Split-Ticket Voting: An Implicit Incentive Approach

Galina Zudenkova

Department of Economics
University Carlos III of Madrid

January 2010
Motivation

Split-ticket voting – citizens vote for candidates from different parties in simultaneous elections
Motivation

Split-ticket voting – citizens vote for candidates from different parties in simultaneous elections
Motivation

Why do voters split tickets? What are the economic consequences of ticket splitting?
Motivation

Why do voters split tickets? What are the economic consequences of ticket splitting?

Motivation

- Why do voters split tickets? What are the economic consequences of ticket splitting?

 - **Budgetary externality of concentrated government spending under uniform taxes** – voters prefer fiscally conservative President but fiscally liberal Congress (Chari, Jones and Marimon, *Amer Econ Rev* 1997).
Motivation

- Why do voters split tickets? What are the economic consequences of ticket splitting?
 - **Budgetary externality of concentrated government spending under uniform taxes** – voters prefer fiscally conservative President but fiscally liberal Congress (Chari, Jones and Marimon, *Amer Econ Rev* 1997).
 - **Effective oversight of Executive** – voters reinforce opposition in Legislature to monitor Executive (Bugarin, *Soc Choice Welfare* 2003; Fox and Van Weelden 2009).

Motivation

Galina Zudenkova

Split-Ticket Voting: An Implicit Incentive Approach
Motivation

- Why do voters split tickets? What are the economic consequences of ticket splitting?

 - **Budgetary externality of concentrated government spending under uniform taxes** – voters prefer fiscally conservative President but fiscally liberal Congress (Chari, Jones and Marimon, *Amer Econ Rev* 1997).

 - **Effective oversight of Executive** – voters reinforce opposition in Legislature to monitor Executive (Bugarin, *Soc Choice Welfare* 2003; Fox and Van Weelden 2009).

- This paper offers an alternative explanation for ticket splitting: ticket splitting – outcome of optimal reward scheme voters use to motivate politicians’ efforts.
Motivation

- Why do voters split tickets? What are the economic consequences of ticket splitting?

 - **Budgetary externality of concentrated government spending under uniform taxes** – voters prefer fiscally conservative President but fiscally liberal Congress (Chari, Jones and Marimon, *Amer Econ Rev* 1997).

 - **Effective oversight of Executive** – voters reinforce opposition in Legislature to monitor Executive (Bugarin, *Soc Choice Welfare* 2003; Fox and Van Weelden 2009).

- This paper offers an alternative explanation for ticket splitting: ticket splitting – outcome of optimal reward scheme voters use to motivate politicians’ efforts.

- This paper studies dynamics of ticket splitting.
Roadmap

- **Political agency model** of Split-Ticket Voting
Roadmap

- **Political agency model** of Split-Ticket Voting

- **Ticket Splitting** – outcome of optimal implicit reward scheme voters use to motivate politicians’ efforts
Roadmap

- **Political agency model** of Split-Ticket Voting

- **Ticket Splitting** – outcome of optimal implicit reward scheme voters use to motivate politicians’ efforts

- Model generates **dynamics of split-ticket voting**
Roadmap

- **Political agency model** of Split-Ticket Voting

- **Ticket Splitting** – outcome of optimal implicit reward scheme voters use to motivate politicians’ efforts

- Model generates **dynamics of split-ticket voting**

- Model is consistent with patterns of ticket splitting observed in Spanish simultaneous elections
Related Literature

- **Intergovernmental Competition**:
 - **Horizontal; Yardstick Competition**: Tiebout 1956; Salmon 1987; Besley and Case 1995; Bordignon, Cerniglia and Revelli 2004; Belleflamme and Hindriks 2005; Besley and Smart 2007
 - **Vertical**: Breton 1996; Breton and Fraschini 2003; Breton and Salmon 2001; Volden 2005; Volden 2007
Repeated game with an infinite horizon
Model
Outline: Stage Game

- Repeated game with an infinite horizon

- Stage game – sequential political agency game between politicians (mayor and governor) and voters
Model
Outline: Stage Game

- Repeated game with an infinite horizon

- Stage game – sequential political agency game between politicians (mayor and governor) and voters

- Large city in region
Model

Outline: Stage Game

- Repeated game with an infinite horizon
- Stage game – sequential political agency game between politicians (mayor and governor) and voters
- Large city in region

Mayor M (for city) and Governor G (for region) are elected in simultaneous elections
Model
Outline: Stage Game

- Repeated game with an infinite horizon

- Stage game – sequential political agency game between politicians (mayor and governor) and voters

- Large city in region

- **Mayor** M (for city) and **Governor** G (for region) are elected in simultaneous elections

- 2 political parties
Model

Outline: Stage Game

- Repeated game with an infinite horizon

- Stage game – sequential political agency game between politicians (mayor and governor) and voters

- Large city in region

- **Mayor** M (for city) and **Governor** G (for region) are elected in simultaneous elections

- 2 political parties

- 2 candidates from opposite parties at each elections: incumbent and opponent
In office, politician \(i \in \{M, G\} \) implements a policy determined by her unobservable effort \(a_i \)
In office, politician \(i \in \{M, G\} \) implements a policy determined by her unobservable effort \(a_i \).

