Credit Constraints, Entrepreneurial Risk, and Aggregate Liquidity

SAE 2008 - Zaragoza

Ander Pérez Orive

Universitat Pompeu Fabra

December 2008
Motivation and Questions

- Financial market turbulence in 2007/2008
Motivation and Questions

- Financial market turbulence in 2007/2008
 - importance of liquidity
Motivation and Questions

- Financial market turbulence in 2007/2008
 - importance of liquidity
 - even large financial corporations with unparalleled access to capital markets affected
Motivation and Questions

- Financial market turbulence in 2007/2008
 - importance of liquidity
 - even large financial corporations with unparalleled access to capital markets affected
 - certain assets: volatile degree of liquidity
Motivation and Questions

• Financial market turbulence in 2007/2008
 • importance of liquidity
 • even large financial corporations with unparalleled access to capital markets affected
 • certain assets: volatile degree of liquidity
 • More generally: ample evidence that liquidity shortages linked to economic slowdowns
Motivation and Questions

- Financial market turbulence in 2007/2008
 - importance of liquidity
 - even large financial corporations with unparalleled access to capital markets affected
 - certain assets: volatile degree of liquidity
 - More generally: ample evidence that liquidity shortages linked to economic slowdowns
- Focus of this paper
Motivation and Questions

- Financial market turbulence in 2007/2008
 - importance of liquidity
 - even large financial corporations with unparalleled access to capital markets affected
 - certain assets: volatile degree of liquidity
 - More generally: ample evidence that liquidity shortages linked to economic slowdowns
- Focus of this paper
 - liquidity in small and medium sized entrepreneurial firms
Motivation and Questions

• Financial market turbulence in 2007/2008
 • importance of liquidity
 • even large financial corporations with unparalleled access to capital markets affected
 • certain assets: volatile degree of liquidity
 • More generally: ample evidence that liquidity shortages linked to economic slowdowns
 • Focus of this paper
 • liquidity in small and medium sized entrepreneurial firms
 • Questions
Motivation and Questions

- Financial market turbulence in 2007/2008
 - importance of liquidity
 - even large financial corporations with unparalleled access to capital markets affected
 - certain assets: volatile degree of liquidity
- More generally: ample evidence that liquidity shortages linked to economic slowdowns
- Focus of this paper
 - liquidity in small and medium sized entrepreneurial firms
- Questions
 - How does public supply of liquidity affect private creation of liquidity by firms (inside liquidity)?
Motivation and Questions

- Financial market turbulence in 2007/2008
 - importance of liquidity
 - even large financial corporations with unparalleled access to capital markets affected
 - certain assets: volatile degree of liquidity
- More generally: ample evidence that liquidity shortages linked to economic slowdowns
- Focus of this paper
 - liquidity in small and medium sized entrepreneurial firms
- Questions
 - How does public supply of liquidity affect private creation of liquidity by firms (inside liquidity)?
 - How does this interact with firms' demand for liquidity to influence investment?
Empirical Motivation

Debt-to-GDP Data

- Significant variation in U.S. debt-to-GDP during post-war era.

Figure: Gross National Public Debt as % of GDP for the United States. (Source: Office of Management and Budget, White House, 2008)
• Aggregate supply of liquidity and investment
Literature

- Aggregate supply of liquidity and investment
 - Woodford (1990) and Holmstrom-Tirole (1998)
Aggregate supply of liquidity and investment

- Woodford (1990) and Holmstrom-Tirole (1998)
 - no crowding-out channel, and only one type of agent so no redistribution
Aggregate supply of liquidity and investment

- Woodford (1990) and Holmstrom-Tirole (1998)
 - no crowding-out channel, and only one type of agent so no redistribution

- Kiyotaki-Moore (2008)
Literature

- **Aggregate supply of liquidity and investment**
 - Woodford (1990) and Holmstrom-Tirole (1998)
 - no crowding-out channel, and only one type of agent so no redistribution
 - Kiyotaki-Moore (2008)
 - extending their framework to include government debt
Literature

- Aggregate supply of liquidity and investment
 - Woodford (1990) and Holmstrom-Tirole (1998)
 - no crowding-out channel, and only one type of agent so no redistribution
 - Kiyotaki-Moore (2008)
 - extending their framework to include government debt
 - Farhi-Tirole (2008)
Literature

