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ABSTRACT

In this paper I propose adjusted Rao’s score (RS) tests that are robust under misspecification
for a very general dynamic panel model with cross-sectional dependence and use them for specifi-
cation search of growth models. In growth theory different kinds of econometric models have been
proposed based on economic theory and the subjective beliefs of researchers, - including simple
cross-sectional regression, panel data, time series and more recently many types of spatial models.
Unfortunately the estimate of growth convergence rate under these different model frameworks vary
wildly, even when the same dataset is used. Thus, the question is which model is most appropriate?
I use my proposed tests to address this problem and conduct the specification search in multiple
directions to understand the underlying data generating process (DGP). Unlike the available tests,
these proposed test statistics unravel the interrelation/dependencies among the model parameters
and thus make themselves amenable for analysis of misspecification, which is concept-wise similar
to analysis of variance. I use the data of 91 non-oil countries over a period of 35 years (1961- 1995)
from the Penn World Table, for the specification search. Using the proposed test statistics, I find
that heterogeneity, time dynamics and indirect cross-sectional dependence contribute most to the
total misspecification than other forms of departures from a simple panel model for this dataset.
A very elegant feature of my proposed tests is that they do not require estimation of nuisance
parameters, unlike existing tests. Thus the proposed test statistics can identify the underlying
DGP without any apriori complex estimation. The extensive simulation study show good finite
sample performance of my proposed tests in contrast to other existing procedures. The formulation
of these test statistics are quite general and are applicable to many other econometric models for
specification search.
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1 Introduction

“It isn’t what we don’t know that kills us. It’s what we know that ain’t so.” –Mark Twain

Understanding the nation’s growth is one of the oldest and most important research agendas
in economics. At the same time, the empirical study of economic growth occupies a position that
is notably uneasy. Rodriguez and Rodrik (2001) begin their skeptical critique of evidence on trade
policy and growth with the above quote which they use to point out the difficulty in identifying the
salient determinants of growth. Quite generally, one such difficult issues is the basic econometric
specification of the growth models, i.e., absence of consensus regarding the salient features of the
underlying data generating process (DGP). There is a vast literature on econometric issues that
arise due to different presumptions on the structure of the DGP that appear in growth analyses.
The choices of method involve significant trade-offs, which depend both on statistical considerations
and on economic context. Inspite of the vast literature on this particular issue of econometric spec-
ification of the models, it has always been difficult to identify the structure of DGP. In this paper,
I address this point. I formulate new diagnostic tests that take into account of misspecification in
multiple directions. In particular, I propose adjusted Rao’s score (RS) test statistics under a dy-
namic panel spatial model framework, which are robust under misspecification. I use the proposed
tests for specification search in multiple directions, without any complex estimation of the nuisance
parameters. The proposed test statistics can assist a researcher to revise his/her model towards ap-
propriate direction(s) for better understanding of the growth behavior and thereby suggest suitable
policy reforms.

Research on convergence proceeded through several stages and also witnessed the use of dif-
ferent methodologies. However, the correspondence between the convergence definitions (like β-
convergence, σ-convergence, conditional convergence, and so on) and the methodologies used are
not unique. For example, cross-section, panel and time series (in part) approaches have been
used to study β. These approaches have generally dealt with convergence across economies and in
terms of per capita income level. The cross-sectional approach is popular to study σ-convergence,
while time series methodologies are implemented to investigate convergence both within and across
economies. More recently, various spatial approaches has been adopted to model the technological
spillover and interdependencies of economies, both in cross-sectional and panel framework. Each
of these methodologies has its own benefits and drawbacks, even though it may be used to study
a particular aspect of convergence. For example, the use of panel data to study β-convergence,
is likely to increase efficiency and allow richer models in the presence of parameter heterogeneity.
Thus there is a trade-off between robustness and efficiency with each of the chosen methods. The
scientific solution would be to base the choice of estimation method on a context-specific loss func-
tion. This is clearly a very difficult task. Thus the crucial question is which model/models do the
data confirm with?
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This paper provides a solution to this difficult problem in the context of growth model, i.e.,
unravel the DGP without any subjective preference, so that the researcher can choose a suitable
model to understand the underlying growth behavior. As mentioned earlier, there has been many
studies that have considered only cross-section, or time series, or panel, or spatial model methods.
In this paper I consider the dynamic panel spatial model framework which is a generalization of
all these piece-wise models and propose test statistics to understand which kind of departures
are actually present in the underlying dataset. I start with a small model (simple panel model
under joint null hypothesis) and then check whether specific departures (like time dynamics, serial
correlation of errors, individual effects, different forms of spatial dependencies) from this starting
model are supported or rejected by the data. Using Bera and Yoon (1993) test principle, I propose
new adjusted Rao’s score (RS) test statistics for each of the parameters, after taking into account
the possible presence of all other forms of departures. Unlike the existing conditional tests, the
proposed methodology takes care of the possible presence of all the nuisance parameters through
their respective Fisher-Rao score evaluated under joint null, and thus requiring estimation of the
simplest model. Using these proposed test statistics I also show how some existing models are
potentially misspecified.

The main contributions of this paper are thus twofold: (i) development of six new RS test
statistics robust under local misspecification, i.e., adjusted RS for time dynamics, random effects,
serial correlation, space-time dynamics, spatial lag and spatial dependence parameters, where each
of them is robust to the presence of all the other departures (nuisance parameters). The proposed
test statistics do not require any estimation of the nuisance parameters and thus, are computa-
tionally simple and easily amenable for misspecification analysis. (ii) Using these proposed test
statistics, I address the empirical question of specification search, i.e., which model/models do the
underlying data for growth models confirm with? Thus, using my proposed tests I come up with a
proper model for the growth analysis.

The plan of the rest of the paper is as follows. The next section provides a brief review of
the existing models used for growth convergence. I provide the details of our model framework
and the regularity conditions in Section 3. In Section 4, I derive the new diagnostic tests which
take account of misspecification in multiple directions. After reviewing the data set in Section 5,
I discuss how the proposed test statistics can unravel the dependencies of the underlying DGP
without any complex estimation of the model itself. Thus I propose an appropriate growth model
that capture the salient features of the data. In Section 6, I conduct finite sample study to evaluate
the performance of the suggested and some available tests, and Section 7 concludes the paper.
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2 A Brief Literature Review

The literature on growth convergence initiated by the seminal papers of Solow (1956) and Swan
(1956) is vast and it reached the ‘formal specification’ stage with the influential work of Barro and
Salai-Martin (1992) (henceforth BS) and Mankiw, Romer and Weil (1992), (henceforth MRW),
which derived the regression specification from the neoclassical growth model. MRW is based on
original Solow-Swan model, and BS on Cass-Koopmans’ (1965) optimal savings model. Both papers
derive the law of motion of capital and income around the steady state and then translate that into
an estimable cross-sectional regression equation. Similar results on conditional convergence across
countries are presented in Holtz-Eakin (1993), Sala-i-Martin (1996) and many others. One of the
crucial assumption of these cross-sectional models is that the differences in initial unobserved tech-
nology diffusion is considered to be a part of error terms. This assumption makes their equations
estimable by ordinary least square (OLS) method. Thus the cross-section approach to convergence
encountered some important limitations. Temple (1998) discussed the influence of possible mea-
surement errors on the results of MRW. The basic limitation lies in the fact that having just one
data for a country provides a weak basis for estimation of the convergence, which refers primarily
to a within-country process. There is too much heterogeneity across countries to validate the as-
sumption that cross country data can be treated as multiple data of the same country. Thus, the
convergence research gradually moved to other approaches like time-series and panel methods.

Lee, Pesaran and Smith (1992), Quah (1992), Binder and Pesaran (1999) support for time
series regression for each country separately to analyze the conditional convergence hypothesis. In
simple terms, convergence using time-series approach, implies whether income of a specific country
has unit root or not. They argue that standard cross-section methods throw away useful information
which can be taken care by analyzing each country separately. Moreover, time series analysis has
been applied to investigate across convergence too, see for instance Quah (1992), Bernard and
Durlauf (1995) and Evans and Karras (1996). Broadly speaking the time series analysis supports
a variant of conditional convergence hypothesis and thus results are not much different from those
implied by cross-section methods.

One of the crucial limitation of the cross-section approach is that it cannot capture the tech-
nological diffusion and capital deepening process, which are vital for income convergence across
countries. Thus many researchers used panel methods to capture such technology diffusion by intro-
ducing individual effects in the model. However, there are many ways to model the country-specific
effect. For instance, Islam (1995) strongly supports fixed effect estimation due to the assumption of
correlation of unobserved technology diffusion with the regressors. The key strength of this method
is that it takes care of one form of heterogeneity: any omitted variables that are constant over time
will not bias the estimates, even when the omitted variables are correlated with the explanatory
variables.

3



There are, however, some concerns about fixed effect specification. For instance, sometimes a
variable of interest is measured at only one point in time, and even if the variables are measured
at more frequent intervals, they are sometimes highly persistent. In that case the within-country
variation is unlikely to be informative. Too often researchers use fixed effects to analyze the
effects of variables that are fairly constant over time, or that affect growth only with a long time
lag. Standard transformation like first differences or “within groups” transformations are likely to
exacerbate the problem of measurement errors. They lead to large reduction in precision of the
parameter estimates since the between-country variation is thrown away. Koop and Steel (2000)
argues that much of variation in efficiency level occurs between rather than within countries. Thus,
a random effects generalized least square (GLS) estimator will be more efficient than within-country
estimator when the random effects assumptions are appropriate. Durlauf and Quah (1999) point
out that the individual effects are of fundamental interest to growth economists as they appear to be
the key source of persistent income differences. Thus they advocate for modeling the heterogeneity
in the model rather than finding the ways to eliminate its effects. In this paper, I adopt a random
effects model as I intend to test the significance of individual effects in the presence of time dynamics
and spatial dependencies, rather than just treating them as the nuisance parameters, as is done in
fixed effects model.

Recently, many researchers are using spatial models to analyze growth convergence. It is a
known fact that the economies are assumed to be independent in the neoclassical growth the-
ory. However, with globalization, technological advances in one economy are transmitted to other
economies. Thus, the closed independent economy assumption are not valid, and one needs to take
into account the possible spatial correlation, both in cross-sectional and panel data settings. From
statistical point of view, ignoring the presence of spatial dependence leads to unreliable inference.
In recent years many researchers have used spatial methods to capture such technology interde-
pendence and knowledge spillover effects. The main idea is to capture the impact of cross-country
spillovers on growth process. There are many ways to measure this interdependence. One of the
most common way is to express the aggregate level of technology of any country to be dependent
on the stock of knowledge/capital of its neighbors or trading partners by using geographic and
economic distances. For instance, Conley and Ligon (2002), Ertur, Gallo and Baumont (2006),
Ertur and Koch (2007), Yu and Lee (2009) and many others, have used spatial approach to analyze
growth convergence.

Each method, as I discussed, has its own merits and drawbacks. It is evident from the discussion
that the convergence research has not produced any concrete consensus. Given the differences in
approach, sample, data, model, estimation technique, etc., absence of consensus is not surprising
though. The crucial issue is to find a good approximation to DGP, and to achieve this objective, I
start out with a general model in the following section.
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3 The Model Setup

The model setup is the combination of all the piecewise frameworks I discussed earlier:

yit = γyit−1 + τ
N∑
j=1

mijyjt + δ
N∑
j=1

mijyjt−1 +Xitβ + uit (1)

uit = µi + εit (2)

εit = λ
N∑
j=1

wijεjt + vit (3)

vit = ρvit−1 + eit,where eit ∼ IIDN(0, σ2
e) (4)

for i = 1, 2, . . . , N ; t = 1, 2, . . . , T. Here yit is the observation for ith location/unit at tth time, Xit

denotes the observations on non-stochastic regressors and eit is the regression disturbance. Spatial
dependence is captured by the weight matrices M = (mij) and W = (wij). Here mij and wij are
the (i, j) th element of weight matrices M and W respectively, which capture the interdependence
of income and unobserved error terms between the country i and j.The matrices M and W are
each row-standardized and the diagonal elements are set to zero. In this model framework, time
dynamics (γ), random effects (µi) with µi ∼ IID(0, σµ), serial correlation (ρ), space recursive (δ),
spatial lag dependence (τ) and spatial error dependence (λ) are considered.

In matrix form, the equations (1) - (4) can be written compactly as

y = τ(IT ⊗M)y + [(γ + δM)⊗ IT ]ly +Xβ + u, (5)

where y is of dimension NT × 1, X is NT ×K,β is k × 1, u is NT × 1, IT is an identity matrix of
dimension T × T and ⊗ denotes Kronecker product. Here l is the lag operator, X is assumed to
be of full column rank and its elements are bounded in absolute value. The disturbance term can
be expressed as

u = (ιT ⊗ IN )µ+ (IT ⊗B−1)v. (6)

Here B = (IN − λW ) and ιT is vector of ones of dimension T. Under this setup, the variance-
covariance matrix of u is given by

Ω = σµ2 [JT ⊗ IN ] + [V ⊗ (B′B)−1], (7)

where JT is a matrix of ones of dimension T × T , and V is the familiar T × T variance -covariance
matrix for AR (1) process in equation (12, i.e.,

V = E(v′v) = [ 1
1− ρ2V1]⊗ σ2

eIN = Vρ ⊗ σ2
eIN , (8)
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with

V1 =


1 ρ ρ2 . . . ρT−1

...
...

... . . . ...
ρT−1 ρT−2 . . . . . . 1

 ,
and Vρ = 1

1−ρ2V1.
The log-likelihood function of the above model can be written as:

L = −NT2 ln2π−1
2 ln |Ω|+T ln |A|−1

2[(IT⊗A)y−[(γ+δM)⊗IT ]ly−Xβ]′Ω−1[(IT⊗A)y−[(γ+δM)⊗IT ]ly−Xβ]
(9)

where A = (IN − τM). Following Sen and Bera (2011), I can write

1
2 ln |Ω| = −N2 ln(1− ρ2) + 1

2 ln |d2(1− ρ)2φIN + (B′B)−1|+ NT

2 ln σ2
e − (T − 1) ln |B|,

where d2 = α2 + (T − 1), α =
√

1+ρ
1−ρ and φ = σ2

µ

σ2
e
. Substituting 1

2 ln |Ω| in L , I obtain

L = −NT2 ln2π+N

2 ln(1−ρ2)− 1
2 ln |d2(1−ρ)2φIN+(B′B)−1|−NT2 ln σ2

e+(T−1) ln |B|+T ln |A|

− 1
2[(IT ⊗A)y − [(γ + δM)⊗ IT ]ly −Xβ]′Ω−1[(IT ⊗A)y − [(γ + δM)⊗ IT ]ly −Xβ] (10)

The likelihood function in equation (10), will be used to derive the test statistics in the next
section. Now I state the assumptions, needed for the validity of the asymptotic properties.