\(p_i \) (performance of politician \(i \)) is observed with independent and unobservable noise \(\varepsilon_i \sim N (0, \sigma^2) \).

\[
p_i = a_i + \varepsilon_i
\]
In office, politician $i \in \{M, G\}$ implements a policy determined by her unobservable effort a_i

p_i (performance of politician i) is observed with independent and unobservable noise $\varepsilon_i \sim N(0, \sigma^2)$

$$p_i = a_i + \varepsilon_i$$

Politician $i \in \{M, G\}$ chooses a_i to maximize

$$\Pi_i(a_i) - \frac{a_i^2}{2}$$
Office-motivated politician \((M/G)\) prefers her counterpart \((G/M)\) to be affiliated with the same political party.
Office-motivated politician (M/G) prefers her counterpart (G/M) to be affiliated with the same political party \Rightarrow politicians’ incentives are correlated
Office-motivated politician \((M/G)\) prefers her counterpart \((G/M)\) to be affiliated with the same political party \(\Rightarrow\) politicians’ incentives are correlated

\[
\Pi_i (a_i, a_j) = \begin{cases}
\Pr_i (a_i, a_j) + \lambda_i^S \Pr_j (a_i, a_j) & \text{if } S \\
\Pr_i (a_i, a_j) + \lambda_i^D (1 - \Pr_j (a_i, a_j)) & \text{if } D
\end{cases}
\]

where

- \(\Pr_i (\cdot)\) – Pr of being reelected for office \(i\)
- \(\lambda_i \in [0, 1]\) – strength of party alignment of politician \(i\)
- \(\lambda_i^S \geq \lambda_i^D\) – politicians’ preference for incumbents
- State \(S\) – \(M\) and \(G\) are affiliated with the same party
- State \(D\) – \(M\) and \(G\) are affiliated with different parties
Voters care about politicians’ performances

\[p_M + p_G \]
Voters care about politicians’ performances

\[p_M + p_G \]

Voters coordinate on retrospective reappointment rules to reelect mayor \(M \) and governor \(G \)
Voters care about politicians’ performances

\[p_M + p_G \]

Voters coordinate on retrospective reappointment rules to reelect mayor \(M \) and governor \(G \)

Voters condition reappointment decision on politicians’ performances in the current period and not in any previous period (as in Persson, Roland and Tabellini, *Quart J Econ* 1997)
Model
Timing of the Stage Game
Model
Timing of the Stage Game

Voters choose reappointment rules to use in the coming elections

State S or D is realized
Model
Timing of the Stage Game

State S or D is realized

Voters choose reappointment rules to use in the coming elections

Politicians exert efforts a_M and a_G
Model
Timing of the Stage Game

Voters choose reappointment rules to use in the coming elections.

Politicians exert efforts a_M and a_G.

State S or D is realized.

P_M and P_G are observed.
Model
Timing of the Stage Game

Voters choose reappointment rules to use in the coming elections
Politicians exert efforts a_M and a_G

Elections:
Voters use the chosen rules

State S or D is realized
p_M and p_G are observed
State S or D is realized
Split-Ticket Voting: An Implicit Incentive Approach

Model
Timing of the Stage Game

State S or D is realized. p_M and p_G are observed. State S or D is realized.

one stage game
Joint Performance Evaluation: voters condition reelection of politician i on her own performance p_i and on j’s performance p_j
Model
Details: Voters

- **Joint Performance Evaluation**: voters condition reelection of politician i on her own performance p_i and on j’s performance p_j

- Functional space of performance evaluation rules – **linear performance evaluation rules** (β_i, b_i) determined by slope β_i and intercept b_i
Model

Details: Voters

- **Joint Performance Evaluation**: voters condition reelection of politician i on her own performance p_i and on j’s performance p_j

- Functional space of performance evaluation rules – **linear performance evaluation rules** (β_i, b_i) determined by slope β_i and intercept b_i

- Reelection probabilities

\[
Pr_M = P(p_M + \beta_M p_G \geq b_M) \\
Pr_G = P(p_G + \beta_G p_M \geq b_G)
\]
Model
Details: Voters