• Aggregate supply of liquidity and investment
 • Woodford (1990) and Holmstrom-Tirole (1998)
 • no crowding-out channel, and only one type of agent so no redistribution
 • Kiyotaki-Moore (2008)
 • extending their framework to include government debt
 • Farhi-Tirole (2008)

• Contribution
Aggregate supply of liquidity and investment

- Woodford (1990) and Holmstrom-Tirole (1998)
 - no crowding-out channel, and only one type of agent so no redistribution
- Kiyotaki-Moore (2008)
 - extending their framework to include government debt
- Farhi-Tirole (2008)

Contribution

- analyze effects of public supply of liquidity on investment in a model with financial constraints, corporate demand for liquidity, and endogenous private supply of aggregate liquidity
Main results

- Conditions under which government debt may boost or reduce private investment:
Main results

- Conditions under which government debt may boost or reduce private investment:
 - depend on three channels: (1) crowding-in, (2) crowding-out, and (3) redistributive.
Main results

- Conditions under which government debt may boost or reduce private investment:
 - depend on three channels: (1) crowding-in, (2) crowding-out, and (3) redistributive.
 - crowding-in dominates crowding-out with severe financial frictions
Main results

- Conditions under which government debt may boost or reduce private investment:
 - depend on three channels: (1) *crowding-in*, (2) *crowding-out*, and (3) *redistributive*.
 - crowding-in dominates crowding-out with severe financial frictions
 - redistribute positive in general, negative only if severe financial frictions.
Main results

- Conditions under which government debt may boost or reduce private investment:
 - depend on three channels: (1) *crowding-in*, (2) *crowding-out*, and (3) *redistributive*.
 - crowding-in dominates crowding-out with severe financial frictions
 - redistribute positive in general, negative only if severe financial frictions.

- Business cycle properties
Main results

• Conditions under which government debt may boost or reduce private investment:
 • depend on three channels: (1) crowding-in, (2) crowding-out, and (3) redistributive.
 • crowding-in dominates crowding-out with severe financial frictions
 • redistribute positive in general, negative only if severe financial frictions.

• Business cycle properties
 • Response of economy sensitive to liquidity conditions.
Main results

- Conditions under which government debt may boost or reduce private investment:
 - depend on three channels: (1) *crowding-in*, (2) *crowding-out*, and (3) *redistributive*.
 - crowding-in dominates crowding-out with severe financial frictions
 - redistribute positive in general, negative only if severe financial frictions.

- Business cycle properties
 - Response of economy sensitive to liquidity conditions.

- Asset pricing
Main results

- Conditions under which government debt may boost or reduce private investment:
 - depend on three channels: (1) crowding-in, (2) crowding-out, and (3) redistributive.
 - crowding-in dominates crowding-out with severe financial frictions
 - redistribute positive in general, negative only if severe financial frictions.

- Business cycle properties
 - Response of economy sensitive to liquidity conditions.

- Asset pricing
 - Negative relationship between the debt-to-GDP ratio and the equity premium, explanation for reduction in the equity premium?
Talk

01 Benchmark model
02 Steady-State Analysis of Variations in Public Debt
03 Extension: time-varying liquidity of equity
01 Dynamics
04 Conclusions
Infinite-horizon, stochastic, discrete time economy
Model

- Infinite-horizon, stochastic, discrete time economy
- 3 agents
Model

- Infinite-horizon, stochastic, discrete time economy
- 3 agents
 - entrepreneurs
Model

- Infinite-horizon, stochastic, discrete time economy
- 3 agents
 - entrepreneurs
 - All: can produce C good using L from workers and K
Model

- Infinite-horizon, stochastic, discrete time economy
- 3 agents
 - entrepreneurs
 - All: can produce C good using L from workers and K
 - Some: can also produce K
Model

- Infinite-horizon, stochastic, discrete time economy
- 3 agents
 - entrepreneurs
 - All: can produce C good using L from workers and K
 - Some: can also produce K
 - workers
Infinite-horizon, stochastic, discrete time economy

3 agents

- entrepreneurs
 - All: can produce C good using L from workers and K
 - Some: can also produce K

- workers

- government
Infinite-horizon, stochastic, discrete time economy

3 agents
- entrepreneurs
 - All: can produce C good using L from workers and K
 - Some: can also produce K
- workers
- government

2 goods: consumption goods and capital
Infinite-horizon, stochastic, discrete time economy
3 agents
- entrepreneurs
 - All: can produce C good using L from workers and K
 - Some: can also produce K
- workers
- government
2 goods: consumption goods and capital
Important ingredient:
Model

- Infinite-horizon, stochastic, discrete time economy
- 3 agents
 - entrepreneurs
 - All: can produce C good using L from workers and K
 - Some: can also produce K
 - workers
 - government
- 2 goods: consumption goods and capital
- Important ingredient:
 - financial constraints $+$ stochastic arrival of investment opportunities \implies demand for liquidity.
Entrepreneurs (I)

- Maximize $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$, where $u(c) = \ln c$.
Entrepreneurs (I)

- Maximize $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$, where $u(c) = \ln c$.

