SOCIAL BACKGROUND IN SCHOOL ATTAINMENT AND JOB MARKET

Alessandro Tampieri

University of Leicester
MOTIVATIONS

- Social background influences:
 - Educational results (Haveman and Wolfe, 1995, Galindo-Rueda and Vignoles, 2005, and Marcenaro-Gutierrez et al., 2007).
 - Job opportunities (Glyn and Salverda, 2000, Berthoud and Blekesaune, 2006).

- Our purpose here is to provide a theoretical basis to this empirical evidence.
We study the interaction between a single school and a single employer.

This occurs as agents serve a number of students, with measure normalised to one.
THE MODEL: SCHOOL

- The school prepares its students for the final exam.
- Possible outcomes: a low or a high grade.
- Students differ in ability: high (θ_H) or low (θ_L).
- Students can be disadvantaged (d) or advantaged (a).

- $\lambda \in [0,1]$ is the amount of a.
- $p_a, p_d \in [0,1]$ are the probability that a high-ability student is a or d, respectively, where $p_a > p_d$.
THE MODEL: SCHOOL

- Benefit for the school if a student is hired: μ.

- The school can provide students with extra teaching.

- If the school provides extra teaching to a
 - θ_H, $p\text{(high grade)}=1$, otherwise $p\text{(high grade)}=\eta \in (0,1)$.
 - θ_L, $p\text{(high grade)}=\eta \in (0,1)$, otherwise $p\text{(high grade)}=0$.

- Cost of extra teaching: $c > 0$.

THE MODEL: EMPLOYER

- The employer decides whether or not to hire a student.
- The students’ ability determines the employer’s profit entirely.
- The employer obtains a profit denoted by $\nu > 0$ if the student is θ_H and -1 is the student is θ_L.
- The labour demand is $\Phi < 1$.
THE GAME

- **Stage 1.** Nature randomly provides a student.

- **Stage 2.** The (advantaged/disadvantaged) school chooses whether to provide the student with extra teaching.

- **Stage 3.** The employer decides whether to hire the student knowing her grade and social background.
Assumption 1. (i) $\Phi \in (\lambda(p_a + (1 - p_a)\eta) + (1 - \lambda)p_d,$
\[\lambda(p_a + (1 - p_a)\eta) + (1 - \lambda)(p_d + (1 - p_d)\eta) \cdot\]
(ii) $\mu > \max\left\{ \frac{c}{\eta}, \frac{c}{1-\eta} \right\}$.

Definition 1. “High-employment equilibrium”.

- The advantaged school gives extra teaching to each student with probability 1; the disadvantaged school gives extra teaching to θ_H with probability 1 and to θ_L with probability $\frac{\Phi - \lambda(p_a + \eta(1-p_a)-(1-\lambda)p_d)}{p_d + \eta(1-p_d)}$.
- The employer hires an a and high-grade student with probability 1, an a and low-grade with probability 0, a d and high-grade with probability $\frac{\Phi - \lambda(p_a + \eta(1-p_a))}{p_d + \eta(1-p_d)}$ and a d and low-grade with probability 0.
Equilibria

Definition 2. “Middle-employment equilibrium”.

- The advantaged school gives extra teaching to each student with probability 1; the disadvantaged school gives extra teaching to \(\theta_H \) with probability 1 and to \(\theta_L \) with probability

\[
\frac{\Phi - \lambda (p_a + \eta (1-p_a))}{p_d + \eta (1-p_d)} \frac{p_d}{(1-p_d)} \frac{\nu}{\eta}.
\]

- The employer hires an a and high grade student with probability 1, an a and low-grade with probability 0, a d and high-grade with probability

\[
\frac{\Phi - \lambda (p_a + \eta (1-p_a))}{p_d + \eta (1-p_d)} \frac{c}{\mu \eta}
\]

and a d and low grade with probability 0.
Definition 3. “Low-employment equilibrium”.

- The advantaged school gives extra teaching to each θ_H and to θ_L with probability \(\frac{p_a}{(1-p_a)} \frac{\nu}{\eta} \); the disadvantaged school gives extra teaching to θ_H with probability 1 and to θ_L with probability \(\frac{\Phi-\lambda(p_a+\eta(1-p_a)-(1-\lambda)p_d)}{p_d+\eta(1-p_d)} \frac{p_d}{(1-p_d)} \frac{\nu}{\eta} \).

- The employer hires an a and high grade student with probability \(\frac{c}{\mu\eta} \), an a and low-grade with probability 0, a d and high-grade with probability \(\frac{\Phi-\lambda(p_a+\eta(1-p_a))}{p_d+\eta(1-p_d)} \frac{c}{\mu\eta} \) and a d and low grade with probability 0.
RESULTS

- **Proposition 1.** The high-employment equilibrium occurs if $p_a > \frac{n}{v+\eta}$ and $p_d > \frac{n}{v+\eta}$; the middle-employment equilibrium occurs if $p_a > \frac{n}{v+\eta}$ and $p_d \leq \frac{n}{v+\eta}$; the low-employment equilibrium occurs if $p_a \leq \frac{n}{v+\eta}$ and $p_d \leq \frac{n}{v+\eta}$.
RESULTS

\[\Phi^* = \lambda(p_a + (1 - p_a)\eta) + (1 - \lambda)p_d \]
\[\Phi^{**} = \lambda(p_a + (1 - p_a)\eta) + (1 - \lambda)(p_d + (1 - p_d)\eta) \]

\[p_a = \frac{\eta}{v + \eta} \]

Proposition 1.
Remarks

- The middle area disappears as the number of students in one group goes to 0.
- The employer obtains, ceteris paribus, a higher expected payoff by hiring \(a \) students.
- Therefore the \(d \) students opportunity of being hired is only subsequent to the recruitment within the \(a \) community.
- By increasing \(\lambda \), regardless of the equilibrium, the probability of being hired for a high-grade and \(d \) student diminishes.
If we allow Φ to be lower than the amount of adv and high-degree students, then none of the disadv students will be hired.

If p_a is low, the employer would hire an amount of high-grade and a student lower than the number available.

If p_d is low, the employer would hire an amount of high-grade and d student lower than the residual Φ.

The optimal response of the d school to the employer's strategy is to provide less education than the one provided by the a school, given the same students' ability.
THANK YOU!!!