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Abstract

Affine dynamic term structure models (DTSMs) are the standard finance represen-

tation of the yield curve. However, the literature on DTSMs has ignored the coefficient

bias that plagues estimated autoregressive models of persistent time series. We intro-

duce new simulation-based methods for reducing or even eliminating small-sample bias

in empirical affine Gaussian DTSMs. With these methods, we show that conventional

estimates of DTSM coefficients are severely biased, which results in misleading estimates

of expected future short-term interest rates and long-maturity term premia. Our unbi-

ased DTSM estimates imply risk-neutral rates and term premia that are more plausible

from a macro-finance perspective.
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1 Introduction

In affine Gaussian dynamic term structure models (DTSMs)—the standard finance represen-

tation of the yield curve—the factors underlying yields follow vector-autoregressive (VAR)

dynamics with normally distributed errors. Such DTSMs have been widely estimated by

maximum likelihood (ML) methods; however, as shown by Joslin et al. (2010a), ML estimates

of an unrestricted Gaussian DTSM exactly recover the ordinary least squares (OLS) estimates

for the dynamic system. This equivalence result highlights the issue of estimation bias, as

it is well known that OLS estimates are often misleading indicators of the true values of the

parameters of a dynamic system in finite samples. In particular, OLS estimates will generally

be biased toward a dynamic system that displays much less persistence than the true process.

Similarly, conventional estimates of DTSMs likely suffer from substantial small-sample bias

that significantly distorts economic inference.1 For example, if the degree of interest rate per-

sistence is underestimated, expected future short rates would revert too quickly to the mean,

resulting in spuriously stable estimates of risk-neutral rates. Moreover, the estimation bias

would also contaminate estimates of long-maturity term premia. Therefore, in this paper, we

introduce new simulation-based methods for reducing or even eliminating the small-sample

bias in empirical affine Gaussian DTSMs. Our results from applying these methods show

that conventional estimates of DTSM coefficients are severely biased and that the associated

empirical decompositions of forward rates into the risk-neutral forward rates and term premia

are incorrect. Our unbiased DTSM estimates imply risk-neutral rates and term premia that

are more plausible from a both a statistical and macro-finance perspective.

Despite worries about small-sample DTSM bias noted by some researchers, there has been

no systematic examination of the likely bias in DTSM estimates in the literature because

of computational limitations. Standard ML estimation methods have proved to be inten-

sive, “hands-on” procedures because these models exhibit relatively flat likelihood surfaces

with many local optima. The ML computational burden has effectively precluded simulation

studies of the DTSM finite-sample estimation properties.2 However, recent work has shown

that OLS can be used to estimate some or all of the parameters of a DTSM. Specifically,

for a canonical affine Gaussian DTSM in which some linear combinations of yields are priced

1The OLS autoregressive bias is particularly severe when the estimation sample is short and the dynamic
process is very persistent. Empirical DTSMs are invariably estimated under just such conditions, with data
samples that contain only a limited number of highly persistent interest rate cycles. Importantly, the effective
sample size relevant for assessing bias is not simply based on the number of observations. For a given temporal
range of data, using a higher sampling frequency, say, daily instead of weekly, will not significantly reduce the
OLS estimation bias (e.g., Pierse and Snell, 1995).

2Duffee and Stanton (2008) provide the most closely related analysis.
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without error, Joslin et al. (2010a) show that simple OLS recovers the ML estimates of the

parameters of the factor VAR. Furthermore, Hamilton and Wu (2010) show that any such

DTSM, even if overidentifying restrictions are imposed, can be estimated by first obtain-

ing reduced-form parameters using OLS, and then calculating all structural parameters via

minimum-chi-squared estimation. We exploit these results to devise a procedure to estimate

affine Gaussian DTSMs without bias and quantify the severe finite-sample bias in conventional

DTSM estimates.

Our bias correction procedure corrects the small-sample bias in estimates of the param-

eters in a VAR system, which is the relevant dynamic system underlying most DTSMs.3 In

particular, we propose an inverse bootstrap bias correction that finds the data-generating pro-

cess that leads to a mean/median of the OLS estimator equal to the original OLS estimates.

In this way, our correction can completely eliminate estimation bias.4 We provide simulation

results that illustrate the advantages of our approach in comparison to standard estimates.5

Our approach to bias correction builds on earlier contributions in the econometrics literature,

which invert the mapping from the parameters for a data-generating process (DGP) to the

central tendency (mean or median) of the OLS estimator. Notably, Rudebusch (1992) devel-

oped a median-unbiased estimation method for the parameters in a univariate AR(p) model

in which one simulates repeatedly from a DGP, trying different parameter values, until the

element-wise median of the OLS estimator is close to the original estimates.6 In this paper,

we extend this approach to multivariate (VAR) models and introduce a new algorithm which

efficiently and reliably solves the numerical problem of inverting the relevant mapping.

We provide two case studies that demonstrate how our VAR results generalize to the

unbiased estimation of DTSMs. In these case studies, we describe the extent of small-sample

bias in the conventional estimates, provide unbiased estimates, and assess the implications for

expected short rates and term premia. The first case study examines the canonical DTSM

3The statistical literature has developed analytical approximations for the mean bias in univariate autore-
gressions (e.g., Marriott and Pope (1954) and Stine and Shaman (1989)) and VARs (e.g., Nicholls and Pope
(1988) and Yamamoto and Kunitomo (1984)). Examples of analytical applications include Rudebusch (1993),
Amihud and Hurvich (2004), and Engsted and Pedersen (2008). Nowadays, for generality and flexibility,
researchers usually employ simulation-based methods for multivariate bias correction as we do in this paper.

4Our method can completely eliminate median bias, which is what we focus on in our DTSM estimation.
5We also compare our results to the conventional bootstrap bias correction, which estimates the bias by

using the OLS estimates found from the data as the data-generating parameters. This procedure reduces the
bias to order T−2.

6Other closely related econometric work includes Andrews (1993), who proposed an exactly median-
unbiased estimation method for inferring the autoregressive parameter in an AR(1) model, and Andrews
and Chen (1994), who extended this method to obtain approximately median-unbiased estimates of the sum
of the AR coefficients in an AR(p) model. Tanizaki (2000) used a similar simulation-based procedure to obtain
mean- and median-unbiased estimates of regression models with lagged dependent variables.

2



of Joslin et al. (2010a). Using the authors’ same model specifications and data samples,

we quantify the bias in the reported parameter estimates and describe the differences in

the empirical results when the parameters governing the factor dynamics are replaced with

unbiased estimates. The second case study presents a DTSM with overidentifying restrictions,

which precludes estimation of the factor VAR by OLS. Unbiased estimation is achieved by

adapting the consistent two-stage estimation procedure of Hamilton and Wu (2010). We first

obtain both OLS and unbiased reduced-form parameter estimates and then map these into

the model’s structural parameters, thus uncovering the bias in a DTSM that is not canonical.

Our results demonstrate that in each case, unbiased estimates of expected policy rates (risk-

neutral rates) and term premia differ in statistically and economically significant ways from

conventional estimates. The highly persistent, near-integrated nature of interest rates leads

to a dramatic overestimation of the speed of short rate mean reversion in these DTSMs. Our

results show that researchers and policy makers who analyze movements in interest rates are

well advised to use bias-corrected estimators when trying to infer policy expectations and risk

premia.

There are a number of papers in the literature that are related to our attempt to reduce the

bias in DTSM parameter estimates. Notably, Jardet et al. (2009) use a “near-cointegrated”

specification of the dynamic system, which amounts to obtaining estimates by averaging a

stationary and a cointegrated specification. Another approach is to use the information in the

cross section of interest rates to pin down the parameters of the dynamic system, by restricting

the risk pricing (Bauer, 2011; Joslin et al., 2010b). Still another alternative is to use survey

forecasts as additional information to incorporate in the model (Kim and Orphanides, 2005;

Kim and Wright, 2005). While all of these studies can potentially reduce the mean-reversion

bias to some extent, they neither quantify the bias nor provide evidence as to how much it is

reduced. To our knowledge no existing study has quantified the bias in estimates of a DTSM,

or even in a simple interest rate VAR.

Our paper is structured as follows: Section 2 defines the affine term structure model and

discusses how recent advances in DTSM estimation make it possible to perform unbiased

estimation of the model. In Section 3, we discuss the small-sample bias in OLS estimates of

VAR parameters and ways to reduce this bias, including our new method, inverse bootstrap

bias correction. Then we apply our method in two case studies. Section 4 demonstrates how

bias correction changes the estimates of the model of Joslin et al. (2010a) and the implied

risk-neutral rates and term premia. In Section 5 we perform a simulation study tailored to

the JSZ case study to systematically assess the value of bias correction. Finally, in Section

6, we use the framework of Hamilton and Wu (2010) to compare least-squares and unbiased
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estimation of a model that is not canonical. Section 7 concludes.

2 Estimation of affine Gaussian DTSMs

In this section, we describe the specification and estimation of affine DTSMs with a focus on

recent advances in estimation methodology which make unbiased estimation possible. We also

discuss the assumption of stationarity that underlies essentially all implementations of affine

models.

2.1 Model specification

The discrete-time affine Gaussian DTSM, the workhorse model in the term structure literature

since Ang and Piazzesi (2003), has three key elements. First, a vector of N pricing factors,

Xt, follows a first-order Gaussian VAR:

Xt+1 = µ+ ΦXt + Σεt+1, (1)

where εt
iid∼ N(0, IN) and Σ is lower triangular. Second, the short rate, rt, is an affine function

of the pricing factors:

rt = δ0 + δ′1Xt. (2)

Third, the stochastic discount factor (SDF) that prices all assets under the absence of arbitrage

is of the essentially affine form (Duffee, 2002):

− log(Mt+1) = rt +
1

2
λ′

tλt + λ′

tεt+1,

where the N -dimensional vector of risk prices is affine in the pricing factors,

λt = λ0 + λ1Xt,

for N -vector λ0 and N ×N matrix λ1.

