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Abstract

This paper investigates the pricing and weak convergence of an asymmetric non-a�ne, non-
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tained for a general setting and its weak limit is derived. We show how several GARCH di↵usions,

martingalized via well-known pricing kernels, are obtained as special cases and we derive necessary
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1 Introduction

It is a well established fact that stochastic volatility (SV) option pricing models provide a significantly

better alternative to the Black-Scholes (1973) model.4 Many empirical studies have indicated that several

features, such as volatility clustering, conditional and unconditional non-normality, leverage e↵ects, and

non-monotonic stochastic discount factors (SDF) should be incorporated in the pricing framework.

The discrete-time SV option valuation literature has been generally dominated by the Generalized

Autoregressive Conditionally Heteroskedastic (GARCH) type models introduced by Engle (1982) and

Bollerslev (1986).5 Depending on the conditional mean and variance dynamics, the GARCH option

pricing models can be divided into two special classes: a�ne and non-a�ne models. The family of

a�ne GARCH processes was introduced by Heston and Nandi (2000), while the non-a�ne structure

was proposed by Duan (1995). In both scenarios, the innovations are assumed to be conditionally

Gaussian distributed and the risk-neutralization is constructed based on the so-called local risk-neutral

valuation relationships (LRNVR). There are several advantages/disadvantages associated to each type

of model used. On the one hand, the a�ne structure leads to semi-closed form expressions for the option

prices, but the volatility dynamics may be viewed as too restrictive. On the other hand, the non-a�ne

dynamics allows for flexible conditional mean and variance specification, but there are no closed-form

solutions, option prices being typically computed using Monte-Carlo simulations. Extensive empirical

comparisons between the two classes suggest that a simple non-a�ne variance dynamic with a leverage

e↵ect outperforms the a�ne Heston and Nandi (2000) pricing model when using options and/or VIX

data (see Christo↵ersen et al. (2006) and Kanniainen et al. (2014) among others).

Since GARCH models based on Gaussian innovations cannot capture the skewness and kurtosis

of financial data, several extensions regarding the underlying distribution have been proposed.6 The

incompatibility between the LRNVR of Duan (1995) and the non-Gaussian GARCH setup has led to

various choices for the pricing kernel which are usually justified by equilibrium and/or mathematical

tractability arguments. Among the most popular SDF’s empirically used in a GARCH context are:

Duan’s (1999) generalized LRNVR (see e.g., Stentoft (2008), Christo↵ersen et al. (2010), Simonato

and Stentoft (2015)), the extended Girsanov principle (EGP) of Elliott and Madan (1998) (see Badescu

and Kulperger (2008)), the conditional Esscher transform (see e.g. Siu et al. (2004), Gourieroux and

Monfort (2007), Badescu and Kulperger (2008), Christo↵ersen et al. (2009), Chorro et al. (2012)).

The above pricing kernels have been implemented for various choices, parametric or nonparametric, of

the GARCH innovations’ distribution, and regardless of whether the model is a�ne or not. Although

4See Heston (1993), Bakshi et al. (1997), Bates ( 1996), among many others.
5Although GARCH processes are among the most popular choices for derivative pricing, there are several other im-

portant SV models in discrete-time, see for example Meddahi and Renault ( 2004), Darolles et al. (2006), Feunou and
T«edognap ( 2012), Corsi et al. (2013), and Khrapov and Renault ( 2014) for studies on a!ne and realized volatility pricing
models.

6In addition to the form of the Gaussian innovations, several extensions regarding the conditional variance dynamics
have been made. For example, Christo"ersen et al. (2008), Majewski et al. (2015), and Bormetti et al. (2015) investigated
the e"ect of multiple volatility components on option prices and on the term structure of variance risk premium. In this
study we restrict our attention only to single component GARCH models.
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the resulting option prices are theoretically di↵erent, a recent empirical study of Simonato and Stentoft

(2015) showed that there are no significant di↵erences in the pricing performance of a Johnson distributed

GARCH model risk-neutralized via the generalized LRNVR and the conditional Esscher transform. One

common feature of these pricing kernels is their dependence on a single (stochastic) parameter, typically

quantified as the equity risk premium, which is uniquely determined by imposing that the discounted

asset prices are martingales under the new measure. Therefore, the volatility risk is not directly priced

in the above SDF’s.

Further insights on these pricing kernels can be gained by looking at the continuous time di↵usion

limits of the martingalized GARCH models.7 For example, in continuous time SV models the set of

admissible pricing kernels from the Girsanov’s theorem is indexed by the variance risk preference param-

eter. Unlike in continuous-time, there is no such characterization for the aforementioned pricing kernels

in discrete-time. However, one can still identify the form of this variance risk preference parameter im-

plied by the risk-neutral GARCH weak limit. Duan (1996) showed that the LRNVR is consistent with

the minimal martingale measure in continuous time which is obtained by assuming a zero market price

of variance risk. Badescu et al. (2015b) proved a similar result for the conditional Esscher transform, re-

gardless of the assumption on the GARCH innovations’ distribution. Interestingly, when the innovations

are skewed, both the generalized LRNVR and EGP imply a non-zero market price of risk in continuous

time which depends on the skewness and kurtosis of the driving noise.

Since the early 2000, many studies provided evidence against the hypothesis of a monotonic pric-

ing kernel, typically referred as the pricing kernel puzzle, and proposed various alternatives (see e.g.

Aı̈t-Sahalia and Lo. (2000), Chabi-Yo et al. (2008), Bakshi et al. (2010), Chabi-Yo (2012), Song and

Xiu (2016), among others). In GARCH settings, the pricing kernel puzzle has been first addressed by

Christo↵ersen et al. (2013) who proposed an exponential a�ne variance dependent pricing kernel which

takes into account both sources of risk, market and volatility risk. This generalizes the conditional

Esscher transform, since the latter can be obtained as a special case when the variance risk preference

parameter is set to zero. The variance dependent kernel has been implemented in the a�ne Heston and

Nandi (2000) Gaussian framework and a sequential calibration exercise showed that it outperforms the

conditional Esscher transform. A similar pricing kernel has been used in Majewski et al. (2015) and

Bormetti et al. (2015) for pricing under a multi-component a�ne GARCH model, while Khrapov and

Renault (2014) use a variance dependent kernel for a compound autoregressive (CAR) model. However,

the only paper which investigates the option pricing within a non-Gaussian a�ne GARCH framework,

at least to our knowledge, is provided by Babaoglu et al. (2014), who combine a U-shaped pricing kernel

with a two-volatility component Inverse Gaussian model. Despite the popularity of the variance depen-

7Continuous time weak limits of various GARCH models have been extensively studied under the physical measure.
As it is customary in this topic (see Nelson ( 1990)), assumptions need to be made as to the asymptotic behaviour of the
dependence of the model parameters on the sampling frequency. One of the main issues is the non-uniqueness of such
constraints, which may lead to di"erent limit processes (see e.g. Corradi ( 2000)). In this paper we only follow the approach
of Nelson, since this leads to a meaningful bivariate SV model which serves well our purpose of connecting the change of
measure in discrete time with the GirsanovÕs theorem in continuous time.
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dent kernel among the a�ne models, there are no empirical studies on its application to option pricing

for non-a�ne non-Gaussian GARCH models. Our aim is to address this issue from both a theoretical

and an empirical point of view, and to investigate the continuous time counterpart. The contributions

in this paper are articulated around three main points that we describe in the following paragraphs.

First, we risk-neutralize the price dynamics induced by asymmetric, non-a�ne GARCH processes

driven by arbitrary non-Gaussian innovations, using a new exponential linear variance dependent pricing

kernel with stochastic equity and variance risk preference parameters. This choice represents an extension

of the pricing kernel formulated in Christo↵ersen et al. (2013) which is constructed based on constant

prices of risk and on the assumption that the bivariate cumulant generating function of asset returns

and variance is linear in variance, which is only meaningful in an a�ne GARCH setup. In fact, we argue

that having constant market prices of risk at the same time is not consistent with the non-a�ne GARCH

setting. The flexibility introduced in our approach allows us to consider richer price dynamics that, as

we see in the empirical section, are capable of improving in and out-of-sample pricing performances.

These results are contained mainly in Section 3, where we work out in detail the expressions needed

to implement our approach for asymmetric GARCH models with innovations conditionally distributed

according to the following three types of prescriptions: Gaussian, mixture of Gaussians, and mixture of

exponentials.

