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Abstract

Selective colleges are often criticized for using "unfair" admission policies that

favour applicants from specific socioeconomic groups. In this paper, we develop a sta-

tistical framework for testing whether current admission practices maximize expected

academic performance of the entrants, using data on admissions. Such maximization

would imply that the expected performance of the marginal admitted candidate —the

admission threshold— is equalized across socioeconomic groups. For biased practices,

the marginal candidate in the discriminated group will have higher expected outcomes.

When we observe for every applicant all of his/her pre-admission characteristics sys-

tematically used by the college and post admission performance of admitted candidates,

the admission threshold can be identified as long as the density of expected performance

is positive around that threshold. This leads to a test of whether the observed socioe-

conomic disparities among the admitted cohort can be justified as the consequence of

admitting candidates with the highest academic potential. If the admission thresholds

are found to differ, say, due to affirmative action policies, then we propose a method

of calculating the resulting efficiency loss, in terms of academic achievement foregone.

Our identification strategy leads to natural estimators and we derive the relevant large

sample distribution theory on which to base inference. Applying these methods to

two cohorts of UK and EU-based applications to Oxford’s flagship PPE degree, we

find that male applicants face a higher admission threshold than female applicants and

that there is no difference between thresholds faced by state-school and private school

pupils.
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1 Introduction

Every year, thousands of students around the world apply for admission to colleges and

universities. The colleges’ decisions on whom to admit are typically based on high-school

academic performance as well as scores on standardized aptitude tests, such as the ACT and

SAT in the US and the Oxford and Cambridge TSA in the UK. In addition, some colleges

take into account the applicants’ demographic backgrounds and some conduct expensive

admission interviews. In this context, it becomes important from a policy perspective to

explore two related questions regarding the admissions process — (a) how the observed ap-

plicant characteristics and test-scores should be weighed in the admission process and (b)

how to test whether prevalent admission procedures are “biased” against applicants from

disadvantaged backgrounds.

There is a substantial literature on the first question in educational statistics, using "valid-

ity" studies, which analyze the relative importance of aptitude test scores vis-a-vis measures

of high school academic performance and/or socioeconomic status (SES, henceforth) in pre-

dicting post-enrolment academic outcomes. See, for instance, Kobrin et al (2004), Noble

(2003), Parks et al (2011), Sawyer (1996), Sackett et al (2009) and the references therein as

well as a large number of staff research papers made available online by the College Board

and the act.org in the United States and the Institute of Education in the UK. The generic

approach in this literature is to focus on a specific post-enrolment outcome, such as freshman

year or final year GPA (or a nondecreasing function of it) after an applicant enters college.

Then one runs a regression — typically linear or logistic — of this outcome on one or more

pre-enrollment achievement measures, such as high-school GPA and aptitude test scores.

However, in most cases, outcomes are observed only for those granted admission and they

are obviously not a random sample from the population of all applicants. In such cases, the

regression coefficients obtained for the entrants are assumed to be identical for the general

population of applicants. One then compares the proportion of outcome variation explained

by the aptitude test scores vis-a-vis the part explained by high-school GPA and/or SES

to judge the incremental contribution of the aptitude test. In some studies, an "optimal"

cut-off rule is derived for the entire applicant population such that if an applicant’s regres-

sion coefficient weighted sum of test-scores and background variables crosses this threshold
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he/she is offered admission. The recommended cut-off is chosen with a view to maximize

the expected outcome or minimize the extent of misclassification — i.e., denying admission

to high expected outcome types or offering admissions to low expected outcome types of

applicants (c.f., Sawyer (2010)).

Despite the large literature on the first question cited above, there does not appear to be

a corresponding systematic exploration of the second question — that of evaluating current

admission policies— in educational statistics. The motivation for studying the second question

is that widening access to good universities is generally considered to be a key mechanism for

promoting social mobility. Therefore, under-representation of low SES communities among

the entering students, especially at relatively elite colleges, is flagged as suggestive of unfair

admission policies.1 Colleges typically respond to such allegations by saying that they intend

to admit students with the best academic potential, irrespective of their SES and such

objectives can lead to uneven demographic compositions of entering classes. Testing whether

this claim is correct is important from a policy perspective because the conclusion would

inform what steps are necessary to promote fair access. For example, if admissions are

indeed outcome-oriented, then good students from lower SES should be encouraged to apply