- **Joint Performance Evaluation**: voters condition reelection of politician i on her own performance p_i and on j’s performance p_j

- Functional space of performance evaluation rules – **linear performance evaluation rules** (β_i, b_i) determined by slope β_i and intercept b_i

- Reelection probabilities

\[
Pr_M = P(p_M + \beta_M p_G \geq b_M)
\]

\[
Pr_G = P(p_G + \beta_G p_M \geq b_G)
\]

- M’s and G’s reelectons are
 - independent if $\beta_M, \beta_G = 0$
Model Details: Voters

- **Joint Performance Evaluation**: voters condition reelection of politician i on her own performance p_i and on j’s performance p_j

- Functional space of performance evaluation rules – **linear performance evaluation rules** (β_i, b_i) determined by slope β_i and intercept b_i

- Reelection probabilities

 $Pr_M = P(p_M + \beta_M p_G \geq b_M)$

 $Pr_G = P(p_G + \beta_G p_M \geq b_G)$

- M’s and G’s reelections are
 - independent if $\beta_M, \beta_G = 0$
 - positively correlated if $\beta_M, \beta_G > 0$
Model

Details: Voters

- **Joint Performance Evaluation**: voters condition reelection of politician i on her own performance p_i and on j’s performance p_j

- Functional space of performance evaluation rules – **linear performance evaluation rules** (β_i, b_i) determined by slope β_i and intercept b_i

- Reelection probabilities

 $$Pr_M = P(p_M + \beta_M p_G \geq b_M)$$

 $$Pr_G = P(p_G + \beta_G p_M \geq b_G)$$

- M’s and G’s reelectons are
 - independent if $\beta_M, \beta_G = 0$
 - positively correlated if $\beta_M, \beta_G > 0$
 - negatively correlated if $\beta_M, \beta_G < 0$
Split-Ticket Voting: An Implicit Incentive Approach

Model

Details: Voters

\[p_M + \beta_M p_G = b_M \]

\[p_G + \beta_G p_M = b_G \]

- \(G \) is reelected
- \(M \) is not reelected
- both \(M \) and \(G \) are reelected
- \(M \) is reelected
- \(G \) is not reelected
- neither \(M \) nor \(G \) is reelected
Model
Equilibrium Concept

- Each stage game – sequential political agency game
 - Equilibrium concept – Subgame perfect equilibrium
Model
Equilibrium Concept

- Each stage game – sequential political agency game
 - Equilibrium concept – Subgame perfect equilibrium
 - I solve game backwards
Model

Equilibrium Concept

- Each stage game – sequential political agency game
 - Equilibrium concept – Subgame perfect equilibrium
 - I solve game backwards

- Infinitely repeated game
Model

Equilibrium Concept

- Each stage game – sequential political agency game
 - Equilibrium concept – Subgame perfect equilibrium
 - I solve game backwards
- Infinitely repeated game
 - Voters condition reappointment decision on politicians’ performances in the current period and not in any previous period (as in Persson, Roland and Tabellini, *Quart J Econ* 1997)
Model

Equilibrium Concept

- Each stage game – sequential political agency game

 - Equilibrium concept – Subgame perfect equilibrium

 - I solve game backwards

- Infinitely repeated game

 - Voters condition reappointment decision on politicians’ performances in the current period and not in any previous period (as in Persson, Roland and Tabellini, Quart J Econ 1997)

 - Politicians are myopic – they care about reelection only in the coming elections and not in any other subsequent elections (as in Alesina and Tabellini, J Public Econ 2008)
Model

Equilibrium Concept

- Each stage game – sequential political agency game
 - Equilibrium concept – Subgame perfect equilibrium
 - I solve game backwards

- Infinitely repeated game
 - Voters condition reappointment decision on politicians’ performances in the current period and not in any previous period (as in Persson, Roland and Tabellini, *Quart J Econ* 1997)
 - Politicians are myopic – they care about reelection only in the coming elections and not in any other subsequent elections (as in Alesina and Tabellini, *J Public Econ* 2008)
 - I consider a particular Markov Perfect Equilibrium where a stage game equilibrium is replicated infinitely often. The payoff-relevant states are S and D
Politicians are members of the same party, S

M’s problem \[\max_{a_M} \Pr_M (a_M, a_G) + \lambda^S_M \Pr_G (a_M, a_G) - \frac{a_M^2}{2} \]

G’s problem \[\max_{a_G} \Pr_G (a_M, a_G) + \lambda^S_G \Pr_M (a_M, a_G) - \frac{a_G^2}{2} \]

