Preemptive Bidding, Target Resistance and Takeover Premia: An Empirical Investigation

Stefano Sacchetto, Theodosios Dimopoulos
London Business School

17 January 2009
Research question

- More than 90% of takeover contests are single bidder
Research question

- More than 90% of takeover contests are single bidder
- Average price paid in single bidder takeovers is 50% over the pre-acquisition target stock price
Research question

- More than 90% of takeover contests are single bidder
- Average price paid in single bidder takeovers is 50% over the pre-acquisition target stock price

Two main explanations in the literature:

1. Target resistance
 * Private benefits of blockholders
 * Job security of employee shareholders
Research question

- More than 90% of takeover contests are single bidder
- Average price paid in single bidder takeovers is 50% over the pre-acquisition target stock price

Two main explanations in the literature:

1. **Target resistance**
 - Private benefits of blockholders
 - Job security of employee shareholders

2. **Preemption** of potential competitors by an initial bidder

 High initial bid discourages competitors from paying the entry costs:
 - Legal and advisory fees
 - Search and investigation costs
Research question

- More than 90% of takeover contests are single bidder
- Average price paid in single bidder takeovers is 50% over the pre-acquisition target stock price

Two main explanations in the literature:

1. **Target resistance**
 - Private benefits of blockholders
 - Job security of employee shareholders

2. **Preemption** of potential competitors by an initial bidder

 High initial bid discourages competitors from paying the entry costs:
 - Legal and advisory fees
 - Search and investigation costs

⇒ Aim: Test target resistance and preemptive bidding theories
Overview

Approach: structural estimation of an auction model of takeovers that encompasses both explanations
Overview

Approach: structural estimation of an auction model of takeovers that encompasses both explanations

- Develop auction model of takeover contests with endogenous entry by bidders
Overview

Approach: structural estimation of an auction model of takeovers that encompasses both explanations

- Develop auction model of takeover contests with endogenous entry by bidders
- Equilibrium conditions \iff Observable takeover outcomes

Target resistance is the main determinant of takeover premia

Stefano Sacchetto, Theodosios Dimopoulos

17 January 2009
Overview

Approach: structural estimation of an auction model of takeovers that encompasses both explanations

- Develop auction model of takeover contests with endogenous entry by bidders
- Equilibrium conditions \leftrightarrow Observable takeover outcomes
- Use information in:
 * takeover bids
 * number of participant bidders
 * takeover outcomes
Overview

Approach: structural estimation of an auction model of takeovers that encompasses both explanations

- Develop auction model of takeover contests with endogenous entry by bidders
- Equilibrium conditions \leftrightarrow Observable takeover outcomes
- Use information in:
 - takeover bids
 - number of participant bidders
 - takeover outcomes

\rightarrow Estimate distribution of bidders’ valuations and costs of entry

\rightarrow Evaluate contribution of preemptive bidding and target resistance on takeover premia

Stefano Sacchetto, Theodosios Dimopoulos

17 January 2009
Overview

Approach: structural estimation of an auction model of takeovers that encompasses both explanations

- Develop auction model of takeover contests with endogenous entry by bidders
- Equilibrium conditions \leftrightarrow Observable takeover outcomes
- Use information in:
 - takeover bids
 - number of participant bidders
 - takeover outcomes

\Rightarrow Estimate distribution of bidders’ valuations and costs of entry
\Rightarrow Evaluate contribution of preemptive bidding and target resistance on takeover premia

\Rightarrow **Target resistance is the main determinant of takeover premia**
Stage 1: Competition among two bidders B_1 and B_2

- B_1 privately observes a signal about takeover opportunity (q)
- B_1 decides whether to pay a cost c_1 to learn his valuation v_1 for the target and make an initial bid
- B_2 observes this bid and then decides whether to pay c_2 and learn v_2
- Participant bidders compete in an English auction for the target
Stage 2: Shareholder Approval

- The winner of the auction \(B_w \) learns minimum offer \(v_0 \) acceptable by target shareholders \(S \)
- \(B_w \) can top up the winning bid in the auction to \(v_0 \)
- \(S \) decide whether to accept or reject the highest standing offer
Model predictions

Initial Bid

\[q = 1 \]
\[c_1 \leq \hat{c}_1 \]

Single bidder contests
\[v_1 \geq \hat{v} \]

Successful takeover (Node 1)
\[v_1 \geq v_0; b = max\{\hat{b}, v_0\} \geq v_0 \]

Target remains independent (Node 2)
\[v_1 < v_0; b = \hat{b} \]

Multiple bidder contests
\[v_1 < \hat{v} \]

Initial bidder wins (Node 3)
\[v_1 \geq b = max\{v_0, v_2\} \]

Successful takeover

Rival bidder wins (Node 4)
\[v_2 > b = max\{v_0, v_1\} \]

Target remains independent (Node 5)
\[v_0 > b = min\{v_1, v_2\} \]
Contest initiation

Single bidder contests

Initial Bid

\[q = 1 \]
\[c_1 \leq \hat{c}_1 \]

Multiple bidder contests

\[\nu_1 < \hat{\nu} \]
Single bidder contests

$\nu_1 \geq \hat{v}$

- Successful takeover (Node 1)
 \[\nu_1 \geq \nu_0; \ b = \max\{\hat{b}, \nu_0\} \geq \nu_0 \]

