If buyer one exits after period 1, otherwise conduct an auction.

Theorem: Incentive Compatibility of the Relaxed Solution

Bunching: The relaxed solution is not incentive compatible if
- the virtual valuation of buyer 1 is non-increasing in \(d \), for all \(v_i \). (effect 1)
- and strictly concave in \(v_i \) for some \(d_i \). (effect 2)

Separation: Converse conditions imply incentive compatibility.

Characterization of Incentive Compatibility (IC)

General problem has two-dimensional private information.

Solution Strategy:
- It is optimal to allocate only at the deadline.
- Then, the 2-dimensional IC constraint is equivalent to IC for the valuation and downward IC for the deadline.
- If the seller does not use lotteries in the first period, the downward IC constraint for the deadline binds only for the highest valuation.

Structure of the optimal mechanism

<table>
<thead>
<tr>
<th>Bidder 1</th>
<th>Bidder 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>(r_2)</td>
</tr>
</tbody>
</table>

Time of allocation: period 1 period 2 \(v_i \in [0, \bar{v}] \)

Benchmark: Relaxed Solution with Known Deadline

- If \(d = 1 \): One (short-lived) buyer in each period.
 - Post prices \(r_i^{\text{fx}} \) in period 1 and 2.
- If \(d = 2 \): Bidder one can wait for period 2.
 - Optimal auction with both buyers in period 2 (Myerson, 1981).

Methods Used to Solve the Auction Problem (\(d = 2 \))

Myerson’s (1981) solution method by point-wise maximization is not feasible. \(\Rightarrow \) A control problem has to be solved.

Complications:
- Monotonicity of \(J_i^{\text{px}} \): Usual regularity conditions not sufficient.
- Winning probability has jumps.
- Non-standard feasibility constraint.

Solution method (Reid, 1968): Solve the problem for Lipschitz continuous winning probabilities and take limit as the Lipschitz constant approaches infinity. (+ Ironing)

This method is new to the mechanism design literature and may be useful in auction problems with budget constrained bidders or bidders that demand different capacities.