Targeted Competition: Choosing Your Enemies in Multiplayer Games.

Andrei Dubovik Alexei Parakhonyak

Erasmus School of Economics
Tinbergen Institute

January 17, 2010
Examples of Targeted Competition
Examples of Targeted Competition

- Competition in product space and location space
Examples of Targeted Competition

- Competition in product space and location space
- Multiproduct firms
Examples of Targeted Competition

- Competition in product space and location space
- Multiproduct firms
- Comparative advertisement
Examples of Targeted Competition

- Competition in product space and location space
- Multiproduct firms
- Comparative advertisement
- Unethical competition practices
Examples of Targeted Competition

- Competition in product space and location space
- Multiproduct firms
- Comparative advertisement
- Unethical competition practices
- Political competition
Examples of Targeted Competition

- Competition in product space and location space
- Multiproduct firms
- Comparative advertisement
- Unethical competition practices
- Political competition
- Warfare
Research Question

Strategic considerations

Potential outcomes of targeted competition
Research Question

Strategic considerations

- Instantaneous payoffs from competition

Potential outcomes of targeted competition
Research Question

Strategic considerations

- Instantaneous payoffs from competition
- Balance of powers among the rivals

Potential outcomes of targeted competition
Research Question

Strategic considerations

- Instantaneous payoffs from competition
- Balance of powers among the rivals

Potential outcomes of targeted competition

- The weaker players lose to the strongest player
Research Question

Strategic considerations

- Instantaneous payoffs from competition
- Balance of powers among the rivals

Potential outcomes of targeted competition

- The weaker players lose to the strongest player
- The weaker players coordinate against the strongest and, consequently, all the players converge in their powers
Related Literature
Related Literature

Related Literature

- Colonel Blotto games – see, e.g. Roberson (2006).
Related Literature

- Colonel Blotto games – see, e.g. Roberson (2006).
State Space
State Space

- There are 3 players
State Space

- There are 3 players
- x_i – power of player i; $x = (x_1, x_2, x_3)$
State Space

- There are 3 players
- \(x_i \) – power of player \(i \); \(x = (x_1, x_2, x_3) \)
- \(X \) – state space

\[
X = \left\{ x \in \mathbb{R}^3 \left| \sum_{i} x_i = 1, \; 0 \leq x_i < \frac{2}{3} \sum_{j \neq i} x_j \; \forall i \right. \right\}
\]
Actions, Strategies and Payoffs I

\[y_{ij} \geq 0 \] – amount of power player \(i \) uses to compete against player \(j \),

\[\sum_{j \neq i} y_{ij} \leq x_i \]

\[\phi(y_{ij}, y_{ji}) \] – instantaneous payoff that player \(i \) gets from competition with player \(j \),

\[\phi(y_{ij}, y_{ji}) = (a - b(y_{ij} + y_{ji}))y_{ij} \]

\[\pi_i(y) \] – total instantaneous payoff for player \(i \),

\[\pi_i(y) = \sum_{j \neq i} \phi(y_{ij}, y_{ji}) \]
Actions, Strategies and Payoffs I

- \(y_{ij} \geq 0 \) – amount of power player \(i \) uses to compete against player \(j \), \(\sum_{j \neq i} y_{ij} \leq x_i \)
Actions, Strategies and Payoffs I

- \(y_{ij} \geq 0 \) – amount of power player \(i \) uses to compete against player \(j \), \(\sum_{j \neq i} y_{ij} \leq x_i \)

- \(\varphi(y_{ij}, y_{ji}) \) – instantaneous payoff that player \(i \) gets from competition with player \(j \)

\[
\varphi(y_{ij}, y_{ji}) = (a - b(y_{ij} + y_{ji}))y_{ij}
\]
Actions, Strategies and Payoffs I

- $y_{ij} \geq 0$ – amount of power player i uses to compete against player j, $\sum_{j \neq i} y_{ij} \leq x_i$
- $\varphi(y_{ij}, y_{ji})$ – instantaneous payoff that player i gets from competition with player j

$$\varphi(y_{ij}, y_{ji}) = (a - b(y_{ij} + y_{ji}))y_{ij}$$

- $\pi_i(y)$ – total instantaneous payoff for player i

$$\pi_i(y) = \sum_{j \neq i} \varphi(y_{ij}, y_{ji})$$
Actions, Strategies and Payoffs II

- T – game duration, $T = \infty$ if the game never ends
- $S_i(x)$ – terminal payoff for player i

$$S_i(x) = \begin{cases} M & \text{if } x_i > x_j \forall j \neq i \\ 0 & \text{otherwise} \end{cases}$$
Actions, Strategies and Payoffs II