- Every period can produce C goods using L and K according to

$$y_t = a_t k_t^{\alpha} l_t^{1-\alpha}.$$
Entrepreneurs (I)

- Maximize $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$, where $u(c) = \ln c$.
- Every period can produce C goods using L and K according to

$$y_t = a_t k_t^\alpha l_t^{1-\alpha}.$$
Entrepreneurs (I)

- Maximize $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$, where $u(c) = \ln c$.
- *Every period* can produce C goods using L and K according to
 $$y_t = a_t k_t^\alpha l_t^{1-\alpha}.$$
 - *INVESTING* entrepreneurs
- *Occasionally* have access to capital-producing technology:
 $$k_{t+1} = (1 - \delta)k_t + i_t.$$
Entrepreneurs (I)

- Maximize $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$, where $u(c) = \ln c$.
- *Every period* can produce C goods using L and K according to
 $$y_t = a_t k_t^\alpha l_t^{1-\alpha}.$$

 - *INVESTING* entrepreneurs
 - *Occasionally* have access to capital-producing technology:
 $$k_{t+1} = (1 - \delta) k_t + i_t.$$
 - arrives only with prob π in any given period
Entrepreneurs (I)

- Maximize $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$, where $u(c) = \ln c$.
- *Every period* can produce C goods using L and K according to
 $$y_t = a_t k_t^{\alpha} l_t^{1-\alpha}.$$
 - *INVESTING* entrepreneurs
- *Occasionally* have access to capital-producing technology:
 $$k_{t+1} = (1 - \delta)k_t + i_t.$$
 - arrives only with prob π in any given period
 - arrival is i.i.d.
Entrepreneurs (I)

- Maximize $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$, where $u(c) = \ln c$.
- Every period can produce C goods using L and K according to
 \[y_t = a_t k_t^\alpha l_t^{1-\alpha}. \]
- **INVESTING** entrepreneurs
- Occasionally have access to capital-producing technology:
 \[k_{t+1} = (1 - \delta)k_t + i_t. \]
- arrives only with prob π in any given period
- arrival is i.i.d.
- **SAVING** entrepreneurs
Entrepreneurs (II)
Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.

Entrepreneurs (II) Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.
Entrepreneurs (II)
Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.
 - All equity fully collateralized using capital \Rightarrow same return as capital:

$$R_{t+1}^e = \frac{a_{t+1}^\alpha k_{t+1}^{\alpha-1} l_{t+1}^{1-\alpha} + (1 - \delta) q_{t+1}}{q_t}$$
Entrepreneurs (II)
Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.
 - All equity fully collateralized using capital \(\rightarrow \) same return as capital:
 \[
 R_{t+1}^e = \frac{a_{t+1}^\alpha k_{t+1}^{\alpha-1} l_{t+1}^{1-\alpha} + (1 - \delta) q_{t+1}}{q_t}
 \]
 - From now on: capital and outside equity as the same, denote it n_t and call it "equity".
Entrepreneurs (II)

Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.
 - All equity fully collateralized using capital \implies same return as capital:
 $$R_{t+1}^e = \frac{a_{t+1}k_{t+1}^{\alpha-1}l_{t+1}^{1-\alpha} + (1 - \delta)q_{t+1}}{qt}$$
 - From now on: capital and *outside* equity as the same, denote it n_t and call it "equity".

- Assumption
Entrepreneurs (II)

Financial Frictions and Demand for Liquidity

- Entrepreneurs finance themselves by issuing equity e_t.
 - All equity fully collateralized using capital \rightarrow same return as capital:
 \[
 R_{t+1}^e = \frac{a_{t+1} \alpha k_{t+1}^{\alpha-1} I_t^{1-\alpha} + (1 - \delta) q_{t+1}}{q_t}
 \]
 - From now on: capital and outside equity as the same, denote it n_t and call it "equity".