in order to increase their presence in elite colleges; conversely, if admissions are, say, racially

motivated (i.e., taste-based), then additional interventions may be needed in the admission

process itself to promote fairness. This issue is substantively distinct from (i) the differential

performance of different SES or demographic groups in aptitude tests (lower SES applicants

perform worse on average), which is related to the issue of test-fairness and on which there

exist several systematic studies, (ii) lower aptitude test scores proxying for lower SES in

explaining post-enrolment outcomes (mixed evidence, c.f., Sackett et al (2009)) and (iii) the

differential average college-outcomes of different demographic groups at the same value of

aptitude test scores (black applicants have lower expected scores than Caucasian ones (Noble

(2003)). These latter issues pertain to the average outcomes and are not directly relevant

to testing academic fairness because academically fair — i.e., outcome oriented admissions —

have implications for the outcomes of the marginal, but not the average, admitted candidates

across demographic or SES categories. To see why, note that if the marginal male admit

has a lower expected outcome than the marginal female admit then one can admit the "next

best" female candidate instead of the marginal male admit and increase the expected overall

outcome. So outcome-oriented admissions must equate the expected outcome across marginal

1See for instance, the recent newspaper stories: http://www.guardian.co.uk/education/2011/mar/20/oxford-

universit,y-entrance-requirements-row,

or http://www.guardian.co.uk/education/2009/aug/19/oxford-university-men-places-women
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admitted candidates in every demographic/SES group. Violations of such inequality suggest

that the college must place emphasis on non-academic attributes such as gender, race or SES

of the applicant beyond these attributes’ impacts on his/her potential academic outcomes

and, in that sense, is "taste-based". On the other hand, the average outcome across all

admitted males bears no relation to that across all admitted females, no matter whether

admissions is outcome-oriented or not. This key but subtle distinction between the average

and the marginal, to the best of our knowledge, is not recognized or used in the educational

statistics literature and in public debates about unfair access to elite universities. But this

distinction is quite well-recognized in studies of discrimination in economics (c.f., Heckman

(1998), Persico (2009)). We intend to bring these insights from the economics literature to

bear upon the question of testing academic fairness of admissions.

However, it is still non-trivial to identify the marginal admitted groups from admissions

data that are typically available. The present paper will develop a method of identifying such

marginal admits and then use them to develop a formal statistical test of whether current

admission protocols are consistent with (academic) outcome maximization goals. The key

insight is that under appropriate regularity conditions, the admission thresholds faced by

every category of applicants can be identified from data on post-admission performance of

just the admitted students; it is not necessary to identify the (unobserved) distribution of

potential outcomes for non-admitted applicants. These thresholds, in turn, will equal the

expected outcome of the marginal admit in every category and a test of outcome-oriented

admissions can then be based on testing the equality of these thresholds across the categories.

In the present paper, we develop the necessary econometric tools for (i) conducting a test

of academically fair admissions and (ii) calculating the efficiency loss — in terms of academic

achievement foregone — which would result from the use of unequal thresholds (say, due to

affirmative action) across demographic subgroups.

2 Set-up and Methodology

Let denote an applicant’s covariates which are observed by the university with supportW
and let  denote the discrete component of  capturing the group identity of the applicant

(such as sex or type of high school attended). For an applicant , let  denote his/her

future academic performance if admitted to the university. Let  () denote  ( | = ).

Let  ∈ (0 1) denotes the fraction of applicants who can be admitted, given the number of
available spaces.
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Admission protocols: An admission protocol is defined by a probability  (·) : W 7→
[0 1] such that an applicant with characteristics  is admitted with probability  (). A

generic protocol may be described as the solution to the problem:

max
(·)

Z
 ()  ()  (), s.t.

Z
 ()  () ≤ .

Here,  () denotes a non-negative welfare weight, capturing how much the outcome of

a -type applicant is worth to the university. For affirmative action policies,  (·) will be
larger for applicants from disadvantaged SES or under-represented demographic groups. The

solution to the above problem takes the form (c.f., Bhattacharya (2011)):

∗ () =

⎧⎪⎪⎨⎪⎪⎩
1 if  ()  ,

 if  () = ,

0 if  ()  ,

where

 () : =  () () ,

 : = inf

½
 :

Z
1 { ()  }  () ≤ 

¾
,

and  ∈ [0 1] satisfiesZ
({1 ( ()  ) + 1 ( () = )})  () = .