With these three elements, it is well-known that a risk-neutral probability measure Q exists

such that the price of an m-period default-free zero coupon bond is Pm
t = E

Q
t (e

−
∑

m−1

h=0
rt+h).

Furthermore, under Q, the pricing factors follow a first-order Gaussian VAR,

Xt+1 = µQ + ΦQXt + ΣεQt+1, (3)
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and the prices of risk determine how the change of measure affects the VAR parameters:

µQ = µ− Σλ0 ΦQ = Φ− Σλ1. (4)

Bond prices are exponentially affine functions of the pricing factors:

Pm
t = eAm+BmXt ,

and the loadings Am = Am(µ
Q,ΦQ, δ0, δ1,Σ) and Bm = Bm(Φ

Q, δ1) follow the recursions

Am+1 = Am + (µQ)′Bm +
1

2
B′

mΣΣ
′Bm − δ0

Bm+1 = (ΦQ)′Bm − δ1

with starting values A0 = 0 and B0 = 0. Model-implied yields are determined by ymt =

−m−1 logPm
t = Am + BmXt, with Am = −m−1Am and Bm = −m−1Bm. Risk-neutral yields,

the yields that would prevail if investors were risk-neutral, can be calculated using

ỹmt = Ãm + B̃mXt, Ãm = −m−1Am(µ,Φ, δ0, δ1,Σ), B̃m = −m−1Bm(Φ, δ1).

Risk-neutral yields reflect policy expectations over the lifetime of the bond, m−1
∑m−1

h=0 Etrt+h,

plus a time-constant convexity term.7 The yield term premium is defined as the difference

between actual and risk-neutral yields, ytpmt = ymt − ỹmt .

It is often convenient to consider forward rates instead of yields, in particular when con-

sidering long-maturity properties of interest rates. Model-implied forward rates for loans

starting at t + n and maturing at t + m are given by f
n,m
t = (m − n)−1(logP n

t − logPm
t ) =

(m − n)−1(mymt − nynt ). Risk-neutral forward rates f̃n,m
t are calculated in analogous fashion

from risk-neutral yields. The forward term premium is defined as ftpn,mt = f
n,m
t − f̃

n,m
t .

With regard to the choice of pricing factors, Xt, one can use unobserved factors (which are

then filtered from observed variables), observables such as yields or macroeconomic variables,

or any combination of latent and observable factors. In this paper, Xt will always contain the

first three principal components of yields, that is, we will focus on “yields-only” models with

observable factors. Our methodology, however, is applicable to cases with observable and/or

unobservable yield curve factors, as well as to macro-finance DTSMs.8 Typically, the number

7The convexity term equals −m−1(A(µ,Φ, δ0, δ1,Σ)−A(µ,Φ, δ0, δ1, 0)).
8Specifically, our estimation method could be applied to such macro-finance models as were used in Ang

and Piazzesi (2003), Joslin et al. (2010b), and Jardet et al. (2009). The only assumption that is necessary for
our method to be applicable is that N linear combinations of pricing factors are priced without error.
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of yields used in estimation of the model will be much larger than the number of pricing

factors—after all one purpose of DTSMs is to reduce the dimensionality of the yield curve.

To prevent stochastic singularity it is common to introduce measurement error. Denoting by

M the number of yields in the data, we will generally assume that N linear combinations of

yields are priced without error, and that there are M −N independent measurement errors.

One possible parameterization of the model is in terms of θ = (µ,Φ, µQ,ΦQ, δ0, δ1,Σ),

leaving aside the parameters determining the measurement error distribution. Given θ, the

risk sensitivity parameters λ0 and λ1 follow from equation (4). Model identification requires

normalizing restrictions (Dai and Singleton, 2000; Hamilton and Wu, 2010). For example, θ

has 34 free elements in a three-factor model, but only 22 parameters are identified, so at least

12 normalizing restrictions are necessary. If the model is exactly identified, one speaks of a

“canonical” model, as opposed to an overidentified model, where additional restrictions are

imposed.

2.2 Estimation with OLS

Maximum likelihood estimation of the model parameters has been found to be very difficult.

Specifically, the likelihood function usually has local optima with very different economic

implications, and finding a global optimum is challenging.9 This situation largely reflects the

very high persistence of the VAR system in equation (1), resulting from the near-unit-root

behavior of interest rates. Consequently, µ and Φ are very hard to estimate in the sense that

statistical uncertainty is high and the estimated persistence is biased downwards. Because the

likelihood function is very flat in certain parameters it is difficult to find the ML estimates by

numerical optimization.

Recent theoretical advances in the DTSM literature, specifically the papers by Joslin,

Singleton and Zhu (2010a, henceforth JSZ) and Hamilton and Wu (2010, henceforth HW),

show that OLS can be used to significantly simplify the estimation problem. JSZ prove that

in a canonical model the ML estimates of µ and Φ can be obtained by OLS. HW estimate a

reduced form of the model using OLS and then find the structural parameters by minimizing

a chi-squared statistic. Given these methodological innovations, there is hardly any need

to maximize a high-dimensional, badly behaved likelihood function in order to estimate a

DTSM.10 Conventional DTSM estimation can in most cases be performed by a consistent

9The list of studies that have documented such problems is long and includes Ang and Piazzesi (2003);
Duffee and Stanton (2004); Kim and Orphanides (2005); Duffee (2009) and Hamilton and Wu (2010). Also see
Christensen et al. (2009) and Christensen et al. (2011), who introduce an arbitrage-free Nelson-Siegel DTSM
that can be readily estimated.

10In a Kalman filter setting, where all observations are contaminated by measurement error and the assump-
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and efficient two-stage estimation procedure, where the first stage consists of simple OLS,

and the second stage involves finding the remaining (JSZ) or structural (HW) parameters,

without any computational or numerical difficulties. Importantly, the use of linear regressions

not only simplifies conventional estimation but also allows for correction of the small-sample

bias in the parameter estimates of the underlying dynamic system.11 In this paper, we show

how to incorporate bias correction into the estimation frameworks of JSZ and HW. We now

discuss each framework in more detail and describe unbiased estimation of both canonical and

overidentified DTSMs.

2.3 Canonical models: the JSZ separation

JSZ suggest a new normalization for canonical DTSMs and use it to derive a separation result

that on one hand simplifies ML estimation and on the other hand enables us to perform unbi-

ased estimation. The two key assumptions are that (i) there are no overidentifying restrictions,

and (ii) N linear combinations of yields are exactly priced by the model. In that case, any

affine Gaussian DTSM is equivalent to one where the pricing factors Xt are taken to be those

linear combinations of yields. Furthermore, the distribution under Q of these pricing factors

is uniquely determined by rQ∞, the risk-neutral unconditional mean of the short rate, λQ, the

eigenvalues of ΦQ, and Σ. That is, any canonical model can be parameterized in terms of

(µ,Φ,Σ, rQ∞, λQ), which has come to be called the “JSZ normalization.” The intuition is that

(i) we parameterize the model in terms of physical dynamics and risk-neutral dynamics, and

(ii) the normalizing restrictions are imposed on the Q-dynamics.

This normalization is particularly useful because of the separation result that follows:

the joint likelihood function of observed yields can be written as the product of (i) the “P-

likelihood,” the conditional likelihood of Xt, which depends only on (µ,Φ,Σ), and (ii) the

“Q-likelihood,” the conditional likelihood of the yields, which depends only on (rQ∞, λQ,Σ)

and the parameters for the measurement errors.12 Because of this separation the values of

(µ,Φ) that maximize the joint likelihood function are the same as the ones that maximize

the P-likelihood. This gives rise to a simple two-step estimation procedure. In the first

step, OLS is used to estimate the parameters governing the VAR for Xt. Denote the OLS

tions of JSZ and HW do not hold, these methods will generally be helpful in finding excellent starting values
for ML estimation.

11Simulation-based bias correction methods become feasible because obtaining regression estimates on each
simulated data set only takes a fraction of a second. In contrast, repeated ML estimation of a DTSM on
simulated data has a prohibitive computational cost.

12There are M −N independent measurement errors, which JSZ assume to have equal variance. This error
variance is not estimated but concentrated out of the likelihood function.
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estimates by (µ̂, Φ̂). In the second step, the remaining parameters, (rQ∞, λQ,Σ), are estimated

by maximizing the joint likelihood function, fixing the values of µ and Φ at µ̂ and Φ̂. This

two-step procedure exactly recovers the ML estimate but is numerically much simpler than

finding the optimum of the joint likelihood function of all model parameters.13

The ML estimates of µ and Φ suffer from the small-sample bias that plagues all least

squares estimates of autoregressive systems. In Section 3, we will elaborate on this bias and

describe procedures to obtain reduced-bias or even unbiased estimates of µ and Φ. Assume

for now that in addition to the OLS estimates we have available some estimates (µ̃, Φ̃) that

we deem superior in terms of small-sample bias properties. Because of the JSZ separation

result, our first-step estimates are independent of the parameter values that in the second

step maximize the joint likelihood function. Differently put, we do not have to worry in the

first step about cross-sectional fit. Based on this insight, we suggest the following estimation

procedure: In the first step, obtain bias-corrected estimates of the VAR parameters. In the

second step, maximize the joint likelihood function over (rQ∞, λQ,Σ), fixing the values of µ

and Φ at µ̃ and Φ̃. This procedure will take care of the small-sample estimation bias for the

parameters governing the dynamic system, while achieving the same cross-sectional fit as ML

estimation.