- Assumption
 - entrepreneurs can only pledge fraction θ of the returns to investment.
 \[
 e_t \leq \theta i_t, \quad (1)
 \]
 \[
 b_{t+1}^i \geq 0. \quad (2)
 \]
Entrepreneurs (III)
Optimization of an Investing Entrepreneur

• When $q_t > 1$ (Tobin’s q) invest as much as possible to produce capital:

$$c^i_t + (1 - \theta q_t) i_t + \tau^i_t = r_t n_t + q_t (1 - \delta) n_t + b_t.$$ (3)
Entrepreneurs (III)

Optimization of an Investing Entrepreneur

- When $q_t > 1$ (Tobin's q) invest as much as possible to produce capital:

$$c_t^i + (1 - \theta q_t)i_t + \tau_t^i = r_t n_t + q_t (1 - \delta) n_t + b_t.$$ \hspace{1cm} (3)

- Optimal consumption and investment choices:

$$c_t = (1 - \beta) \left\{ r_t n_t + q_t (1 - \delta) n_t + b_t - \tau_t^i \right\},$$ \hspace{1cm} (4)

$$i_t = \frac{[r_t n_t + q_t (1 - \delta) n_t + b_t - \tau_t^i] - c_t^i}{1 - \theta q_t}.$$ \hspace{1cm} (5)
Entrepreneurs (IV)
Optimization of a Saving Entrepreneur

• Budget constraint for a saver (superscript s):

$$c^s_t + \tau^s_t = r_t n_t + q_t \left[(1 - \delta)n_t - n^s_{t+1} - e^s_t\right]$$

$$+ \left(b_t - \frac{b^s_{t+1}}{1 + r^g_{t+1}}\right) + q_t e^s_t.$$
Entrepreneurs (IV)
Optimization of a Saving Entrepreneur

- Budget constraint for a saver (superscript s):

\[
c_t^s + \tau_t^s = r_t n_t + q_t \left[(1 - \delta) n_t - n_{t+1}^s - e_t^s \right] + \left(b_t - \frac{b_{t+1}^s}{1 + r_{t+1}^g} \right) + q_t e_t^s.
\]

- Expression (6) can be simplified given that equity owned and equity issued pay the holder the same return:

\[
c_t^s + \tau_t^s + \frac{b_{t+1}^s}{1 + r_{t+1}^g} + q_t n_{t+1}^s = r_t n_t + q_t (1 - \delta) n_t + b_t
\]
Entrepreneurs (V)
Optimization of a Saving Entrepreneur

- Consumption/savings choice:

\[c_t^s = (1 - \beta) \left[r_t n_t + q_t (1 - \delta) n_t + b_t - \tau_t^s \right] \] (7)
Entrepreneurs (V)

Optimization of a Saving Entrepreneur

- Consumption/savings choice:

\[c_t^s = (1 - \beta) \left[r_t n_t + q_t (1 - \delta) n_t + b_t - \tau_t^s \right] \]

- Portfolio:

\[u'(c_t^s) = E_t \left\{ \frac{r_{t+1} + q_{t+1} (1 - \delta)}{q_t} \left[\pi u'(c_{t+1}^i) + (1 - \pi) u'(c_{t+1}^s) \right] \right\} \]

and

\[u'(c_t^s) = E_t \left\{ (1 + r_{t+1}^g) \left[\pi u'(c_{t+1}^i) + (1 - \pi) u'(c_{t+1}^s) \right] \right\} \]
Workers

- Continuum of workers that maximize

\[
E_0 \sum_{t=0}^{\infty} \beta^t u \left[c_t^w - \frac{\omega}{1 + \nu} (l_t^w)^{1+v} \right],
\] (10)

subject to:

\[
c_t^w + q_t n_{t+1} + \frac{b_t^{w}}{1 + r_{t+1}} + \tau_t^w
= w_t l_t^w + r_t n_t^w + q_t (1 - \delta) n_t^w + b_t^w.
\] (11)
Workers

- Continuum of workers that maximize

$$E_0 \sum_{t=0}^{\infty} \beta^t u \left[c_t^w - \frac{\omega}{1+\nu} (l_t^w)^{1+\nu} \right], \quad (10)$$

subject to:

$$c_t^w + q_t n_{t+1}^w + \frac{b_t^w}{1 + r_{t+1}^g} + \tau_t^w = w_t l_t^w + r_t n_t^w + q_t (1 - \delta) n_t^w + b_t^w. \quad (11)$$

- Optimization, and certain assumptions, deliver:

$$l_t^w = \left(\frac{w_t}{\omega} \right)^{\frac{1}{\nu}} \quad (12)$$

$$c_t^w = w_t l_t^w - \tau_t^w. \quad (13)$$
Government

- Target amount of one-period debt B, rolled over every period:

$$B = \int b_{t+1}^s d\Phi_t(s), \quad (14)$$

where $\Phi_t(s)$ is the distribution function of saving entrepreneurs.
Government

- Target amount of one-period debt B, rolled over every period:

 \[B = \int b^s_{t+1} d\Phi_t(s), \]
 \[(14) \]

 where $\Phi_t(s)$ is the distribution function of saving entrepreneurs.