M’s and G’s reelections are independent: $\beta_M, \beta_G = 0$
Equilibrium
Politicians’ Problem and Best Response Functions

Politicians are members of the same party, S

\[M's \text{ problem } \max_{a_M} \Pr_M (a_M, a_G) + \lambda^S_M \Pr_G (a_M, a_G) - \frac{a_M^2}{2} \]

\[G's \text{ problem } \max_{a_G} \Pr_G (a_M, a_G) + \lambda^S_G \Pr_M (a_M, a_G) - \frac{a_G^2}{2} \]

M’s and G’s reelections are negatively correlated: $\beta_M, \beta_G < 0$
Politicians are members of the same party, S

\[
\begin{align*}
M\text{'s problem} & \quad \max_{a_M} \Pr_M (a_M, a_G) + \lambda_M^S \Pr_G (a_M, a_G) - \frac{a_M^2}{2} \\
G\text{'s problem} & \quad \max_{a_G} \Pr_G (a_M, a_G) + \lambda_G^S \Pr_M (a_M, a_G) - \frac{a_G^2}{2}
\end{align*}
\]

M’s and G’s reelections are positively correlated: $\beta_M, \beta_G > 0$
Equilibrium

Politicians’ Problem and Best Response Functions

Politicians are members of different parties, D

M’s problem: $\max_{a_M} Pr_M (a_M, a_G) + \lambda_M^D (1 - Pr_G (a_M, a_G)) - \frac{a_M^2}{2}$

G’s problem: $\max_{a_G} Pr_G (a_M, a_G) + \lambda_G^D (1 - Pr_M (a_M, a_G)) - \frac{a_G^2}{2}$

M’s and G’s reelections are independent: $\beta_M, \beta_G = 0$
Equilibrium
Politicians’ Problem and Best Response Functions

Politicians are members of different parties, D

- M’s problem: $\max_{a_M} Pr_M (a_M, a_G) + \lambda^D_M (1 - Pr_G (a_M, a_G)) - \frac{a_M^2}{2}$
- G’s problem: $\max_{a_G} Pr_G (a_M, a_G) + \lambda^D_G (1 - Pr_M (a_M, a_G)) - \frac{a_G^2}{2}$

M’s and G’s reelections are positively correlated: $\beta_M, \beta_G > 0$
Politicians are members of different parties, D

\[M\text{'s problem } \max_{a_M} \Pr_M (a_M, a_G) + \lambda^D_M (1 - \Pr_G (a_M, a_G)) - \frac{a_M^2}{2} \]

\[G\text{'s problem } \max_{a_G} \Pr_G (a_M, a_G) + \lambda^D_G (1 - \Pr_M (a_M, a_G)) - \frac{a_G^2}{2} \]

M’s and G’s reelections are negatively correlated: $\beta_M, \beta_G < 0$
Theorem

There exists an equilibrium in rule strategies \((\beta^*_i, b^*_i)\) given by

\[
(\beta^*_i, b^*_i) = \begin{cases}
 \left(\lambda^S_j, a^*_i + \lambda^S_j a^*_j \right) & \text{if } S \\
 \left(-\lambda^D_j, a^*_i - \lambda^D_j a^*_j \right) & \text{if } D
\end{cases}
\]

where \(a^*_i\) is politician i’s equilibrium effort

\[
a^*_i = \begin{cases}
 \frac{1}{\sqrt{2\pi}\sigma} \left(\frac{1}{\sqrt{1+(\lambda^S_j)^2}} + \frac{(\lambda^S_i)^2}{\sqrt{1+(\lambda^S_i)^2}} \right) & \text{if } S \\
 \frac{1}{\sqrt{2\pi}\sigma} \left(\frac{1}{\sqrt{1+(\lambda^D_j)^2}} + \frac{(\lambda^D_i)^2}{\sqrt{1+(\lambda^D_i)^2}} \right) & \text{if } D
\end{cases}
\]
In S voters use **joint** performance evaluation rules, under which politicians’ reelections are **positively correlated**

$$Pr_i = P \left(p_i + \lambda^S_j p_j \geq a^*_i + \lambda^S_j a^*_j \right)$$
In S voters use joint performance evaluation rules, under which politicians’ reelections are positively correlated

$$Pr_i = P (p_i + \lambda^S_j p_j \geq a_i^* + \lambda^S_j a_j^*)$$

In D voters use joint performance evaluation rules, under which politicians’ reelections are negatively correlated

$$Pr_i = P (p_i - \lambda^D_j p_j \geq a_i^* - \lambda^D_j a_j^*)$$
Equilibrium

In S voters use **joint** performance evaluation rules, under which politicians’ reelections are **positively correlated**