Second, following similar parametric constraints as in Nelson (1990), we derive the weak di↵usion

limit of the risk-neutralized GARCH process studied in the previous section. Using a particular GARCH

conditional mean specification, the resulting continuous-time stochastic volatility model nests as partic-

ular cases the a�ne correlated Hull-White models obtained in Badescu et al. (2015b) and Badescu et

al. (2015a) and obtained by risk-neutralizing the GARCH process using the conditional Esscher trans-

form, the Extended Girsanov Principle and the generalized LRNVR, as well as the generalized geometric

mean-reverting di↵usion processes with a�ne drift introduced in Metcalf and Hasset (1995) or in Ewald

and Yang (2007). Thus, we can view the exponential a�ne variance dependent pricing kernel as the

discrete time alternative of the Girsanov’s change of measure for continuous SV models. Next, we de-

termine necessary and su�cient conditions for the a�ne correlated Hull-White di↵usion limit to be a

true martingale or a strict local martingale, which facilitates the classification of financial bubbles in the

sense of Protter (2013).8Finally, we propose a novel method based on an exponential measure change

and derive explicit exact probability density functions for the di↵usion limit of the GARCH model. This

is of particular interest since the probability density function can not be determined explicitly for most

models and various approximation methods have been used in the literature (see Aı̈t Sahalia (2002; 2008)

8 A standard approach is to use equilibrium models to study bubbles, and su!cient conditions for the existence and
nonexistence of price bubbles in economic equilibrium have been extensively investigated (see Scheinkman and Xiong ( 2003;
2004) and the references therein). Apart from equilibrium arguments, a mathematical description of bubbles has recently
emerged in the spirit of a martingale theory based on the absence of arbitrage (see Protter ( 2013) and the references
therein). The fundamental price of a risky asset is deÞned in this context as a conditional expectation of future cash ßows,
and the bubble is characterized as the di"erence between the market price of the risky asset and its fundamental price.
The bubbles are detected by checking if the underlying risky asset is a true martingale or a strict local martingale (see
Jarrow, Protter, and Shimbo ( 2010)).
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and Choi (2015)).

Third, the practical relevance of the theoretical results that we just described is assessed by conducting

an extensive empirical analysis. The exercise is based on a dataset containing more than forty thousand

S&P500 option prices recorded during the period spanning January 1st, 2004 - December 31st, 2013.

This study aims to prove two specific points; first, the importance of using non-trivial prices of variance

risk in the stochastic discount factor and hence of going beyond the conditional Esscher transform.

Second, the pertinence of non-Gaussian innovations in the GARCH model in order to better reproduce

empirically observed stylized facts of the underlying returns time series and cross section of options. Using

joint and sequential likelihood estimation procedures based on historical returns and option prices, our

results show a significant competitive advantage on both counts. Our findings suggest that combining

a Gaussian mixture distribution with a variance dependent kernel provides the best pricing framework

when compared to other alternatives involving Gaussian innovations and conditional Esscher transforms.

The rest of the paper is organized as follows. In Section 2 we introduce the underlying discretized

non-a�ne non-Gaussian GARCH setting model and illustrate its continuous time limit. The pricing

kernel and risk-neutral derivations are presented in Section 3. In Section 4 we derive the weak limit of

the risk-neutral GARCH model and we analyze two special di↵usion classes as described above. The

numerical results are contained in Section 5. Section 6 concludes the paper.

2 Notations and preliminaries

Consider a n-indexed discrete time financial market with the set trading dates Tn = {l|l = k⌧, k =

0, 1 . . . , nT}, where ⌧ := 1/n is the sampling period. Real-world dynamics are defined on a filtered

probability space
⇣

⌦n,Fn, {Fl,n}l2Tn
, Pn

⌘

. We assume that the logarithm of the risky asset price

process, denoted by {Yl,n}l2Tn
= {logSl,n}l2Tn

, has the following stochastic volatility structure for any

k = 0, 1 . . . , nT :

�Yk⌧,n := Yk⌧,n ! Y(k�1)⌧,n = µk⌧,n⌧ +
"
⌧�k⌧,n✏k⌧,n, ✏k⌧,n|F(k�1)⌧,n # D(0, 1), (2.1)

��

2
(k+1)⌧,n := �

2
(k+1)⌧,n ! �

2
k⌧,n = ↵0(⌧) + ↵1(⌧)�

2
k⌧,n (✏k⌧,n ! �)2 + (�1(⌧) ! 1)�2

k⌧,n. (2.2)

We assume that Fk⌧,n is the �-field generated by the historical asset prices, Fk⌧,n = � (Y0,n, Y1,n, . . . , Yk⌧,n)

for any k = 0, . . . , nT ; ✏n = {✏k⌧,n}k=0,...,nT is a sequence of F(k�1)⌧,n–conditional i.i.d. random vari-

ables with zero mean and unit variance distribution D, ✏k⌧,n|F(k�1)⌧,n # D(0, 1). We denote by f✏(·)
and F✏(·) the corresponding conditional p.d.f. and c.d.f., and we let ✏(·) be the conditional cumulant

generating function of the driving noise under the physical measure Pn so that:

✏(z) := log E
⇥

exp (z✏k⌧,n) | F(k�1)⌧,n

⇤

.
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We denote the innovations’ jth raw moments by:

Mj = E
h

✏

j
k⌧,n|F(k�1)⌧,n

i

.

These are assumed to be finite quantities which do not depend on the sampling period ⌧ . We do

not impose yet any specific form for the conditional mean return in (2.1). The conditional vari-

ance process {�2
k⌧,n}0knT has a GARCH-type structure with sampling frequency varying parameters

↵0(⌧),↵1(⌧),�1(⌧), and � (constant not dependent on ⌧) satisfying standard constraints that insure

non-negativity of the variance process and covariance stationarity. Note that in the special case ⌧ = 1,

the process (2.1)-(2.2) reduces to a general asymmetric NGARCH(1,1) model.

We conclude this section by presenting the setting and the asymptotic parametric conditions required

for the weak convergence of the process (2.1)-(2.2) in the physical world as the sampling frequency tends

to infinity. This result will be extended in Section 4, where we will obtain the di↵usion limit of the risk-

neutral dynamics resulting from coupling the above model for the underlying with the kernel introduced

in Section 3.

First, we introduce the right continuous with left limit (càdlàg) extension of the discretized GARCH

model defined by:

�

Yt,n,�
2
t,n

 

k⌧t<(k+1)⌧
:=
n

Yk⌧,n,�
2
(k+1)⌧,n

o

, k = 0, . . . , nT. (2.3)

Similarly, we define the continuous filtration, {Ft,n}k⌧t<(k+1)⌧ := Fk⌧,n, k = 0, . . . , nT , and we denote

by F�
t,n := Ft,n

S

�

�

2
t,n = �

2
t

 

. Following the same asymptotic parametric conditions as in Nelson (1990),

the following continuous time weak limit of the above model has been obtained in Badescu et al. (2015b).

Proposition 2.1 Assume that the following asymptotic parametric conditions hold:

lim
⌧!0

↵0(⌧)

⌧

= !0, lim
⌧!0

↵1(⌧)(1 + �

2) + �1(⌧) ! 1

⌧

= ! !1, lim
⌧!0

↵

2
1(⌧)

⌧

= !2. (2.4)

Then, as ⌧ approaches zero, the process
�

Yt,n,�
2
t,n

 

defined in (2.1)-(2.2) converges weakly to a

bivariate di↵usion
�

Yt,�
2
t

�

which satisfies the following stochastic di↵erential equations:

dYt = µtdt+ �tdB1t, (2.5)

d�

2
t =

�

!0 ! !1�
2
t

�

dt+
"
!2(M3 ! 2�)�2

t dB1t +
"
!2

q

M4 ! M

2
3 ! 1�2

t dB2t. (2.6)

Here, B1t and B2t are two independent Brownian motions on
⇣

⌦,F , {Ft}t2[0,...,T ] , P

⌘

and µt represents

the continuous time version of µk⌧,n.

The above result is a consequence of the weak convergence theorem for Markov processes which typically
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holds under standard moment constraints for the GARCH model (see Nelson (1990) or Francq and

Zakoian (2010) for further details). In the case of Gaussian innovations (i.e. ✏ (�t) =
1
2�

2
t , M3 = 0, and

M4 = 3), this result coincides with the standard asymmetric GARCH di↵usion limit of Duan (1997).

The bivariate di↵usion in (2.5)-(2.6) can be viewed as a generalized Hull-White model with an a�ne

drift for the variance process and driven by two correlated Brownian motions. This can be easily seen if

we write the asset price dynamics as:

dSt =

✓

µt +
1

2
�

2
t

◆

Stdt+ �tStdB1t, (2.7)

d�

2
t =

�

!0 ! !1�
2
t

�

dt+ ⇣�

2
t dB3t. (2.8)

Here B3t is another standard Brownian motion which has a constant correlation ⇢ with B1t given by:

⇢ :=

"
!2 (M3 ! 2�)

⇣

=

"
!2 (M3 ! 2�)

q

!2 (M3 ! 2�)2 + !2(M4 ! M

2
3 ! 1)

. (2.9)

When dealing with stochastic di↵erential equations for di↵usions, one needs to verify whether the

underlying coe�cients are smooth enough so that there exists a unique weak solution. Here we recall

the Engelbert-Schmidt conditions (see Theorem 5.15, p341, Karatzas and Shreve (1988)) for a stochastic

di↵erential equation with drift and di↵usion functions a(·) and b(·), respectively:

$x %J, b(x) &= 0,
1

b

2(·) ,
a(·)
b

2(·) %L

1
loc(J), (2.10)

where L

1
loc(J) denotes the class of locally integrable functions (i.e. the functions mapping J to R that

are integrable on compact subsets of J). It is straightforward to check that (2.7)-(2.8) satisfy these

conditions for the state space J = (0, ' ).