The result basically says that the planner should order individuals by their values of

 ( ) and first admit those  whose  () is the largest, then those for whom it is the

next largest and so on till the budget is exhausted. If the distribution of  ( ) has point

masses, then there could be a tie at the margin, which is then broken by randomization

(hence the probability ). In the absence of any point masses, the optimal protocol is of a

simple threshold-crossing form ∗ () = 1 ( ( ) ≥ ).

Academically fair admissions: We define an academically fair admission protocol as

one which maximizes expected performance of the incoming cohort subject to the restriction

on the number of vacant places. Such an objective is fair in the sense that the expected

performance criterion gives equal weight to the outcomes of all applicants, regardless of their

value of  , i.e.,  () is a constant. In this case, the previous solution takes the form

∗ () = 1 { () ≥ }, where  solves

 =

Z
∈

1 ( () ≥ )  () .
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Thus  is the (1− )th quantile in the marginal subjective distribution of the random variable

 ( ). If  ( ) has a Lebesgue density that is not identically zero on any open interval

contained in its support, then  is uniquely defined.

It is important to note that maximizing the mean outcome gives equal weight to the

outcomes of all applicants; consequently, the  defined above does not depend on  . To see

why, suppose one of the covariates in  is gender and assume that the admission threshold

for women,  is strictly larger than the threshold for men, . Then by admitting women

whose expected outcome is just below  but still higher than  (and rejecting men who

are at or above  but lower than ) the expected outcome of the entering cohort can

be increased. So different thresholds cannot be consistent with the objective where the

expected outcome of every individual is weighed equally in deciding whom to admit. The

above argument presupposes the technical requirement that there are identifiable (by the

university) women whose expected outcomes are "just below " — which is guaranteed by a

positive density assumption below.

Let  = () and let Ω, Υ denote respectively the support of  and  ( ), given

 = . We will assume that the random variable  ( ) has the same support for every .

For example, suppose  denotes gender and  contains one or more continuous variables

like previous test scores. Then the above assumption basically says that given any value

 ∈ Ω, there exists an 0 ∈ Ω such that  () =  (0 ). Indeed, it

seems very unlikely that there will be a range of possible values of the (conditional) expected

outcome for men where no women’s conditional expected outcome lies (or vice versa). Note

also that we do not require Ω to be identical across .

Under the above assumption, for every fixed , there will exist  () ∈ Ω such that

 ( ()  ) = ; so we can define individuals in subgroup  with  =  () to be the

marginal admits in subgroup . Our identification strategy for  is based on calculating

 ( ()  ), i.e., the expected outcome of the marginal admit for various values of . Then

testing academic fairness of admissions amounts to checking if the ’s are identical across .

We now formally set up the econometric model on which we will base our test of fairness.

To keep the exposition focused, we will replace  by gender with the understanding that we

can replace  by any other characteristic.

Econometric model and assumptions: Let  denote the relevant college outcome,

such as final year GPA and let denote the dummy variable indicating whether an applicant

is offered admission and  denotes a dummy for whether the offer was accepted.2 Our

2Typically, not all admission offers are accepted. This can happen in two ways — one, some candidates can
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econometric model is then given by the following equations:

 = 1 {∗ ( ) ≥  ()} 
∗ ( ) =  ( | = 1  =  = ) + 

where  denotes each individual’s gender, i.e.,  =  or  (female or male); ( ) is

observed for any individual ( = 1     ). The outcome  is observed only when = 1. The

quantity ∗ ( ) represents the expected outcome for an ( ) type applicant, as perceived

by the admission officer handling applicant ’s file. This subjective expectation is assumed

to have formed from the officer’s experience about the performance of previously admitted

( ) type candidates who had enrolled and for whom the college outcomes were observed.

The error  represents the deviation of an individual tutor’s subjective expectation from the

true mathematical expectation.

We are interested in estimating the coefficients  () =  for  =  () and

 =  (). The difference  −  represents a measure of deviation from outcome

based admissions and the extent to which the admission process is "biased" against female

applicants, from the academic efficiency point-of-view.

For the identification of , we impose the following conditions:

Assumptions: (i) {(  )}=1 is an i.i.d. sequence; (ii)  has strictly positive
Lebesgue density around 0, given  and med( | ) = 0.