- T – game duration, $T = \infty$ if the game never ends
- $S_i(x)$ – terminal payoff for player i
 \[S_i(x) = \begin{cases} M & \text{if } x_i > x_j \ \forall j \neq i \\ 0 & \text{otherwise} \end{cases} \]
- $y(x)$ – Markovian strategies

U_i – payoff for player i (for the whole game)
\[U_i = \int_0^T e^{-\delta t} \pi_i(y(x(t))) \, dt + e^{-\delta T} S_i(x(T)) \]
Actions, Strategies and Payoffs II

- T – game duration, $T = \infty$ if the game never ends
- $S_i(x)$ – terminal payoff for player i

 $$S_i(x) = \begin{cases}
 M & \text{if } x_i > x_j \ \forall j \neq i \\
 0 & \text{otherwise}
 \end{cases}$$

- $y(x)$ – Markovian strategies
- U_i – payoff for player i (for the whole game)

 $$U_i = \int_0^T e^{-\delta t} \pi_i(y(x(t)))dt + e^{-\delta T} S_i(x(T))$$
Power shifts from the player who fights less to the player who fights more

\[\dot{x}_i(t) = f_i(y(x(t))) \]
\[f_i(y) = \sum_{j \neq i} (y_{ij} - y_{ji}) k \]

\(k \) – power shift intensity
Myopic Players

Proposition
Suppose, without a loss of generality, that \(x_1(0) > x_2(0), \)
\(x_1(0) > x_3(0) \). Then there exists a unique MPE. Moreover, the
equilibrium dynamics are such that the game ends and the
strongest player wins, i.e. \(T < \infty \) and \(x_1(T) > x_2(T), \)
\(x_1(T) > x_3(T) \)

Proof.
Myopic Players

Proposition
Suppose, without a loss of generality, that \(x_1(0) > x_2(0), \)
\(x_1(0) > x_3(0) \). Then there exists a unique MPE. Moreover, the
equilibrium dynamics are such that the game ends and the
strongest player wins, i.e. \(T < \infty \) and \(x_1(T) > x_2(T), \)
\(x_1(T) > x_3(T) \)

Proof.

▶ Best responses: \(\hat{y}_{ij}(x) = \frac{x_i}{2} + \frac{x_k-x_j}{10} \)
Myopic Players

Proposition

Suppose, without a loss of generality, that $x_1(0) > x_2(0)$, $x_1(0) > x_3(0)$. *Then there exists a unique MPE. Moreover, the equilibrium dynamics are such that the game ends and the strongest player wins, i.e. $T < \infty$ and* $x_1(T) > x_2(T)$, $x_1(T) > x_3(T)$.

Proof.

- Best responses: $\hat{y}_{ij}(x) = \frac{x_i}{2} + \frac{x_k - x_j}{10}$
- Equilibrium dynamics: $\dot{x}_i(t) = \frac{9k}{5} \left(x_i(t) - \frac{1}{3} \right)$
The Main Result

Proposition

If $\delta < \frac{4k}{3}$, then there exists an MPE such that for all i

$x_i(t) \to \frac{1}{3}$ as $t \to \infty$.

The idea is to prove the proposition by construction. Let

$$\hat{y}_{ij}(x) = \frac{x_i + c(x_k - x_j)}{2}$$

$$c = \frac{5\delta - 14k - \sqrt{(25\delta - 76k)(\delta - 4k)}}{18k}$$

$$\dot{x}_i(t) = \frac{3k(c + 1)}{2} \left(x_i(t) - \frac{1}{3}\right)$$

If $\delta < \frac{4k}{3}$, then $c < -1$. Consequently, $x_i(t) \to \frac{1}{3}$ as $t \to \infty$.
Conclusions and further research

we defined the problem on X and found an equilibrium;
we showed, that myopic players die out in the game, while if players are patient enough the game continues infinitely, thus the option to target competitors stabilizes competition;
we demonstrated that “collusion-like” behaviour can arise from Markov strategies.
Conclusions and further research

- we defined the problem on X and found an equilibrium;
Conclusions and further research

- we defined the problem on X and found an equilibrium;
- we showed, that myopic players die out in the game, while if players are patient enough the game continues infinitely, thus the option to target competitors stabilizes competition;
Conclusions and further research

- we defined the problem on X and found an equilibrium;
- we showed, that myopic players die out in the game, while if players are patient enough the game continues infinitely, thus the option to target competitors stabilizes competition;
- we demonstrated that “collusion-like” behaviour can arise from Markov strategies.
Thanks! Questions?..