$$Pr_i = P \left(p_i + \lambda_j^S p_j \geq a_i^* + \lambda_j^S a_j^* \right)$$

In D voters use **joint** performance evaluation rules, under which politicians’ reelections are **negatively correlated**

$$Pr_i = P \left(p_i - \lambda_j^D p_j \geq a_i^* - \lambda_j^D a_j^* \right)$$

If politicians are not loyal to their political parties ($\lambda_i = 0$) voters use **cut-off** rules, under which politicians’ reelections are **independent**

$$Pr_i = P \left(p_i \geq a_i^* \right)$$
Dynamics

Transition Probabilities between states S and D

State S – voters do not split tickets

State D – voters split tickets
Dynamics

Transition Probabilities between states S and D

State S – voters **do not split tickets**
- positively correlated reelections

State D – voters **split tickets**
- negatively correlated reelections
Dynamics
Transition Probabilities between states S and D

State S – voters do not split tickets
positively correlated reelections

State D – voters split tickets
negatively correlated reelections

\[
G \text{ is reelected } \Rightarrow D \\
M, G \text{ are reelected } \Rightarrow S \\
one \text{ is reelected } \Rightarrow S \\
M \text{ is reelected } \Rightarrow D
\]

\[
p_G + \lambda^S_M p_M = a^*_G + \lambda^S_M a^*_M \\
(p_G, a^*_G)
\]

\[
p_M + \lambda^S_G p_G = a^*_M + \lambda^S_G a^*_G \\
(p_M)
\]
Dynamics
Transition Probabilities between states S and D

State S – voters **do not split tickets**
positively correlated relections

- G is reelected $\Rightarrow D$
- $p_G + \lambda_M p_M = a_G^* + \lambda_M a_M^*$
- none is reelected $\Rightarrow S$
- $p_M + \lambda_S p_G = a_M^* + \lambda_S a_G^*$

State D – voters **split tickets**
negatively correlated relections

- M, G are reelected $\Rightarrow S$
- $p_G - \lambda_M p_M = a_G^* - \lambda_M a_M^*$
- M is reelected $\Rightarrow S$
- $p_M - \lambda_S p_G = a_M^* - \lambda_S a_G^*$
Ticket splitting is less likely than electing candidates from the same party,

不利的选举是让人难以接受的。
Dynamics

Transition Probabilities between states S and D

State S – voters do not split tickets

positively correlated reelects

State D – voters split tickets

negatively correlated reelects

Ticket splitting is less likely than electing candidates from the same party, but somewhat more probable when the voters split tickets in the previous period (due to the politicians’ preference for incumbents)
Results

- **Ticket Splitting** – outcome of optimal implicit reward scheme voters use to motivate politicians’ efforts
Results

- **Ticket Splitting** – outcome of optimal implicit reward scheme voters use to motivate politicians’ efforts

- Since politicians’ incentives are correlated, *voters adopt joint performance evaluation rules*, conditioned on the incumbents’ being members of the same party or different parties
Results

- **Ticket Splitting** – outcome of optimal implicit reward scheme voters use to motivate politicians’ efforts

- Since politicians’ incentives are correlated, **voters adopt joint performance evaluation rules**, conditioned on the incumbents’ being members of the same party or different parties

- Model generates a certain **dynamics of split-ticket voting**
Results

- **Ticket Splitting** – outcome of optimal implicit reward scheme voters use to motivate politicians’ efforts

- Since politicians’ incentives are correlated, voters adopt joint performance evaluation rules, conditioned on the incumbents’ being members of the same party or different parties

- Model generates a certain **dynamics of split-ticket voting**:

 Ticket Splitting is less likely than voting for candidates from the same party,

 but somewhat more probable when the voters split tickets in the previous period
Region consists of n municipalities.
Extension
Ticket Splitting in Small Municipalities

- Region consists of n municipalities.
- Mayor M_i is office-motivated and loyal to her political party (same as before).
Region consists of n municipalities.

Mayor M_i is office-motivated and loyal to her political party (same as before).

Governor G is office-motivated and loyal to her political party: she prefers members of her own party in all offices M_1, \ldots, M_n.

Extension
Ticket Splitting in Small Municipalities

- Region consists of n municipalities.
- Mayor M_i is office-motivated and loyal to her political party (same as before).
- Governor G is office-motivated and loyal to her political party: she prefers members of her own party in all offices $M_1, ..., M_n$. Governor G cares less about party affiliation of small-town mayors.
Region consists of n municipalities.

Mayor M_i is office-motivated and loyal to her political party (same as before).