- Target remains independent (Node 2)
 \[\nu_1 < \nu_0; \ b = \hat{b} \]
Multiple bidder contests

$\hat{v} < v_1$ → Successful takeover

Initial bidder wins (Node 3)

$v_1 \geq b = \max\{v_0, v_2\}$

Rival bidder wins (Node 4)

$v_2 > b = \max\{v_0, v_1\}$

Target remains independent (Node 5)

$v_0 > b = \min\{v_1, v_2\}$
Contest outcomes in the data

Initial Bid
N = 5,137

- Single bidder contests
 N = 4807 (93.58%)
 - Successful takeover
 N = 4258 (82.89%)
 - Target remains independent
 N = 549 (10.69%)

- Multiple bidder contests
 N = 330 (6.42%)
 - Successful takeover
 N = 294 (5.72%)
 - Rival bidder wins
 N = 199 (3.87%)
 - Target remains independent
 N = 36 (0.70%)

Data source: SDC Platinum, bids for control for US public companies, 1988-2006
Estimation results

- Estimation by Indirect Inference (Gourieroux, Monfort and Renault, 1993).
- Comparison of actual and simulated moments:

<table>
<thead>
<tr>
<th>Takeover Outcome</th>
<th>Probability</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Simulation</td>
<td>Data</td>
</tr>
<tr>
<td>Single bidder, suc.</td>
<td>82.89%</td>
<td>81.90%</td>
<td>50.55%</td>
</tr>
<tr>
<td>Single bidder, uns.</td>
<td>10.69%</td>
<td>9.82%</td>
<td>47.86%</td>
</tr>
<tr>
<td>Multiple bidder, B_1 wins</td>
<td>1.85%</td>
<td>1.34%</td>
<td>58.43%</td>
</tr>
<tr>
<td>Multiple bidder, B_2 wins</td>
<td>3.87%</td>
<td>3.74%</td>
<td>68.73%</td>
</tr>
<tr>
<td>Multiple bidder, S wins</td>
<td>0.70%</td>
<td>3.20%</td>
<td>56.30%</td>
</tr>
</tbody>
</table>
Distribution of valuations

<table>
<thead>
<tr>
<th>Premium over pre-acquisition target stock price</th>
<th>Kernel density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>0</td>
</tr>
<tr>
<td>20%</td>
<td>0.2</td>
</tr>
<tr>
<td>40%</td>
<td>0.4</td>
</tr>
<tr>
<td>60%</td>
<td>0.6</td>
</tr>
<tr>
<td>80%</td>
<td>0.8</td>
</tr>
<tr>
<td>100%</td>
<td>1</td>
</tr>
<tr>
<td>120%</td>
<td>1.2</td>
</tr>
<tr>
<td>140%</td>
<td>1.4</td>
</tr>
<tr>
<td>160%</td>
<td>1.6</td>
</tr>
<tr>
<td>180%</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Target shareholders
Second (rival) bidder
First (initial) bidder

<table>
<thead>
<tr>
<th>v_0</th>
<th>v_1</th>
<th>v_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>57.22%</td>
<td>97.17%</td>
</tr>
</tbody>
</table>
Distribution of costs of entry

Mean (%) Mean ($ mil) Median ($ mil) 25-th per. 75-th per.
c_i 1.96% 10.3 1.43 0.43 5.12
Even small costs of entry matter for preemption

1. If no entry threat (c_2 very high), expected premium in successful single bidder contests is 48%
2. In the data this premium is 51% on average
3. Probability that reserve price is higher than preemptive bid is 70.12% in successful single bidder contests

Premia in single bidder contests are mainly determined by target resistance.

1. Initial bidder deters a stronger rival in 8.6% of successful single bidder contests
2. Initial bidder would pay more to acquire the target in auction with probability 47% and by 7.3% on average
Preemptive bidding and Target Resistance

Simulation analysis

- $E(v_0) = 57\% \rightarrow 69\%$
 - Probability that target remains independent: 13\% \rightarrow 21\%
 - Fraction of single bidder contests rises by 2.5\% (91.7\% \rightarrow 94.3\%)
 - Premium in these contests increases by 3.31\%

\Rightarrow Probability of takeover success highly sensitive to target resistance
Preemptive bidding and Target Resistance

Simulation analysis

- $E (v_0) = 57\% \rightarrow 69\%$
 * Probability that target remains independent: 13\% \rightarrow 21\%
 * Fraction of single bidder contests rises by 2.5\% (91.7\% \rightarrow 94.3\%)
 * Premium in these contests increases by 3.31\%

\implies Probability of takeover success highly sensitive to target resistance

- $E (c_2) = 2\% \rightarrow 1\%$
 * Fraction of multiple bidder contests: 8\% \rightarrow 19\%
 * Premium in single bidder contests increases by 5\% (51\% \rightarrow 56\%)
 * Final premium determined by the preemptive bid: 30\% \rightarrow 58\%

\implies Probability of multiple bidder competition highly affected by costs of entry
Conclusions

* Estimate auction model of takeover contests using structural approach
* Simulation: The model reasonably fits the moments in the data
* Bidders are very asymmetric: \(E(v_1) = 97\% \), \(E(v_2) = 58\% \)
* Small costs of entry (2%) can rationalize high preemption rates
* Target resistance accounts for most of the takeover premium