In Section 4 we will demonstrate the practical consequences of bias correction for JSZ’s

model specification and data set, comparing results obtained using their original estimation

method and this alternative bias-adjusted procedure. Moreover, independent of which esti-

mation procedure a researcher uses, the JSZ normalization is convenient and intuitive, thus

we adopt it throughout this paper.

2.4 Overidentified models: the HW approach

For models that impose overidentifying restrictions the JSZ separation result does not hold.

However, many DTSM studies have imposed zero restrictions or other kinds of restrictions on

model parameters.14 How can we perform unbiased estimation in such models?

HW show that for any affine Gaussian DTSM that exactly prices N linear combinations

of yields, all the information in the data can be summarized by the parameters of a reduced-

form system, which takes the form of two sets of equations: a VAR for the exactly priced

13Note that Σ not only affects the P-likelihood but also the Q-likelihood, since it enters the affine loadings.
Thus we cannot use the estimate of Σ from the VAR estimation, Σ̂, but have to include it in the optimization
in the second step. However, Σ̂ will usually be an excellent starting value.

14In fact, almost every study that uses a DTSM imposes some restrictions. Among the most prominent
examples are Ang and Piazzesi (2003), Kim and Orphanides (2005), Kim and Wright (2005), Cochrane and
Piazzesi (2008), Rudebusch and Wu (2008) and Joslin et al. (2010b).
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linear combinations of yields Y 1
t and a contemporaneous regression equation for the linear

combinations of yields Y 2
t that are priced with error,

Y 1
t = µ1 + Φ1Y

1
t−1 + u1

t , (5)

Y 2
t = µ2 + Φ2Y

1
t + u2

t . (6)

We denote V ar(u1
t ) = Ω1 and V ar(u2

t ) = Ω2. Here, as in most DTSM models, measurement

errors are taken to be uncorrelated, so Ω2 is diagonal. In this paper, we focus on the case

where the DTSM pricing factors are those linear combinations of yields that are exactly priced.

Thus Y 1
t = Xt, µ1 = µ, Φ1 = Φ, and Ω1 = ΣΣ′.

HW suggest a consistent two-step procedure for DTSM estimation. In the first step,

one obtains estimates of the reduced-form parameters by OLS. In the second step, the struc-

tural model parameters are found via minimum-chi-squared estimation: a chi-squared statistic

measures the distance between the estimates of the reduced-form parameters and the values

implied by the structural parameters, and it is minimized via numerical optimization. This

two-step procedure is asymptotically equivalent to ML estimation but greatly reduces the

computational problems. The numerical optimization in the second step is generally faster

and more reliable than for ML estimation: The objective function is a simple distance metric,

and calculating it does not require iterating through the data as is necessary for calculating a

likelihood function. This speeds up the optimization by an order of magnitude and essentially

eliminates the possibility of local optima. For some specifications estimation is even simpler:

if (i) the model is canonical and (ii) only one linear combination of yields is included in Y 2
t

then the number of structural parameters is equal to the number of reduced-form parameters

and the second step becomes almost trivial. In this case minimum-chi-squared estimation and

ML estimation are numerically identical. We will use such a specification, which HW call

exact identification, for a simulation study in Section 5.

Importantly, the HW procedure is applicable to both canonical and overidentified DTSMs.

The procedure relies on regressions to summarize the information in the data, so it permits

unbiased estimation of models that impose overidentifying restrictions. Our procedure for bias

correction replaces the OLS estimates of the VAR system in equation (5) with bias-corrected

parameter estimates. For the contemporaneous regression in equation (6), which has no lagged

dependent variables, we continue to employ OLS since it will deliver unbiased estimates of

(µ2,Φ2). Having obtained bias-corrected estimates of the reduced-form parameters, we per-

form the second stage of the estimation as before, minimizing the chi-squared distance statistic.

This estimation method will deliver estimates of the structural model parameters that are free
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of small-sample bias, and it is applicable to a large variety of DTSMs in the literature.

We will apply this approach in the simulation study in Section 5, where we assess the

implications of bias correction for the accuracy of term premium estimation in a Monte Carlo

setting, as well as in the case study in Section 6, where we estimate a model with risk price

restrictions on real-world data.

2.5 Stationarity of interest rates

The stationarity of yields in estimated affine DTSMs is an important issue. The persistence

of interest rates is sufficiently high so that unit root tests typically cannot reject the null of

a stochastic trend. However, most economists would be uncomfortable with an integrated

specification since nominal interest rates generally do not turn negative and remain within a

limited range. Furthermore, a largest root that exceeded one would be even more problematic,

with unreasonable explosive short rate forecasts. For these reasons, empirical DTSM assump-

tion almost invariably assume stationarity by implicitly or explicitly imposing the constraint

that all roots of the factor VAR are less than one in absolute value.15 Similarly, we assume

that interest rates are mean-reverting—albeit, a reversion that is very slow and hard to detect

statistically.

Conventional DTSM estimates (ML or OLS) typically imply a largest root for the factor

VAR that is comfortably below one. This stationarity result is not surprising given that the

small-sample distribution of the OLS estimator implies a downward bias for the largest root.

Thus, even though the true value of the largest root might be very close to one, nonstationary

estimates almost never occur, and the stationarity restriction is typically not binding. Bias

correction on the other hand, by recentering the distribution of the estimator around the true

values, leads to a more frequent occurrence of nonstationary roots. A simulation study in

Section 3.4 will make this evident. The stationarity restriction imposed on DTSM estimates

thus becomes more relevant: it will be binding much more often than for OLS/ML estimation.

We discuss ways to deal with this in Section 3.3.4.

3 Unbiased Estimation of VAR Models

As a first step to unbiased DTSM estimation, this section describes the small-sample bias in

OLS estimates of VAR systems and ways to reduce or even eliminate that bias. Specifically,

15Prominent examples are Dai and Singleton (2002); Duffee (2002) and Ang and Piazzesi (2003). The
stationarity prior is made explicit in the Bayesian frameworks of Ang et al. (2009) and Bauer (2011).
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we review the conventional bootstrap bias correction and introduce a new method that we

call inverse bootstrap.

3.1 VAR models and finite-sample bias

Consider the VAR system in equation (1). We focus our exposition on a first-order VAR

since the extension to higher order models is straightforward. For future reference, denote the

innovations by ut = Σεt
iid∼ N(0,ΣΣ′). We assume that the VAR is stationary, i.e., that all

the eigenvalues of Φ are less than one in modulus. The parameters of interest are θ = vec(Φ).

Denote the true values by θ0. Consistent estimates of θ0 can be obtained by applying OLS

to each equation of the system, which is numerically equivalent to performing ML estimation

(Hamilton, 1994, chap. 11.1).16 Let θ̂T denote these OLS estimates. Because of the presence

of lagged endogenous variables, the assumption of strict exogeneity is violated and the OLS

estimator is biased in finite samples, i.e., E(θ̂T ) 6= θ0. The bias function bT (θ) = E(θ̂T ) − θ

relates the bias of the OLS estimator to the value of θ.17

The small-sample bias in θ̂T is more severe the shorter the available sample and the more

persistent the process is (see, for example, Nicholls and Pope, 1988). The data samples used

in estimation of DTSMs are relatively short given the high persistence of the interest rate

series, so the bias is potentially quite sizeable.18 Any such bias would tend to underestimate

the persistence, as measured for example by the largest eigenvalue of Φ. In this case, forecasts

of Xt or of linear combinations of Xt (such as the short rate in DTSMs) would revert to their

unconditional mean too quickly.

An alternative for defining bias is to consider the median instead of the mean as the

relevant central tendency of the OLS estimator. Some authors, including Andrews (1993)

and Rudebusch (1992), have argued that median-unbiased estimators have useful impartiality

properties, given that the distribution of the OLS estimator can be highly skewed in autore-

gressive models for persistent processes. We denote the median bias by BT (θ) = Med(θ̂T )−θ.

Here Med(Y ) is the median of random vector Y , which we take to be the element-by-element

median as in Rudebusch (1992).19

16There are two asymptotically equivalent ways to estimate θ: one can either include an intercept in the
regressions or one can work with demeaned values. For reasons that will become clear later, we prefer to work
with demeaned values. To recover an estimate of the intercept µ, one simply uses the relation µ̂ = (Ik − Φ̂)X̄ .

17Because θ̂T is distributionally invariant with respect to µ and Σ, the bias function depends only on θ and
not on µ or Σ. The proof of distributional invariance for the univariate case in Andrews (1993) naturally
extends to VAR models.

18Sampling at higher frequency does not help: intuitively this increases the sample length but also the
persistence (Pierse and Snell, 1995).

19There are alternative definitions of the median of a random vector since orderings of multivariate observa-

11



3.2 Bootstrap bias correction

The bootstrap has become a common method for correcting small-sample mean bias.20 Denote

the demeaned observations by X̃t, and let B denote the number of bootstrap samples. The

algorithm for mean bias correction using the bootstrap is as follows:

1. Estimate the model by OLS and save the OLS estimates θ̂ = vec(Φ̂) and the residuals.

Set b = 1.

2. Generate bootstrap sample b using the residual bootstrap: Resample the OLS residuals,

denoting the bootstrap residuals by u∗
t . Randomly choose a starting value among the T

observations. For t > 1, construct the bootstrap sample using X̃∗
t = Φ̂X̃∗

t−1 + u∗
t .

3. Calculate the OLS estimates on bootstrap sample b and denote it by θ̂∗b .

4. If b < B then increase b by one and return to step two.

5. Calculate the average over all samples as θ̄∗ = B−1
∑B

b=1 θ̂
∗
b .