- Balances budget by financing interest cost with lump-sum taxation:

 \[\left(1 - \frac{1}{1 + r^g_{t+1}}\right)B = \frac{r^g_t}{1 + r^g_{t+1}}B = \pi \tau^i_t + (1 - \pi)\tau^s_t + \tau^w_t, \]
 \[(15) \]

 where τ^i_t, τ^s_t and τ^w_t are lump-sum taxes on investing entrepreneurs, saving entrepreneurs, and workers.
Government

- Target amount of one-period debt B, rolled over every period:

$$B = \int b_{t+1}^s d\Phi_t(s), \quad (14)$$

where $\Phi_t(s)$ is the distribution function of saving entrepreneurs.

- Balances budget by financing interest cost with lump-sum taxation:

$$\left(1 - \frac{1}{1 + r_{t+1}^g}\right) B = \frac{r_t^g}{1 + r_{t+1}^g} B = \pi \tau_t^i + (1 - \pi)\tau_t^s + \tau_t^w, \quad (15)$$

where τ_t^i, τ_t^s and τ_t^w are lump-sum taxes on investing entrepreneurs, saving entrepreneurs, and workers.

- Assumption of how the tax-burden is distributed important for some later results.
Competitive Equilibrium (I)

AGGREGATE RESOURCE CONSTRAINT

- Aggregate resource constraint:

\[Y_t = C_t^i + C_t^s + C_t^w + I_t, \]

which becomes, after rearranging:

\[\alpha a_t K_t^\alpha + \frac{r_t^g}{1 + r_t^g} B - \left[\pi \tau_t^i + (1 - \pi) \tau_t^s + \tau_t^w \right] \]

\[= I_t + (1 - \beta) \left\{ r_t K_t + q_t (1 - \delta) K_t + B_t - \left[\pi \tau_t^i + (1 - \pi) \tau_t^s \right] \right\} \]

\[+ (w_t - \tau_t^w) \]

(16)
The expression for investment is:

\[I_t = \frac{\pi \beta [r_t K_t + q_t (1 - \delta) K_t + B_t - \tau^i_t]}{1 - \theta q_t}. \]

(17)

Competitive Equilibrium (II)

INVESTMENT EQUATION
Competitive Equilibrium (III)

AGGREGATE PORTFOLIO CHOICES

- The expression for the aggregate portfolio choices of the saving entrepreneurs is:

\[
E_t \left\{ \frac{[r_{t+1} + q_{t+1}(1 - \delta)]/q_t}{[r_{t+1} + q_{t+1}(1 - \delta)]N_{t+1}^S + B_{t+1}} \right\} = E_t \left\{ \frac{(1 + r_{t+1}^g)}{[r_{t+1} + q_{t+1}(1 - \delta)]N_{t+1}^S + B_{t+1}} \right\}. \tag{18}
\]
Steady State

• Resource constraint:

\[
\alpha aK^\alpha + \frac{rg}{1 + rg} B - \left[\pi \tau^i + (1 - \pi) \tau^s + \tau^w \right] = \delta K \\
\]

\[
+(1 - \beta) \left\{ \alpha aK^\alpha + q(1 - \delta)K + B - \left[\pi \tau^i + (1 - \pi) \tau^s \right] \right\}
\]
Steady State

- **Resource constraint:**

\[
\alpha aK^\alpha + \frac{r^g}{1 + r^g} B - \left[\pi \tau^i + (1 - \pi) \tau^s + \tau^w \right] = \delta K \]

\[
(1 - \beta) \left\{ \alpha aK^\alpha + q(1 - \delta)K + B - \left[\pi \tau^i + (1 - \pi) \tau^s \right] \right\}
\]

- **Investment equation**

\[
(1 - \theta q)\delta K = \pi \beta [\alpha aK^\alpha + q(1 - \delta)K + B - \tau^i]
\]
Steady State