Discussion: The error term  incorporates the error in subjective expectation of the

specific admission officer handling applicant ’s case. This allows for admission to be non-

deterministic, given . In other words, the admission cut-off (for expected performance)

faced by applicants of type  is +  which varies randomly across -type applicants with a

median value of . For academically fair admissions, as explained above, one would expect

 to be identical across . The key implication of the two equations above is that

 = 1 {1 ()   + } , (1)

where 1 ( ) =  ( | = 1 =  = ), which is identifiable from outcome data on

past enrolled students.

receive and accept offers from other universities and two, some candidates may fail to satisfy the conditions

specified in the original offer, such as securing a certain percentage in their school-leaving examinations. Such

nonrandom acceptance is not problematic if, as is quite natural, tutors form their subjective expectations,

based on the performance of students who had actually entered because those are the only performances

they actually observe.

7



Identification: To see how  is identified, note that when Pr ( = 1| = ) = 12,

we must have that Pr
£
1 ( )−  ≥ | = 

¤
= 12, so that, by assumption (ii),

1 ( )−  = 0.

Therefore, it holds that

 [1 ()−  | Pr ( = 1| ) = 12  = ] = 0 (2)

This suggests that for group , the threshold  can be identified as the average performance

of those g-type candidates who had enrolled in past years and whose ’s imply a predicted

probability of receiving an offer equal to 0.5. Our formal result on identification of  is

facilitated by the following assumption:

Assumption: (iii) Conditional on each possible value  of, the random variable 1 ( )−
 has a strictly positive Lebesgue density on an open interval around 0.

Observe that assumption part (ii) lets us identify the marginal admits as those  for

which the probability of admission is close to a half. Part (iii) guarantees that for every

fixed , the set
©
 ∈ Ω : 1 ( ()  ) = 

ª
is nonempty and this is the limiting set over

which 1 (· ) will be averaged to yield . Finally, 1 ( ) is directly identified from the

data on previously admitted students.

Estimation: If  contains continuous components, then typically the estimated proba-

bility of getting an offer will never be exactly 1/2; so we consider those ( )’s for which the

predicted probability is close to a half. And the extent of closeness is guided by a bandwidth

. Formally, we estimate  by:

̂ =

X

=1
 (̂ ( )− 12)1 ( )1 { = }X

=1
 (̂ ( )− 12)1 { = }

 (3)

where  () =  () ;  (·) is a kernel function;  is a smoothing parameter (band-
width); ̂ ( ) and 1 ( ) are first-step estimators of  ( ) (:= Pr [ = 1| ( ) = ( )])

and 1 ( ), respectively. This is exactly the average predicted outcome for those ( )

types for whom the predicted probability of getting an offer, i.e.,  ( ) is close to a half.

Below, we establish formally (proof in appendix) that our estimator ̂ has an asymptotic

distribution, given by

√

£
̂ −  − 2B ()

¤ →  (0  ()) 
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where

B () : =

Z
R
2 () 

∙
() ( )× ()  ( )

 ( )
+
1

2

¡
22

¢
 ( )

¸¯̄̄̄
=12

;

V () : =

Z
R
2 () 

Var [ ( ) | ( ) = ]

 ( )

¯̄̄̄
=12



 ( ) is the probability function of the random variables  () and

 ( ) :=  [ () |  () =   = ] =  [ ( ) |  ( ) = ] 

Implementation:

• For the second-step bandwidth , the optimal rate (minimizing the MSE) is

 = 
¡
−15

¢


However, given this rate, we incur the asymptotic bias and the CI based on the limit

normal distribution in Lemma ?? would be technically invalid unless we estimateB ().

However, it is not easy to estimate B (), since it involving the derivatives of relevant

functions. So, we

— set  = 
¡
−15

¢
, say,  = 

¡
−15 log

¢
; or

— use  = 
¡
−15

¢
but still use the normal approximation based on Lemma ??

(in this case, we obtain something called "confidence band" or "variable band,"

which is not a CI).

3 Welfare calculations

We now develop a method of inferring the efficiency costs of progressive admissions policy.