6. Calculate the bootstrap bias-corrected estimate as

θ̃B = θ̂ −
[

θ̄∗ − θ̂
]

= 2θ̂ − θ̄∗.

For large B, the estimated bias θ̄∗ − θ̂ will be close to bT (θ̂). The motivation for this

approach comes from the fact that E(bT (θ̂)) = bT (θ0) +O(T−2), thus we can reduce the bias

to order T−2 by using this bias correction (Horowitz, 2001).

The bootstrap can also be applied to correct for median bias in a straightforward fashion

(although it appears not to have been employed for this purpose before). Denote by m∗ the

vector stacking the element-wise sample medians of {θ̂∗b}Bb=1. The estimate of the median bias

m∗ − θ̂ will be close to BT (θ̂) for sufficiently large B.

Thus, we have at our disposal a method to obtain estimates of the parameters of a VAR

system with either reduced mean bias or reduced median bias. We can apply it to perform

reduced-bias estimation of DTSMs using the approach of either JSZ or HW described in

Section 2.2. Just applying this bootstrap to reduce the small-sample bias in estimates of

affine Gaussian DTSMs is already a big step forward. However, the bootstrap estimates can

tions are not unique. The one we use here is intuitive, has a straightforward sample analog (the element-wise
sample median), and has been used elsewhere (e.g., Meerschaert and Scheffler, 2001, p. 53).

20For a detailed exposition see Hall (1992) or Efron and Tibshirani (1993, Chapter 10); for a review of the
bootstrap including its application to bias correction, refer to Horowitz (2001). Applications in the time series
literature include Kilian (1998) and Tang and Chen (2009).
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potentially be improved even further. A likely shortcoming of the bootstrap bias correction

is that the bias function is estimated at θ̂T , whereas the true bias is determined by the bias

function at θ0. One might speak of a plug-in principle being applied here, since the bias is

estimated by plugging in the OLS estimate for the unknown parameter value. If the bias

were constant in a neighborhood around θ̂T this procedure would eliminate the bias (up to

simulation error), which prompted MacKinnon and Smith (1998) to call this a “constant-bias-

correcting” (CBC) estimator. In general, however, the bias function is not constant, thus the

bootstrap will systematically get the bias estimate wrong.21 This is illustrated by the median

of the bootstrap-bias-corrected estimator, which (for large B and under the assumption that

BT (·) is monotone) is θ0 +BT (θ0)−BT (θ0 +BT (θ0)) 6= θ0. This insight motivates the refined

bias correction procedure that we introduce in the following subsection.

3.3 Inverse bootstrap bias correction

The method we propose here to obtain bias-corrected estimates of θ0 is to choose that pa-

rameter value which yields a distribution of the OLS estimator with a central tendency equal

to the OLS estimate in the actual data, using the residual bootstrap to estimate this central

tendency. We call our method “inverse bootstrap” bias correction because it is based on what

one might call an inversion principle, instead of the plug-in principle of conventional bootstrap

bias correction. While the idea is not new, we extend it to the context of VAR estimation

and, more importantly, suggest a reliable and efficient algorithm to implement it with low

computational cost even if dim(θ) is large. We first discuss separately the case of mean bias

and median bias correction and then present our algorithm.

3.3.1 Mean bias correction

Define gT (θ) = Eθ(θ̂T ), the mean of the OLS estimator if the data are generated under θ. The

mean-bias-corrected estimator of θ0 is the value of θ that solves

gT (θ) = θ̂T .

We denote this estimator by θ̃T . For identifiability, we assume that gT (·) is uniformly contin-

uous and one-to-one in a neighborhood around θ0, which ensures that there is always exactly

one solution to the above equation. The residual bootstrap can be used to obtain estimates

of gT (θ) for any value of θ, with the precision depending on the number of bootstrap samples.

21One can iterate on the bootstrap bias correction to obtain higher accuracy (Hall, 1992), but the compu-
tational burden increases exponentially, and the bias estimates are still only approximate.
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We can write θ̃T = g−1
T (θ̂T ), which makes it clear why we speak of an inversion principle. Since

the motivation for this method is valid for general bias functions, θ̃T is termed a “nonlinear-

bias-correcting” (NBC) estimator by MacKinnon and Smith (1998).

This method of correcting for mean bias is closely related to indirect inference.22 In fact, if

the true model and the instrumental model are the same, so that we have a consistent estimator

for the true model, the indirect inference estimator for an infinite number of simulations is

exactly θ̃T (Gourieroux et al., 2000).

Correcting for mean bias does not lead to an unbiased estimator. We have

Eθ0(θ̃T ) = Eθ0(g
−1
T (θ̂T )) 6= g−1

T (Eθ0(θ̂T )) = g−1
T (gT (θ0)) = θ0,

except for the unlikely special case that the bias function is linear, since the expectation

operator does not go through nonlinear functions.

3.3.2 Median bias correction

Let GT (θ) = Medθ(θ̂T ) denote the element-wise median of the OLS estimator if the DGP is

governed by θ. The median bias-corrected estimator of θ0 is the value of θ that solves

GT (θ) = θ̂T .

For this estimator we will write θ̆T . We make the same assumptions about GT (·) as about

gT (·) for identifiability. Thus θ̆T = G−1
T (θ̂T ).

For the case of an AR(1) model, this estimator exactly corresponds to the one proposed

by Andrews (1993). Rudebusch (1992) used this estimator to obtain parameter estimates in

an AR(p) model. We extend it to VAR models.

As opposed to the case of mean bias correction, this estimator is in fact exactly median-

unbiased, under the assumptions we made about GT (·):

Medθ0(θ̆T ) = Medθ0(G
−1
T (θ̂T )) = G−1

T (Medθ0(θ̂T )) = G−1
T (GT (θ0)) = θ0.

The crucial difference is that the median operator does go through monotone functions.

22For a review of indirect inference, see Gourieroux and Monfort (1996, Chapter 4).
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3.3.3 Algorithmic implementation

We now present an algorithm that can be used to reliably and rather quickly find the bias-

corrected estimates, focusing on θ̃T for this exposition. Define R(θ) = θ̂T − gT (θ). Since the

bootstrap gives us noisy measurements of gT (θ), the problem of finding a solution to R(θ) = 0

is different from classical root-finding.23 Instead it is a problem in the area of “stochastic

approximation,” pioneered by Robbins and Monro (1951). Their crucial insight was that for

each attempted value of θ we do not need a very precise measurement of R(θ), because it is

only used to lead us in the right direction. Thus a small number of bootstrap replications is

sufficient in each iteration, which greatly lowers our computational cost. The basic stochastic

approximation algorithm is to construct a sequence according to

θ(j+1) = θ(j) + α(j)Y (j), (7)

where α(j) is a deterministic scalar sequence and Y (j) is a noisy measurement of R(θ(j)). Under

some specific conditions about α(j), the sequence will converge to θ̃T . However, the sequence

of averages, θ̄(j) = j−1
∑j

i=1 θ
(i), converges even if α(j) is taken to be a constant (between zero

and one) and it does so at an optimal rate (Polyak and Juditsky, 1992). Under some rather

weak conditions on R(·), α(j) and the measurement error, we have θ̄(j) → θ̃T almost surely,
√
-

asymptotic normality, as well as optimality in the sense of a maximum rate of convergence.24

Motivated by these results, we use the following algorithm:

1. Choose as a starting value θ(1) = θ̂T . Set j = 1.

2. Using θ(j), obtain a measurement Y (j): estimate gT (θ
(j)) using a residual bootstrap with

B replications (for details, see below) and set Y (j) equal to the difference between θ̂T

and this estimate.

3. Calculate θ(j+1) using equation (7).

4. Calculate θ̄(j+1), the average of the θ(j)’s for j = 1, . . . , j + 1.

5. If an exit condition is fulfilled, take θ̄(j+1) as the bias-corrected estimate of θ0. Otherwise,

increase j and return to step 2.

23Our assumptions about gT (·) imply that R(θ) = 0 has a unique solution.
24The only assumption that needs mentioning here is that the Jacobian at the solution point needs to be a

Hurwitz matrix, i.e., the real parts of the eigenvalues of R′(θ̃T ) need to be strictly negative. Only if R(·) is
decreasing in this sense does it make sense to increase the value of θ(j) when we have positive measurements
(equation 7). We check this condition by estimating the Jacobian at θ̂T , verifying that it is Hurwitz, and

relying on the assumption that this does not change between θ̂T and θ̃T . Details on how we estimate the
Jacobian in this particular setting are available upon request.
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In step two the approximate mean of the OLS estimator for a given θ(j), i.e., an estimate

of gT (θ
(j)), is obtained using a residual bootstrap with B replications. We randomly choose

the starting values among the T observations. For t > 1 the bootstrapped series is obtained

using X̃∗
t = Φ(j)X̃∗

t−1 + u∗
t , where u∗

t are the bootstrap residuals, and Φ(j) denotes the N ×N

matrix containing the elements of of θ(j). Importantly, the bootstrap residuals have to be

obtained for a given θ(j): One cannot resample the original VAR residuals since these do

not, together with θ(j), generate the original data. Instead one has to first obtain a series of

residuals ût = X̃t − Φ(j)X̃t−1, for t > 1, which then can be resampled in the usual way to

create the bootstrap residuals u∗
t .
25

We choose α(j) = 0.5 and B = 50, unless otherwise specified. Instead of devising a specific

exit condition which might be computationally costly to check, we simply run the algorithm

for a fixed number of iterations. We do not calculate θ̄(j) using all iterations but instead

discard the first part of the sample, corresponding to the idea of a burn-in sample in the

Markov chain Monte Carlo literature. Unless otherwise specified, we use 1000 iterations as a

burn-in sample and then take as our estimate the average of the next 5000 iterations.