Assumption 1.
(i) W and M are row-standardized weight matrices whose diagonal elements are zero.
(ii) W and M are uniformly bounded in row and column sums in absolute value and (I − λW )−1

and (I − τM)−1 are also uniformly bounded.
(iii) An = (I−τM)−1(γI+δM) is also uniformly bounded in row and column sums in absolute value.

Assumption 2. The disturbances eit, i = 1, 2, . . . , N and t = 1, 2, . . . , T , are i.i.d. across i and t

with zero mean, variance σ2
e and E|eit|4+η <∞, for some η > 0.

Assumption 3. The element of XNt are nonstochastic and bounded uniformly (BU) in n and T .
Also, limT→∞

1
NT

∑T
t=1X

′
NtXNt exists and is nonsingular.

Assumption 4. N is a nondecreasing function of T and T goes to infinity.

Assumption 1 is standard assumption in spatial analysis and boundedness condition on W , M and
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(I − λW ), (I − τM) and An, limit the spatial correlation of manageable degree. Assumption 2
provides regularity assumptions on for eit. When exogenous variables XNt are included in the
model, it is convenient to assume that they are uniformly bounded as in Assumption 3. Lastly, if
Assumption 4 holds then we can say that N , T →∞ simultaneously.

4 Derivation of the Test Statistics

The full model (1) - (4) has the following: linear regression coefficients and innovation variance
(β, σ2

e), time dynamics γ, random effects σ2
µ, time-series correlation ρ, space-time dynamics param-

eter δ, spatial error dependence λ, and spatial lag dependence τ . The full parameter vector will be
denoted by θ = (β′, σ2

e , γ, σ
2
µ, ρ, δ, λ, τ)′. I am interested in testing significance of last six parameters

individually in the possible presence of the rest. For example, in order to detect the time- dynamics
I would test, say, Hb

o : γ = 0 in presence of φ = (σ2
µ, ρ, δ, τ, λ)′. The usual practice is using likelihood

ratio test and conditional RS tests. However, those tests require estimation of both γ and φ (or φ
alone) along with (β, σ2

e). Instead, in this paper I contribute to the existing literature by developing
adjusted RS tests for specification search in dynamic panel spatial framework by using Bera and
Yoon (1993) test principle, which requires estimation of the simplest model under joint null of no
misspecification.

All the proposed adjusted tests are based on the joint null hypothesis (of no misspecifica-
tion), i.e., Ha

0 : γ = σ2
µ = ρ = δ = λ = τ = 0. Thus under Ha

o , the parameter vector is
θo = (β′, σ2

e , 0, 0, 0, 0, 0, 0)′. The proposed tests can take care of the possible presence of all the
nuisance parameters indirectly through their respective Fisher-Rao score evaluated under the joint
null. Due to this estimation simplicity, the suggested tests are more amenable to use by empirical
researchers than the LR or conditional RS tests.

4.1 Bera and Yoon Test Principle

Consider a general model represented by the log-likelihood L(ω, ψ, φ) where the parameters ω, ψ
and φ are, respectively, (p× 1), (r × 1) and (s× 1) vectors. Here I assume that underlying density
function satisfies the regularity conditions, as stated in Serfling (1980), Lehmann and Romano
(2005), for the MLE to have asymptotic Gaussian distribution. Suppose a researcher sets φ = φ0

and tests H0 : ψ = ψ0 using the log-likelihood function L1(ω, ψ) = L(ω, ψ, φ0), where ψ0 and φ0

are known. The RS statistic for testing H0 in L1(ω, ψ) will be denoted by RSψ. Let us denote
θ = (ω′, ψ′, φ′)′(p+r+s)×1 and θ̃ = (ω̃′, ψ′0, φ′0)′(p+r+s)×1 , where ω̃ is the ML estimator of ω under
ψ = ψ0 and φ = φ0. I define the score vector and the information matrix, respectively, as
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da(θ) = ∂L(θ)
∂a

and J(θ) = −E[ 1
n

∂2L(θ)
∂θ∂θ′

] =


Jω Jωψ Jωφ

Jψω Jψ Jψφ

Jφω Jφψ Jφ

 (11)

where a = (ω, ψ, φ) and n is the sample size. If L1(ω, ψ) were the true model, then it is well known
that under H0 : ψ = ψ0

RSψ = 1
n
dψ(θ̃)Jψ.ω(θ̃)−1dψ(θ̃)′ → χ2

r(0) (12)

where Jψ.ω(θ̃) = Jψ − JψωJ−1
ω Jωψ.

Under local alternative H1 : ψ = ψ0 + ζ√
n
, RSψ → χ2

r(λ1), where the non-centrality parameter
λ1 ≡ λ1(ζ) = ζ ′Jψ.ωζ. Given this setup, i.e., under no misspecification, asymptotically the test
will have the correct size and locally optimal. Now suppose that the true log-likelihood function is
L2(ω, φ) so that the considered alternative L1(ω, ψ) is (completely) misspecified. Using the local
misspecification φ = φ0 + δ√

n
, Davidson and MacKinnon (1987) and Saikkonen (1989) derived

the asymptotic distribution of RSψ under L2(ω, φ) as RSψ → χ2
r(λ2), where the non-centrality

parameter λ2(δ) = δ′Jφψ.ωJ
−1
ψ.ωJψφ.ωδ with Jψφ.ω = Jφψ − JφωJ−1

ω Jωψ. Owing to the presence of
this non-centrality parameter λ2, RSψ will reject the true null hypothesis H0 : ψ = ψ0 more often,
i.e., the test will have excessive size. Here the crucial term is Jφψ.ω which can be interpreted as
partial covariance between the score vectors dφ and dψ after eliminating the linear effect of dω on
dφ and dψ. If Jψφ.ω = 0, then asymptotically the local presence of φ has no effect on RSψ. Bera
and Yoon (1993) suggested a modification to RSψ to overcome this problem of over-rejection, so
that the resulting test is valid under the local presence of φ. The modified statistic is given by

RS∗ψ = 1
N

[dψ(θ̃)− Jψφ.ω(θ̃)J−1
φ.ω(θ̃)dφ(θ̃)]′[Jψ.ω(θ̃)− Jψφ.ω(θ̃)J−1

φ.ω(θ̃)Jφψ.ω(θ̃)]−1

[dψ(θ̃)− Jψφ.ω(θ̃)J−1
φ.ω(θ̃)dφ(θ̃)]′. (13)

This new test essentially adjusts the mean and variance of the standard RS statistics RSψ, and,
under Ho : ψ = ψo

RS∗ψ → χ2
r(0) (14)

while under H1 : ψ = ψ0 + ζ
n ,

RS∗ψ → χ2
r(λ3) (15)

where λ3 = ζ ′(Jψ.ω − Jψφ.ωJ−1
ψ.ωJφψ.ω)ζ. Note the results in (14) and (15) are valid both under

presence or absence of local misspecification, since the asymptotic distribution of RS∗ψ is unaffected
by the local departure of φ from φ0.

BY shows that for local misspecification the adjusted test is asymptotically equivalent to
Neyman’s C(α) test and thus shares its optimal properties. Three observations are worth noting
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regarding RS∗ψ. First, RS∗ψ requires estimation only under the joint null, namely ψ = ψ0 and
φ = φ0. That means, in most cases, as we will see later, we can conduct our tests based on
only OLS residuals. Given the full specification of the model L(ω, ψ, φ), it is of course possible
to derive RS test for ψ = ψ0 after estimating φ (and ω) by MLE, which are generally referred to
as conditional tests. However, ML estimation of φ could be difficult in some instances. Second,
when Jψφ.ω = 0, RS∗ψ = RSψ, which is a simple condition to check. If this condition is true, RSψ is
an asymptotically valid test in the local presence of φ. Finally, let RSψφ denote the joint RS test
statistic for testing hypothesis of the form H0 : ψ = ψ0 and φ = φ0 using the alternative model
L(ω, ψ, φ). Then it be shown that [for a proof see Bera, Bilias and Yoon (2007), Bera, Montes-Rojas
and Sosa-Escudero (2009)]

RSψφ = RS∗ψ +RSφ = RS∗φ +RSψ, (16)

where RSφ and RS∗φ are, respectively, the counterparts of RSψ and RS∗ψ for testing H0 : φ = φ0.
This is a very important identity since it implies that a joint RS test for two parameter vectors
ψ and φ can be decomposed into sum of two orthogonal components: (i) the adjusted statistic
for one parameter vector and (ii) (unadjusted) marginal test statistic for the other. Since many
econometrics softwares provide the marginal (and sometime the joint) test statistics, the adjusted
versions can be obtained effortlessly.

Significance of RSψφ indicates some form of misspecification in the basic model with parameter
ω only. However, the correct source(s) of departure can be identified only by using the adjusted
statistics RS∗ψ and RS∗φ not the marginal ones (RSψ and RSφ). This testing strategy is close to the
idea of Hillier (1991) in the sense that it partitions the overall rejection region to obtain evidence
about the specific direction(s) in which the basic model needs revision. And it achieves that without
estimating any of the nuisance parameters. For detailed discussion, see Sen and Bera (2011).

4.2 Score Functions and Information Matrix

Recall that for the dynamic panel spatial model, the full parameter vector was θ = (β′, σ2
e , γ, σ

2
µ, ρ, δ, λ, τ)′.

In context the notation of Section 4.1, θ = (ω′, ψ′, φ′),′ with ω = (β′, σ2
e) and ψ and φ could be any

combinations of the parameters under test, namely (γ, σ2
µ, ρ, δ, λ, τ). The restricted model (under

the joint null, Ha
0 : γ = σ2

µ = ρ = δ = λ = τ = 0 ) is simple panel model, i.e., yit = Xitβ + uit,

where, uit ∼ IIDN(0, σ2
u). For simplicity I assume the weight matrices W and M to be same,

which is often realistic in practice. The score functions and information matrix J evaluated at the
restricted MLE of θ with ω̃ = (β̃, σ̃2

e) are:

∂L

∂β
= 0 (17)

∂L

∂σ2
e

= 0 (18)
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∂L

∂γ
= ũ′[IT ⊗ YNT−1]

σ2
e

(19)

∂L

∂σ2
µ

= NT

2σ̃2
e

[ ũ
′(JT ⊗ IN )ũ

ũ′ũ
− 1] (20)

∂L

∂ρ
= NT

2 [ ũ
′(G⊗ IN )ũ

ũ′ũ
] (21)

∂L

∂δ
= ũ′[(IT ⊗W )YNT−1]

σ̃2
e

(22)

∂L

∂τ
= ũ′[(IT ⊗W )YNT ]

σ̃2
e

(23)

∂L

∂λ
= NT

2 [ ũ
′(IT ⊗ (W +W ′))ũ

ũ′ũ
] (24)

where ũ = y − xβ̃ is the OLS residual vector of dimension NT × 1, σ̃2
e = ũ′ũ

NT and G = ∂V1
∂ρ |Ha

o
,

where G is bidiagonal matrix with bidiagonal elements all equal to one. YNT and YNT−1 are vector
of y and lagged values of y respectively, each of dimension NT × 1.

The information matrix J , equation (11), under Ha
o is

J(θo) =



Jβ 0 Jβγ 0 0 Jβδ Jβτ 0
0 Jσ2

e
Jσ2

eγ
Jσ2

eσ
2
µ

0 0 0 0
Jγβ Jγσ2

e
Jγ Jγσ2

µ
Jγρ 0 0 0

0 Jσ2
µσ

2
e

Jσ2
µγ

Jσ2
µ

Jσ2
µρ

0 0 0
0 0 Jργ Jρσ2

µ
Jρ 0 0 0

Jδβ 0 0 0 0 Jδ Jδτ Jδλ

Jτβ 0 0 0 0 Jτδ Jτ Jτλ

0 0 0 0 0 Jλδ Jλτ Jλ



(25)

where J = E(− 1
NT

∂2L
∂θ̃∂θ̃′

) evaluated at θ0. The detailed derivation and expression of each of
the terms of the information matrix are relegated to the appendix.

Apart from the RS statistic for full joint null hypothesis Ha
0 , I propose six (modified) test

statistics for the following hypotheses:
I) Hb

o : γ = 0 in presence of σ2
µ, ρ, δ, τ, λ.

II) Hc
o : σ2

µ = 0 in presence of γ, ρ, δ, τ, λ.
III) Hd

o : ρ = 0 in presence of γ, σ2
µ, δ, τ, λ.

IV) He
o : δ = 0 in presence of γ, σ2

µ, ρ, τ, λ.
V) Hf

o : τ = 0 in presence of γ, σ2
µ, ρ, δ, λ.

VI) Hg
o : λ = 0 in presence of γ, σ2

µ, ρ, δ, τ .
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Decision on testing these six hypotheses can guide a researcher to identify the correct source(s)
of departure(s) from Ha

o when it is rejected. One can test various combinations of I) to VI) by
testing on two/three/four parameters at a time under the null and compute additional ninety test
statistics (C6

2 + C6
3 + C6

4 = 90). I will demonstrate that it is unnecessary as these six (I -VI) tests
are “sufficient” to detect any misspecification in the basic model. Also keeping the total number
of tests to a minimum is beneficial to avoid the pre-testing problem. Since by construction the
proposed tests are independent of each other, so one can easily compute the overall significance
level.

Given the full model specification, it is of-course possible to derive conditional RS and LR
tests, say for λ = 0 in presence of γ, σ2

µ, ρ, δ and τ , however that would entail the estimation of
γ, σ2

µ, ρ, δ and τ parameters and also of λ for LR test. For the adjusted RS test these estimations
are not required as it indirectly takes care of the possible presence of nuisance parameters through
the Fisher-Rao score function.