Governor G is office-motivated and loyal to her political party: she prefers members of her own party in all offices $M_1, ..., M_n$. Governor G cares less about party affiliation of small-town mayors.

Probability of governor G’s reelection:
Region consists of n municipalities.

Mayor M_i is office-motivated and loyal to her political party (same as before).

Governor G is office-motivated and loyal to her political party: she prefers members of her own party in all offices $M_1, ..., M_n$. Governor G cares less about party affiliation of small-town mayors.

Probability of governor G’s reelection: each municipality i is pivotal with probability proportional to its population share.
Findings: Dynamics

Novel: Split-ticket voting is more likely in small municipalities than in large ones

Intuition:
- Governor cares less about party affiliation of mayors in small municipalities
- Politicians' incentives are less correlated
- Voters adopt less correlated joint performance evaluation rules
- This increases the probability of ticket splitting
Findings: Dynamics

Novel: Split-ticket voting is more likely in small municipalities than in large ones.

Intuition: Governor cares less about party affiliation of mayors in small municipalities ⇒
Findings: Dynamics

Novel: Split-ticket voting is more likely in small municipalities than in large ones

Intuition:

governor cares less about party affiliation of mayors in small municipalities ⇒

politicians’ incentives are less correlated ⇒
Findings: Dynamics

Novel: Split-ticket voting is more likely in small municipalities than in large ones

Intuition:

- governor cares less about party affiliation of mayors in small municipalities ⇒
- politicians’ incentives are less correlated ⇒
- voters adopt less correlated joint performance evaluation rules ⇒
Findings: Dynamics

Novel: Split-ticket voting is more likely in small municipalities than in large ones

Intuition:

governor cares less about party affiliation of mayors in small municipalities ⇒

politicians’ incentives are less correlated ⇒

voters adopt less correlated joint performance evaluation rules ⇒

this increases the probability of ticket splitting
Empirical Analysis

- **Goal**: to estimate probability of ticket splitting
Empirical Analysis

- **Goal**: to estimate probability of ticket splitting

Empirical Analysis

- **Goal**: to estimate probability of ticket splitting

- Probit Model
In Spain, mayor and governor elections are held simultaneously in 13 out of 17 regions.
In Spain, mayor and governor elections are held simultaneously in 13 out of 17 regions.

Two leading parties: Partido Popular (PP) and Partido Socialista Obrero Español (PSOE)
In Spain, mayor and governor elections are held simultaneously in 13 out of 17 regions.

Two leading parties: Partido Popular (PP) and Partido Socialista Obrero Español (PSOE).

I use data on aggregate electoral results for 10 Spanish regions:

Aragon, Principality of Asturias, Balearic Islands, Cantabria, Castile-La Mancha, Extremadura, La Rioja, Community of Madrid, Region of Murcia and Valencian Community.
Data Description

Sample consists of 3218 municipalities
Data Description

- Sample consists of 3218 municipalities
- Depending on region, sample covers from 4 to 7 election years from 1983 to 2007
Data Description

- Sample consists of 3218 municipalities
- Depending on region, sample covers from 4 to 7 election years from 1983 to 2007
- Each observation includes census, numbers of abstainers, votes to PP, votes to PSOE, votes to other parties for municipal and regional elections
Data Description

- Sample consists of 3218 municipalities
- Depending on region, sample covers from 4 to 7 election years from 1983 to 2007
- Each observation includes census, numbers of abstainers, votes to PP, votes to PSOE, votes to other parties for municipal and regional elections
- In final sample:
 - same turnout in municipal and regional elections (maximal turnout difference 5%)
Data Description

- Sample consists of 3218 municipalities
- Depending on region, sample covers from 4 to 7 election years from 1983 to 2007
- Each observation includes census, numbers of abstainers, votes to PP, votes to PSOE, votes to other parties for municipal and regional elections
- In final sample:
 - same turnout in municipal and regional elections (maximal turnout difference 5%)
 - PP and PSOE are two leading parties
Data Description

- Sample consists of 3218 municipalities
- Depending on region, sample covers from 4 to 7 election years from 1983 to 2007
- Each observation includes census, numbers of abstainers, votes to PP, votes to PSOE, votes to other parties for municipal and regional elections
- In final sample:
 - same turnout in municipal and regional elections (maximal turnout difference 5%)
 - PP and PSOE are two leading parties
- Ticket Splitting = different parties get the majority of votes in municipal and regional elections
Data Description
Empirical Model

Variables:

\[y_{it} = \begin{cases}
1 & \text{ST in municipality } i \\
0 & \text{nST in municipality } i
\end{cases} \]
Empirical Model