- Resource constraint:
 \[
 \alpha aK^\alpha + \frac{r^g}{1 + r^g} B - \left[\pi \tau^i + (1 - \pi) \tau^s + \tau^w \right] = \delta K \tag{19}
 \]
 \[
 + (1 - \beta) \left\{ \alpha aK^\alpha + q(1 - \delta) K + B - \left[\pi \tau^i + (1 - \pi) \tau^s \right] \right\}
 \]

- Investment equation
 \[
 (1 - \theta q) \delta K = \pi \beta [\alpha aK^\alpha + q(1 - \delta) K + B - \tau^i] \tag{20}
 \]

- Portfolio equation
 \[
 \frac{[\alpha aK^{\alpha - 1} + q(1 - \delta)]}{q} = (1 + r^g) \tag{21}
 \]
Crowding-in vs Crowding-out

- Isolate two effects \(\implies \) assume all taxes paid for by saver-entrepreneurs:

\[
(1 - \pi)\tau^s = \frac{r^g}{1 + r^g}B \hspace{1cm} (22)
\]

\[
\tau^i = 0 \hspace{1cm} (23)
\]

\[
\tau^w = 0. \hspace{1cm} (24)
\]

Proposition 1: When the redistributive effects of government debt variations are ignored, the effects of variations in government debt on aggregate investment in the steady state are such that the crowding-in(out) effect dominates the crowding-out(in) effect for low(high) values of \(\theta \) (borrowing constraints are tight(loose)).
Crowding-in, crowding-out and the redistributive channel (I)

- We add the *inter-sectorial redistributive* effect by assuming that $\tau^s = 0$, $\tau^i = 0$, and:

$$
\tau^w = \frac{rg}{1 + rg} B.
$$
Crowding-in, crowding-out and the redistributive channel (I)

- We add the *inter-sectorial redistributive* effect by assuming that $\tau^s = 0$, $\tau^i = 0$, and:

$$\tau^w = \frac{r^g}{1 + r^g} B.$$

- Effects on investment of the inter-sectorial redistributive channel ambiguous
Crowding-in, crowding-out and the redistributive channel (I)

- We add the *inter-sectorial redistributive* effect by assuming that $\tau^s = 0$, $\tau^i = 0$, and:

$$\tau^w = \frac{r^g}{1 + r^g} B.$$

- Effects on investment of the inter-sectorial redistributive channel ambiguous
 - Transfers between workers and entrepreneurs induced by government debt and taxation $z(B)$:

$$z(B) = \frac{r^g}{1 + r^g} B,$$
Crowding-in, crowding-out and the redistributive channel (II)

- Sensitivity of transfers to variations in the amount of B is

$$z'(\cdot) = \frac{1}{1 + r_g} \left[r_g + \frac{dr_g}{dB} \frac{B}{1 + r_g} \right].$$
Crowding-in, crowding-out and the redistributive channel (II)

- Sensitivity of transfers to variations in the amount of B is

$$z'(\cdot) = \frac{1}{1 + r^g} \left[r^g + \frac{d r^g}{d B} \frac{B}{1 + r^g} \right].$$

- When entrepreneurs pay no taxes $z'(\cdot) \leq 0$.
Crowding-in, crowding-out and the redistributive channel (II)

- Sensitivity of transfers to variations in the amount of B is

$$z'(\cdot) = \frac{1}{1 + r^g} \left[r^g + \frac{d r^g}{d B} \frac{B}{1 + r^g} \right].$$

- When entrepreneurs pay no taxes $z'(\cdot) \leq 0$.
 - In general, > 0.
Crowding-in, crowding-out and the redistributive channel (II)

- Sensitivity of transfers to variations in the amount of B is
 \[z'(\cdot) = \frac{1}{1 + r^g} \left[r^g + \frac{dr^g}{dB} \frac{B}{1 + r^g} \right]. \]

- When entrepreneurs pay no taxes $z'(\cdot) \leq 0$.
 - In general, > 0.
 - Can be < 0 when $r^G < 0$.

\[\text{Taking the three channels into account, if financial frictions are...:} \]

- very severe: crowding-in effect will tend to dominate any potential negative distributional effect.
- moderate: positive net effect.
- very mild: ambiguous.
Crowding-in, crowding-out and the redistributive channel (II)

• Sensitivity of transfers to variations in the amount of B is

$$z'(\cdot) = \frac{1}{1 + r^g} \left[r^g + \frac{d r^g}{d B} \frac{B}{1 + r^g} \right].$$

• When entrepreneurs pay no taxes $z'(\cdot) \leq 0$.
 - In general, > 0.
 - Can be < 0 when $r^G < 0$.