To verify the convergence of the algorithm, we then check how close θ̄(j) is to θ̃T . This

is feasible despite θ̃T being unknown, since we can obtain a measurement of R(θ̄(j)) with

arbitrarily small noise by using a large B, and check how close it is to zero. As the distance

measure, we take root mean-square distance, that is d(a, b) = (l−1(a − b)′(a − b))1/2 for

two vectors a, b of equal length l. We use this distance metric because it is invariant to

the dimensionality of θ. We calculate d(Y (j), 0), using a precision for the measurement of

B = 100, 000, and verify that this distance is less than 10−3.

While the structure of our algorithm has solid theoretical foundations, our specific con-

figuration (α(j), B, number of burn-in/actual iterations) is admittedly arbitrary. We chose it

based on our own experience with the algorithm. The specifics of the problem likely would

allow us to reduce the computational cost further by choosing the configuration in some opti-

mal way. We leave this for future research. With our configuration, the computational costs

are very manageable: For a VAR(1) with 3 variables and about 300 observations, using a Dell

Laptop with Intel Core i5 CPU (2.53 GHz, 3.42 GB RAM), it takes about five minutes to run

the algorithm.

3.3.4 Explosive VAR dynamics

A problematic aspect of bias correction in VAR models is the possibility of explosive estimates,

which contradicts our prior that interest rate dynamics should be stationary. There are two

25This notation suppresses the dependence on the bootstrap replication b and on the iteration j.
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alternative ways to ensure stationarity of the bias-corrected estimates. First, the restriction

could be systematically incorporated into the bias correction procedure, so in each iteration in

the stochastic approximation algorithm, the proposed update, θ(j)+α(j)Y (j), is projected into a

constraint set. Alternatively, as in Kilian (1998), a stationarity adjustment can be applied after

obtaining unrestricted bias-corrected estimates. There are three advantages to this second

approach. First, it will often be the case that bias-corrected estimates are stationary so no

adjustment is needed. Second, when needed, a two-step procedure is straightforward and

easy to implement. Third, it can be instructive to identify cases in which unrestricted bias

correction would lead to nonstationary estimates. In our experience, while nonstationary

estimates are certainly possible, even if the DGP is stationary and the model is correctly

specified (as shown below), such estimates seem most prevalent when the VAR is misspecified.

Hence, nonstationary roots after bias correction may raise a useful warning sign.

In our two empirical case studies in Sections 4 and 6, our bias-corrected estimates turn out

to be stationary, so explosive eigenvalues are not an issue. In our VAR simulation study below

(Section 3.4), we focus on parameter bias—we do not ensure stationarity and simply report

the frequency of nonstationary roots. However, in the DTSM simulation study in Section 5,

stationarity of the estimated system is crucial, therefore we will apply Kilian’s stationarity

adjustment to those bias-corrected estimates which have nonstationary roots.

3.4 AR/VAR Monte Carlo study

To assess the performance of our proposed bias correction method, we present the results of a

simulation study, which considers both a univariate AR model as well as a two-variable VAR

model. To create a setting that is comparable to the reality faced by researchers analyzing

interest rates, we first estimate AR and VAR models on quarterly interest rate data. Specifi-

cally we use zero coupon rates at 120 maturities spanning one month to 10 years, starting in

1985:Q1 and ending in 2009:Q4.26 The sample length is thus T = 100. We extract the first

two principal components from the cross section of yields; for the AR model, we use just the

first principal component. For this sample, the Schwartz-Bayes information criterion suggests

a lag order of one for both the AR and VAR. We take the OLS estimates as our DGP, setting

26The zero coupon rates are constructed from observed bond prices using unsmoothed Fama-Bliss forward
rates. We thank Anh Le from the University of North Carolina for providing us with this data set. It has
been used, for example, in Joslin et al. (2010b).
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the lower-left element of Φ to zero since it is insignificant:

Xt+1 =

(

.95 .14

0 .87

)

Xt + Σεt+1, Σ =

(

.066 0

−.006 .019

)

, εt
iid∼ N(0, I2).

For the AR(1) model, the autoregressive coefficient is estimated by OLS as 0.95. We also

consider the bias-corrected estimate of the autoregressive coefficient, obtained using the inverse

bootstrap, which turns out to be 0.99.

We generate M = 10, 000 samples and calculate for each replication the OLS estimates

and mean-bias-corrected as well as median bias-corrected estimates using both conventional

bootstrap (CB) and inverse bootstrap (IB). For the conventional bootstrap bias correction,

we use 1,000 replications. For the inverse bootstrap, we use 10 replications in each step and

iterate the algorithm 1,100 times, discarding the first 100 values as the burn-in sample.

Table 1 shows the results of our simulations. For each parameter, the first column shows the

true value, the next three columns show the mean bias for OLS and the mean-bias-corrected

estimates, and columns five through seven show median bias for OLS and the median bias-

corrected estimates. In addition, the last row of each panel shows the relative frequency

of nonstationary roots. For the VAR, the bottom panel also reports the “root-mean-squared

bias,” which is the square root of the mean-squared bias across the four parameters, the “total

absolute bias,” which is the sum of the absolute values of the bias in each parameter, and the

mean/median bias for the largest eigenvalue of Φ.

The results for the AR(1) models demonstrate how the well-known Kendall bias is reduced

by an order of magnitude by means of the conventional bootstrap and inverse bootstrap.

Theory predicts that for mean bias either method could do better (MacKinnon and Smith,

1998) but that for median bias the inverse bootstrap should be superior (Andrews, 1993),

and this is exactly what we find. Turning to the VAR model, the results also show how bias

correction significantly reduces the bias. The total absolute bias is reduced by 80-90% using

the bootstrap, and the dramatic downward bias in the largest eigenvalue disappears. Relative

to the standard bootstrap, the inverse bootstrap estimates most elements of Φ with less bias;

indeed, the measures of total bias are roughly cut in half. These observations hold both for

mean and median bias. One caveat is that the largest root is estimated with slightly larger

bias than with the bootstrap, but the improvement over OLS is still sizeable.

Bias correction often leads to nonstationary roots. Although the DGP is stationary and the

estimated model is correctly specified, there is a non-zero probability that the realized value

of the OLS estimator is such that bias correction leads to explosive estimates. Consequently,

in practice some type of stationarity adjustment will be necessary to ensure that estimated
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Table 1: Simulation results – parameter bias

true value Mean bias Median bias
OLS CB IB OLS CB IB

AR(1), ρ = .95
ρ 0.95 -0.0474 -0.0066 -0.0029 -0.0374 -0.0057 -0.0003
freq. expl. 0.10% 12.33% 16.17% 0.10% 6.91% 9.84%
AR(1), ρ = .99
ρ 0.99 -0.0533 -0.0113 -0.0120 -0.0437 -0.0102 -0.0024
freq. expl. 1.84% 39.74% 42.57% 1.84% 29.76% 32.27%
VAR model
Φ11 0.95 -0.0499 -0.0062 -0.0031 -0.0408 -0.0052 0.0005
Φ12 0.14 0.0078 -0.0010 -0.0032 0.0072 -0.0019 -0.0047
Φ21 0 -0.0011 -0.0003 -0.0002 -0.0012 -0.0003 -0.0002
Φ22 0.87 -0.0544 -0.0079 -0.0022 -0.0450 -0.0064 -0.0008
root-mean-sq. bias 0.0371 0.0051 0.0025 0.0306 0.0042 0.0024
total abs. bias 0.1132 0.0154 0.0086 0.0942 0.0137 0.0061
max. eig. 0.95 -0.0419 0.0074 0.0113 -0.0368 0.0047 0.0122
freq. expl. 0.02% 15.79 % 19.40% 0.02% 9.66% 12.83%

Notes: True values, mean bias, median bias, and summary statistics for different estimators in a
Monte Carlo study with M=10,000 replications and T=100 observations, using an AR(1)/VAR(1)
as a DGP (for details see text). The first row in the first two panels and the first four rows in the
third panel show for parameter the true value, the mean bias of the OLS estimates, and the
mean-bias-corrected estimates using the conventional bootstrap (CB) and the inverse bootstrap
(IB), as well as the median bias of the OLS estimates and the median bias-corrected estimates
using the bootstrap and the inverse bootstrap. The last row in each panel shows the frequency with
which explosive eigenvalues occur. The remaining rows in the third panel show the
root-mean-squared bias across parameters, the total absolute bias across parameters, and the true
value and mean/median bias for the largest eigenvalue of Φ.

dynamics are not explosive.

We draw two conclusions from this simulation study: First, both the bootstrap and in-

verse bootstrap are useful and reliable methods to reduce the bias in OLS estimates of VAR

parameters. Second, the inverse bootstrap is a superior bias correction method compared to

the standard bootstrap correction—it can further reduce mean bias and essentially eliminate

median bias in the parameter estimates.
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Table 2: JSZ case study – OLS and unbiased parameter estimates

OLS MU
µ× 1200 -0.5440 -0.1263 0.0700 -0.3402 -0.2192 0.0770

Φ 0.9788 0.0133 0.4362 0.9962 0.0005 0.4399
0.0027 0.9737 0.3532 -0.0013 0.9901 0.3517
-0.0025 -0.0023 0.8537 -0.0002 0.0014 0.8732

|eig(Φ)| 0.9678 0.9678 0.8706 0.9949 0.9949 0.8696
rQ∞ × 1200 8.6055 8.6478

λQ 0.9976 0.9519 0.9287 0.9976 0.9519 0.9287
Σ× 1200 0.6365 0 0 0.6430 0 0

-0.1453 0.2097 0 -0.1464 0.2105 0
0.0630 -0.0117 0.0867 0.0633 -0.0115 0.0872

Notes: Parameter estimates of the DTSM in Joslin et al. (2010a). The left panel shows point
estimates for the case that the dynamic system (factor VAR) was estimated by OLS; the right
panel shows the corresponding results for the case of median-unbiased (MU) estimation.