Let us take the case for Hg
o : λ = 0 in presence of φ = (γ, σ2

µ, ρ, δ, τ), i.e., testing for spatial error
dependence in presence of time dynamics (γ), random effect (σ2

µ), serial correlation (ρ), space-time
dynamics (δ) and spatial lag dependence (τ). For this hypothesis, the term Jψφ.ω, i.e., Jλφ.ω 6= 0
where φ = (γ, σ2

µ, ρ, δ, τ)′ and ω = (β′, σ2
e)′. The term Jλφ.ω can be interpreted as partial covariance

of scores of λ and φ after eliminating the linear effect of ω. Therefore, the parameter λ is not
“independent” of (γ, σ2

µ, ρ, δ, τ)′ and vice versa. Thus, the marginal RS test statistic based on the
score dλ, i.e., RSλ for Hb

0 : λ = 0 assuming φ = (γ, σ2
µ, ρ, δ, τ) = (0, 0, 0, 0, 0) is not valid test under

the presence of φ. In the next subsection, the proposed test statistic, RS∗λ, that eliminates the
effects of φ without estimating them, and is more appropriate test will be presented. I will further
show, that test statistic for λ is dependent on δ and τ only, i.e., it is asymptotically independent of
(γ, σ2

µ, ρ). Thus even if one is interested to evaluate conditional RS test for Hg
o , then estimation of

all the parameters are not necessary as the test statistic for λ in presence of φ is only affected by
the presence of other spatial parameters, i.e., δ and τ and not by panel parameters. These type of
analysis of inter-dependencies cannot be done using LR tests. The proposed adjusted tests make
this possible in an elegant way. Of course, given the current computing power, it is not difficult
to estimate a complex model; however, it could be sometime hard to ensure the stability of many
parameter estimates. Also theoretically the stationarity regions of the parameter space have not
been fully worked for the spatial model [See Elhorst 2010].

4.3 Adjusted RS tests

In this section I present the adjusted test statistics one-by-one, each of which asymptotically follows
χ2

1 distribution under the respective null hypothesis. Detailed derivation are in the appendix.
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I) Hb
o : γ = 0 in presence of φ = (σ2

µ, ρ, δ, τ, λ).
To recall, here I am testing the significance of time-dynamics (γ) in presence of random effects
(σ2
µ), serial correlation (ρ), and spatial dependence (δ, τ, λ). Using the information matrix in (25),

Jγφ.ω, which can be interpreted as a covariance between parameter of interest, i.e., γ and rest of
the parameters, i.e., φ = (σ2

µ, ρ, δ, τ, λ) is given by Jγφ.ω = (Jγσ2
µ.σ

2
e
, Jγρ, 0, 0, 0). From this we can

infer:
(i) unadjusted RS test for Hb

o is not valid.
(ii) the partial covariance of dγ and dσ2

µ
, and, dγ and dρ are nonzero; while covariance with the

spatial parameters (δ, τ, λ) are zero. Thus the test for γ is affected by the presence of σ2
µ and ρ

only.
The adjusted test, RS∗γ , takes care of the presence of σ2

µ and ρ using the score function of σ2
µ

and ρ, i.e., equations (20) and (21). These scores can be viewed as “sufficient” statistics and thus
can be interpreted as the indirect estimators of the respective parameters. For example, in a simple
time-series model, ρ̂ =

∑
ũt ˜ut−1∑
ũtũt′

, and Durbin-Watson test, which is essentially a RS test, are related
by: DW ≈ 2(1− ρ̂). Here, instead of direct estimation of the nuisance parameters, ρ and σ2

µ , the
adjusted test utilizes their respective scores, i.e.,

dσ2
µ

= ∂L

∂σ2
µ

= NT

2σ̃2
e

[ ũ
′(JT ⊗ IN )ũ

ũ′ũ
− 1]

dρ = ∂L

∂ρ
= NT

2 [ ũ
′(G⊗ IN )ũ

ũ′ũ
]

One can note the similarity between ρ̂ and dρ. The adjusted test statistic for Ho : γ = 0 is:

RS∗γ =
[dγ − Jγσ2

µ.σ
2
e
J−1
σ2
µ.σ

2
e
dσ2

µ
− JγρJ−1

ρ dρ]2

[Jγ.ω − Jγσ2
µ.σ

2
e
J−1
σ2
µ.σ

2
e
Jσ2

µγ.σ
2
e
− JγρJ−1

ρ Jργ ]
. (26)

While the unadjusted counterpart is

RSγ =
d2
γ

Jγ.ω
. (27)

From equation (26) it is quite apparent how RS∗γ takes care of the possible presence of nuisance
parameters (σ2

µ, ρ) using their respective scores evaluated under joint null Ha
o . It is based on the

effective score d∗γ = [dγ − Jγσ2
µ.σ

2
e
J−1
σ2
µ.σ

2
e
dσ2

µ
JγρJ

−1
ρ dρ] which renders d∗γ to be orthogonal to dσ2

µ
and

dρ. For other nuisance parameters, (δ, τ, λ), no such adjustments are necessary as it is evident
from the expression of Jγφ.ω that Jγ(δτλ) = (0, 0, 0), i.e., asymptotically they do not affect γ as far
as testing is concerned. Thus inference on γ is affected only by the presence of panel and time-
series parameters i.e., σ2

µ and ρ, and not by the presence of any spatial parameters (δ, τ, λ). This
separation between time and space parameters is quite interesting, and RS∗γ takes full advantage
of it which is not possible under other test procedures.
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For the following hypotheses, I mention the respective test statistics.

II) Hc
o : σ2

µ = 0 in presence of γ, ρ, δ, τ, λ.

Here, I am testing for random effects (σ2
µ), in presence of time dynamics (γ), serial correlation

of errors (ρ), space-time dynamics (δ), spatial lag dependence (τ) and spatial error dependence (λ).
The crucial quantity is Jσ2

µφ.ω
= (Jσ2

µγ.σ
2
e
, Jσ2

µρ
, 0, 0, 0) where φ = (γ, ρ, δ, τ, λ)

The adjusted RS test statistics is:

RS∗σ2
µ

=
[dσ2

µ
− Jσ2

µγ.σ
2
e
J−1
γ.ωdγ − Jσ2

µρ
J−1
ρ dρ]2

[Jσ2
µ.σ

2
e
− Jσ2

µγ.σ
2
e
J−1
γ.ωJγσ2

µ.σ
2
e
− Jσ2

µρ
J−1
ρ Jρσ2

µ
]
, (28)

and the unadjusted one

RSσ2
µ

=
d2
σ2
µ

Jσ2
µ.σ

2
e

(29)

Here σ2
µ is dependent only on γ and ρ, therefore RSσ2

µ
uses the effective score d∗σ2

µ
= [dσ2

µ
−

Jσ2
µγ.σ

2
e
J−1
γ.ωdγ − Jσ2

µρ
J−1
ρ dρ], making it orthogonal to dγ and dρ.

III) Hd
o : ρ = 0 in presence of γ, σ2

µ, δ, τ, λ.

Here, φ = (γ, σ2
µ, δ, τ, λ) and Jρφ.ω = (Jργ , Jρσ2

µ
, 0, 0, 0).

Thus, the adjusted test statistic is:

RS∗ρ =
[dρ − Jργ.σ2

e
J−1
γ.ωdγ − Jρσ2

µ.σ
2
e
J−1
σ2
µ.σ

2
e
dσ2

µ
]2

[Jρ − Jργ.σ2
e
J−1
γ.ωJγρ.σ2

e
− Jρσ2

µ.σ
2
e
J−1
σ2
µ.σ

2
e
Jσ2

µρ.σ
2
e
]

(30)

and while the unadjusted one is :

RSρ =
d2
ρ

Jρ
(31)

It is evident from the term Jρφ.ω, that among all the nuisance parameters, serial correlation
(ρ) is directly affected by presence of only time dynamics (γ) and random effects (σ2

µ). Thus, the
effective score of the test statistic [d∗ρ = dρ − Jργ.σ2

e
J−1
γ.ωdγ − Jρσ2

µ.σ
2
e
J−1
σ2
µ.σ

2
e
dσ2

µ
], in equation (30),

clearly reveals this, i.e., d∗ρ is made orthogonal to dγ and dσ2
µ
.

IV) He
o : δ = 0 in presence of γ, σ2

µ, ρ, τ, λ.

13



Here, φ = (γ, σ2
µ, ρ, τ, λ) and Jδφ.ω = (0, 0, 0, Jδλ.β, Jδτ.β).

The adjusted RS test statistic is:

RS∗δ =
[dδ − Jδλ.βJ−1

λ.βdλ − Jδτ.βJ
−1
τ.βdτ ]2

[Jδ.β − Jδλ.βJ−1
λβ Jλδ.β − Jδτ.βJ

−1
τ.βJτδ.β]

(32)

and the unadjusted one is

RSδ = d2
δ

Jδ.β
(33)

V) Hf
o : τ = 0 in presence of γ, σ2

µ, ρ, δ, λ.

The set of nuisance parameters is φ = (γ, σ2
µ, ρ, δ, λ), and Jτφ.ω = (0, 0, 0, Jτδ.β, Jτλ.β).

The adjusted test statistic is:

RS∗τ =
[dτ − Jτδ.βJ−1

δ.βdδ − Jτλ.βJ
−1
λ.βdλ]2

[Jτ.β − Jτδ.βJ−1
δ.βJδτ.β − Jτλ.βJ

−1
λ.βJλτ.β]

(34)

The unadjusted test statistic is:

RSτ = d2
τ

Jτ.β
(35)

Similar to the other proposed test statistics, RS∗τ also takes care of the presence of nuisance
parameters through their respective scores. This is evident from the equation (34).

Lastly,
VI) Hg

o : λ = 0 in presence of γ, σ2
µ, ρ, δ, τ .

Here, φ = (γ, σ2
µ, ρ, δ, τ) and the partial covariance term, i.e., Jλφ.ω = (0, 0, 0, Jλδ, Jλτ ). The

proposed adjusted test takes care of the interdependence of the two nuisance parameters, space-time
dynamics (δ) and spatial lag dependence (τ), through their score functions. Thus, the adjusted
test statistic is:

RS∗λ =
[dλ − JλδJ−1

δ.βdδ − JλτJ
−1
τ.βdτ ]2

[Jλ − JλδJ−1
δ.βJδλ − Jλτ.δJ

−1
τ.βJτλ]

(36)

The unadjusted RS is :

RSλ = d2
λ

Jλ
(37)

Using these proposed adjusted test statistics, I will address the empirical question at hand,
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i.e., specification search for growth model. Specifically, I will start with the basic panel model and
estimate it by OLS method and then will use the proposed tests to identify the specific sources of
departures. Before embarking on data analysis, I discuss some further elegant and useful features
of specification search.

4.4 Analysis of Misspecification

Earlier I demonstrated that the“time and panel” parameters (γ, σ2
µ, ρ) are orthogonal to the “spa-

tial” parameters (δ, λ, τ) in the sense of testing. Thus the joint RS statistic for Ha
o : γ = σ2

µ = ρ =
δ = τ = λ = 0, RSJ decomposes naturally into two orthogonal components:

RSJ = RSγσ2
µρ

+RSδτλ. (38)

As I noted there is no further orthogonality among (within) time and panel parameters (γ, σ2
µ, ρ),

and spatial parameters (δ, τ, λ). Thus one needs to use the adjusted tests to decompose RSγσ2
µρ

and RSδτλ further. From the expressions of different test statistics it follows that

RSγσ2
µρ

= RS∗γ|σ2
µρ

+RSσ2
µρ

= RS∗γ|σ2
µρ

+RS∗σ2
µ|ρ +RSρ = RS∗γ|σ2

µρ
+RS∗ρ|σ2

µ
+RSσ2

µ
(39)

where RS∗γ|σ2
µρ

is the adjusted test derived in equation (26), RS∗σ2
µ|ρ

(RS∗ρ|σ2
µ
) is the adjusted test

statistics for σ2
µ (ρ) after taking care of the parameter ρ (σ2

µ). Moreover, the analytical form of
RS∗σ2

µ|ρ
and RS∗ρ|σ2

µ
are same as derived in Sen and Bera (2011) under static panel spatial model

framework.

Alternatively, one can also write:

RSγσ2
µρ

= RS∗σ2
µ|γρ +RSγρ = RS∗σ2

µ|γρ +RS∗γ|ρ +RSρ = RS∗σ2
µ|γρ +RSρ|γ∗ +RSγ (40)

or,

RSγσ2
µρ

= RS∗ρ|γσ2
µ

+RSγσ2
µ

= RS∗ρ|γσ2
µ

+RS∗γ|σ2
µ

+RSσ2
µ

= RS∗ρ|γσ2
µ

+RS∗σ2
µ|γ +RSγ (41)

Most computer software reports joint and unadjusted (one-directional ) RS tests. Above decom-
position suggest that one can obtain all the adjusted test without any extra computation. Similar
decomposition will hold for the adjusted RS test statistics for the spatial parameters (δ, τ and λ).

RSδτλ = RS∗δ|τλ +RSτλ = RS∗δ|τλ +RS∗τ |λ +RSλ = RS∗δ|τλ +RS∗λ|τ +RSτ (42)

Therefore, the proposed adjusted test statistics aid the researcher in model specification with mini-
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mum estimation, and its elegant additive property give the researcher a wide flexibility in selecting
a model framework.

5 Specification Search for Growth Model

5.1 Data

The data is from Penn World Tables (PWT, version 6.1), which contain information on real income,
investment and population (among many other variables) for a large number of countries. In this
paper, I use a sample of 91 countries over the period of 1961 - 1995. These countries are those
of MRW (1992) non-oil sample which has been used extensively by other researchers for empirical
work on growth convergence.

The dependent variable is real income per worker is measured by real GDP computed by chain
method, divided by number of workers. I computed the number of workers following Caselli (2005):
RGDPCH×POP/RGDPW , where RGDPCH is real GDP per capita computed by chain method,
RGDPW is real GDP per worker and POP is population. The independent variables are same as
in MRW (1992). They are n, which measures the average growth of the working-age population
(ages 15 to 64), the savings rate s is measured as the average share of gross investment in GDP.