• Taking the \textit{three channels} into account, if financial frictions are...:
Crowding-in, crowding-out and the redistributive channel (II)

- Sensitivity of transfers to variations in the amount of B is

$$z'(\cdot) = \frac{1}{1 + r^g} \left[r^g + \frac{dr^g}{dB} \frac{B}{1 + r^g} \right].$$

- When entrepreneurs pay no taxes $z'(\cdot) \leq 0$.
 - In general, > 0.
 - Can be < 0 when $r^G < 0$.

- Taking the three channels into account, if financial frictions are...:
 - ...very severe: crowding-in effect will tend to dominate any potential negative distributional effect.
Crowding-in, crowding-out and the redistributive channel (II)

- Sensitivity of transfers to variations in the amount of B is
 \[
 z'(\cdot) = \frac{1}{1 + r^g} \left[r^g + \frac{d r^g}{d B} \frac{B}{1 + r^g} \right].
 \]

- When entrepreneurs pay no taxes $z'(\cdot) \leq 0$.
 - In general, > 0.
 - Can be < 0 when $r^G < 0$.

- Taking the three channels into account, if financial frictions are...:
 - ...very severe: crowding-in effect will tend to dominate any potential negative distributional effect.
 - ...moderate: positive net effect.
Crowding-in, crowding-out and the redistributive channel (II)

- Sensitivity of transfers to variations in the amount of B is

$$z'(\cdot) = \frac{1}{1 + rg} \left[r^g + \frac{dr^g}{dB} \frac{B}{1 + rg} \right].$$

- When entrepreneurs pay no taxes $z'(\cdot) \leq 0$.
 - In general, > 0.
 - Can be < 0 when $r^G < 0$.

- Taking the three channels into account, if financial frictions are...:
 - ...very severe: crowding-in effect will tend to dominate any potential negative distributional effect.
 - ...moderate: positive net effect.
 - ...very mild: ambiguous.
Stochastic Liquidity (I)

- Assume equity has limited resaleability, and only a fraction ϕ_t of equity can be sold or re-mortgaged each period

$$(1 - \delta) n_t - [n^i_{t+1} - (i_t - e^i_t)] \leq \phi_t (1 - \delta) n_t.$$
Assume equity has limited resaleability, and only a fraction ϕ_t of equity can be sold or re-mortgaged each period

$$(1 - \delta)n_t - [n_{t+1}^i - (i_t - e_t^i)] \leq \phi_t (1 - \delta)n_t.$$

The budget constraint for an investing entrepreneur becomes:

$$c_t^i + q_t^R n_{t+1}^i + \tau_t^i = r_t n_t + [\phi_t q_t + (1 - \phi_t)q_t^R](1 - \delta)n_t + b_t,$$

where

$$q_t^R \equiv \frac{1 - \theta q_t}{1 - \theta}.$$
Stochastic Liquidity (II)

- Investment will be equal to:

\[
\begin{align*}
 i_t &= \frac{[r_t n_t + \phi_t q_t (1 - \delta) n_t + b_t - \tau^i_t] - c^i_t}{1 - \theta q_t} \\
 &= \beta \left[r_t n_t + \phi_t q_t (1 - \delta) n_t + b_t - \tau^i_t \right] \\
 &\quad \times \frac{1}{1 - \theta q_t} \\
 &- \left(1 - \beta\right) (1 - \phi_t) q_t R_t (1 - \delta) n_t \\
 &\quad \times \frac{1}{1 - \theta q_t}
\end{align*}
\]

(25)
Demand for entrepreneurial equity and government debt given by:

\[u'(c^s_t) = \pi E_t \left\{ u'(c^i_{t+1}) \frac{r_{t+1} + \phi_t q_{t+1} + (1 - \phi_t) q^R_{t+1}}{q_t} (1 - \delta) \right\} \]

and

\[u'(c^S_t) = E_t \left\{ (1 + r^g_{t+1}) [\pi u'(c^i_{t+1}) + (1 - \pi) u'(c^S_{t+1})] \right\} \]
Competitive Equilibrium with Stochastic Liquidity (I)