4 JSZ Case Study

In an important contribution to the term structure literature, JSZ develop a new normalization

that allows separate estimation of the physical and risk-neutral dynamics. In this section, we

replicate the model estimates in JSZ, provide bias-corrected estimates of that model, and

compare the associated risk-neutral forward rates and term premia.

4.1 Unbiased JSZ model estimation

We replicate JSZ’s “RPC” canonical DTSM. The pricing factorsXt are the first three principal

components of yields, where ΦQ has distinct real eigenvalues. That is, the pricing factors are

Xt = WYt, where W consists of the eigenvectors corresponding to the three largest eigenvalues

of the covariance matrix of Yt. There are no overidentifying restrictions, thus there are 22 free

parameters, not counting measurement error variances. The free parameters are µ (3), Φ (9),

rQ∞, λQ (3), and Σ (6). The JSZ data consist of zero-coupon yields that are bootstrapped from

end-of-month constant maturity Treasury yields from the Fed’s H.15 release, from January

1990 to December 2007. The yield maturities are 6 months and 1, 2, 3, 5, 7 and 10 years.27

The M = 7 observed yields at time t are stacked in the vector Yt = [ym1

t , ym2

t , ..., ymM

t ]′.

We perform ML estimation and median-unbiased (MU) estimation of the model. For the

27JSZ have made their data and the MATLAB code used for estimation available online at
http://www.stanford.edu/˜kenneths/jsz.zip.
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Table 3: JSZ case study – summary statistics

OLS MU
max. eig. 0.9678 0.9949
half-life 24.7 136.7
CIR 34.1 162.7
IRF at 5y 0.16 0.76

σ(f 47,48
t ) 1.392 1.392

σ(f̃ 47,48
t ) 0.388 1.356

σ(ftp47,48t ) 1.301 1.440

Notes: Summary statistics for OLS and median-unbiased (MU) estimates of the DTSM in Joslin et
al. (2010a). First row: maximum eigenvalue of the estimated Φ. Second to fourth row: half-life,
cumulative impulse response, and value of the impulse response function at the five-year horizon for
the response of the level factor to a level shock. Rows six to eight show standard deviations of the
fitted 47-to-48-month forward rates and of the corresponding risk-neutral forward rates and forward
term premia.

ML estimation, we exactly follow JSZ and are able to replicate their estimates, shown in the

left panel of Table 2.28 To obtain bias-corrected estimates of the model parameters, we follow

the procedure descripted in Section 2.3. In the first stage, we obtain MU estimates of (µ,Φ)

using the inverse bootstrap. These are reported in the top right section of Table 2. Note how

the bias correction procedure significantly increases the absolute value of the largest eigenvalue

of Φ, which now is 0.9949 instead of 0.9678. In the second stage, we maximize the likelihood

function over
(

rQ, λQ,Σ
)

, taking as given the unbiased estimates of the VAR parameters. The

estimates we obtain are reported in the bottom right of Table 2. Because of the JSZ separation

result, the estimated risk-neutral dynamics and the estimated Σ are very similar, whether we

use OLS or MU estimation for the physical dynamics.29

4.2 Economic implications of bias correction

To highlight the economic implications of bias-corrected DTSM estimates, we examine mea-

sures of persistence and decompose forward rates into expectations and risk premium compo-

nents.

28Compare the top left panel of our Table 2 with the top row of JSZ’s Table 3, noting that (I − Φ)
−1

µ =
θP/12 and (Φ− I) = KP

1 /12. Compare the middle left panel of our Table 2 with the top row of JSZ’s Table
2, noting that our risk-neutral eigenvalues are one plus JSZ’s risk-neutral eigenvalues.

29The differences in the Q-parameters between the left and the right panel stem from the fact that Σ enters
both the P-likelihood and the Q-likelihood. Therefore, different values of µ and Φ will lead to different optimal
values of

(

rQ, λQ,Σ
)

in the second stage.
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The top panel of Table 3 provides four measures of the persistence of the estimated dynam-

ics. The first row reports the maximum absolute eigenvalue of the estimated mean-reversion

matrix Φ, which is considerably closer to one after bias correction. The second to fourth rows

are based on the impulse response function (IRF) of the level factor to a level shock. The

second row shows the half-life, which is around two years for OLS and around eleven years

for MU. The third row reports the cumulative impulse response (CIR), which is increased by

the bias correction by a factor of about 4.5. The fourth row reports the value of the IRF at

the five-year horizon, which shows a similar increase after bias correction. The unescapable

conclusion is that the OLS JSZ model estimates greatly understate the persistence of the

dynamic system.

On practical effect of the JSZ underestimation of persistence can be illustrated with a

decomposition of forward rates. We focus on the one-month forward rate for a loan maturing

in four years, i.e., f 47,48
t . The last three rows of Table 3 show standard deviations of this

forward rate and of the component risk-neutral forward rate and forward term premium. Not

surprisingly, the slower mean reversion of the unbiased DTSM estimate produces more volatile

future short rate expectations and hence risk-neutral rates.30

This greater volatility following the correction for estimation bias is evident in Figure 1,

which shows the fitted forward rate, risk-neutral forward rate, and forward term premium

for our sample based on OLS estimates (top panel) and MU estimates (bottom panel). The

risk-neutral forward rate resulting from OLS estimates displays little variation, and the asso-

ciated term premium closely mirrors the movements of the forward rate. The secular decline

in the forward rate is attributed to the risk premium component. In contrast, the risk-neutral

forward rates obtained from the unbiased DTSM estimates vary over time and account for a

considerable portion of the secular decline in the forward rate. From a macro-finance perspec-

tive, the later decomposition seems more plausible. The MU future short rate expectations are

low during recessions (denoted by the shaded bars) and in the early stages of expansions, which

is consistent with a sustained countercyclical monetary policy response. In particular, such

time variation is evident in survey-based interest rate forecasts (Kim and Orphanides, 2005)

and far-ahead inflation expectations (Kozicki and Tinsley, 2001). Similarly, the MU estimated

term premium varies significantly over time and—fittingly for a compensation for risk—rises

notably during recessions. Most macroeconomists believe that risk premia behave in such a

countercyclical fashion, given theoretical work such as Campbell and Cochrane (1999) and

Wachter (2006) as well as empirical evidence from Harvey (1989) to Lustig et al. (2010). In

30The variability of the forward term premium is also higher for the unbiased case, which is due to the
covariation of the term premium and risk-neutral forward rates. This result appears specific to the particular
data set used, while the greater variability of risk-neutral forward rates seems more general.
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Figure 1: JSZ case study – decomposition of forward rates
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One-month forward rates with four years maturity, decomposed into risk-neutral forward rates and
forward term premia using the affine Gaussian DTSM of Joslin et al. (2010a). Sample: Monthly
observations from January 1990 to December 2007. Top panel: factor VAR estimated by OLS.
Bottom panel: factor VAR estimated by MU.
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contrast, the OLS estimated term premium is very stable and, if anything, appears to decline

a bit during economic recessions. The pronounced countercyclical pattern in the unbiased

term premium makes it a more plausible measure of bond risk premia than conventional term

premia that suffer from small-sample bias.

In sum, this case study shows that the small-sample bias inherent in the DTSM estimates of

Joslin et al. (2010a) is significant and that taking account of this bias leads to term premium

estimates that are economically different from the term premium estimates implied by the

results reported in JSZ.

5 DTSM Monte Carlo study

The simulation study in Section 3.4 has demonstrated how bias correction methods can suc-

cessfully reduce the small-sample bias in the VAR parameter estimates. However, as illustrated

in the preceding case study, the objects of interest in a DTSM are often nonlinear functions

of the parameters, such as expected risk-neutral rates and term premia, which may not show

as much of a difference from bias correction. Thus, to follow up on the JSZ case study, it is

useful to systematically investigate whether bias correction actually improves inference about

expected short rates and term premia. For this purpose we perform a Monte Carlo study that

repeatedly simulates interest rate data from the estimated JSZ DTSM and then re-estimates

that specification using OLS and MU methods. Since we know the population properties as

well as the exact time series in each sample of risk-neutral rates and term premia, we can

assess the accuracy of the conventional and bias-corrected methods.

5.1 Simulation and estimation

The DGP is the three-factor JSZ specification estimated in Section 4. We assume the first three

principal components of yields are pricing factors are exactly priced by the model. We simulate

1000 data sets for the same seven maturities as in JSZ. As DGP parameters, we take the MU

estimates that were reported in Table 2. For the pricing factors Xt, we simulate time series

with T=300 observations from the VAR, drawing the starting values from their stationary

distribution.31 Model-implied yields are given by Yt = A + BXt, where A = (Am1
, . . . , Am7

)′

and B = (Bm1
, . . . , Bm7

)′. We obtain the yield-loadings for given (rQ∞, λQ,Ω,W ), with the

3×7 matrix W containing the loadings for the first three principal components in the original

31The unconditional mean is E(Xt) = (I − Φ)−1µ. The unconditional variance V0 = V ar(Xt) is related to
the innovation variance ΣΣ′ by the equation vec(V0) = (IN2 − Φ⊗ Φ)−1vec(ΣΣ′) (Hamilton, 1994, p. 265).
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yield data. Note that by construction Xt = WYt. The pricing factors, which are three linear

combinations of yields, are assumed to be measured without error, i.e., Y 1
t = Xt.