There are many ways one can specify the weight matrix W , for example, geographic distance,
k-neighborhood matrix, contiguous neighborhood matrix, economic distance, etc. (See Conley and
Topa (2002), Eaton and Kortun (1996), Klenow and Rodriguez-Clare (2005) and Ertur and Koch
(2007).) I consider three different specification of weight matrix, mainly to check the sensitivity of
the test result to different definition of spatial connectedness. Here, W1,W2 and W3, where W1 are
defined. The elements of W1are w1ij = d−2

ij∑
j
d−2
ij

, such that dii = 0 and dij is the euclidean distance
between country’s capital. Other two matrices, W2 and W3, are based on k-nearest neighbors, with
k = 8 and 20 respectively, nearness being measured in terms of the geographic distance.

5.2 Specification Search

First I present some basic features of the income distribution of the 91 non-oil countries over the
35- year period 1961 - 1995, in Figure 1 for four groupings of cross sectional averages of per capita
real income, where the groups are selected based on initial income of these countries in 1961.
[The details of each group is provided in the appendix]. Averages, maximum and minimum are
shown across the four panels. Panel A, B, C, D are respectively, for the poorest, middle, rich
and richest income groups. A, B and C each is based on 24 countries, and Panel D represents 19
countries. The trajectories in Figure 1 provide some idea of the variability in the actual growth
trajectories over time within these groupings. It also indicate that some members of each group
have substantial prospects of moving into higher income groups over the 35 year period. However,
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Figure 1: Real per-capita income trajectories of 91 countries: 1961 - 1995
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assuming homogeneity of technological progress and speed of convergence (which is usually assumed
for β- convergence in cross-sectional studies) rules out this possibility. It is only when one allows
for heterogeneity in technological progress over time and over cross-sectional units ( while at the
same time requiring that the growth rate of technological progress converge to a common constant
over time to ensure convergence), then the realistic patterns as shown in Figure 1 can emerge (for
detail, see Philips and Sul (2003)). Using the proposed specification tests our objective is now to
identify a model that captures such essential features of the data.

Table 1 reports the joint RS test RSJ for the null Ha
o : γ = σ2

µ = ρ = δ = τ = λ = 0,
joint test for time dynamics (γ), random effect (σ2

µ) and serial correlation (ρ) RSγσ2
µρ

, joint RS
test for space recursive (δ), spatial lag (τ) and spatial error lag (λ) RSδτλ and Table 2 reports the
unadjusted single-directional RS tests for each of the six parameters, and the proposed adjusted RS
test statistics (noted by ‘*’) for all the parameters. Except RSJ , RSγσ2

µρ
and RSδτλ , each of the

test statistics follow χ2
1 distribution asymptotically. RSJ ∼ χ2

6, and RSγσ2
µρ

and RSδτλ ∼ χ2
3. Each

of these tables report the test statistics for same model under three different specification of the
weight matrix W . Recall, W1 uses the geographical distance between the capital of the countries,
W2 and W3 use eight and twenty nearest neighbors, respectively.

Table 1: Specification Search using Full Sample of 91 countries over 1961 - 1995.
Test Statistics Specification with W1 Specification with W2 Specification with W3

RSJ 231.91 177.16 217.16
RSγσ2

µρ
188.19 141.19 179.19

RSδτλ 43.72 35.97 37.97

Table 2: Specification Search using Full Sample of 91 countries over 1961 - 1995.

Parameters RSW1 RS∗W1
RSW2 RS∗W2

RSW3 RS∗W3

Time-Dynamics - γ 81.12∗∗∗ 48.11∗∗∗ 60.09∗∗∗ 37.51∗∗∗ 79.51∗∗∗ 43.75∗∗∗
Heterogeneity - σ2

µ 92.45∗∗∗ 59.17∗∗∗ 79.12∗∗∗ 43.68∗∗∗ 89.03∗∗∗ 54.84∗∗∗
Serial Correlation - ρ 32.31∗∗∗ 15.79∗∗∗ 24.69∗∗∗ 9.94∗∗∗ 27.23∗∗∗ 12.55∗∗∗
Space-Time Dyn - δ 8.51∗∗∗ 1.11 6.42∗∗ 0.19 7.50∗∗∗ 0.12
Spatial Lag - τ 7.96∗∗∗ 2.42 5.91∗∗ 1.74 6.96∗∗∗ 1.82
Spatial Error - λ 41.92∗∗∗ 40.68∗∗∗ 33.31∗∗∗ 31.17∗∗∗ 36.14∗∗∗ 35.57∗∗∗

Note: * indicates significant at 10%, ** indicates significant at 5% and *** indicates significant at 1%.

No matter which W is chosen, RSJ is always highly significant at any significance level. Given
the orthogonality between spatial and panel-time parameters, as given in the additivity result in
equation (38), we can conduct the joint tests RSγσ2

µρ
and RSδτλ . These joint tests are also highly

significant after comparing with χ2
3 critical points at any significance level; however they are not
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informative about the specific direction(s) of the misspecification(s). Thus based on the results for
the unadjusted tests, it would appear that the features like time dynamics, serial correlation of
error, random effects, spatial dependencies are the features of this dataset and therefore should be
added to the basic model (joint null). However, as we discussed earlier, the inference based on the
unadjusted tests can be highly misleading as they fail to take into account the possible presence of
other parameters and their interdependencies.

Significance of each parameter can only be evaluated correctly by considering the modified
tests. Out of all the six adjusted test statistics, only four, namely, RS∗γ , RS∗σ2

µ
, RS∗ρ and RS∗λ are

significant, irrespective of the choice of weight matrix W . It is interesting to note the difference
in values of the test statistics; the adjusted test statistics are much lower than their unadjusted
counterparts. The striking differences in values can be noted for RSδ, RSτ with their adjusted
counterparts, i.e., RS∗δ and RS∗τ respectively. The value of RS∗δ falls below the critical point of
χ2

1 at any significance level, after it takes into account the possible presence of τ and λ. Similarly
spatial lag dependence (τ) parameter loses its significance as the test statistic drops from 7.96 to
2.42 after adjustment. Viewing the test statistics as a measure of degree of misspecification, we
find that out of all the departures from the joint null, most of the misspecification is attributed to
σ2
µ ( 59.17

231.91 = 26%) and time dynamics γ ( 48.11
231.91 = 21%) followed by spatial error dependence (which

captures the indirect cross-sectional dependence among these countries). This holds true with W3;
for W2, however, when the weight matrix is relatively sparse. Thus for W2, the misspecification
due to spatial dependence is relatively low. This may be due to the fact that W2 is sparse and
thus dilute the degree of spatial dependencies. However, no matter what form of W is chosen,
misspecification due to time dynamics, serial correlation and random effects are always strong.
Thus, when the full sample of annual data is used for 91 non-oil countries for the period 1961 -
1995, the relevant growth regression 2 would be

yit = γyit−1 + β1xit + µi + εit (43)

εit = λ
∑
j 6=i

wijεjt + vit (44)

vit = ρvit−1 + eit (45)

Note that this specification, interestingly, also supports kind of trajectories Figure 1 demon-
strates as it can take into account the heterogeneity in technological progress across countries
and across time, captured through the spatial dependence (which can account for the technology

2Concerns may be raised regarding the estimation of such model specially when the time dynamics is present along
with the random effect, as it is generally believed that the inclusion of lagged dependent variables in a panel model
necessarily renders random-effect estimators inconsistent. However, it has been shown in Ashley (2010) that if the
variables X are strictly exogenous then the lagged value of the quasi-differenced dependent variable is uncorrelated
with the quasi-differenced model error, and thus usual random effect estimator would provide consistent estimators
of the parameters.
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transfer between countries) and the serial correlation (which captures the differences across time).3.
MRW (1992) considers a cross-sectional regression model for the non-oil sample with s and n as

explanatory variables and finds the rate of conditional convergence be to be very low, 0.00606(0.001)
(speed of convergence = −(1− α̂)(n+g+ξ), where α̂ is the estimated share of physical capital, n is
working population, g is growth rate of the country, ξ is depreciation of capital), implying a half-life
of 114 years, which is indeed very long. Islam (1995) uses fixed effect dynamic panel data model and
allows for the unobserved technological diffusion through the fixed effects term, and estimates the
rate of conditional convergence to be 0.0434 (0.007) (speed of convergence measured as 1

∆ ln γ̂, where
∆ is the time difference between two consecutive periods and γ̂ is the estimate of time dynamics
parameter in a fixed effect dynamic panel data model) . It should be noted here, that Islam (1995)
used minimum distance (MD) estimator to estimate his model using similar data as MRW(1992).
According to Islam (1995), the panel estimate of the convergence rate increases 7.2 times (relative to
its OLS estimates that ignores technological differences, as in MRW (1992)) in the non-oil sample,
thus concluding that for these countries the half-life is 16 years approximately. Lee et al. (1997)
estimate the rate of convergence to be 0.1845 for the same sample of countries by allowing the
growth rate g to differ across countries and also for possible serial correlation of error. Ertur and
Koch (2007) consider the growth convergence model allowing for regional knowledge and technology
spillover effects through spatial dependence, and estimate the rate of convergence to be 0.012 (0.00),

with half life around 59 years (speed of convergence =
∑N

j=1 uij
1

Φj
(nj+g+ξ)∑N

j=1 uij
1

Φj

−
∑N
j=1 uij

1
Θj (nj +g+ξ) ,

where uij is a function of estimates of capital share, spatial dependence and elements of W matrix,
Φj and Θj are the rate of convergence of capital and income, respectively, to the steady state, of
country j. For details see, Ertur and Koch (2007).) Thus, the speed of convergence and the implied
half-life clearly depends on the model framework. For same dataset, under different frameworks,
researchers got widely varying rates of convergence and widely varying half-life estimates (number
of years needed forconditional convergence) corresponding to each of the respective convergence
estimates. This is a surprising fact and hasn’t been considered so far by any research papers. So
it is obvious that these models could not capture all the salient feature of the underlying data and
thats why the estimate of growth convergence from these models can result in potentially misleading
policy implications. The proposed tests can aid the researcher in tackling this difficult task- i.e., to
understand the DGP with minimum estimation a priori. As I discussed, given the annual data for
the sample of 91 countries over the period 1961 - 1995, the most appropriate model specification is
given by equations (43) - (45).

In Table 3 and 4, I have considered specification search for growth models under different time
frames. I consider the test statistics when the time span is five - year intervals. Thus considering the
period 1961 - 1995, I have seven data (time) points for each country: 1965, 1970, 1975, 1980, 1985,

3Only assumption required for convergence here is that over time (technically t → ∞) the technological differences
between countries i and j should go to zero.
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1990, 1995. The variables are averages over five -year time intervals. Islam (1995) pointed out that
“yearly time span are too short to be appropriate for growth convergence. Short-term disturbances
may loom large in such brief time spans.” Following his work, many researchers considered this data
setup so that the growth convergence estimates are less influenced by business cycle fluctuations
and less likely to be serially correlated than they would be in a yearly data setup. I also divide the
data in two subsamples to investigate if the the model specification search is robust. Therefore,
RS∗S1, RSS1, RS

∗
S2 and RSS2 are respectively the adjusted and unadjusted test statistics for the

annual data for 91 countries for the subsamples 1961 - 1980 (referred as S1) and 1981 - 1995
(referred as S2) respectively.

Table 3: Specification search using different time specification.
Test Statistics 5-year time interval Subsample: 1961 - 1980 Subsample: 1981 - 1995
RSJ 87.41 170.82 154.86
RSγσ2

µρ
70.13 145.14 131.47

RSδτλ 17.28 25.68 23.39

Table 4: Specification search using different time specification.

Parameters RS5−years RS∗5−years RSS1 RS∗S1 RSS2 RS∗S2
Time-Dynamics - γ 18.50∗∗∗ 10.96∗∗∗ 72.29∗∗∗ 37.11∗∗∗ 69.51∗∗∗ 33.75∗∗∗
Heterogeneity - σ2

µ 25.27∗∗∗ 14.07∗∗∗ 89.31∗∗∗ 41.11∗∗∗ 80.23∗∗∗ 39.17∗∗∗
Serial Correlation - ρ 14.01∗∗∗ 2.80 21.69∗∗∗ 6.94∗∗∗ 24.23∗∗∗ 7.55∗∗∗
Space-Time Dyn - δ 8.05∗∗∗ 1.31 5.33∗∗ 1.56 7.68∗∗∗ 1.87
Spatial Lag - τ 1.01 0.009 4.79∗∗ 1.19 6.45∗∗∗ 1.43
Spatial Error - λ 15.16∗∗∗ 14.22∗∗ 22.11∗∗∗ 20.17∗∗∗ 21.14∗∗∗ 19.81∗∗∗

Note: * indicates significant at 10%, ** indicates significant at 5% and *** indicates significant at 1%.
S1: Subsample: 1961 - 1980, S2: Subsample: 1980 - 1995.

It is evident from Table 3 that all the joint tests are significant irrespective of the time span
of the data. From column 2 of Table 4, it is evident that only the heterogeneity (σ2

µ) and time
dynamics (γ) are most prominent features when 5 year time interval is chosen. RS∗λ is significant
at 5% level. Interestingly although the unadjusted test for ρ is significant, but adjusted one is no
longer so. Thus when the data setup is based on 5-year time interval, the relevant growth equation
is very similar to Islam (1995), i.e., dynamic panel data framework augmented for cross-sectional
dependence also. Indeed 5 -year time span removes effect of serial correlation of errors.

Column 4 - Column 7 of Table 4 indicate that the relevant feature of growth regression are
similar to equation (43) - (45). Although the relative values of the test statistics are different, but
the inference remains same. This supports the robustness of the results using the proposed test
statistics.
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To summarize, in this section I use my proposed test statistics from Section 4, for the proper
specification search of growth model. As explained in Section 4.1, I need to estimate only the
simple panel model in order to apply the proposed tests. Thus, no complex estimation is necessary.
I show how one can unravel the salient features of the underlying DGP using the proposed tests.
In particular, I show that for the given dataset of 91 non-oil samples from Penn World table, the
most relevant features are heterogeneity, time dynamics and indirect cross-sectional dependence.
Thus a researcher analyzing the growth behavior of these 91 countries should take care of these
departures in his/her model; otherwise the model would be misspecified which would lead to wrong
policy implication. For example, as I have shown here, if one assumes a cross-sectional regression
model, then the growth convergence rate is very low, implying the half-life to be 114 years. Again
assuming a fixed effect dynamic panel model will yield a much higher rate of convergence for the
same dataset, implying half-life to be as short as 16 years. It is evident that the convergence
rate of income vary wildly, even when same dataset is used. Thus one should consider a proper
specification search before directly going into model implication and policy analysis. Tables 1 and
2 illustrate this important fact and Tables 3 and 4 demonstrate the robustness of the proposed test
result.