Variables:

\[y_{it} = \begin{cases}
1 & \text{ST in municipality } i \\
0 & \text{nST in municipality } i
\end{cases} \]

\[\rho_i = \frac{\text{census in municipality } i}{\text{census in the whole region}} \]
Empirical Model

- Variables:

\[y_{it} = \begin{cases}
1 & \text{ST in municipality } i \\
0 & \text{nST in municipality } i \\
\end{cases} \]

\[\rho_i = \frac{\text{census in municipality } i}{\text{census in the whole region}} \]

\[x_{it} \text{ – control variables} \]
Empirical Model

- Variables:

 \[y_{it} = \begin{cases} 1 & \text{ST in municipality } i \\ 0 & \text{nST in municipality } i \end{cases} \quad \rho_i = \frac{\text{census in municipality } i}{\text{census in the whole region}} \]

\[x_{it} \text{ – control variables} \quad \xi_r \text{ – region effects} \]
Empirical Model

- Variables:
 \[y_{it} = \begin{cases}
 1 & \text{ST in municipality } i \\
 0 & \text{nST in municipality } i
\end{cases} \]

 \[\rho_i = \frac{\text{census in municipality } i}{\text{census in the whole region}} \]

 \[x_{it} - \text{control variables} \quad \xi_r - \text{region effects} \quad \xi_t - \text{year effects} \]
Empirical Model

- **Variables:**

 \[y_{it} = \begin{cases}
 1 & \text{ST in municipality } i \\
 0 & \text{nST in municipality } i
 \end{cases} \]

 \[\rho_i = \frac{\text{census in municipality } i}{\text{census in the whole region}} \]

 \[x_{it} - \text{control variables} \]

 \[\xi_r - \text{region effects} \]

 \[\xi_t - \text{year effects} \]

- **Probit Regression:**

 \[
 P\left(y_{it} = 1 | \rho_i, y_{it-1}, x_{it}, \xi_r, \xi_t \right) = \\
 \Phi \left(\mu_0 + \mu_1 \rho_i + \mu_2 y_{it-1} + \mu_3 x_{it} + \xi_r + \xi_t \right)
 \]

 region effects and year effects are included as regional and year dummies
Empirical Model

- **Variables:**
 \[y_{it} = \begin{cases}
 1 & \text{ST in municipality } i \\
 0 & \text{nST in municipality } i
 \end{cases} \]
 \[\rho_i = \frac{\text{census in municipality } i}{\text{census in the whole region}} \]
 \[x_{it} - \text{control variables} \]
 \[\xi_r - \text{region effects} \]
 \[\xi_t - \text{year effects} \]

- **Probit Regression:**
 \[
 P \left(y_{it} = 1 \mid \rho_i, y_{it-1}, x_{it}, \xi_r, \xi_t \right) = \Phi \left(\mu_0 + \mu_1 \rho_i + \mu_2 y_{it-1} + \mu_3 x_{it} + \xi_r + \xi_t \right)
 \]

 region effects and year effects are included as regional and year dummies

- **No time invariant municipality effects \(\Rightarrow \) I estimate the model by pooling all cross sections**
Empirical Model

- Variables:
 \[y_{it} = \begin{cases}
 1 & \text{ST in municipality } i \\
 0 & \text{nST in municipality } i
\end{cases} \]

 \[\rho_i = \frac{\text{census in municipality } i}{\text{census in the whole region}} \]

 \[x_{it} - \text{control variables} \quad \xi_r - \text{region effects} \quad \xi_t - \text{year effects} \]

- Probit Regression:

 \[P \left(y_{it} = 1 | \rho_i, y_{it-1}, x_{it}, \xi_r, \xi_t \right) = \Phi \left(\mu_0 + \mu_1 \rho_i + \mu_2 y_{it-1} + \mu_3 x_{it} + \xi_r + \xi_t \right) \]

 region effects and year effects are included as regional and year dummies

- No time invariant municipality effects \(\Rightarrow \) I estimate the model by pooling all cross sections

- Hypotheses:
 - \(\mu_1 < 0 \) – ticket splitting is more likely in small municipalities
Empirical Model

- **Variables:**
 \[
y_{it} = \begin{cases}
 1 & \text{ST in municipality } i \\
 0 & \text{nST in municipality } i
\end{cases},
\]
 \[
 \rho_{i} = \frac{\text{census in municipality } i}{\text{census in the whole region}}
\]
 \[
x_{it} - \text{control variables} \quad \xi_{r} - \text{region effects} \quad \xi_{t} - \text{year effects}
\]

- **Probit Regression:**
 \[
P(y_{it} = 1|\rho_{i}, y_{it-1}, x_{it}, \xi_{r}, \xi_{t}) = \Phi(\mu_{0} + \mu_{1}\rho_{i} + \mu_{2}y_{it-1} + \mu_{3}x_{it} + \xi_{r} + \xi_{t})
\]
 Region effects and year effects are included as regional and year dummies.