We use the HW framework for estimation, which is computationally very simple for the

exactly identified case where the number of measured series is equal to N+1. In particular, we

only generate one series measured with error, Y 2
t = W2Yt+et, where W2 = (0, 0, 0, 0, 0,−7, 10)

and et
iid∼ N(0, σ2

e), with σe = .0001. This choice of W2 makes Y 2
t proportional to the seven-

to-ten-year forward rate.32 The specific advantage of the HW estimation method for the

case of exact identification is that the second-stage estimation is much simpler and more

reliable than for the overidentified case. Since the number of structural parameters is equal to

the number of reduced-form parameters, the chi-squared statistic achieves a value of exactly

zero (up to numerical accuracy of the nonlinear equation solver). Thus, we know for sure

whether we have found the global minimum in the second stage. Furthermore, the task of

finding the structural parameters can be divided into a sequence of smaller steps—first find

the P-parameters, second find λQ, third find rQ∞—which accelerates and simplifies finding the

minimum of the chi-squared statistic. The estimation works as follows: In the first stage we

estimate the VAR for Y 1
t , which provides us with estimates of (µ,Φ,Σ), and we regress Y 2

t on

Y 1
t , resulting in reduced-form loadings µ̂2 (a scalar) and Φ̂2 (a 1 × 3 vector). For the VAR,

we perform both OLS and MU estimation.33 Bias correction is not necessary for the cross-

sectional regression. In the second stage, we minimize the chi-squared statistic, which is very

straightforward because of exact identification. From the VAR estimates, we already know the

P-dynamics, and we only need to find λQ and rQ∞. We choose λQ to make the model-implied

loadings of Y 2
t on Xt, given by W2B, match the reduced-form loading Φ̂2. Then we choose rQ∞

such that the intercept of Y 2
t , given by W2A, matches µ̂2. This estimation procedure is very

fast and very reliable.34

Since our inference focuses on objects that are highly sensitive to persistence of the es-

timated VAR dynamics, we need to ensure stationarity of the estimates. For MU estimates

that have nonstationary roots we apply the stationarity adjustment proposed in Kilian (1998),

which shrinks the bias-corrected estimates to the (stationary) OLS estimates just enough to

make them stationary. In those rare cases where OLS estimates are explosive, we shrink the

32The specific choice of W2 is of minor importance, the only requirement being that it not be an exact linear
combination of the rows of W .

33To find MU estimates using the inverse bootstrap, we calculate the average over 1000 iterations, after 100
burn-in iterations. In each iteration, we calculate the median of the OLS estimates across 10 replications and
update using α(j) = .5.

34Note that we use the same W and W2 in the data simulation and in estimation, which ignores that in
reality a researcher would have to decide which linear combinations are taken to be measured with and without
error, and that loadings of principal components would be different in each data set. We do this for simplicity
and to focus attention on the inference about parameters.
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estimates towards zero in a similar fashion, and only then proceed to obtain bias-corrected es-

timates. Our procedure ensures stationarity of the estimated dynamic system in every Monte

Carlo replication.

We calculate fitted four-to-five-year forward rates and the corresponding risk-neutral rates

and term premia. Based on the realized sample path of Xt, these rates and premia can be

calculated (i) for the true DGP parameters, (ii) for the OLS parameters, and (iii) for the MU

parameters. Interest lies in the question of how close the estimated series correspond to the

true series, and we assess this by focusing on two types of summary statistics: volatilities and

root-mean-squared errors (RMSEs). We report these statistics based on annualized interest

rates in percentage points. The motivation for considering volatilities is that the small-sample

bias in conventional DTSM estimates supposedly makes risk-neutral forward rates too stable.

We look at both sample and population volatilities: For each simulation, we calculate in-

sample volatilities of rates and premia for the DGP, OLS, and MU.35 We expect volatilities

of risk-neutral rates implied by MU to be larger and closer to the true DGP volatilities than

those for OLS. The RMSEs that we calculate measure the accuracy of estimated rates and

premia in relation to the true series implied by the DGP parameters.

5.2 Results

In Table 4 we show the DGP parameters and the median bias in the OLS and MU estimates.

The bias in the estimates of the P-dynamics is quite significant for OLS, while the MU es-

timates generally show much smaller bias, as was to be expected in light of the results of

Section 3.4. With regard to the Q-dynamics, rQ∞ is estimated with a slight downward bias

both by OLS and MU. The intuitive reason is that the largest root under Q is very close to

one, which makes inference about the long-run mean under Q more difficult.36 Finally, λQ

and Σ are estimated without any systematic bias by both OLS and MU. In sum, the physical

dynamics of the DGP are more accurately recovered if one uses MU estimation as opposed to

OLS, while the remaining parameters are estimated with similar accuracy in either case.

Table 5 presents summary statistics about the persistence of the estimated dynamic system

and about how well forward rates and risk premia are estimated. In the first four rows, we

show the true values (DGP) and the medians across replications of the estimated values

35We do not report population volatilities, which in principle can be calculated based on the estimated
long-run variance of the pricing factors and the loadings of forward rates and term premia. These are highly
sensitive to the VAR parameters, and bias in parameter estimates implies that the parameter-implied popu-
lation variances are not comparable.

36This has motivated some researchers to restrict the largest root under Q to one and rQ∞ to zero, in which
case the long end of the yield curve is determined by a level factor (Bauer, 2011; Christensen et al., 2011).
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Table 4: DTSM Monte Carlo study – true parameter value and bias

DGP Median bias OLS Median bias MU
µ× 1200 -0.340 -0.219 0.077 -0.189 0.067 -0.008 -0.064 0.023 -0.008

Φ 0.996 0.000 0.440 -0.013 0.015 0.005 -0.004 0.005 0.012
-0.001 0.990 0.352 0.003 -0.012 0.000 0.001 -0.003 -0.003
0.000 0.001 0.873 -0.002 -0.001 -0.012 -0.001 0.000 0.000

|eig(Φ)| 0.995 0.995 0.870 -0.008 -0.030 0.000 0.004 -0.016 0.005
rQ∞ × 1200 8.648 -0.057 -0.040

λQ 0.998 0.952 0.929 0.000 0.000 0.000 0.000 0.000 0.000
Σ× 1200 0.643 0.000 0.000 -0.007 0.000 0.000 -0.005 0.000 0.000

-0.146 0.210 0.000 0.002 -0.002 0.000 0.002 -0.002 0.000
0.063 -0.012 0.087 -0.001 0.000 -0.001 -0.001 0.000 -0.001

Notes: DGP parameter values (columns 1-3), median bias of OLS estimates (columns 4-6), and
median bias of MU estimates (columns 7-9). For details on the Monte Carlo set-up, refer to the
main text.

(OLS/MU) for selected persistence measures, namely the largest root, half-life, cumulative

impulse response (CIR), and the value of the impulse response function (IRF) at the five-year

horizon (for the response of the level factor to own shocks). Not surprisingly, the persistence

of interest rates is significantly underestimated by OLS, with median values being far away

from the values corresponding to the true DGP. Unbiased estimation generally implies much

higher estimated persistence.

We show medians of in-sample volatilities in rows five to seven of Table 5. Volatilities of

forward rates naturally are similar for the DGP and estimated series because the model is

fitted to the cross section of interest rates. Importantly, for risk-neutral forward rates, OLS

implies volatilities that tend to be much below those of the true risk-neutral rates. On the

other hand, MU estimation leads to risk-neutral rates that are equally volatile as the true

rates. This strongly confirms the intuition that expectations of future short rates and risk-

neutral interest rates should be calculated based on unbiased estimates instead of conventional

estimates of the DTSM parameters.

In the last three rows of the table, we present RMSEs. Forward rates are naturally fit

very accurately, with about three basis points of error on average. Risk-neutral forward

rates and forward premia are estimated much more imprecisely, with RMSEs around 1.5

percentage points. Interestingly, the MU estimates generally imply lower errors than OLS.

This is another encouraging result, demonstrating the higher accuracy of unbiased DTSM

estimation for inference about short rate expectations and risk premia.
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Table 5: DTSM Monte Carlo study – summary statistics

DGP OLS MU
max(eig(Φ)) 0.9949 0.9867 0.9993
half-life 136.68 30.67 168.84
CIR 162.73 39.11 124.53
IRF at 5y 0.76 0.23 0.58
σ(ft) 1.67 1.67 1.67

σ(f̃t) 1.75 1.08 1.89
σ(ftpt) 2.05 1.84 2.20
RMSE(ft) < 0.01 < 0.01

RMSE(f̃t) 1.31 1.18
RMSE(ftpt) 1.31 1.18

Notes: Persistence and accuracy of estimated rates and premia in DTSM Monte Carlo study. First
four rows show true values (DGP) and medians of estimated values for largest root of Φ, half-life,
cumulative impulse response (CIR), and impulse response function (IRF) at the five-year horizon
for response of first pricing factor to own shocks. Rows five to seven show medians of in-sample
standard deviations of forward rates, risk-neutral forward rates, and forward premia. Last three
rows show medians of root-mean-squared errors (RMSE) for estimated rates and premia. For
details on Monte Carlo set-up, refer to main text.

6 HW Case Study

Almost all studies in the DTSM literature impose some restrictions on model parameters. For

example, Ang and Piazzesi (2003) and Kim and Orphanides (2005) impose zero restrictions

on Φ and (λ0, λ1). Recently, the value of restrictions on the risk pricing in DTSMs, i.e., on the

elements of λ0 and λ1, for reducing small-sample bias has been stressed in the literature (Joslin

et al., 2010b; Bauer, 2011). The purpose of this case study is to implement the procedure

suggested in Section 2.4, which adapts the HW estimation framework to correct for small-

sample bias, for unbiased estimation of DTSMs with overidentifying restrictions.