In the next section I demonstrate that though the suggested tests are valid only for large
samples and local misspecification, they perform quite well in finite samples.

6 Monte Carlo Results

The proposed tests are valid only asymptotically. As in our empirical application, in the real world
data will be limited. Therefore, we need to evaluate the performance of the tests under a finite
sample scenario. The data for Monte Carlo study were generated based on the model (1) - (4).

yit = γyit−1 + τ
N∑
j=1

mijyjt + δ
N∑
j=1

mijyjt−1 +Xitβ + uit (46)

uit = µi + εit (47)

εit = λ
N∑
j=1

wijεjt + vit (48)

vit = ρvit−1 + eit,where eit ∼ IIDN(0, σ2
e) (49)

We set α = 5 and β = 0.5. The independent variable Xit is generated using:

Xit = 0.4Xit−1 + ϕit (50)
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where ϕ ∼ Unif [−0.5, 0.5] andXi0 = 5+10ϕi0. For weight matrixW , I consider rook design. I fixed
σ2
µ + σ2

e = 20 and let η = σ2
µ

σ2
µ+σ2

e
. Values of all the six parameters γ, σ2

µ, ρ, δ, τ and λ are varied over
a range from 0 to 0.5 . I have considered two different pairs for (N,T ) namely (25, 10), (49, 20). For
lack of space I report the results for (25, 10). The results for (49, 20) are quite comparable to the re-
ported ones and are available on request. Each Monte Carlo experiment is consist of generating 1000
samples for each different parameter settings. Thus the maximum standard error of the estimates
of the size and power would be

√
(0.5(1−0.5)

1000 = 0.015. The parameters were estimated using OLS, and
fifteen test statistics, namelyRSJ , RSγσ2

µρ
, RSδτλ, RS

∗
γ , RSγ , RS

∗
σ2
µ
, RSσ2

µ
, RS∗ρ , RSρ, RS

∗
δ , RSδ, RS

∗
τ ,

RSτ , RS
∗
λ and RSλ were computed. As discussed earlier, in practice it is not necessary to compute

all these statistics ; I do it here only for comparative evaluation. The results are based on the
nominal size of 0.05.

As noted in Section 4, the parameters (γ, σ2
µ, ρ) are orthogonal to (δ, τ, λ) as far as testing

are concerned. So I report the key results in two tables. Table 5 reports the size and power of
RS∗γ , RSγ , RS

∗
σ2
µ
, RSσ2

µ
, RS∗ρ , RSρ and Table 6 reports the size and power ofRS∗δ , RSδ, RS∗τ , RSτ , RS∗λ

and RSλ. Results RSJ , RSγσ2
µρ

and RSδτλ are not reported for lack of space. However, each of
them achieves nominal size under joint null, and expected power properties.

In Table 5, I vary the parameters (γ, η, ρ) from 0 to 0.5, one and two at a time, keeping the
spatial parameters zero. RS∗γ is size robust while RSγ performs badly when γ = 0 and when either
or both η 6= 0 and ρ 6= 0. For example, when γ = 0, η = 0, ρ = 0.3, rejection probability of RS∗γ is
0.048 and that for RSγ is 0.888. Similarly, when γ = 0.3, η = 0, ρ = 0 then rejection probability
of RS∗σ2

µ
is 0.054 and that of RSσ2

µ
is 0.231. When γ = 0.4, η = 0, ρ = 0 the rejection probability

of RS∗ρ is 0.040 and that of RSρ is 0.166. Thus as expected by construction, the adjusted test
statistics are size-robust under (local and in some cases even global) misspecification while their
unadjusted counter parts are not. However, there is slight loss in power for these adjusted test
statistics compared to the unadjusted ones, when adjustments are made even when there is no
misspecification. This loss in power however reduces as the parameter values deviates further from
the null. As discussed in Sen and Bera (2011), this loss in power can be regarded as the premium
one pays for the validity of the adjusted test under local misspecification, i.e., the cost of robustness.

In Table 6, I vary the spatial parameters (δ, τ, λ) from 0 to 0.5, one and two at a time, keeping
other parameters at zero. It is evident from Table 6 that RS∗δ , RS∗τ and RS∗λ are more size-robust
than RSδ, RSτ and RSλ respectively. For instance, when δ = 0, τ = 0.4, λ = 0.4, the rejection
probability of RS∗δ is 0.049, whereas for RSδ it is 0.997. Again when δ = 0.4, τ = 0, λ = 0, the
rejection probability for RS∗λ is 0.038 and that for RSλ is 0.99. Further Monte Carlo results on
RS∗γ , RSγ , RS

∗
σ2
µ
, RSσ2

µ
, RS∗ρ , RSρ, RS

∗
δ , RSδ, RS

∗
τ , RSτ , RS

∗
λ and RSλ are reported in the Appendix.
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Table 5: Estimated Rejection Probabilities with δ = τ = λ = 0. Sample size: N = 25, T = 10
γ η ρ RS∗γ RSγ RS∗σ2

µ
RSσ2

µ
RS∗ρ RSρ

0 0 0 0.055 0.057 0.058 0.051 0.058 0.054
0.1 0 0 0.058 0.497 0.069 0.091 0.115 0.198
0.2 0 0 0.060 0.769 0.054 0.107 0.105 0.291
0.3 0 0 0.048 0.888 0.035 0.131 0.267 0.316
0.4 0 0 0.049 1.000 0.066 0.108 0.277 0.460
0.5 0 0 0.044 1.000 0.041 0.344 0.314 0.698
0 0.4 0 0.054 0.682 0.119 0.099 0.034 0.110
0.1 0.4 0 0.068 0.798 0.155 0.112 0.296 0.332
0.2 0.4 0 0.084 0.894 0.151 0.202 0.287 0.413
0.3 0.4 0 0.078 0.959 0.238 0.346 0.375 0.534
0.4 0.4 0 0.081 1.000 0.324 0.425 0.451 0.611
0.5 0.4 0 0.091 1.000 0.211 0.492 0.524 0.723
0 0.1 0 0.065 0.753 0.161 0.212 0.045 0.111
0 0.2 0 0.065 0.861 0.166 0.202 0.032 0.203
0 0.3 0 0.072 0.952 0.191 0.346 0.035 0.298
0 0.4 0 0.097 0.955 0.206 0.425 0.044 0.229
0 0.5 0 0.069 0.965 0.263 0.492 0.054 0.398
0.4 0 0 0.014 1.000 0.043 0.109 0.230 0.157
0.4 0.1 0 0.015 1.000 0.113 0.129 0.239 0.264
0.4 0.2 0 0.019 1.000 0.217 0.258 0.329 0.319
0.4 0.3 0 0.029 1.000 0.217 0.254 0.354 0.401
0.4 0.4 0 0.029 1.000 0.323 0.432 0.448 0.503
0.4 0.5 0 0.045 1.000 0.343 0.521 0.570 0.512
0 0 0.1 0.153 0.745 0.078 0.071 0.049 0.109
0 0 0.2 0.127 0.865 0.067 0.207 0.044 0.111
0 0 0.3 0.231 1.000 0.054 0.231 0.046 0.209
0 0 0.4 0.226 1.000 0.045 0.208 0.040 0.166
0 0 0.5 0.334 1.000 0.066 0.344 0.043 0.254
0.4 0 0 0.044 1.000 0.053 0.111 0.221 0.188
0.4 0 0.1 0.302 1.000 0.091 0.201 0.210 0.582
0.4 0 0.2 0.401 1.000 0.061 0.294 0.311 0.889
0.4 0 0.3 0.504 1.000 0.051 0.363 0.333 0.965
0.4 0 0.4 0.534 1.000 0.076 0.388 0.355 0.994
0.4 0 0.5 0.621 1.000 0.056 0.424 0.368 0.996
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Table 6: Estimated Rejection Probabilities with γ = σ2
µ = ρ = 0. Sample size: N = 25, T = 10

δ τ λ RS∗δ RSδ RS∗τ RSτ RS∗λ RSλ

0 0 0 0.049 0.056 0.053 0.054 0.047 0.061
0 0 0.1 0.047 0.694 0.161 0.783 0.052 0.953
0 0 0.2 0.045 0.786 0.133 0.950 0.157 0.995
0 0 0.3 0.051 0.964 0.255 0.992 0.372 1.000
0 0 0.4 0.061 0.933 0.235 1.000 0.635 1.000
0 0 0.5 0.039 0.863 0.356 1.000 0.861 1.000
0 0.4 0 0.051 1.000 0.965 1.000 0.031 1.000
0 0.4 0.1 0.038 1.000 0.990 1.000 0.044 1.000
0 0.4 0.2 0.039 1.000 0.995 1.000 0.128 1.000
0 0.4 0.3 0.047 0.992 0.993 1.000 0.229 1.000
0 0.4 0.4 0.057 0.980 0.982 1.000 0.464 1.000
0 0.4 0.5 0.060 0.943 0.939 1.000 0.780 1.000
0 0.1 0 0.037 0.782 0.284 0.893 0.058 0.759
0 0.2 0 0.031 0.876 0.867 0.992 0.070 0.996
0 0.3 0 0.051 0.934 0.934 1.000 0.067 0.999
0 0.4 0 0.051 1.000 0.961 1.000 0.065 1.000
0 0.5 0 0.041 1.000 0.979 1.000 0.078 1.000
0 0.1 0.4 0.048 0.951 0.950 1.000 0.648 1.000
0 0.2 0.4 0.053 0.968 0.964 1.000 0.640 1.000
0 0.3 0.4 0.037 0.974 0.971 1.000 0.487 1.000
0 0.4 0.4 0.049 0.994 0.985 1.000 0.479 1.000
0 0.5 0.4 0.056 0.986 0.990 1.000 0.468 1.000
0.1 0 0 0.238 0.798 0.114 0.712 0.055 0.789
0.2 0 0 0.333 0.894 0.267 0.871 0.068 0.849
0.3 0 0 0.357 0.976 0.334 0.967 0.054 0.977
0.4 0 0 0.459 1.000 0.261 0.989 0.038 0.990
0.5 0 0 0.600 1.000 0.379 0.996 0.090 0.993
0 0 0.4 0.049 0.947 0.143 0.999 0.674 1.000
0.1 0 0.4 0.368 0.991 0.189 1.000 0.445 0.999
0.2 0 0.4 0.410 1.000 0.292 1.000 0.301 1.000
0.3 0 0.4 0.505 1.000 0.395 1.000 0.295 1.000
0.4 0 0.4 0.601 1.000 0.391 1.000 0.376 1.000
0.5 0 0.4 0.632 1.000 0.492 1.000 0.448 1.000
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7 Conclusion

The growth convergence debate has always occupied a central stage in economics. This is mainly
because of the existence of the variety of issues regarding such models, like different forms of
convergence, estimation techniques, data, variables, sample and so on. In this paper I address one
specific concern, i.e., what is the most appropriate model given the data. Thus the contributions
of this paper are twofold. Firstly, this paper develops adjusted RS test statistics, which are robust
under local misspecification in a dynamic panel model allowing for cross-sectional dependence.
Secondly, using the proposed tests I address the issue of growth model specification objectively.

To achieve these objectives, robust RS tests for time dynamics, random effect, serial correlation
of errors, space-time dynamics and spatial dependence are proposed using Bera and Yoon (1993) test
principle. These six adjusted tests are robust under “all” possible misspecification. This robustness
is achieved without any estimation of the nuisance parameters. For example, the proposed adjusted
RS test for time dynamics is made robust to the presence of random effect, serial correlation of
errors, space-time dynamics and spatial dependence. I take care of these possible presence of
nuisance parameters using their respective Fisher-Rao score functions. Thus, there is no need to
estimate the nuisance parameters as usually it is done for conditional LM and LR tests. The
proposed (robust) tests are simple to compute and interpret as they are essentially based only
on OLS residuals and score functions. In addition, due to an attractive additive property, the
robust tests require very little extra computation. Thus one can compute these robust tests for
each parameter from the standard RS tests (joint and marginal). Due to this simplicity in terms
of computation, the researchers can identify specific direction(s) to reformulate the basic growth
model quite easily.

In the empirical application, using these tests, I find that most of the misspecification is at-
tributed to heterogeneity (random effects), dynamic time effects and indirect cross-sectional depen-
dence, irrespective of the specification of weight matrix and time span of the sample. In addition,
I demonstrate how the exact nature of dependencies changes the growth model specification for
different time framework. Different researchers have derived widely different convergence rates for
the same dataset, as they considered either only cross-sectional, spatial, panel, or dynamic panel
models. It is quite possible that those models cannot capture all the salient feature of the data.
Using a model framework which combines all these piece-wise models considered so far in the liter-
ature, I conduct the growth model specification search using the proposed test statistics developed
for the dynamic panel model with cross-sectional dependence. One should note that the proposed
tests are general and can be used for many other specification search of econometric models, for
example, hedonic price models, unemployment models. Lastly, through simulation study I demon-
strate that the proposed tests, are not only theoretically and asymptotically valid, but can also be
used in finite samples exercises where availability of data is often limited.
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8 Appendix

We consider the following dynamic panel spatial model which is the combination of all the different
piecewise framework which has been discussed in Section 2.

yit = γyit−1 + τ
N∑
j=1

mijyjt + δ
N∑
j=1

mijyjt−1 +Xitβ + uit (51)

uit = µi + εit (52)

εit = λ
N∑
j=1

wijεjt+ vit (53)

vit = ρvit−1 + eit,where eit ∼ IIDN(0, σ2
e) (54)

for i = 1, 2, . . . , N ; t = 1, 2, . . . , T. Here yit is the observation for ith individual/observation at tth

time, Xit denotes the observations on non-stochastic regressors and uit is the regression disturbance.
Spatial dependence is captured by the weigh matricesM = (mij) andW = (wij). In this framework,
I have considered spatial lag dependence (τ), time dynamics (γ), space recursive (δ), spatial error
dependence (λ), serial correlation in error (ρ) and individual effect (µi). I consider random effect
model here, i.e., µi ∼ IID(0, σµ), like Sen and Bera (2011). W and M are row-standardized weight
matrices whose diagonal elements are zero, such that (I−τM) and (I−λW ) are non-singular, where
I is an identity matrix of dimension N. I assume that the model satisfies the regularity conditions
given in Lee and Yu (2010).

