective, but it is natural to think that industries with larger liquidity needs will experience sharper consequences in the event of default.

- Suggestive cross-country, cross-industry evidence:
 - sectors that rely extensively on external finance experience sharper output contractions in the event of default.

- Important caveat ⇒ omitted variable problem:
 - Sovereign default might have a disproportionate effect on financial dependent sectors through alternative channels (e.g. foreign lending restrictions);
Baseline Specification

I estimate the following dynamic panel data model,

\[
y_{s,c,t} = \alpha_{s,c} + \lambda_{s,t} + \mu_{c,t} + y_{s,c,t-1} + \\
+ \sum_{\tau=0}^{T} \left(\beta_{F,\tau} \text{FinDep}_s + \beta_{L,\tau} \text{Liq}_s + \beta_{X,\tau} X_s \right) \cdot \text{DEF}_{c,t-\tau} + \epsilon_{s,c,t},
\]

where:

- \(y_{s,c,t} \) is the log of value added in industry \(s \), country \(c \) and time \(t \).
- \(\text{FinDep}_s \) is an index of financial dependence, as constructed by Rajan and Zingales (1998).
- \(\text{Liq}_s \) is an index of liquidity needs, as constructed by Raddatz (2006).
- \(X_s \) is a set of additional industry characteristics.
- \(\text{DEF}_{c,t} \) is a dummy that takes value 1 in the first year of a default episode. I herein report results for \(T = 0 \).

Testing hypothesis: \(\beta_F < 0 \) and \(\beta_L < 0 \).
Baseline Specification

I estimate the following dynamic panel data model,

\[y_{s,c,t} = \alpha_{s,c} + \lambda_{s,t} + \mu_{c,t} + y_{s,c,t-1} + \]

\[+ \sum_{\tau=0}^{T} \left(\beta_{F,\tau} FinDep_s + \beta_{L,\tau} Liq_s + \beta_{X,\tau} X_s \right) \cdot DEF_{c,t-\tau} + \epsilon_{s,c,t}, \]

where:

- \(y_{s,c,t} \) is the log of value added in industry \(s \), country \(c \) and time \(t \).

- \(FinDep_s \) is an index of financial dependence, as constructed by Rajan and Zingales (1998).

- \(Liq_s \) is an index of liquidity needs, as constructed by Raddatz (2006).

- \(X_s \) is a set of additional industry characteristics.

- \(DEF_{c,t} \) is a dummy that takes value 1 in the first year of a default episode. I herein report results for \(T = 0 \).

Testing hypothesis: \(\beta_F < 0 \) and \(\beta_L < 0 \).
Econometric Methodology and Data

Econometric methodology

Arellano and Bond (1991) first-differenced GMM estimator, using the first lag (in levels) of the lagged dependent variable. Sector-time and country-time fixed effects are eliminated prior to estimation by sector-time and country-time mean differencing.

Data over 1980-2002

- Sectoral data from UNIDO INDSTAT3 2005 database;

- Industry characteristics from Kroszner at al. (2006). Indexes are normalized between 0 and 1;

- Default dummy taking value 1 in the first year of each default episode. Default episodes from Standard and Poor's sovereign default database (Beers and Chambers (2002).
 - 41 default episodes (1008 obs.) in the period 1980-1990
 - 16 default episodes (376 obs.) in the period 1990-2002
Table: Estimation Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_{s,c,t} - 1$</td>
<td>0.373*** (0.054)</td>
<td>0.375*** (0.054)</td>
<td>0.455*** (0.059)</td>
<td>0.454*** (0.059)</td>
<td>0.483*** (0.055)</td>
</tr>
<tr>
<td>$DEF_{c,t} \cdot FinDep_s$</td>
<td>-0.094 (0.070)</td>
<td>-0.097 (0.071)</td>
<td>-0.208* (0.117)</td>
<td>-0.196* (0.117)</td>
<td>-0.275* (0.148)</td>
</tr>
<tr>
<td>$DEF_{c,t} \cdot Liq_s$</td>
<td>-0.092* (0.052)</td>
<td>-0.069 (0.069)</td>
<td>-0.053 (0.088)</td>
<td>-0.126 (0.115)</td>
<td>-0.093 (0.125)</td>
</tr>
<tr>
<td>$DEF_{c,t} \cdot Tang_s$</td>
<td>0.033 (0.065)</td>
<td></td>
<td>-0.115 (0.116)</td>
<td>-0.044 (0.143)</td>
<td></td>
</tr>
<tr>
<td>$DEF_{c,t} \cdot ExpOrs_{c}$</td>
<td></td>
<td></td>
<td></td>
<td>-0.078 (0.160)</td>
<td></td>
</tr>
</tbody>
</table>

1st autocorr. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2nd autocorr. | 0.00 | 0.00 | 0.42 | 0.42 | 0.27 |
Sargan test | 0.00 | 0.00 | 0.21 | 0.21 | 0.12 |
Obs. | 15406 | 15406 | 15605 | 15605 | 12828 |

\(**, **, *\) represent significance at 1%, 5%, and 10%, respectively. The table reports the one-step first-differenced GMM estimator for the main specifications for the 1980-1990 and the 1990-2002 samples. The set of instruments includes the first lag of the lagged dependent variable. Country-time effects are removed by country-time differencing prior to estimation. Sector-country fixed effects are removed by first differencing. Heteroskedasticity-consistent standard errors are reported within parenthesis. 1st autocorr. and 2nd autocorr. are autocorrelation tests on the estimation residuals. p-values for the asymptotic $N(0,1)$ distribution are reported. The Sargan test of over-identifying restrictions is based on a two-step GMM estimation. p-values for the asymptotic χ^2 distribution are reported.
CONCLUSION

- This paper analyzes the connection between sovereign defaults and liquidity crises without considering foreign intervention.

- The model assumes:
 - a lack of private collateral and, as a result, public debt represents a source of liquidity;
 - non-discrimination in sovereign default.

- The model predicts:
 - government debt is an imperfectly substitutable source of liquidity;
 - external debt emerges in absence of classic penalties;
 - sovereign defaults occur in bad states and trigger liquidity crises.

- Policy implications:
 - Crises resolution policies, institutional and policy reforms.

- Suggestive Evidence:
 - Financially dependent sectors experience sharper slowdowns in the event of sovereign defaults.