3 Exponential linear variance dependent pricing kernels

In this section, we derive the risk-neutral dynamics of the asset price under a family of exponential

linear pricing kernels and we discuss the relationships between this pricing kernel and other potential

candidates. We start by introducing, for any k = 0, 1, . . . , nT , the following stochastic discount factor

(SDF):

Nk⌧,n = exp
⇣

! ✓

(1)
k⌧,n�Yk⌧,n ! ✓

(2)
k⌧,n��

2
(k+1)⌧,n ! (�Y,��2)

⇣

! ✓

(1)
k⌧,n, ! ✓

(2)
k⌧,n

⌘⌘

. (3.1)

We assume that ✓(1)n =
n

✓

(1)
k⌧,n

o

k=0,...,nT
and ✓

(2)
n =

n

✓

(2)
k⌧,n

o

k=0,...,nT
are Fn-predictable processes quan-

tifying the prices of equity and variance risk. Here, (�Y,��2)(·, ·) represents the joint conditional cu-

mulant generating function of changes in log-prices and conditional variances. Since �Yk⌧,n has a linear
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dependence on ✏k⌧,n, and ��

2
k⌧,n has a quadratic dependence on ✏k⌧,n, we have

(�Y,��2)(z1, z2) = log E
h

exp
⇣

z1�Yk⌧,n + z2��

2
(k+1)⌧,n

⌘

|F(k�1)⌧,n

i

= z1⌧µk⌧,n + z2

�

↵0(⌧) + �

2
k⌧,n

�

↵1(⌧)�
2 + �1(⌧) ! 1

��

+ (✏,✏2)

�

z1

"
⌧�k⌧,n ! 2z2�↵1(⌧)�

2
k⌧,n, z2↵1(⌧)�

2
k⌧,n

�

. (3.2)

Substituting (3.2) into (3.1) leads to the following representation of the SDF (3.1):

Nk⌧,n = exp
�

Ak⌧,n✏k⌧,n +Bk⌧,n✏
2
k⌧,n ! (✏,✏2) (Ak⌧,n, Bk⌧,n)

�

, (3.3)

where the coe�cients An = {Ak⌧,n}k=0,...,nT and Bn = {Bk⌧,n}k=0,...,nT are Fn-predictable processes

given by:

Ak⌧,n = !
"
⌧✓

(1)
k⌧,n�k⌧,n + 2�↵1(⌧)✓

(2)
k⌧,n�

2
k⌧,n, (3.4)

Bk⌧,n = ! ↵1(⌧)✓
(2)
k⌧,n�

2
k⌧,n. (3.5)

We notice that the exponential linear pricing kernel reduces to an exponential quadratic pricing kernel

in ✏k⌧,n (or a second-order conditional Esscher type pricing kernel with respect to ✏k⌧,n, see Monfort

and Pegoraro (2012) for details on this SDF) when applied to the asymmetric GARCH structure in

(2.1)-(2.2). The specific form of the coe�cients Ak⌧,n and Bk⌧,n and, in particular, their dependence

on the sampling period ⌧ and the market prices of risk, will be crucial later on at the time of deriving

the continuous time di↵usion limit.9 Moreover, as in Christo↵ersen et al. (2013), we can show that

the logarithm of the pricing kernel is a quadratic function of the asset returns. Indeed, regardless of

the GARCH innovation distribution used, the pricing kernel is U-shaped when the variance premium is

negative (i.e. ✓(2)k⌧,n < 0). The main result of this section is contained in the following proposition.

Proposition 3.1 Suppose that the predictable processes ✓

(1)
n and ✓

(2)
n satisfy the following relation for

any k = 0, . . . , nT :

µk⌧,n = r !
1

⌧

⇣

(✏,✏2)

�

Ak⌧,n +
"
⌧�k⌧,n, Bk⌧,n

�

! (✏,✏2) (Ak⌧,n, Bk⌧,n)
⌘

. (3.6)

Then, the following statements hold:

(i) The process Zn := {Zk⌧,n}k=0,...,nT defined by Zk⌧,n :=
k
Q

l=1

Nl⌧,n with Z0,n = 1 is a P -martingale

and ZT,n defines an equivalent measure Qn via dQn

dPn
:= ZT,n.

9If we would start directly with a second-order Esscher transform as our pricing kernel, we would have to make a priori
assumptions on the dependence of both Esscher coe!cients on the time scale ⌧ . Depending on such assumptions, we would
obtain di"erent GARCH di"usion limits. For example, if the coe!cient of ✏k⌧,n in ( 3.3) is of order

p
⌧ and that of ✏2k⌧,n

is of order ⌧ , we would obtain the same GARCH limit as in the standard Esscher case, so the market price of variance
risk ✓

(2)
k⌧,n has no impact on the risk-neutral di"usion case. This is no longer the case if we work with the SDF in ( 3.1) for

which the continuous limit is uniquely determined.
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(ii) The innovation process ✏

⇤
n := {✏⇤k⌧,n}k=0,...,nT defined by:

✏

⇤
k⌧,n =

✏k⌧,n ! Pk⌧,n
p

Rk⌧,n

, (3.7)

is a sequence of F(k�1)⌧–conditionally uncorrelated zero mean and unit variance random variables

with a di↵erent conditional distribution under Qn denoted by, ✏⇤k⌧,n # D⇤(0, 1). Here Pk⌧,n and

Rk⌧,n are the first and second partial derivatives of (✏,✏2)(·, ·) with respect to the first argument

under Pn and evaluated at Ak⌧,n and Bk⌧,n:

Pk⌧,n =
@(✏,✏2) (Ak⌧,n, Bk⌧,n)

@z1
and Rk⌧,n =

@

2
(✏,✏2) (Ak⌧,n, Bk⌧,n)

@z

2
1

.

(iii) The risk-neutralized asset return dynamics are given by:

�Yk⌧,n = (✏,✏2) (Ak⌧,n, Bk⌧,n) ! (✏,✏2)

�

Ak⌧,n +
"
⌧�k⌧,n, Bk⌧,n

�

+
⇣

r +
Pk⌧,n�k⌧,n"

⌧

⌘

⌧ +
p

⌧Rk⌧,n�k⌧,n✏
⇤
k⌧,n, ✏

⇤
k⌧,n # D⇤(0, 1), (3.8)

��

2
(k+1)⌧,n = ↵0(⌧) + ↵1(⌧)�

2
k⌧,n

⇣

p

Rk⌧,n✏
⇤
k⌧,n + Pk⌧,n ! �

⌘2

+ (�1(⌧) ! 1)�2
k⌧,n. (3.9)

The relation (3.6) ensures that the discounted asset prices are martingales under the new probability

measure Qn. This is the reason why we call it the martingale condition/constraint. Note that this

identity provides a relation between the two market prices of risk, but it does not uniquely determine

them. The risk-neutral innovation distribution, denoted by D⇤(0, 1), is a priori not known and has to

be determined based on the assumptions on the underlying GARCH innovation distribution D(0, 1). A

useful relation in this sense is the connection between 

⇤
✏⇤(·) and (✏,✏2)(·, ·). Indeed, using (3.3) and

(3.7), we can write:



⇤
✏⇤(z) = ! z

Pk⌧,n
p

Rk⌧,n

+ (✏,✏2)

 

z

p

Rk⌧,n

+Ak⌧,n, Bk⌧,n

!

! (✏,✏2) (Ak⌧,n, Bk⌧,n) . (3.10)

We notice that the conditional variance of the asset returns per time interval of length ⌧ under Qn,

denoted by �

⇤2
k⌧,n, is proportional to the physical one and the constant of proportionality is given by

Rk⌧,n:

�

⇤2
k⌧,n = Rk⌧,n�

2
k⌧,n. (3.11)

The risk-neutral conditional variance obviously exceeds the physical one whenever Rk⌧,n > 1. Depending

on the assumption made regarding the GARCH driving noise distribution, this generally leads to a specific

constraint for the market prices of risk ✓

(1)
k⌧,n and ✓

(2)
k⌧,n.