In matrix form, the equations (9) - (12) can be rewritten as

y = τ(IT ⊗M)y + [(γ + δM)⊗ IT ]ly +Xβ + u (55)

where y is f dimension NT × 1, X is NT × K,β is k × 1 and u is NT × 1. Here l is the lag
operator, X is assumed to be of full column rank and its elements are bounded in absolute value.
The disturbance term can be expressed as

u = (ιT ⊗ IN )µ+ (IT ⊗B−1)v (56)

where B = (IN − λW ), ιT is vector of ones of dimension T, IT is an identity matrix of dimension
T × T and ⊗ denotes Kronecker product. Under this setup, the variance-covariance matrix of u is
given by

Ω = σµ2 [JT ⊗ IN ] + [V ⊗ (B′B)−1] (57)

where JT is a matrix of ones of dimension T × T , and V is the familiar T × T variance -covariance
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matrix for AR (1) process in equation (20), i.e.,

V = E(v′v) = [ 1
1− ρ2V1]⊗ σ2

eIN = Vρ ⊗ σ2
eIN (58)

with

V1 =


1 ρ ρ2 . . . ρT−1

...
... . . . ...

ρT−1 ρT−2 . . . 1


and Vρ = 1

1−ρ2V1.
The loglikelihood function of the above model can be written as:

L = −NT2 ln2π−1
2 ln |Ω|+T ln |A|−1

2[(IT⊗A)y−[(γ+δM)⊗IT ]ly−Xβ]′Ω−1[(IT⊗A)y−[(γ+δM)⊗IT ]ly−Xβ]
(59)

where A = (IN − τM) and following Sen and Bera (2011), I can write

1
2 ln |Ω| = −N2 ln(1− ρ2) + 1

2 ln |d2(1− ρ)2φIN + (B′B)−1|+ NT

2 ln σ2
e − (T − 1) ln |B|

where d2 = α2 + (T − 1), α =
√

1+ρ
1−ρ and φ = σ2

µ

σ2
e
. Thus substituting 1

2 ln |Ω| in L , I obtain

L = −NT2 ln2π+N

2 ln(1−ρ2)− 1
2 ln |d2(1−ρ)2φIN+(B′B)−1|−NT2 ln σ2

e+(T−1) ln |B|+T ln |A|

− 1
2[(IT ⊗A)y − [(γ + δM)⊗ IT ]ly −Xβ]′Ω−1[(IT ⊗A)y − [(γ + δM)⊗ IT ]ly −Xβ] (60)

8.1 Derivation of Score
∂L

∂β
= X ′Ω−1u (61)

∂L

∂σ2
e

= −1
2 trC

−1 (d2(1− ρ)2σ2
µIN

σ4
e

− NT

2σ2
e

− 1
2u
′(Ω−1(Vρ ⊗ [(B′B)−1])Ω−1)u (62)

∂L

∂γ
= (IT ⊗ YNT−1)′Ω−1u (63)

∂L

∂σ2
µ

= −1
2 trC

−1 (d2(1− ρ)2IN
σ2
e

+ 1
2u
′Ω−1(JT ⊗ IN )Ω−1u (64)

∂L

∂ρ
= − Nρ

1− ρ2 + 1
2 trC

−1(ρ+(T −1)(1−ρ)φIN )+ 1
2u
′(σ−2

e ( 1
1− ρ2 )2[2ρV1 +(1−ρ2)Fρ]⊗(B′B)−1)u

(65)
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∂L

∂δ
= [(W ⊗ IT )YNT−1]Ω−1u (66)

∂L

∂τ
= −Ttr(A−1W ) + 1

2Ω−1(IT ⊗W )y (67)

∂L

∂λ
= −(T − 1)tr(B−1W ) + 1

2 trC
−1[(B′B)−1[B′W +W ′B](B′B)−1]− 1

2u
′Ω−1(Vρ⊗ (B′B)−1)Ω−1u

(68)
where C = (d2(1−ρ)2φIN +(B′B)−1). The score functions evaluated under Ha

0 , i.e., restricted
MLE of θ0 with ω̃ = (β̃, σ̃2

e) are:
∂L

∂β
= 0 (69)

∂L

∂σ2
e

= 0 (70)

∂L

∂γ
= [IT ⊗ YNT−1]ũ′

σ2
e

(71)

∂L

∂σ2
µ

= NT

2σ̃2
e

[ ũ
′(JT ⊗ IN )ũ

ũ′ũ
− 1] (72)

∂L

∂ρ
= NT

2 [ ũ
′(G⊗ IN )ũ

ũ′ũ
] (73)

∂L

∂δ
= ũ′[(IT ⊗W )YNT−1]

σ̃2
e

(74)

∂L

∂τ
= ũ′[(IT ⊗W )YNT ]

σ̃2
e

(75)

∂L

∂λ
= NT

2 [ ũ
′(IT ⊗ (W +W ′))ũ

ũ′ũ
] (76)

where ũ = y − xβ̃ is the OLS residual vector, and σ̃2
e = ũ′ũ

NT .

8.2 Derivation of Information Matrix

To derive the information matrix under joint null Ha
o , I need to derive the second order derivatives

and take expectation. Differentiating equation (69) wrt β, σ2
e , γ, σ

2
µ, ρ, δ, τ and λ, we get

∂2L

∂β∂β′
= −X ′Ω−1X (77)

∂2L

∂β∂σ2
e

= −u′Ω−1(Vρ ⊗ (B′B)−1)Ω−1X (78)
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∂2L

∂β∂γ
= −(IT ⊗ YNT−1)′Ω−1X (79)

∂2L

∂β∂σ2
µ

= −X ′Ω−1(JT ⊗ IN )Ω−1u (80)

∂2L

∂β∂ρ
= −X ′Ω−1(Vρ ⊗ (B′B)−1)Ω−1u (81)

∂2L

∂β∂δ
= −[(W ⊗ IT )YNT−1]′Ω−1X (82)

∂2L

∂β∂τ
= −X ′Ω−1(IT ⊗W )Y (83)

∂2L

∂β∂λ
= −X ′Ω−1(Vρ ⊗ (B′B)−1)Ω−1u (84)

Differentiating equation (70) wrt γ, σ2
µ, ρ, δ, τ and λ, we get

∂2L

∂σ2
e∂γ

= −(IT ⊗ YNT−1)Ω−1(Vρ ⊗ (B′B)−1)Ω−1u (85)

∂2L

∂σ2
e∂σ

2
µ

= 1
2 tr[C

−1d
2(1− ρ)2IN

σ2
e

C−1(B′B)−1]− uΩ−1(JT ⊗ IN )Ω−1(Vρ ⊗ (B′B)−1)Ω−1u (86)

∂2L

∂σ2
e∂ρ

= −tr[C−1[(ρ+ (1− ρ)(T − 1))φIN ]C−1(B′B)−1]

− uΩ−1[[2 ρ

1− ρ2
2
V1 + 1

1− ρ2Fρ]⊗ (B′B)−1]Ω−1(Vρ ⊗ (B′B)−1)Ω−1u

+ 1
2uΩ−1[[ 2ρ

(1− ρ2)2V1 + 1
1− ρ2Fρ]⊗ (B′B)−1] (87)

∂2L

∂σ2
e∂δ

= −((W ⊗ IT )YNT−1)′Ω−1(Vρ ⊗ (B′B)−1)Ω−1u (88)

∂2L

∂σ2
e∂τ

= −((W ⊗ IT )YNT )′Ω−1(Vρ ⊗ (B′B)−1)Ω−1u (89)

∂2L

∂σ2
e∂λ

= −1
2 tr[C

−1(B′B)−1(B′W+W ′B)(B′B)−1C−1(B′B)−1+C−1(B′B)−1(B′W+W ′B)(B′B)−1]

−T − 1
2 tr[(B′B)−1(B′W+W ′B)(B′B)−1]−uΩ−1[Vρ⊗(B′B)−1[B′W+W ′B](B′B)−1]Ω−1(Vρ⊗(B′B)−1)Ω−1u

+ 1
2uΩ−1(Vρ ⊗ (B′B)−1(B′W +W ′B)(B′B)−1)Ω−1u (90)
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Differentiating equation (71) wrt γ, σ2
µ, ρ, δ, τ and λ, we get

∂2L

∂γ∂γ
= −(IT ⊗ YNT−1)′Ω−1(IT ⊗ YNT−1) (91)

∂2L

∂γ∂σ2
µ

= −(IT ⊗ YNT−1)′Ω−1(JT ⊗ IN )Ω−1u (92)

∂2L

∂γ∂ρ
= −(IT ⊗ YNT−1)′Ω−1[[ 2ρ

(1− ρ2)2V1 + 1
(1− ρ2)Fρ]⊗ (B′B)−1]Ω−1u (93)

∂2L

∂γ∂δ
= −(IT ⊗ YNT−1)′Ω−1[(W ⊗ IT )YNT−1] (94)

∂2L

∂γ∂τ
= −(IT ⊗ YNT−1)′Ω−1[(W ⊗ IT )YNT ] (95)

∂2L

∂γ∂λ
= −(IT ⊗ YNT−1)′Ω−1[Vρ ⊗ (B′B)−1(B′W +W ′B)(B′B)−1]Ω−1u (96)

Differentiating equation (72) wrt σ2
µ, ρ, δ, τ and λ, we get

∂2L

∂σ2
µ∂σ

2
µ

= 1
2 tr[C

−1d
2(1− ρ)2IN

σ2
e

C−1d
2(1− ρ)2IN

σ2
e

]− uΩ−1(JT ⊗ IN )Ω−1(JT ⊗ IN )Ω−1u (97)

∂2L

∂σ2
µ∂ρ

= 1
2 tr[

d2(1− ρ)2IN
σ2
e

[C−1(ρ+ (T − 1)(1− ρ)φINC−1)] + u′Ω−1[σ2
e(

1
1− ρ2 )2[2ρV1

+ (1− ρ2)Fρ]⊗ (B′B)−1]Ω−1(JT ⊗ IN )Ω−1u (98)

∂2L

∂σ2
µ∂δ

= −[(W ⊗ IT )YNT−1]′Ω−1(JT ⊗ IN )Ω−1u (99)

∂2L

∂σ2
µ∂τ

= −[(W ⊗ IT )YNT ]′Ω−1(JT ⊗ IN )Ω−1u (100)

∂2L

∂σ2
µ∂λ

= −1
2 tr[

d2(1− ρ)2

σ2
e

INC
−1d

2(1− ρ)2

σ2
e

INC
−1]

+ u′Ω−1[σ2
e(Vρ ⊗ [(B′B)−1[B′W +W ′B](B′B)−1]Ω−1(JT ⊗ IN )Ω−1u (101)
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Differentiating equation (73) wrt ρ, δ, τ and λ, we get

∂2L

∂ρ∂ρ
= −N +Nρ2

(1− ρ2)2 + 1
2 tr((2ρ+ (T − 1)(1− ρ))φIN )[C−1(ρ+ (T − 1)(1− ρ))φINC−1]

+ uΩ−1[σ2
e(

1
1− ρ2 )2[2ρV1 + (1− ρ2)Fρ]⊗ (B′B)−1]Ω−1[σ2

e(
1

1− ρ2 )2[2ρV1

+(1−ρ2)Fρ]⊗(B′B)−1]Ω−1u+uΩ−1[[σ2
e(

1
1− ρ2 )2[2V1−2ρFρ]+4(1−ρ2)ρ(2ρV1+(1−ρ2)Fρ)⊗(B′B)−1]Ω−1u

(102)

∂2L

∂ρ∂δ
= −[(W ⊗ IT )YNT−1]Ω−1[[ 2ρ

(1− ρ2)2V1 + 1
1− ρ2Fρ]⊗ (B′B)−1]Ω−1u (103)

∂2L

∂ρ∂τ
= −[(W ⊗ IT )YNT ]Ω−1[[ 2ρ

(1− ρ2)2V1 + 1
1− ρ2Fρ]⊗ (B′B)−1]Ω−1u (104)

∂2L

∂ρ∂λ
= 1

2 tr[[(B
′B)−1[B′W +W ′B](B′B)−1C6−1(ρ+ (T − 1)(1− ρ))φINC−1]

+ uΩ−1[σ2
e(

1
1− ρ2 )2[2V1 − 2ρFρ]⊗ (B′B)−1]Ω−1[σ2

e(Vρ ⊗ [(B′B)−1[B′W +W ′B](B′B)−1]Ω−1−

1
2uΩ−1[σ4

e(
1

1− ρ2 )2[2V1 − 2ρFρ]⊗ [(B′B)−1[B′W +W ′B](B′B)−1](B′B)−1]Ω−1u (105)

Differentiating equation (74) wrt δ, τ and λ, we get

∂2L

∂δ∂δ
= −[(W ⊗ IT )YNT−1]′Ω−1[(W ⊗ IT )YNT−1] (106)

∂2L

∂δ∂τ
= −[(W ⊗ IT )YNT−1]′Ω−1[(W ⊗ IT )YNT ] (107)

∂2L

∂δ∂λ
= −[(W ⊗ IT )YNT−1]′Ω−1(Vρ(B′B)−1(W ′B +B′W )(B′B)−1)Ω−1u (108)

Differentiating equation (75) wrt τ and λ, we get

∂2L

∂τ∂τ
= −Ttr((A−1W )2)− YNT (IT ⊗W )Ω−1(IT ⊗W )YNT (109)

∂2L

∂τ∂λ
= −uΩ−1(Vρ ⊗ (B′B)−1)Ω−1(IT ⊗W )u (110)

For ∂2L
∂λ∂λ please see Sen and Bera 2011, Technical Appendix.