AGGREGATE INVESTMENT EQUATION

\[I_t = \frac{\pi \beta [r_t K_t + \phi_t q_t (1 - \delta) K_t + B_t - \tau_t^i]}{1 - \theta q_t} \]

\[\pi (1 - \beta) (1 - \phi_t) q_t^R (1 - \delta) K_t \]

\[1 - \theta q_t \]
Competitive Equilibrium with Stochastic Liquidity (II)

AGGREGATE PORTFOLIO EQUATION

\[
(1 - \pi) E_t \left\{ \frac{[r_{t+1} + q_{t+1}(1 - \delta)] / q_t - (1 + r_{t+1}^g)}{[r_{t+1} + q_{t+1}(1 - \delta)] N_{t+1}^S + B_{t+1}} \right\} \\
= \pi E_t \left\{ \frac{(1 + r_{t+1}^g)}{[r_{t+1} + [\phi_t q_{t+1} + (1 - \phi_t) q_{t+1}^R](1 - \delta)] N_{t+1}^S + B_{t+1}} \right\} \\
- \pi E_t \left\{ \frac{[r_{t+1} + [\phi_t q_{t+1} + (1 - \phi_t) q_{t+1}^R](1 - \delta)] / q_t}{[r_{t+1} + [\phi_t q_{t+1} + (1 - \phi_t) q_{t+1}^R](1 - \delta)] N_{t+1}^S + B_{t+1}} \right\}
\]

(29)
Crowding-in versus crowding-out

Again, we assume $\tau^i = 0$ and $\tau^w = 0$, and that

$$(1 - \pi)\tau^s = \frac{rg}{1 + rg} B. \quad (30)$$

Proposition 2 When the redistributive effects of government debt variations are ignored, the effects of variations in government debt on aggregate investment in the steady state are such that the crowding-in(out) effect dominates the crowding-out(in) effect for (1) low(high) values of θ (borrowing constraints are tight(loose)), and (2) low(high) values of ϕ (equity has a limited(ample) liquidity).
Dynamics - Productivity Shock

Figure: Impulse Response of Key Variables to Productivity Shock - Analysis for Different Levels of Government Debt (periods = quarters). Responses are the percentage deviation of a variable from its steady-state value.
Dynamics - Liquidity Shock

Figure: Impulse Response of Key Variables to Liquidity Shock - Analysis for Different Levels of Government Debt (periods = quarters). Responses are the percentage deviation of a variable from its steady-state value.
Conclusion

- Analysis of effects of public supply of liquidity on investment in a model with *financial constraints*, *corporate* demand for liquidity, and *endogenous private supply* of aggregate liquidity
Conclusion

- Analysis of effects of public supply of liquidity on investment in a model with financial constraints, corporate demand for liquidity, and endogenous private supply of aggregate liquidity
- Conditions under which government debt may boost or reduce private investment.
Conclusion

- Analysis of effects of public supply of liquidity on investment in a model with financial constraints, corporate demand for liquidity, and endogenous private supply of aggregate liquidity.
- Conditions under which government debt may boost or reduce private investment.
- Business cycle properties
Conclusion

- Analysis of effects of public supply of liquidity on investment in a model with financial constraints, corporate demand for liquidity, and endogenous private supply of aggregate liquidity.
- Conditions under which government debt may boost or reduce private investment.
- Business cycle properties
 - Response of economy sensitive to liquidity conditions.
Conclusion

- Analysis of effects of public supply of liquidity on investment in a model with *financial constraints*, *corporate* demand for liquidity, and *endogenous private supply* of aggregate liquidity
- Conditions under which government debt may boost or reduce private investment.
- Business cycle properties
 - Response of economy sensitive to liquidity conditions.
- Future Research
Conclusion

- Analysis of effects of public supply of liquidity on investment in a model with financial constraints, corporate demand for liquidity, and endogenous private supply of aggregate liquidity.
- Conditions under which government debt may boost or reduce private investment.
- Business cycle properties
 - Response of economy sensitive to liquidity conditions.
- Future Research
 - Cyclical behaviour of liquidity.
Conclusion

- Analysis of effects of public supply of liquidity on investment in a model with *financial constraints*, *corporate* demand for liquidity, and *endogenous private supply* of aggregate liquidity.
- Conditions under which government debt may boost or reduce private investment.
- Business cycle properties
 - Response of economy sensitive to liquidity conditions.
- Future Research
 - Cyclical behaviour of liquidity.
 - *Asset pricing implications: new explanation for the documented counter-cyclical pattern of the equity premium?*