If we let ✓(2)n = 0, the exponential linear SDF reduces to the well-known conditional Esscher transform.

Moreover, the risk-neutral dynamics of the asset price under the conditional Esscher transform can be
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obtained as a special case of Proposition 3.1. Indeed, if we take ✓

(2)
k⌧,n = 0 in equation (3.1) for all

k = 0, . . . , nT , we have, Ak⌧,n = !
"
⌧✓

(1)
k⌧,n�k⌧,n and Bk⌧,n = 0, so the risk-neutral dynamics reduce to

those found in Badescu et al. (2015b).

An important issue when computing derivative prices based on the exponential linear SDF (3.1)

is the numerical tractability of this equation, since closed-form expressions for the bivariate cumulant

generating function of (✏, ✏2) are only available for a few special cases. In general, (✏, ✏2) is evaluated

directly using the p.d.f. of ✏ but it can also be computed using a randomization approach which uses

the moment generating function of ✏ as we now explain. First, we let:

(✏,✏2)(z1, z2) := log E
⇥

exp(z1✏k⌧,n + z2✏
2
k⌧,n) | F(k�1)⌧,n

⇤

. (3.12)

Using a conditional version of the randomization idea of Keller-Ressel and Muhle-Karbe (2012), we have

:

(✏,✏2)(z1, z2) = log E

"

exp

 

z2

✓

✏k⌧,n +
z1

2z2

◆2

!
z

2
1

4z2

!

| F(k�1)⌧,n

#

= log E



exp

✓

"
2z2

✓

✏k⌧,n +
z1

2z2

◆

U

◆

| F(k�1)⌧,n

�

!
z

2
1

4z2
, (3.13)

where U is a standard normal random variable conditional on F(k�1)⌧,n and it is independent of ✏k⌧,n.

The second expectation is taken with respect to the product law of ✏k⌧,n and U . Recalling that the

conditional moment generating function of ✏k⌧,n is M✏(z) := E
⇥

exp (z✏k⌧,n) | F(k�1)⌧,n

⇤

, we write the

last expectation in (3.13) as:

E



exp

✓

"
2z2

✓

✏k⌧,n +
z1

2z2

◆

U

◆

| F(k�1)⌧,n

�

=

1
Z

�1

e

z1p
2z2

u
M✏(

"
2z2u)

1
"
2⇡

e

�u2

2
du.

Thus, we can write the joint cumulant generating function as a one dimensional integral of the conditional

moment generating function of ✏k⌧,n | F(k�1)⌧,n:

(✏,✏2)(z1, z2) = log

1
Z

�1

e

z1p
2z2

u
M✏(

"
2z2u)

1
"
2⇡

e

�u2

2
du !

z

2
1

4z2
. (3.14)

We notice that (3.14) can be easily evaluated when M✏(u) is a quadratic function in u, which is clearly

the case for conditional Gaussian innovations. However, it is important to identify other non-Gaussian

cases for which closed-form expressions can also be obtained. If these are not available, one has to rely

on Monte-Carlo simulations or numerical integration.
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3.1 Conditional Gaussian economies

Conditional Gaussian innovations have been the main distributional assumptions in the context of

GARCH option pricing models based on a variance dependent pricing kernel. As we already mentioned,

when ✏k⌧,n # N(0, 1), we can integrate and simplify (3.14), which yields the following closed-form ex-

pression for the bivariate cumulant generating function of (✏, ✏2):

(✏,✏2) (z1, z2) =
1

2

✓

z

2
1

1 ! 2z2
! log (1 ! 2z2)

◆

. (3.15)

Using this result we characterize the dynamical evolution of the asset returns in the following corollary.

Corollary 3.2 If ✏k⌧,n|F(k�1)⌧,n # N(0, 1), then the risk-neutral dynamics of the asset return under Qn

is given by:

�Yk⌧,n =

 

r !
�

2
k⌧,n

2 (1 ! 2Bk⌧,n)

!

⌧ +
"
⌧�k⌧,n

s

1

1 ! 2Bk⌧,n
✏

⇤
k⌧,n, ✏

⇤
k⌧,n # N(0, 1), (3.16)

��

2
(k+1)⌧,n = ↵0(⌧) + ↵1(⌧)�

2
k⌧,n

 

s

1

1 ! 2Bk⌧,n
✏

⇤
k⌧,n +

Ak⌧,n

1 ! 2Bk⌧,n
! �

!2

+ (�1(⌧) ! 1)�2
k⌧,n, (3.17)

where Ak⌧,n and Bk⌧,n are provided in (3.4)-(3.5).

We notice that the exponential linear pricing kernel preserves the distribution of the asset returns after

the measure change since the innovations are conditionally Gaussian distributed under Qn. Additionally,

by examining (3.16), it is easy to check that the discounted asset prices are martingales. The conditional

risk-neutral variance �

⇤2
k⌧,n per time interval of length ⌧ no longer has a GARCH structure since both

Ak⌧,n and Bk⌧,n depend on �k⌧,n. In this case �

⇤2
k⌧,n is related to the conditional variance under the

physical measure in the following way:

�

⇤2
k⌧,n =

�

2
k⌧,n

1 + 2↵1(⌧)✓
(2)
k⌧,n�

2
k⌧,n

. (3.18)

Since the GARCH coe�cient ↵1(⌧) ( 0, the risk-neutral conditional variance exceeds the physical

counterpart if and only if the variance premium is negative, ✓(2)k⌧,n < 0. Notice that such a result does

not necessarily hold for other innovation distributions.

In this case the martingale equation (3.6) can be re-written as:

µk⌧,n = r !
�

2
k⌧,n

2 (1 ! 2Bk⌧,n)
!

�k⌧,n"
⌧

Ak⌧,n

1 ! 2Bk⌧,n
. (3.19)
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Substituting the expressions for the market prices of risk into (3.19), we obtain an explicit dependence

between ✓

(1)
n and ✓

(2)
n :

✓

(1)
k⌧,n =

1

2
+

µk⌧,n ! r

�

2
k⌧,n

! 2
↵1(⌧)"

⌧

�k⌧,n

✓

"
⌧

r ! µk⌧,n

�k⌧,n
! �

◆

✓

(2)
k⌧,n. (3.20)

The well-known conditional Esscher transform under Gaussian innovations is obtained by setting ✓

(2)
k⌧,n =

0, for all k = 0, . . . , nT . In that case we recover the option pricing model in Duan (1995) derived via his

local risk-neutral valuation relationship (LRNVR). In that case the physical and risk-neutral conditional

variances are equal, and the Esscher parameter for the market price of equity risk is given by:

✓

(1)
k⌧,n =

1

2
+

µk⌧,n ! r

�

2
k⌧,n

. (3.21)

3.2 Relation with the variance dependent kernel in Christo"ersen et al

(2013)

The risk-neutral dynamics presented above are in agreement with those obtained in Christo↵ersen et

al. (2013) using a variance dependent pricing kernel for the Heston and Nandi (2000) model. However,

there are some major di↵erences regarding both the underlying model and the pricing kernel used, and

we now discuss them below.

First, using the same parametric notation, we recall that the variance dependent SDF of Christo↵ersen

et al. (2013) adapted to the sampling frequency implied by ⌧ is:

N

0
k⌧,n = exp

⇣

(r ! �)⌧ + ⌘�

2
k⌧,n + ��Yk⌧,n + ⇠��

2
(k+1)⌧,n

⌘

. (3.22)

This expression is the discrete-time version of the continuous time SDF used in the Heston (1993) option

pricing model. Unlike our pricing kernel, their construction is based on four (constant) parameters: �

and ⌘ are the time preference parameters, usually identified from the bond martingale constraint, while �

and ⇠ govern the aversion to equity and variance risks, respectively, and satisfy the standard martingale

constraint for the discounted asset price. When applied to a�ne GARCH type models driven by Gaussian

or Inverse Gaussian innovations (see Babaoglu et al. (2014) for the latter case), this change of measure

leads to semi closed form solutions for European option prices. Despite this important advantage, the

specification in (3.22) is somewhat restrictive since it requires that the bivariate cumulant generating

function of �Yk⌧,n and ��

2
(k+1)⌧,n evaluated at ⌘ and ⇠ is linear in �

2
t . Such a property is consistent with

a�ne option pricing models (see Khrapov and Renault (2014)), but unfortunately cannot be implemented

in non-a�ne frameworks such as our setup.

Indeed, if we use the a�ne conditional mean specification µk⌧,n = r+(�! 1/2)�2
k⌧,n and we identify the

kernel parameters by imposing the existence condition E
⇥

Nk⌧,n|F(k�1)⌧,n

⇤

= 1, we obtain the following
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solutions:

⇠ = 0,

� = r(1 + �),

⌘ = ! �

✓

� !
1

2

◆

⌧ !
1

2
�

2
⌧.