Under the joint null Ha
o : γ = σ2

µ = ρ = δ = τ = λ = 0 , the non-zero second-order derivatives
are :
∂2L
∂β∂β = −X′X

σ̂2
e
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∂2L
∂β∂γ = − (IT⊗YNT−1)′X

σ̂2
e

∂2L
∂β∂δ = − [(W⊗IT )YNT−1]′X

σ̂2
e

∂2L
∂β∂τ = −X′(W⊗IT )Xβ̂

σ̂2
e

∂2L
∂σ2
e∂σ

2
e

= −NT

2σ̂4
e

∂2L
∂σ2
e∂γ

= − (IT⊗YNT−1)(IT⊗IN )u
2σ̂4
e

∂2L
∂σ2
e∂σ

2
µ

= −NT

2σ̂4
e

∂2L
∂γ∂γ = − (IT⊗YNT−1)′(IT⊗YNT−1)

σ̂2
e

∂2L
∂γ∂σ2

µ
= − (IT⊗YNT−1)′(JT⊗IN )u

2σ̂4
e

∂2L
∂γ∂ρ = − (IT⊗YNT−1)′(IT⊗IN )u

2σ̂4
e

∂2L
∂σ2
µ∂σ

2
µ

= −NT 2

2σ̂4
e

∂2L
∂σ2
µ∂ρ

= −N(T−1)
σ̂2
e

∂2L
∂ρ∂ρ = −N(T − 1)
∂2L
∂δ∂δ = − ((W⊗IT )YNT−1)′((W⊗IT )YNT−1)

σ̂2
e

∂2L
∂δ∂τ = − ((W⊗IT )YNT−1)′((W⊗IT )YNT−1)

σ̂2
e

∂2L
∂δ∂λ = − ((W⊗IT )YNT−1)′((IT⊗(W+W ′)))u

σ̂2
e

∂2L
∂τ∂τ = −(Ttr(W 2 +WW ′) + (β̂′X′(IT⊗W ′)(IT⊗W )Xβ̂)

σ̂2
e

)
∂2L
∂τ∂λ = ∂2L

∂λ∂λ = −Ttr(W 2 +WW ′).

All the other second derivatives becomes zero under joint null. Thus the information matrix
J , equation (12), under Ha

o is

J(θo) =



Jβ 0 Jβγ 0 0 Jβδ Jβτ 0
0 Jσ2

e
Jσ2

eγ
Jσ2

eσ
2
µ

0 0 0 0
Jγβ Jγσ2

e
Jγ Jγσ2

µ
Jγρ 0 0 0

0 Jσ2
µσ

2
e

Jσ2
µγ

Jσ2
µ

Jσ2
µρ

0 0 0
0 0 Jργ Jρσ2

µ
Jρ 0 0 0

Jδβ 0 0 0 0 Jδ Jδτ Jδλ

Jτβ 0 0 0 0 Jτδ Jτ Jτλ

0 0 0 0 0 Jλδ Jλτ Jλ



(111)

where J = E(− 1
NT

∂2L
∂θ̃∂θ̃′

) evaluated at θ0.
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8.3 Derivation of test statistics

Recall from Section 3:

RS∗ψ = 1
N

[dψ(θ̃)−Jψφ.ω(θ̃)J−1
φ.ω(θ̃)dφ(θ̃)][Jψ.ω(θ̃)−Jψφ.ω(θ̃)J−1

φ.ω(θ̃)Jφψ.ω(θ̃)]−1[dψ(θ̃)−Jψφ.ω(θ̃)J−1
φ.ω(θ̃)dφ(θ̃)]′

(112)
where ω = (β′, σ2

e)′, ψ and φ are different combinations of the parameters (γ, σ2
µ, ρ, δ, τ, λ).

I) Hb
o : γ = 0 in presence of φ = (σ2

µ, ρ, δ, τ, λ).
Here we are testing the significance of time-dynamics γ, in presence of random effects, serial corre-
lation, and spatial dependence.
dψ = dγ

dφ = (dσ2
µ
, dρ, dδ, dτ , dλ)

Jψφ.ω = Jψφ − JψωJ−1
ω Jφω = (Jγσ2

µ.σ
2
e
, Jγρ, 0, 0, 0)

Jφ.ω = Jφ − JφωJ−1
ω Jωφ = 

Jσ2
µ.σ

2
e

Jσ2
µρ

0 0 0
Jρσ2

µ
Jρ 0 0 0

0 0 Jδ.β Jδτ.β Jδλ

0 0 Jτδ.β Jτ.β Jτλ

0 0 Jλδ Jλτ Jλ


Therefore, adjusted proposed test statistic for time-dynamics γ is:

RS∗γ = [dγ − Jγσ2
µ.σ

2
e
J−1
σ2
µ.σ

2
e
dσ2

µ
− JγρJ−1

ρ dρ][Jγ.ω − Jγσ2
µ.σ

2
e
J−1
σ2
µ.σ

2
e
Jσ2

µγ.σ
2
e
− JγρJ−1

ρ Jργ ]−1

[dγ − Jγσ2
µ.σ

2
e
J−1
σ2
µ.σ

2
e
dσ2

µ
− JγρJ−1

ρ dρ]′ → χ2
1(0). (113)

II) Hc
o : σ2

µ = 0 in presence of γ, ρ, δ, τ, λ.
Here φ = (γ, ρ, δ, τ, λ)
dψ = dσµ2

dφ = (dγ , dρ, dδ, dτ , dλ)
Jψφ.ω = (Jσ2

µγ.σ
2
e
, Jσ2

µρ
, 0, 0, 0)

Jφ.ω =



Jγ.ω Jγρ 0 0 0
Jργ Jρ 0 0 0
0 0 Jδ.β Jδτ.β Jδλ

0 0 Jτδ.β Jτ.β Jτλ

0 0 Jλδ Jλτ Jλ


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The adjusted RS test statistics is:

RS∗σ2
µ

= [dσ2
µ
− Jσ2

µγ.σ
2
e
J−1
γ.ωdγ − Jσ2

µρ
J−1
ρ dρ][Jσ2

µ.σ
2
e
− Jσ2

µγ.σ
2
e
J−1
γ.ωJγσ2

µ.σ
2
e
− Jσ2

µρ
J−1
ρ Jρσ2

µ
]−1

[dσ2
µ
− Jσ2

µγ.σ
2
e
J−1
γ.ωdγ − Jσ2

µρ
J−1
ρ dρ]′ → χ2

1(0), (114)

III) Hd
o : ρ = 0 in presence of γ, σ2

µ, δ, τ, λ.

Here φ = (γ, σ2
µ, δ, τ, λ).

dψ = dρ

dφ = (dγ , dσµ2 , dδ, dτ , dλ)
Jψφ.ω = (Jργ , Jρσ2

µ
, 0, 0, 0).

Jφ.ω =



Jγ.ω Jγσ2
µ.σ

2
e

0 0 0
Jσ2

µγ.σ
2
e

Jσ2
µ.σ

2
e

0 0 0
0 0 Jδ.β Jδτ.β Jδλ

0 0 Jτδ.β Jτ.β Jτλ

0 0 Jλδ Jλτ Jλ


The adjusted test statistic is:

RS∗ρ = [dρ − Jργ.σ2
e
J−1
γ.ωdγ − Jρσ2

µ.σ
2
e
J−1
σ2
µ.σ

2
e
dσ2

µ
][Jρ − Jργ.σ2

e
J−1
γ.ωJγρ.σ2

e
− Jρσ2

µ.σ
2
e
J−1
σ2
µ.σ

2
e
Jσ2

µρ.σ
2
e
]−1

[dρ − Jργ.σ2
e
J−1
γ.ωdγ − Jρσ2

µ.σ
2
e
J−1
σ2
µ.σ

2
e
dσ2

µ
]′ → χ2

1 (115)

IV) He
o : δ = 0 in presence of γ, σ2

µ, ρ, τ, λ.

Here φ = (γ, σ2
µ, ρ, τ, λ).

dψ = dδ

dφ = (dγ , dσµ2 , dρ, dτ , dλ)
Jψφ.ω = (0, 0, 0, Jδλ, Jδτ.β).

Jφ.ω =



Jγ.ω Jγσ2
µ.σ

2
e

Jγρ 0 0
Jσ2

µγ.σ
2
e

Jσ2
µ.σ

2
e

Jσ2
µρ

0 0
Jργ Jρσ2

µ
Jρ 0 0

0 0 0 Jτ.β Jτλ

0 0 0 Jλτ Jλ


The test statistic for space recursive parameter δ is directly affected by the other spatial parameters
λ and τ , and not by other parameters. The separation between the spatial parameters and all the
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other parameters is also distinct here, as far as the test statistic is concerned. The adjusted RS
test statistic is:

RS∗δ = [dδ−J(δλ).(τ.β)J
−1
λ.(τ.β)dλ−J(δτ.β).λJ

−1
(τ.β).λdτ ][Jδ−J(δλ).(τ.β)J

−1
λ.(τ.β)J(λδ).(τ.β)−J(δτ.β).λJ

−1
(τ.β).λJ(τδ.β).λ]−1

[dδ − J(δλ).(τ.β)J
−1
λ.(τ.β)dλ − J(δτ.β).λJ

−1
(τ.β).λdτ ]′ ∼ χ2

1(0) (116)

V) Hf
o : τ = 0 in presence of γ, σ2

µ, ρ, δ, λ.

Here φ = (γ, σ2
µ, ρ, δ, λ)

dψ = dτ

dφ = (dγ , dσµ2 , dρ, dδ, dλ)
Jψφ.ω = (0, 0, 0, Jτδ.β, Jτλ).

Jφ.ω



Jγ.ω Jγσ2
µ.σ

2
e

Jγρ 0 0
Jσ2

µγ.σ
2
e

Jσ2
µ.σ

2
e

Jσ2
µρ

0 0
Jργ Jρσ2

µ
Jρ 0 0

0 0 0 Jδ.τ Jδλ

0 0 0 Jλδ Jλ


The adjusted test statistic is:

RS∗τ = [dτ−J(τδ.β).λJ
−1
(δ.β).λdδ−Jτλ.(δ.β)J

−1
λ.(δ.β)dλ][Jτ.β−J(τδ.β).λJ

−1
(δ.β).λJ(δτ.β).λ−Jτλ.(δ.β)J

−1
λ.(δ.β)Jλτ.(δ.β)]−1

[dτ − J(τδ.β).λJ
−1
(δ.β).λdδ − Jτλ.(δ.β)J

−1
λ.(δ.β)dλ]′ ∼ χ2

1(0) (117)

Lastly, VI) Hg
o : λ = 0 in presence of γ, σ2

µ, ρ, δ, τ .

Here, φ = (γ, σ2
µ, ρ, δ, τ)

dψ = dλ

dφ = (dγ , dσµ2 , dρ, dδ, dτ )
Jψφ.ω = (0, 0, 0, Jλδ, Jλτ ).

Jφ.ω



Jγ.ω Jγσ2
µ.σ

2
e

Jγρ 0 0
Jσ2

µγ.σ
2
e

Jσ2
µ.σ

2
e

Jσ2
µρ

0 0
Jργ Jρσ2

µ
Jρ 0 0

0 0 0 Jδ.β Jδτ.β

0 0 0 Jτδ.β Jτ.β


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The adjusted test statistic is:

RS∗λ = [dλ − J(λδ).(τ.β)J
−1
(δ.β).(τ.β)dδ − Jλτ.(δ.β)J

−1
(τ.β).(δ.β)dτ ][Jλ − J(λδ).(τ.β)J

−1
(δ.β)(τ.β)J(δλ).(τ.β)

− Jλτ.δJ−1
(τ.β).(δ.β)Jτλ.(δ.β)]−1[dλ − J(λδ).(τ.β)J

−1
(δ.β).(τ.β)dδ − Jλτ.(δ.β)J

−1
(τ.β).(δ.β)dτ ]′ ∼ χ2

1(0) (118)

8.4 Country Lists and Groups

Here are the list of countries in each group divided based on their initial income in 1961:
Panel A (Poorest): The average of real per-capita income has grown by 2.7% over 35 years.
Bangladesh, Benin, Botswana, Burkina Faso, Central African Republic, Chad, Congo Dem. Rep.,
Ethiopia, Ghana, India, Indonesia, Kenya, Madagascar, Malawi, Mali, Mozambique, Nepal, Niger,
Rwanda, Sierra Leone, Sri Lanka, Tanzania, Uganda, Zimbabwe.
Panel B (Middle): The growth rate of the real per capita income is 5.19% from 1961 - 1995.
Angola, Bolivia, Cameroon, Republic of Congo, Cote d‘Ivoire, Dominican Republic, Ecuador,
Egypt, Honduras, Malaysia, Mauritania, Mauritius, Morocco, Nigeria, Pakistan, Papua New Guinea,
Paraguay, Philippines, Senegal, Syria, Thailand, Tunisia, Zambia.
Panel C (Rich): The average of real per capita income has grown by 4.83 % over 35 years.
Argentina, Brazil, Chile, Colombia, Costa Rica, El Salvador, Finland, Guatemala, Hong Kong,
Ireland, Jamaica, Japan, Jordan, Korea, Mexico, Nicaragua, Panama, Peru, Portugal, Singapore,
South Africa, Spain, Trinidad and Tobago, Turkey, Uruguay.
Panel D (Richest): The average growth rate of per capita income of this group is 4.37 %.
Australia, Austria, Belgium, Canada, Denmark, France, Greece, Israel, Italy, Netherlands, New
Zealand, Norway, Sweden, Switzerland, United Kingdom, United States, Venezuela.