6.1 Data, model specification, and estimation

We use the monthly unsmoothed Fama-Bliss zero-coupon rate data set described above. Our

sample starts in January 1990 and extends through December 2009, which amounts to T = 239

observations. We include yields with monthly maturities of mi ∈ {3, 6, 12, 24, 36, 60, 84, 120}.
The measured yields are denoted by Ŷt and the model-implied yields by Yt.

As before we assume that the first three principal components of yields, Y 1
t , are priced

exactly by the model, and take these as our pricing factors, i.e., Xt = Y 1
t = WYt, where
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W contains the eigenvectors corresponding to the largest three eigenvalues of the covariance

matrix of Ŷt. The remaining five principal components, Y 2
t , are assumed to be measured with

error: Y 2
t = W2Yt + u2

t = W2A+W2BXt + u2
t , where W2 contains the other five eigenvectors

of V ar(Ŷt).

For the identifying restrictions, we again stick with the JSZ normalization. Thus the model

parameters are (µ,Φ,Σ, rQ∞, λQ) or alternatively (λ0, λ1,Σ, r
Q
∞, λQ), plus the measurement error

variance Ω2. The second parameterization will be useful when we impose restrictions on the

risk prices.

In order to decide which restrictions to impose, we first estimate a canonical model without

bias correction. The first step is to estimate the VAR for Y 1
t and the five cross-sectional

regressions for Y 2
t by OLS. In the second step we find the structural parameters that minimize

the chi-squared distance.37 We focus on (Σλ0,Σλ1) instead of on (λ0, λ1), since we do not

want our inference to depend on the arbitrary factorization of the covariance matrix of the

VAR innovations (Joslin et al., 2010b). We report parameter estimates and standard errors

for (Σλ0,Σλ1, r
Q
∞, λQ,Σ) in Table 6; for details on how to calculate standard errors, refer to

HW.

Based on the t-statistics, we decide to specify our restricted model with the (3, 2) and (2, 3)

elements of Σλ1 set to zero.38 The restricted model is estimated using both OLS estimates as

well as MU estimates of the reduced-form system. The minimum-chi-squared step is performed

in exactly similar fashion for both cases. We report the resulting parameter estimates in the

middle and right panel of Table 6. Naturally the Q-parameters are very similar across all

three sets of estimates. Notably, the estimates of the unrestricted risk price parameters change

quite significantly between OLS (middle panel) and MU (right panel). Clearly, bias correction

has a sizeable impact on the magnitudes of the estimated risk sensitivities. The economic

consequences of these differences will become evident below.

6.2 Economic implications of bias correction

We decompose five-to-ten year forward rates, as for example in Wright (2011), since these

accurately represent the long-maturity properties of short rate expectations and risk premia.

37The reduced-form estimates are (µ̂1, Φ̂1, Ω̂1, µ̂2, Φ̂2, Ω̂2). Because there are no restrictions on risk prices or
Q-dynamics, µ̂ = µ̂1 and Φ̂ = Φ̂1. And, as always, the measurement error variance is both a structural and
a reduced-form parameter. Thus the numerical minimization of the chi-squared statistic only involves finding
rQ∞, λQ and Σ.

38Such an ad hoc choice of restrictions is common practice in the DTSM literature, although there is
significant model uncertainty, given the very different economic implications of different restrictions. This has
been noticed, among others, by Kim and Orphanides (2005). Bauer (2011) deals with the problems of model
selection and model uncertainty more systematically.

29



Table 6: HW case study – parameter estimation

OLS, unrestricted OLS, restricted MU, restricted

Σλ0 × 1200 -0.4163
(0.2201)

-0.0278
(0.1286)

-0.0318
(0.0545)

-0.4431 -0.0025 -0.0293 -0.3675 -0.0601 -0.0575

Σλ1 -0.0076
(0.0090)

0.0910
(0.0358)

-0.3290
(0.1621)

-0.0077 0.0922 -0.3573 0.0019 0.0770 -0.3719

-0.0079
(0.0053)

-0.0228
(0.0209)

-0.0309
(0.0948)

-0.0078 -0.0231 0 -0.0084 -0.0046 0

0.0010
(0.0022)

0.0007
(0.0089)

-0.0812
(0.0404)

0.0010 0 -0.0812 -0.0016 0 -0.0662

rQ × 1200 8.9846
(0.3609)

9.9810 9.0033

λQ 0.9931
(0.0008)

0.9673
(0.0034)

0.9179
(0.0082)

0.9931 0.9674 0.9178 0.9931 0.9674 0.9178

Σ× 1200 0.6694
(0.0304)

0 0 0.6694 0 0 0.6770 0 0

-0.2216
(0.0229)

0.3358
(0.0146)

0 -0.2216 0.3358 0 -0.2214 0.3369 0

-0.0530
(0.0103)

-0.0448
(0.0095)

0.1485
(0.0068)

-0.0530 -0.0448 0.1485 -0.0526 -0.0446 0.1494

Notes: Parameter estimates for canonical model specification (left panel), as well as conventional
(OLS) and median-unbiased (MU) estimates of the model with zero restrictions on risk price
parameters.

The top panel of Figure 2 shows the time series of the fitted forward rate (which is essentially

identical across estimates) and the three alternative estimates of the risk-neutral forward rate,

and the bottom panel shows the alternative estimates of the forward term premium. In Table

7 we show the sample standard deviations for the estimated rates and premia.

Imposing the restrictions we choose hardly has any effect on estimated risk-neutral forward

rates and term premia—the two series corresponding to OLS-unrestricted and OLS-restricted

in each panel are essentially indistinguishable. A look at the summary statistics reveals that

the restrictions make the risk-neutral forward rate slighly less volatile and the forward term

premium slightly more volatile. These differences however are not economically significant, as

evident from the graph.

As in the case of the JSZ model and data set in Section 4, bias-correcting the DTSM

estimates has important economic consequences. The observations to be made here very much

parallel the ones from our previous case study. Risk-neutral forward rates, for OLS close to

constant around 3%, become much more volatile and contribute more to the secular decline in

forward rates. The forward term premium does not move in tandem with the actual forward

rate anymore, but instead shows interesting independent time variation. It displays a distinct

countercyclical pattern, in line with the conventional macro wisdom about risk premia.

Our sample includes data up to December 2009, after the end of the most recent recession.
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Figure 2: HW case study – decomposition of forward rates
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Five-to-ten year forward rates decomposed into risk-neutral forward rates and forward term premia
using three different sets of estimates: (i) OLS, unrestricted, (ii) OLS, restricted, and (iii) MU,
restricted. For details, refer to main text. Sample: Monthly observations from January 1990 to
December 2009. Top panel: forward rate and alternative estimates of risk-neutral forward rates.
Bottom panel: alternative estimates of the forward term premium. Gray shaded areas correspond
to NBER recessions. 31



Table 7: HW case study – summary statistics

OLS-UR OLS-R MU-R

σ(f 61,120
t ) 1.257 1.257 1.257

σ(f̃ 61,120
t ) 0.195 0.179 1.286

σ(ftp61,120t ) 1.166 1.182 1.086

Notes: Summary statistics for OLS-unrestricted (OLS-UR), OLS-restricted (OLS-R) and
MU-restricted (MU-R) estimates – standard deviations of the fitted five-to-ten-year forward rates
and of the corresponding risk-neutral forward rates and forward term premia.

In contrast to the conventional estimates, MU estimation implies a term premium that in-

creases significantly before and during the times of that economic downturn. This is a salient

feature of our results, which demonstrates, along with several other observations we made

in this paper, the economic plausibility of the risk premium estimates obtained using our

unbiased estimation framework.

7 Conclusion

Correcting for finite-sample bias in estimates of the VAR dynamics of affine term structure

models has dramatic implications for the estimated persistence of interest rates and for the

inference about term premia. Risk-neutral rates, which reflect expectations of future monetary

policy, show significantly more variation if one performs unbiased estimation of the underlying

VAR dynamics instead of the commonly used OLS/ML estimation. Our paper shows how one

can overcome the problem of artificially stable far-ahead short rate expectations that several

previous studies have criticized.

In addition to showing how unbiased estimation methods can be brought to bear on the

problem of estimating affine Gaussian DTSMs, we make a methodological contribution to the

field of time series econometrics: We show how to obtain unbiased estimates of the parameters

in VAR models, using a simulation-based inference method that we call inverse bootstrap. The

method is superior to conventional bootstrap bias correction in terms of accuracy, and is novel

specifically in the way our algorithm prescribes how to construct a sequence of estimates that

converges in an optimal way to the solution of the problem.

Our paper is the first to quantify the bias in estimates of DTSMs and opens up several

promising directions for future research. In particular, the question of how other methods that

aim at improving the specification and/or estimation of the dynamic system fare in terms of

bias reduction can be answered using our framework. Among the approaches that have been

32



proposed in the literature are inclusion of survey information (Kim and Orphanides, 2005),

restrictions on risk pricing (Bauer, 2011; Joslin et al., 2010b), near-cointegrated specification

of the VAR dynamics (Jardet et al., 2009) and fractional integration (Gil-Alana and Moreno,

2007; Schotman et al., 2008). The key open question is how model-implied short rate forecasts

that result from these different approaches compare to those that are based on unbiased

estimates of a stationary VAR. In terms of extensions of our approach, generalizing it to the

context of non-affine and non-Gaussian term structure models are the logical next steps, in

particular allowing for unbiased estimation of DTSMs with stochastic volatility.
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