The remaining parameter � is determined by E
⇥

exp (�Yk⌧,n)Nk⌧,n | F(k�1)⌧,n

⇤

= exp(r⌧).10 Thus, since

⇠ = 0, the variance dependent pricing kernel reduces to the standard conditional Esscher transform.

On the other hand, one can show that using the exponential linear pricing kernel for the Heston and

Nandi model leads to the same dynamics as that coming from the variance dependent kernel in (3.22),

but with stochastic market prices of risk. This provides us with an added flexibility to consider richer

dynamics on the variance risk preferences and investigate their impact on option pricing. Moreover,

unlike in a�ne settings, we observe that in the context of a Gaussian non-a�ne GARCH model, the

variance dependent exponential linear pricing kernel with constant risk preferences (i.e. ✓(1)k⌧,n = ✓

(1) and

✓

(2)
k⌧,n = ✓

(2), for all k = 0, . . . , nT ) is not consistent with the absence of arbitrage opportunities. Indeed,

if we take the same conditional mean specification as above and substitute it into (3.19), we obtain

✓

(1) = � and ✓

(2) = 0, which corresponds to a pricing kernel with no variance risk premium. Thus, we

require at least one risk preference to be stochastic. The choice of ✓(2)k⌧,n will be of particular interest in

Section 4 when we compute di↵erent GARCH di↵usion limits.

3.3 Conditional non-Gaussian economies

Since financial asset returns empirically exhibit negative skewness and leptokurtosis, it is natural to

investigate alternative non-Gaussian pricing frameworks. In this section we present two ways for handling

the bivariate cumulant generating function of (✏, ✏2) in a non-Gaussian setting. First, we propose a

second-order Taylor approximation for (✏,✏2)(·, ·) without specifying a parametric distribution for the

GARCH innovations. Second, we identify two specific non-Gaussian cases for which we can explicitly

compute this quantity.

3.3.1 A second-order Taylor expansion

The next result derives the risk-neutral GARCH dynamics when we approximate the bivariate cumulant

generating function of (✏, ✏2) by its second-order Taylor expansion.

Corollary 3.3 The risk-neutral dynamics of the asset return when (✏,✏2)(·, ·) is replaced by its second-

10The proof of this result mimics the one in Christo"ersen et al. (2013) and is omitted in this presentation. We relied
here on a particular form for the conditional mean µk⌧,n, but this result holds also if we take other various standard mean
speciÞcations.
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order Taylor expansion is given by:

�Yk⌧,n =

✓

r !
1

2
�

2
k⌧,n

◆

⌧ +
"
⌧�k⌧,n✏

⇤
k⌧,n, ✏

⇤
k⌧,n # N(0, 1), (3.23)

��

2
(k+1)⌧,n = ↵0(⌧) + ↵1(⌧)�

2
k⌧,n

�

✏

⇤
k⌧,n +Ak⌧,n +M3Bk⌧,n ! �

�2
+ (�1(⌧) ! 1)�2

k⌧,n, (3.24)

where Ak⌧,n and Bk⌧,n are provided in (3.4)-(3.5).

Notice that under this approximation, the risk-neutral variance is the same as the physical one (i.e.

�

⇤2
k⌧,n = �

2
k⌧,n). Moreover, the GARCH innovations are conditional Gaussian distributed11 under Qn.

The martingale equation (3.6) leads to another explicit dependence between ✓

(1)
n and ✓

(2)
n , slightly dif-

ferent from the one obtained in the Gaussian case in (3.20):

✓

(1)
k⌧,n =

1

2
+

µk⌧,n ! r

�

2
k⌧,n

! 2
↵1(⌧)"

⌧

�k⌧,n

✓

M3

2
! �

◆

✓

(2)
k⌧,n. (3.25)

Equation (3.25) can be used as an alternative relationship between the risk preference parameters in

the numerical implementation of non-Gaussian GARCH option pricing models, especially for cases when

solving (3.6) is computationally demanding.

3.3.2 Conditional Gaussian mixture innovations

The Gaussian mixture distribution (GM) has been previously used for option pricing in a GARCH setup

(see e.g. Badescu et al. (2008) or Rombouts and Stentoft (2015)). However, the empirical performance

of such model is, to our knowledge, yet to be investigated under a variance dependent pricing kernel. As

in the Gaussian case, we shall use the results in Proposition 3.1 to derive the risk-neutral dynamics.

First, we assume that the driving noise is distributed according to a conditional Gaussian mixture

density, ✏k⌧,n # GM(pi,mi, hi) with I components, where the pi’s are the mixing probabilities with
I
P

i=1

pi = 1, and the mi’s and the hi’s are the conditional means and variances of the Gaussian random

variables which satisfy:

I
X

i=1

pimi = 0, and
I
X

i=1

pi(m
2
i + hi) = 1, (3.26)

so that the total distribution has mean zero and variance one. The conditional cumulant generating

function of a Gaussian mixture is given by:

✏(z) = log

 

I
X

i=1

pi exp

✓

zmi +
z

2

2
hi

◆

!

.

11We notice that, despite starting with non-Gaussian GARCH innovations under P , we obtain a Gaussian driving noise
under Qn. This property is strongly connected to the approximation used and will not hold under higher order Taylor
expansions for (✏,✏2)(·, ·). We note that deriving the risk-neutral dynamics under a third-order Taylor approximation is
not only more tedious but also requires information on the Þfth moment of ✏k⌧,n.
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Replacing this identity into (3.14) we obtain the following expression for the bivariate conditional cumu-

lant generating function:

(✏,✏2)(z1, z2) = log

 

I
X

i=1

pi exp

 

!
1

2
log (1 ! 2z2hi) !

m

2
i

2hi
+

1

2

✓

z1 +
mi

hi

◆2
hi

1 ! 2z2hi

!!

. (3.27)

We can now use Proposition 3.1 once again to characterize the risk-neutral return evolution.

Corollary 3.4 If ✏k⌧,n|F(k�1)⌧,n # GM(pi,mi, hi), then the risk-neutral dynamics for the asset returns

under Qn are given by:

�Yk⌧,n = r⌧ ! log

 

I
X

i=1

exp

  

"
⌧�k⌧,n

✓

Ak⌧,n +
mi

hi

◆

+
⌧�

2
k⌧,n

2

!

hi

1 ! 2Bk⌧,nhi

!!

+
"
⌧�k⌧,nPk⌧,n +

p

⌧Rk⌧,n�k⌧,n✏
⇤
k⌧,n, ✏

⇤
k⌧,n # GM(p⇤i,k⌧,n,m

⇤
i,k⌧,n, h

⇤
i,k⌧,n), (3.28)

��

2
(k+1)⌧,n = ↵0(⌧) + ↵1(⌧)�

2
k⌧,n

⇣

p

Rk⌧,n✏
⇤
k⌧,n + Pk⌧,n ! �

⌘2

+ (�1(⌧) ! 1)�2
k⌧,n. (3.29)

Here, p⇤i,k⌧,n,m
⇤
i,k⌧,n and h

⇤
i,k⌧,n are given by:

p

⇤
i,k⌧,n =

pi exp

✓

! 1
2 log (1 ! 2Bk⌧,nhi) ! m2

i
2hi

+ 1
2

⇣

Ak⌧,n + mi
hi

⌘2
hi

1�2Bk⌧,nhi

◆

I
P

i=1

pi exp

✓

! 1
2 log (1 ! 2Bk⌧,nhi) ! m2

i
2hi

+ 1
2

⇣

Ak⌧,n + mi
hi

⌘2
hi

1�2Bk⌧,nhi

◆ , (3.30)

m

⇤
i,k⌧,n =

✓

Ak⌧,n +
mi

hi

◆

hi

1 ! 2Bk⌧,nhi

1
p

Rk⌧,n

!
Pk⌧,n
p

Rk⌧,n

, (3.31)

h

⇤
i,k⌧,n =

hi

1 ! 2Bk⌧,nhi

1

Rk⌧,n
, (3.32)

where Pk⌧,n and Rk⌧,n are given by:

Pk⌧,n =
I
X

i=1

p

⇤
i,k⌧,n

✓

Ak⌧,n +
mi

hi

◆

hi

1 ! 2Bk⌧,nhi
, (3.33)

Rk⌧,n =
I
X

i=1

p

⇤
i,k⌧,n

✓

Ak⌧,n +
mi

hi

◆2
h

2
i

(1 ! 2Bk⌧,nhi)
2 +

I
X

i=1

p

⇤
i,k⌧,n

hi

1 ! 2Bk⌧,nhi
! P

2
k⌧,n. (3.34)

We notice that under the exponential linear pricing kernel the asset returns also have a conditional

Gaussian mixture distribution with time varying parameters for the Gaussian mixing components. Thus

the underlying distributional assumption is also stable under the risk-neutral measure Q.