Ranking of Countries according to income in 1995:
Poorest: Zimbabwe, Congo Dem. Rep., Burundi, Ethiopia, Central African Republic, Malawi,
Mozambique, Madagascar, Niger, Togo, Rwanda, Burkina Faso, Tanzania, Sierra Leone, Ghana,
Uganda, Nepal, Kenya, Bangladesh, Benin, Mali, Mauritania, Cote d‘Ivoire, Chad, Senegal.
Middle: Zambia, Cameroon, Nigeria, Papua New Guinea, Republic of Congo, Nicaragua, Philip-
pines, Pakistan, India, Angola, Indonesia, Bolivia, Paraguay, Sri Lanka, Morocco, Honduras, Syria,
Thailand, Peru, Egypt, Ecuador, Jordan, Tunisia, Guatemala, El Salvador.
Rich: Brazil, Colombia, Panama, Dominican Republic, Uruguay, Mauritius, Botswana, South
Africa, Venezuela, Jamaica, Argentina, Costa Rica, Malaysia, Turkey, Chile, Mexico, Portugal,
Trinidad and Tobago, Korea, New Zealand, Spain, Israel, Greece, Japan, Finland.
Richest: United States, Italy, Belgium, Norway, Australia, Canada, France, Hong Kong, Nether-
lands, Denmark, Switzerland, Israel, Sweden, United Kingdom, Greece, Venezuela, Singapore,
Ireland, Norway.
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As can be seen from the lists and also evident from Figure 1 and its subsequent discussions, there
has been some transitional changes among the groups.

8.5 More Monte Carlo Results

In addition to Table 3 - 4, in Section 7, I provide Tables 5 - 8, in addition to support the good
finite sample properties of the proposed tests. The tables are listed in the next page onwards.

42



Table 7: Estimated Rejection Probabilities with δ = τ = λ = 0. Sample size: N = 25, T = 10

 

0.0 0.2 0.0 0.066 0.955 0.043 0.099 0.072 0.166 

0.1 0.2 0.0 0.030 0.997 0.071 0.111 0.112 0.231 

0.2 0.2 0.0 0.075 1.000 0.053 0.205 0.192 0.312 

0.3 0.2 0.0 0.042 1.000 0.135 0.214 0.274 0.401 

0.4 0.2 0.0 0.054 1.000 0.313 0.358 0.440 0.521 

0.5 0.2 0.0 0.034 1.000 0.203 0.189 0.712 0.682 

0.0 0.0 0.2 0.107 1.000 0.037 0.107 0.035 0.105 

0.1 0.0 0.2 0.305 1.000 0.045 0.123 0.127 0.108 

0.2 0.0 0.2 0.293 1.000 0.053 0.253 0.120 0.118 

0.3 0.0 0.2 0.331 1.000 0.091 0.147 0.209 0.499 

0.4 0.0 0.2 0.401 1.000 0.061 0.311 0.219 0.881 

0.5 0.0 0.2 0.554 1.000 0.051 0.556 0.293 0.994 

0.0 0.0 0.4 0.611 1.000 0.041 0.031 0.051 0.182 

0.1 0.0 0.4 0.602 1.000 0.042 0.082 0.104 0.336 

0.2 0.0 0.4 0.742 1.000 0.061 0.141 0.202 0.692 

0.3 0.0 0.4 0.739 1.000 0.038 0.231 0.284 0.944 

0.4 0.0 0.4 0.779 1.000 0.049 0.419 0.335 0.995 

0.5 0.0 0.4 0.891 0.999 0.001 0.627 0.207 1.000 

0.0 0.2 0.2 0.105 1.000 0.184 0.207 0.035 0.191 

0.1 0.2 0.2 0.204 1.000 0.304 0.313 0.125 0.302 

0.2 0.2 0.2 0.305 1.000 0.305 0.545 0.112 0.351 

0.3 0.2 0.2 0.312 1.000 0.502 0.790 0.201 0.565 

0.4 0.2 0.2 0.441 1.000 0.589 0.811 0.304 0.628 

0.5 0.2 0.2 0.618 1.000 0.612 0.812 0.419 0.920 

0.2 0.0 0.0 0.082 1.000 0.056 0.159 0.097 0.118 

0.2 0.1 0.0 0.077 1.000 0.062 0.312 0.109 0.212 

0.2 0.2 0.0 0.093 0.998 0.164 0.302 0.118 0.318 

0.2 0.3 0.0 0.092 0.999 0.161 0.316 0.199 0.401 

0.2 0.4 0.0 0.075 0.998 0.251 0.515 0.100 0.399 

0.2 0.5 0.0 0.094 0.998 0.298 0.532 0.109 0.333 

0.0 0.0 0.2 0.107 1.000 0.060 0.117 0.032 0.092 

0.0 0.1 0.2 0.118 1.000 0.097 0.105 0.036 0.108 

0.0 0.2 0.2 0.204 1.000 0.104 0.209 0.024 0.112 

0.0 0.3 0.2 0.204 1.000 0.203 0.306 0.022 0.308 

0.0 0.4 0.2 0.307 1.000 0.335 0.413 0.036 0.410 

0.0 0.5 0.2 0.406 1.000 0.416 0.508 0.028 0.399 
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Table 8: Estimated Rejection Probabilities with δ = τ = λ = 0. Sample size: N = 25, T = 10

 

0.2 0 0 0.036 0.845 0.041 0.103 0.104 0.301 

0.2 0 0.1 0.330 0.990 0.031 0.115 0.147 0.306 

0.2 0 0.2 0.275 1.000 0.040 0.151 0.114 0.213 

0.2 0 0.3 0.201 1.000 0.051 0.184 0.102 0.394 

0.2 0 0.4 0.311 1.000 0.037 0.123 0.105 0.682 

0.2 0 0.5 0.314 1.000 0.045 0.152 0.143 0.846 

0 0.2 0 0.052 0.970 0.162 0.206 0.042 0.112 

0 0.2 0.1 0.141 1.000 0.133 0.301 0.073 0.212 

0 0.2 0.2 0.206 1.000 0.205 0.335 0.026 0.102 

0 0.2 0.3 0.331 1.000 0.201 0.421 0.051 0.211 

0 0.2 0.4 0.312 1.000 0.333 0.533 0.059 0.181 

0 0.2 0.5 0.415 1.000 0.398 0.546 0.071 0.253 

0 0.4 0 0.041 0.990 0.152 0.550 0.058 0.123 

0 0.4 0.1 0.142 1.000 0.225 0.601 0.043 0.233 

0 0.4 0.2 0.106 1.000 0.105 0.607 0.027 0.341 

0 0.4 0.3 0.204 1.000 0.204 0.715 0.043 0.311 

0 0.4 0.4 0.301 1.000 0.301 0.681 0.043 0.368 

0 0.4 0.5 0.411 1.000 0.312 0.747 0.039 0.221 

0.2 0.2 0 0.070 1.000 0.049 0.302 0.100 0.230 

0.2 0.2 0.1 0.212 1.000 0.117 0.315 0.139 0.101 

0.2 0.2 0.2 0.307 1.000 0.107 0.449 0.216 0.141 

0.2 0.2 0.3 0.301 1.000 0.201 0.568 0.206 0.256 

0.2 0.2 0.4 0.412 1.000 0.312 0.621 0.301 0.561 

0.2 0.2 0.5 0.512 1.000 0.376 0.632 0.303 0.770 

0 0 0.4 0.328 1.000 0.041 0.110 0.057 0.033 

0 0.1 0.4 0.399 1.000 0.197 0.215 0.034 0.178 

0 0.2 0.4 0.458 1.000 0.104 0.311 0.042 0.108 

0 0.3 0.4 0.502 1.000 0.233 0.311 0.047 0.271 

0 0.4 0.4 0.555 1.000 0.358 0.529 0.034 0.390 

0 0.5 0.4 0.419 1.000 0.427 0.599 0.052 0.383 

0.2 0 0.2 0.103 1.000 0.030 0.162 0.113 0.115 

0.2 0.1 0.2 0.103 1.000 0.103 0.246 0.114 0.176 

0.2 0.2 0.2 0.203 1.000 0.103 0.237 0.202 0.243 

0.2 0.3 0.2 0.203 1.000 0.193 0.226 0.314 0.330 

0.2 0.4 0.2 0.301 1.000 0.301 0.331 0.416 0.419 

0.2 0.5 0.2 0.422 1.000 0.402 0.512 0.515 0.613 
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Table 9: Estimated Rejection Probabilities with γ = σ2
µ = ρ = 0. Sample size: N = 25, T = 10

             

                 �              �                      �                ���
�
         ���                ���

�
           ���              		��


�
             ��
 

0 0.2 0 0.021 0.999 0.907 0.991 0.051 0.997 

0.1 0.2 0 0.380 0.999 0.971 0.999 0.061 1.000 

0.2 0.2 0 0.051 0.996 0.991 1.000 0.166 1.000 

0.3 0.2 0 0.470 0.989 0.984 1.000 0.358 1.000 

0.4 0.2 0 0.028 0.965 0.961 1.000 0.639 1.000 

0.5 0.2 0 0.039 0.914 0.911 1.000 0.859 1.000 

0 0 0.2 0.091 1.000 0.261 0.870 0.037 0.950 

0.1 0 0.2 0.112 1.000 0.394 0.968 0.122 0.991 

0.2 0 0.2 0.263 1.000 0.328 0.997 0.151 0.997 

0.3 0 0.2 0.309 1.000 0.479 0.999 0.127 0.998 

0.4 0 0.2 0.398 1.000 0.496 1.000 0.288 1.000 

0.5 0 0.2 0.402 0.998 0.593 1.000 0.578 1.000 

0 0 0.4 0.116 1.000 0.070 0.977 0.052 0.987 

0.1 0 0.4 0.127 1.000 0.341 0.998 0.147 1.000 

0.2 0 0.4 0.320 1.000 0.418 1.000 0.149 1.000 

0.3 0 0.4 0.309 1.000 0.476 1.000 0.264 1.000 

0.4 0 0.4 0.419 1.000 0.489 1.000 0.153 1.000 

0.5 0 0.4 0.393 1.000 0.598 1.000 0.314 1.000 

0 0.2 0.2 0.115 1.000 0.897 1.000 0.070 1.000 

0.1 0.2 0.2 0.109 1.000 0.957 1.000 0.116 1.000 

0.2 0.2 0.2 0.271 1.000 0.979 1.000 0.243 1.000 

0.3 0.2 0.2 0.314 1.000 0.990 1.000 0.199 1.000 

0.4 0.2 0.2 0.519 1.000 1.000 1.000 0.241 1.000 

0.5 0.2 0.2 0.602 0.999 0.998 1.000 0.485 1.000 

0 0 0.2 0.081 1.000 0.086 0.881 0.056 0.950 

0 0.1 0.2 0.102 1.000 0.788 0.993 0.069 0.998 

0 0.2 0.2 0.363 1.000 0.862 1.000 0.071 1.000 

0 0.3 0.2 0.309 1.000 0.923 1.000 0.050 1.000 

0 0.4 0.2 0.378 1.000 0.944 1.000 0.080 1.000 

0 0.5 0.2 0.410 1.000 0.936 1.000 0.072 1.000 

0 0 0.4 0.092 1.000 0.094 0.985 0.058 0.990 

0 0.1 0.4 0.202 1.000 0.822 1.000 0.028 0.999 

0 0.2 0.4 0.343 1.000 0.885 1.000 0.036 1.000 

0 0.3 0.4 0.409 1.000 0.915 1.000 0.041 1.000 

0 0.4 0.4 0.418 1.000 0.912 1.000 0.041 1.000 

0 0.5 0.4 0.471 1.000 0.932 1.000 0.047 1.000 
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Table 10: Estimated Rejection Probabilities with γ = σ2
µ = ρ = 0. Sample size: N = 25, T = 10

             

                 �              �                      �                ���
�
         ���                ���

�
           ���              		��


�
             ��
 

0 0.2 0 0.021 0.999 0.907 0.991 0.051 0.997 

0.1 0.2 0 0.380 0.999 0.971 0.999 0.061 1.000 

0.2 0.2 0 0.051 0.996 0.991 1.000 0.166 1.000 

0.3 0.2 0 0.470 0.989 0.984 1.000 0.358 1.000 

0.4 0.2 0 0.028 0.965 0.961 1.000 0.639 1.000 

0.5 0.2 0 0.039 0.914 0.911 1.000 0.859 1.000 

0 0 0.2 0.091 1.000 0.261 0.870 0.037 0.950 

0.1 0 0.2 0.112 1.000 0.394 0.968 0.122 0.991 

0.2 0 0.2 0.263 1.000 0.328 0.997 0.151 0.997 

0.3 0 0.2 0.309 1.000 0.479 0.999 0.127 0.998 

0.4 0 0.2 0.398 1.000 0.496 1.000 0.288 1.000 

0.5 0 0.2 0.402 0.998 0.593 1.000 0.578 1.000 

0 0 0.4 0.116 1.000 0.070 0.977 0.052 0.987 

0.1 0 0.4 0.127 1.000 0.341 0.998 0.147 1.000 

0.2 0 0.4 0.320 1.000 0.418 1.000 0.149 1.000 

0.3 0 0.4 0.309 1.000 0.476 1.000 0.264 1.000 

0.4 0 0.4 0.419 1.000 0.489 1.000 0.153 1.000 

0.5 0 0.4 0.393 1.000 0.598 1.000 0.314 1.000 

0 0.2 0.2 0.115 1.000 0.897 1.000 0.070 1.000 

0.1 0.2 0.2 0.109 1.000 0.957 1.000 0.116 1.000 

0.2 0.2 0.2 0.271 1.000 0.979 1.000 0.243 1.000 

0.3 0.2 0.2 0.314 1.000 0.990 1.000 0.199 1.000 

0.4 0.2 0.2 0.519 1.000 1.000 1.000 0.241 1.000 

0.5 0.2 0.2 0.602 0.999 0.998 1.000 0.485 1.000 

0 0 0.2 0.081 1.000 0.086 0.881 0.056 0.950 

0 0.1 0.2 0.102 1.000 0.788 0.993 0.069 0.998 

0 0.2 0.2 0.363 1.000 0.862 1.000 0.071 1.000 

0 0.3 0.2 0.309 1.000 0.923 1.000 0.050 1.000 

0 0.4 0.2 0.378 1.000 0.944 1.000 0.080 1.000 

0 0.5 0.2 0.410 1.000 0.936 1.000 0.072 1.000 

0 0 0.4 0.092 1.000 0.094 0.985 0.058 0.990 

0 0.1 0.4 0.202 1.000 0.822 1.000 0.028 0.999 

0 0.2 0.4 0.343 1.000 0.885 1.000 0.036 1.000 

0 0.3 0.4 0.409 1.000 0.915 1.000 0.041 1.000 

0 0.4 0.4 0.418 1.000 0.912 1.000 0.041 1.000 

0 0.5 0.4 0.471 1.000 0.932 1.000 0.047 1.000 
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