To see how to do this, suppose that progressive motives lead a university to choose a lower

threshold for female candidates, i.e.,   . Then, one can evaluate the net cost, in terms

of academic efficiency, of this policy as the expected outcomes of all male candidates who

were not admitted at the higher threshold but would have been admitted had their threshold

been lowered to  . We will develop a theory of inference for this parameter, formally defined

as:

1 = 
£
1 ()× 1 ¡ ≤ 1 () ≤ 

¢ | = 1
¤× ,
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where  denotes fraction male. Alternatively, relative to a common intermediate thresh-

old     , the net welfare loss of the current practice may be computed as the

"displacement cost" of replacing high ability males with low ability females:

2 ()

=  [1 ()× 1 ( ≤ 1 () ≤ ) | = 1]× 

− £1 ( )× 1 ¡ ≤ 1 ( ) ≤ 
¢ | = 0

¤× (1− ) .

The intermediate  can be chosen so that the aggregate number of admits, if the common 

is used, will remain identical to current number of admits...

4 Empirical Application

We first present a brief description of the data. Our current data cover 2 cohorts of Oxford

PPE students who started their study in 2008 and 2009 respectively. We focus on those

applicants who had taken the TSA (an aptitude test comparable with the SAT in the US),

and the GCSE — a standardized school-leaving examination in the UK. The following tables

summarize for each gender the key variables. Of these, col1inter is the interview score at

admissions, got_in is a dummy for whether the candidate was offered admission, indepen-

dent_school is a dummy for whether the applicant was educated at a fee-paying (i.e., private)

school. The variable prelim_tot is the overall score after the first year examinations which

are obviously available for admitted candidates only.The above table shows that many more

males apply to read PPE, males applicants have better TSA distributions, worse interview

scores and male admits score an average of 4 points (out of 300) higher in the first year

exams. These differences are statistically significant at 5%. There is no significant difference

in acceptance rates between male and female candidates.

We now test if the marginal admitted male and the marginal admitted female student

have identical expected first year scores. To do this, for each gender, we compute the

expected score as a linear function of age, GCSE score, overall TSA, interview score and

whether the applicant came from an independent school. Using the 0 median restriction on

expectation errors, as explained above, we calculate the threshold faced by each gender as

the average of expected first year scores for admitted applicants whose probability of being

admitted is predicted (through a probit) to be close to 0.5. In the following table, we show

the estimated difference together with the standard errors for a range of bandwidths (which

define "closeness to 0.5") and an Epanechnikov kernel.This table strongly suggests that male
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Female

Variable Obs Mean Std. Dev. Min Max

age 609 17.99 1.24 16.25 36.95

gcsescore 609 3.82 0.26 2.38 4.00

tsaoverall 609 61.96 7.72 39.70 101.90

col1inter 609 62.46 11.03 5.67 87.00

independent_school 609 0.34 0.47 0.00 1.00

got_in 609 0.28 0.45 0.00 1.00

prelim_tot 150 183.71 15.76 137.00 217.00

Male

Variable Obs Mean Std. Dev. Min Max

age 923 18.12 1.62 16.21 54.08

gcsescore 923 3.75 0.35 1.00 4.00

tsaoverall 923 65.46 7.94 35.60 101.90

col1inter 923 63.46 11.44 0.00 95.00

independent_school 923 0.39 0.49 0.00 1.00

got_in 923 0.31 0.46 0.00 1.00

prelim_tot 247 187.62 19.05 106.00 233.00

Figure 1:

bw male thld std dev female thld std dev male‐fem std. Err z

0.08 187.80 3.73 179.78 3.07 8.02 4.83 1.66

0.80 188.58 2.47 181.70 2.59 6.88 3.58 1.92

8.00 186.88 2.37 180.24 2.43 6.64 3.39 1.96

Figure 2:
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bw Indep thld std dev state thld std dev indep‐state std err z

0.09 185.19 4.29 190.08 5.76 ‐4.89 7.18 ‐0.68

0.90 182.06 3.32 187.88 1.71 ‐5.82 3.73 ‐1.56

9.00 183.13 2.23 185.02 2.51 ‐1.89 3.36 ‐0.56

Figure 3:

applicants face a threshold that is higher than that faced by female applicants by about 6-8

points out of 300. Therefore, although male and female acceptance rates are nearly equal,

male candidates have to cross a higher barrier of expected performance than females in order

to get admitted.

We then repeat the analysis reversing the roles of gender and school background, i.e.,

we use gender as an explanatory variable and test if applicants from independent school

face a higher threshold than their counterparts who apply from state-funded schools.Now,

we see that there is hardly any difference in the thresholds faced by the two groups. Al-

though the estimated thresholds for private school applicants are lower, the difference is

never statistically significant at 5%....
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