3.3.3 Conditional mixed-Exponential innovations

The mixed-exponential (ME) distribution has been used by Cai and Kou (2011) in the modeling of the

jump sizes in a new class of jump di↵usions option pricing models. Furthermore, this model can also
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be used to approximate Lévy processes. The ME distribution is dense with respect to the class of all

distributions in the sense of weak convergence (see Botta and Harris (1986)). In this subsection we show

that the use of such a density in modeling the GARCH innovations also leads to a closed-form expression

for the bivariate cumulant generating function of (✏, ✏2).

We assume that ✏k⌧,n follows a mixed-exponential distribution, ✏k⌧,n # ME(pu, pd, pi, qj , ai, bi), where

the parameters satisfy the standard constraints: pu ( 0, qd = 1 ! pu ( 0, pi % (!' , ' ), i =

1, . . . , I;
PI

i=1 pi = 1, qj % (!' , ' ), j = 1, . . . , J ;
PJ

j=1 qj = 1 and ai > 1, i = 1, . . . , I, bj >

0, j = 1, . . . , J . In addition, the parameters pi and qj need to satisfy some conditions to guarantee that

the p.d.f. is always non-negative and is a true probability density function. From Cai and Kou (2011),

a simple su�cient condition is
I
P

i=1

piai ( 0, for all i = 1, . . . , I, and
J
P

j=1

qjbj ( 0, for all j = 1, . . . , J .

The conditional p.d.f. f✏ of ✏k⌧,n is given by:

f✏(y) = pu

I
X

i=1

piai exp (! aiy)1y�0 + qd

J
X

j=1

qjbj exp (bjy)1y<0. (3.35)

The joint cumulant generating function is calculated in the following proposition.

Proposition 3.5 When ✏k⌧,n # ME(pu, pd, pi, qj , ai, bi) conditional on F(k�1)⌧,n, the joint cumulant

generating function of (✏k⌧,n, ✏2k⌧,n) is given by:

(✏,✏2)(z1, z2) = log

0

@

pu

I
X

i=1

piaie
� (z1�ai)

2

4z2

r

⇡

z2
�

✓

ai ! z1"
2z2

◆

+ qd

J
X

j=1

qjbje
� (z1+bj)

2

4z2

r

⇡

z2
�

✓

z1 + bj"
2z2

◆

1

A

.(3.36)

Unfortunately, even though we obtain a closed-form expression for the bivariate cumulant generating

function of (✏k⌧,n, ✏2k⌧,n), we are not able to fully characterize the risk-neutral dynamics of the asset

returns since we cannot identify the law of ✏⇤k⌧,n under Qn. In that case, option prices can be computed

by simulating asset paths under P and making use of the closed-form Radon-Nikodym derivative.

4 Di"usion limits under the exponential linear SDF

In this section we derive the di↵usion limit of the risk-neutralized process in Proposition 3.1 based on

the same parametric assumptions used to establish the weak convergence of the asset prices under the

physical measure. The main result is contained in the next proposition.

Proposition 4.1 Assume that the parametric conditions in (2.4) hold. Then, as ⌧ approaches zero,

the risk-neutral continuous-time extended processes
�

Yt,n,�
2
t,n

 

of (3.8)-(3.9) converge weakly to the
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following bivariate di↵usions
�

Yt,�
2
t

�

that satisfy:

dYt =

✓

r !
1

2
�

2
t

◆

dt+ �tdB
⇤
1t, (4.1)

d�

2
t =

✓

!0 !
✓

!1 +
"
!2(M3 ! 2!3)

µt ! r + �

2
t /2

�t
+ !2(M4 ! M

2
3 ! 1)✓(2)t �

2
t

◆

�

2
t

◆

dt

+
"
!2 (M3 ! 2�)�2

t dB
⇤
1t +

"
!2

q

M4 ! M

2
3 ! 1 �

2
t dB

⇤
2t. (4.2)

Here B

⇤
1t and B

⇤
2t are two independent Brownian motions on

⇣

⌦,F , {Ft}t2[0,...,T ] , Q

⌘

, and µt and ✓

(2)
t

are the continuous-time limits of µk⌧,n and ✓

(2)
k⌧,n, respectively.

In order for the above limit to exist, we require that M4 ( M

2
3 + 1. We notice that the drift of �2

t

only depends on the continuous version of the market price of volatility risk ✓

(2)
t . In fact, unlike the

discrete-time GARCH case, the continuous limit of the martingale condition (3.6) leads to a closed-form

expression which allows us to express the market price of equity risk ✓

(1)
t as a linear function of ✓(2)t .

This observation is explained in more detail in the Appendix.

The risk-neutral dynamics in (4.1)-(4.2) can also be obtained by applying the Girsanov theorem (see

e.g. Karatzas and Shreve (1988)) to the continuous time limit of the GARCH di↵usion model from

(2.5)-(2.6). Indeed, if we define the following Radon-Nikodym process with respect to the Brownian

motion {B1t, B2t} on
⇣

⌦,F , {Ft}t2[0,...,T ] , P

⌘

:

dQ

dP

�

�

�

FT

= exp

0

@!
2
X

i=1

0

@

T
Z

0

⌫

(i)
t dBit +

1

2

T
Z

0

⇣

⌫

(i)
t

⌘2

dt

1

A

1

A

,

the results in Proposition 4.1 are recovered by taking:

⌫

(1)
t =

µt ! r + �2
t
2

�t
, (4.3)

⌫

(2)
t =

"
!2

q

M4 ! M

2
3 ! 1 ✓

(2)
t �

2
t . (4.4)

This can be easily verified by taking the two independent Brownian motions in (4.1)-(4.2) according to

the prescription dB

⇤
1t = dB1t + ⌫

(1)
t dt and dB

⇤
2t = dB2t + ⌫

(2)
t dt. Various choices of µk⌧,n and ✓

(2)
k⌧,n

show that our GARCH di↵usion model nests some important special cases. A discussion in this sense is

provided below.

4.1 Conditional mean speciÞcations and uniqueness of weak solutions

The choice of a specific conditional mean return is in general justified by numerical tractability arguments

even though it is often the case that µk⌧,n contains extra model parameters which have an economic
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interpretation. Thus, we propose the following conditional mean specification to address both issues:

µk⌧,n = r + ��k⌧,n !
✏ (

"
⌧�k⌧,n)

⌧

. (4.5)

First, as it is done in other studies on GARCH option pricing models, we can interpret � as the unit risk

premium parameter. Indeed, if we compute the expected simple gross return under (4.5), we get:

E
⇥

exp (�Yk⌧,n) |F(k�1)⌧,n

⇤

= E
⇥

exp
�

µk⌧,n⌧ +
"
⌧�k⌧,n✏k⌧,n

� |F(k�1)⌧,n

⇤

= exp ((r + ��k⌧,n) ⌧) .

When ⌧ = 1, equation (4.5) reduces to the conditional mean return used in Christo↵ersen et al. (2010).

Although this specification does not improve the numerical tractability when computing option prices

in discrete time, it simplifies the drift term in the conditional variance of the GARCH di↵usion model

from (4.2). Under this assumption, the market price of equity risk in Girsanov’s theorem is constant

which can be shown by calculating the continuous limit of µk⌧,n. Indeed, using a second-order Taylor

expansion for ✏ (
"
⌧�k⌧,n) around the origin, we have:

✏

�"
⌧�k⌧,n

�

=
1

2
⌧�

2
k⌧,n + o(⌧).

Letting ⌧ approach zero, we obtain µt = r + ��t ! �

2
t /2, which leads to ⌫

(1)
t = �.

In order to analyze the risk-neutral GARCH di↵usion model under the above mean specification

in more detail, we introduce some simplifying notations: we let a = ! !1 ! �

"
!2(M3 ! 2!3), b =

! !2(M4 ! M

2
3 ! 1), and c = !0.

Since the di↵usion parameters !0, !1, !2 and !3 are obtained based on the implied GARCH param-

eters, they obey certain constraints. This leads to c ( 0 and b ) 0.12

Using the notations from (2.9) we can re-write (4.1)-(4.2) as follows:

dSt = rStdt+ �tStdB
⇤
1t, (4.6)

d�

2
t =

⇣

c+ a�

2
t + b✓

(2)
t �

4
t

⌘

dt+ ⇣�

2
t dB

⇤
3t. (4.7)

Here, B

⇤
3t is a standard Brownian motion under Q such that dB

⇤
1t · dB⇤

3t = ⇢dt. If we assume that

the variance risk preference process is a time-homogeneous function of �t (i.e. ✓

(2)
t = ✓

(2)(�t)) with

✓

(2)(·) % L

1
loc(J), we can show that the two-dimensional di↵usion defined in (4.6)-(4.7) has a unique

weak solution. This follows immediately by verifying the Engelbert-Schmidt conditions introduced in

(2.10) in Section 2) and from the fact that St can be uniquely represented as the stochastic exponential

related to a stochastic integral of �t under Q (i.e. St = E(Lt) with Lt :=
t
R

0

�sdB
⇤
1s).