- No time invariant municipality effects \(\Rightarrow\) I estimate the model by pooling all cross sections.

- **Hypotheses:**
 - \(\mu_{1} < 0\) – ticket splitting is more likely in small municipalities
 - \(\mu_{2} > 0\) – ticket splitting at \(t\) is more likely if ticket splitting at \(t - 1\)
Results
Probability of Ticket Splitting

Hypotheses: $\mu_1 < 0, \mu_2 > 0$
Results

Probability of Ticket Splitting

Hypotheses: $\mu_1 < 0$, $\mu_2 > 0$

\[
P(\text{ticket splitting in } i \text{ at } t) = P(y_{it} = 1)
\]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop. share, μ_1</td>
<td>-2.544*</td>
<td>-2.616**</td>
<td>-2.793*</td>
</tr>
<tr>
<td></td>
<td>(1.332)</td>
<td>(1.309)</td>
<td>(1.456)</td>
</tr>
<tr>
<td>TS in $t - 1$, μ_2</td>
<td>0.734***</td>
<td>0.734***</td>
<td>0.741***</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.043)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Observations</td>
<td>4183</td>
<td>4183</td>
<td>4177</td>
</tr>
</tbody>
</table>

Significant at 10% – *; 5% – **; 1% – ***

(1) – only region dummies
(2) – region dummies and year dummies
(3) – region-year dummies
Results

Probability of Ticket Splitting

![Graph showing probability of ticket splitting against size_i]

- Predicted Pr P_{y_i} of ticket splitting
- Upper bound of P_{y_i}: $1/2$
Summary and Results

Political Agency model of Split-Ticket Voting
Summary and Results

Political Agency model of Split-Ticket Voting

- Politicians’ incentives are correlated \Rightarrow voters use joint performance evaluation to reward politicians
Summary and Results

Political Agency model of Split-Ticket Voting

- Politicians’ incentives are correlated \Rightarrow voters use joint performance evaluation to reward politicians

Dynamics of Ticket Splitting
Summary and Results

Political Agency model of Split-Ticket Voting

- Politicians’ incentives are correlated ⇒ voters use joint performance evaluation to reward politicians

Dynamics of Ticket Splitting

- Ticket Splitting is less likely than voting for candidates from same party
Summary and Results

Political Agency model of Split-Ticket Voting

- Politicians’ incentives are correlated \Rightarrow voters use joint performance evaluation to reward politicians

Dynamics of Ticket Splitting

- Ticket Splitting is less likely than voting for candidates from same party, but somewhat more probable when the voters split tickets in the previous period
Summary and Results

Political Agency model of Split-Ticket Voting

- Politicians’ incentives are correlated \(\Rightarrow\) voters use joint performance evaluation to reward politicians

Dynamics of Ticket Splitting

- Ticket Splitting is less likely than voting for candidates from same party, but somewhat more probable when the voters split tickets in the previous period
- Ticket Splitting is more likely in small municipalities than in large ones
Summary and Results

Political Agency model of Split-Ticket Voting

- Politicians’ incentives are correlated \Rightarrow voters use joint performance evaluation to reward politicians

Dynamics of Ticket Splitting

- Ticket Splitting is less likely than voting for candidates from same party, but somewhat more probable when the voters split tickets in the previous period
- Ticket Splitting is more likely in small municipalities than in large ones

Empirical Analysis
Summary and Results

Political Agency model of Split-Ticket Voting

- Politicians’ incentives are correlated \Rightarrow voters use joint performance evaluation to reward politicians

Dynamics of Ticket Splitting

- Ticket Splitting is less likely than voting for candidates from same party, but somewhat more probable when the voters split tickets in the previous period
- Ticket Splitting is more likely in small municipalities than in large ones

Empirical Analysis

- I estimate probability of ticket splitting using panel data on Spanish simultaneous elections
Summary and Results

Political Agency model of Split-Ticket Voting

- Politicians’ incentives are correlated \Rightarrow voters use joint performance evaluation to reward politicians

Dynamics of Ticket Splitting

- Ticket Splitting is less likely than voting for candidates from same party, but somewhat more probable when the voters split tickets in the previous period
- Ticket Splitting is more likely in small municipalities than in large ones

Empirical Analysis

- I estimate probability of ticket splitting using panel data on Spanish simultaneous elections
- My theoretical model is consistent with patterns of ticket splitting observed in Spanish data