12These constraints follow from the stationarity conditions imposed to the underlying GARCH model. Moreover, when
Þnancial returns are estimated using GARCH models, it is generally found that c ⇡ 0 (c is of the order 10 ! 6) and M3 < 0.
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4.2 Nested GARCH di"usion models and Þnancial bubbles

In this subsection we analyze di↵erent choices of discrete-time versions of ✓(2)t as a function of �t and

show how some of the existing GARCH di↵usion option pricing models can be obtained as particular

cases of our model. In particular, we shall focus on two main classes of di↵usion processes embedded in

(4.7).

The first class is represented by the generalized Hull-White models with a�ne volatility drift and

it can be obtained by taking either ✓

(2)
k⌧,n = 0 or ✓

(2)
k⌧,n = C/�

2
k⌧,n for some real constant C and for all

k = 0, . . . , nT . The first case corresponds to the conditional Esscher transform for which we recover the

continuous time limit obtained in Badescu et. al (2015b) and where we obtain that ⌫

(2)
t = 0 in (4.4).

The corresponding limiting di↵usion can hence be obtained by applying the minimal martingale measure

in continuous time to the model in (2.5)-(2.6). The second case leads to the same type of di↵usion, but

with a di↵erent volatility drift coe�cient. Assuming a particular value for the constant C, we recover

another important GARCH di↵usion limit. Indeed, if we let C = ! �M3/
"
!2

�

M4 ! M

2
3 ! 1

�

, we obtain

the continuous time limit derived in Badescu et. al (2015b) for the underlying GARCH model (2.1)-(2.2)

risk-neutralized via the extended Girsanov principle. The limiting di↵usion can also be obtained in that

case by applying the Girsanov change of measure in continuous time with ⌫

(2)
t = ! �M3/

p

M4 ! M

2
3 ! 1.

Finally, taking C = �M3 (E /F ! M3) /
"
!2

�

M4 ! M

2
3 ! 1

�

, we obtain the GARCH di↵usion option

pricing model corresponding to Duan’s (1999) generalized LRNVR derived in Badescu et al. (2015a),

where E = E
h

✏

2
k⌧,n (✏k⌧,n) |F(k�1)⌧,n

i

, F = E
⇥

✏k⌧,n (✏k⌧,n) |F(k�1)⌧,n

⇤

and  (·) = � (F✏(·)). This

can also be obtained via Girsanov’s theorem with ⌫

(2)
t = �M3 (E /F ! M3) /

p

M4 ! M

2
3 ! 1. We can

write the resulting generalized Hull-White variance limit equation under Q as:

d�

2
t =

�

c+ a

0
�

2
t

�

dt+ ⇣�

2
t dB

⇤
3t, (4.8)

where a

0 = a if ✓(2)t = 0 and a

0 = a+ bC if ✓(2)t = C/�

2
t .

The second class of processes is represented by the generalized geometric mean-reverting di↵usion

process with a�ne drift (see e.g. Metcalf and Hasset(1995) or Ewald and Yang (2007)). These models

are obtained by taking the variance risk preference parameter to be a non-zero constant (i.e. ✓

(2)
k⌧,n =

✓

(2) &= 0, k = 0, . . . , nT . This further implies that ✓

(2)
t = ✓

(2), and substituting this value into the

variance equation (4.7), we have the following dynamics:

d�

2
t =

⇣

c+ a�

2
t + b✓

(2)
�

4
t

⌘

dt+ ⇣�

2
t dB

⇤
3t. (4.9)

Under the above specification, the drift of the variance process is a quadratic function of �2
t . We notice

that when the variance risk premium is negative (i.e. ✓(2) < 0) the coe�cient of �4
t is non-negative since

b ) 0.

In the remaining part of this subsection, we investigate the presence of financial bubbles in markets
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driven by the GARCH di↵usion limit from (4.6)-(4.7). Since a financial bubble exists when the discounted

underlying price process is a strict local martingale (see Protter (2013)), we are interested in identifying

under what circumstances the underlying stock price in our model is a true martingale under Q.13

More specifically, following Bernard et al. (2015), we derive a necessary and su�cient condition for the

martingale property, which involves checking local integrability of various deterministic test functions.

Here we restrict our attention to the special case of a generalized Hull-White variance specification from

(4.8), since the proof for the generalized geometric mean-reverting case is similar but rather tedious.

The main result is given below.

Proposition 4.2 The asset price {St}0t<T in (4.6) with the variance specification from (4.8) is a true

martingale if and only if ⇢ ) 0, or equivalently, if and only if M3 ) 2�.

Note that the above condition is automatically satisfied for asset returns which exhibit negative

skewness if the leverage parameter � is positive.

4.3 Explicit density function of GARCH volatility di"usion limit

In this section, we derive closed-form expressions for the probability density functions of the risk-neutral

variance processes for both classes of di↵usion limits given in (4.8) and (4.9). The following results

characterize the joint density functions related to �

2
t under Q.

Proposition 4.3 If the risk-neutral variance �

2
t satisfies the dynamics in (4.8), the joint probability

density function of

✓

�

2
t ,

t
R

0

�

�2
s ds,

t
R

0

�

�4
s ds

◆

for any t %(0, ' ) is given by:

Q

0

@

t
Z

0

�

�4
s ds %dg,

t
Z

0

�

�2
s ds %dy,�

2
t %dz

1

A = exp

✓

! c

⇣

2

⇣

z

�1 +
cg

2
! �

�2
0

⌘

! c

✓

a

0

⇣

2
! 1

◆

y !
⌫

2
⇣

2
t

2

◆

*
⇣z

⌫�1

8�2⌫
0

· eig
 

⇣

2
t

8
,

y⇣

2
,

�

�2
0 + z

�1

⇣

,

2(�2
0z)

� 1
2

⇣

!

dgdydz.

Here ⌫ = a0

⇣2 ! 1
2 and eiy(v, t, z, x) is the function defined on page 645 of Borodin and Salminen (2002).

Note that the density function of �2
t can be obtained by integrating out g and y.

For the generalized mean-reverting case, it is not possible to obtain the probability density explicitly

when c &= 0 in (4.9). However, since c is usually a very small non-negative number, we shall only consider

the derivation for the case c = 0.

Proposition 4.4 If the risk-neutral variance �

2
t satisfies the dynamics in (4.9) with c = 0, the joint

13Note that equations ( 4.6)-( 4.7) ensure that the asset price process is a strict local martingale under Q.
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probability density function of

✓

�

2
t ,

t
R

0

�

2
sds,

t
R

0

�

4
sds

◆

for any t %(0, ' ) is given by:

Q

0

@

t
Z

0

�

4
sds %dg,

t
Z

0

�

2
sds %dy,�

2
t %dz

1

A = exp

✓

b✓

(2)

⇣

2

✓

z ! �

2
0 !

b✓

(2)
g

2

◆

!
ab✓

(2)

⇣

2
y !

⌫

2
⇣

2
t

2

◆

*
⇣z

⌫�1

8�2⌫
0

· eig
✓

⇣

2
t

8
,

y⇣

2
,

�

2
0 + z

⇣

,

2(�2
0z)

1/2

⇣

◆

dgdydz.

Here ⌫ = a
⇣2 ! 1

2 and eiy(v, t, z, x) is the function defined on page 645 of Borodin and Salminen (2002).

As in the previous case, the density function of �2
t is obtained by integrating out g and y.

5 Empirical analysis

In this section we investigate the in-sample and out-of-sample pricing performances of the asymmetric

NGARCH model in (2.1)-(2.2) based on Gaussian and Gaussian mixture innovations and that has been

risk-neutralized via the exponential pricing kernel introduced in Section 3. We conduct this study using

an extensive dataset of European calls on the S&P500 index. The empirical assessment will be carried

out for the above models with parameters obtained using historical information about option prices and

returns of the underlying in di↵erent combinations. This will result in two di↵erent model estimation

approaches that are used separately in the in-sample and out-of-sample empirical exercises, namely, the

joint likelihood and the sequential estimation methods, respectively.

5.1 Data description

The empirical pricing performance is tested using two datasets of S&P500 call options obtained from

OptionMetrics, whose prices were quoted during the period spanning January 1st, 2004–December 31st,

2013. Both datasets comprise contracts with maturities between 20 and 250 days and moneyness between

0.9 and 1.1. In order to only use significant contracts, we applied various filters similar to those introduced

in Bakshi et al. (1997). The first dataset, called Sample A, consists of 20,912 call prices quoted every

Wednesday for the reference period and is used for both the joint and sequential estimation exercises.

The second dataset, called Sample B contains 21,228 call prices recorded every Thursday for the same

period and is only used for the out-of-sample performance assessment. The basic features of these

two datasets, including the number of contracts, average prices, and implied volatilities are reported in

tables 1 and 2 for an array of di↵erent maturities and moneyness intervals. The moneyness is defined

as the ratio between the future price and the strike price (Mo = F/K), so options with Mo < 1 are

out-of-money (OTM) and those with Mo > 1 are in-the-money (ITM). The average price and implied

volatility for Sample A are $ 57.767 and 18.6%, respectively, while the corresponding values for Sample

B are $ 58.132 and 18.9%, respectively.
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The return sample dataset using in both empirical analyses consists of daily returns which cover

the period January 1st, 1995–December 22nd, 2013. The mean and variance of the asset returns are

2.8799 · 10�4 and 1.5408 · 10�4, respectively, while the skewness and kurtosis are ! 0.2405 and 10.8928,

respectively. In each of the empirical exercises, we shall use di↵erent subsets of this series as it is

explained in the following subsections.

5.2 Estimation methodology

The in-sample and out-of-sample performance assessments are conducted using di↵erent estimation

strategies based on three di↵erent likelihoods: the returns likelihood, the option likelihood, and the

joint likelihood based on returns and option data.

The returns likelihood is constructed for the NGARCH model in (2.1)-(2.2) sampled at a daily fre-

quency (i.e. ⌧ = 1), together with a conditional mean specification like in (4.5), that is:

µt = r + ��t ! ✏ (�t) . (5.1)

We note that the parameter r in the mean specification (5.1) has not been estimated at the time of

maximizing the likelihood but has been set in advance equal to the average one year T-Bill rate for the

corresponding period. We assume that the GARCH innovations follow either a Gaussian distribution or

a Gaussian mixture distribution with two components. In the former case, we have ✏t|Ft�1 # N(0, 1)

and the likelihood depends only on the model parameters ✓ := (↵0,↵1,�1, �,�) that are subjected to

standard constraints that ensure the positivity of the conditional variance process and the second order

stationarity of the returns process. In the latter case, we let ✏t|Ft�1 # GM((p1, p2), (m1,m2), (h1, h2)),

where the mixing probabilities satisfy p1+p2 = 1 and the means and variances of the mixture components

satisfy (3.26). These constraints reduce the number of parameters to be estimated and hence the Gaussian

mixture likelihood depends exclusively on ✓ := (↵0,↵1,�1, �,�, p1,m1, h1).

Given a log-return value rt at time t, we denote the corresponding conditional returns log-likelihood

by:

logLR
t (rt,✓) := log

✓

1

�t
f✏

✓

rt ! µt

�t

◆◆

.

Here, f✏ stands for the pdf of the model innovations, that is, f✏(z) = 1/
"
2⇡ exp(! z

2
/2) in the Gaussian

case and

f✏(z) = p1

✓

1
"
2⇡h1

exp

✓

(z ! m1)2

2h1

◆◆

+ p2

✓

1
"
2⇡h2

exp

✓

(z ! m2)2

2h2

◆◆

,

for a mixture of two Gaussians. The log-likelihood corresponding to the sample r := {r1, . . . , rT } is

denoted by logLR(r,✓) :=
T
P

t=1
logLR

t (rt,✓).

We follow the approach of Trolle and Schwartz (2009) in deriving the options likelihood. For each

model, we use a set of option market prices CMkt := {CMkt
1 , . . . , C

Mkt
N }, and assume that the vega
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weighted option valuation errors ⇠i defined by

⇠i :=
C

Mkt
i ! C

Mod
i

BSV

Mkt
i

, i = 1, . . . , N,

are independent and normally distributed with mean zero and variance b�2
⇠ := 1

N

N
P

i=1

⇠

2
i . In this expression

C

Mod
i is the model price and BSV

Mkt
i is the corresponding Black-Scholes vega of the option. Given a

market option price C

Mkt
i , we let the corresponding conditional options log-likelihood given by:

logLO
i (C

Mkt
i ,✓,✓O) := log

✓

1

BSV

Mkt
i

f⇠

✓

C

Mkt
i ! C

Mod
i

BSV

Mkt
i

◆◆

,

Here, f⇠(z) = 1/(
"
2⇡b�⇠) exp(! y

2
/(2b�2

⇠ )), ✓ are the model parameters, and ✓O are the parameters of

the pricing kernel that has been used to compute the model-based prices C

Mod
i . The log-likelihood

corresponding to the option prices CMkt is denoted by logLO(CMkt
,✓,✓O) :=

N
P

i=1

logLO
i (C

Mkt
i ,✓,✓O).

Since the non-a�ne GARCH structure does not lead to semi-closed expressions, we evaluate the option

prices using Monte-Carlo simulation. In general this can be performed in two equivalent ways, either by

generating the asset paths directly under the risk-neutral measure, or by simulating under the physical

measure and weighting the option payo↵ by the corresponding Radon-Nycodim derivative path. We

follow the second approach due to the complicated form of the risk-neutral GARCH dynamics in the

Gaussian mixture case (see Corollary 3.4). For each GARCH innovation distribution, we consider two

special cases for the exponential linear pricing kernel from (3.1), depending on the form of the market

price of variance risk ✓

(2)
t . First, we take ✓(2)t = 0, which corresponds to the conditional Esscher transform,

while for the second specification we assume take ✓(2)t := ✓

(2)
/�

2
t , where ✓

(2) is a real constant representing

the variance risk aversion parameter. Throughout this section, we refer to this specification as the

variance dependent pricing kernel. Note that in the conditional Esscher transform case, there are no

parameters from the pricing kernel to be estimated since we impose ✓

(2)
t = 0 and ✓

(1)
t is uniquely

determined from the corresponding martingale constraint. For the second pricing kernel specification,

we only estimate the variance risk aversion parameter, so that ✓O = ✓

(2). The market price of equity risk

✓

(1)
t is then evaluated using the martingale equation (3.20) for Gaussian innovations, and the second-

order Taylor approximation based martingale equation (3.25) in the Gaussian mixture case; several

non-reported experiments that compare the Gaussian mixture GARCH option prices obtained using

the solution of the exact martingale identity (3.6) with those of (3.25), show that the di↵erences are

not significant. The prices CMod are computed using 20,000 paths. These paths are initialized for the

pricing of each contract by using the return of the underlying asset in the corresponding date and the

spot volatility obtained from the historical return estimation. An important point that needs to be

emphasized is that, following Eichler et al. (2011), we use the same random numbers in the generation of

the Monte Carlo paths at each step of the maximization of the likelihood in order to reduce the stochastic

noise and to make possible the optimization algorithm convergence. For discounting the expected option
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payo↵ we use the corresponding period T-Bill rates interpolated to match the option maturity.

The joint likelihood estimation has become very popular in calibrating the model parameters us-

ing both historical returns and cross-section of option data (see e.g. Santa-Clara and Yan (2010),

Cristo↵ersen et al. (2013), and Ornthanalai (2014) among others). Given a set of market option

prices CMkt and historical log-return values r at time t, we define the corresponding joint log-likelihood

logLJ(r,CMkt
,✓,✓O) as a weighted function of the return and option likelihoods:

logLJ(r,CMkt
,✓,✓O) :=

T +N

2

logLR(r,✓)

T

+
T +N

2

logLO(CMkt
,✓,✓O)

N

(5.2)

Note that the pricing kernel parameters ✓O is present only in the option likelihood, while the GARCH

model parameters ✓ appear in both likelihood functions.

5.3 Empirical results

The findings obtained in the in-sample and out-of-sample empirical exercises are described in the following

subsections.

5.3.1 Joint likelihood estimation using returns and options

We provide an initial evidence of the modelling properties coming from the combination of using a non-

zero variance risk aversion in the pricing kernel and the use of a GARCH model with Gaussian mixture

innovations. The joint likelihood estimation is carried out in two steps.

First, we maximize the returns likelihoods corresponding to the NGARCH models with Gaussian

and Gaussian mixture innovations constructed using 2,520 daily log-returns of the S&P500 index for

the period December 22nd, 1999–December 30th, 2009. This step is not only useful for comparison

purposes, but also to determine daily spot volatilities that will be used to initialize the Monte Carlo

paths generated to carry out the option pricing.14 The results are illustrated in Table 3. We notice that

the likelihood corresponding to the process with Gaussian mixture innovations exhibits a higher optimal

value, which hints a better adequacy of this model to the data; this observation is confirmed by the

ordering of the (not reported) AIC and BIC statistics. The values of the estimated Gaussian NGARCH

model parameters are in the same range as those obtained in many other previous empirical studies. The

implied persistency is 0.9917. The parameters do not change much for the Gaussian Mixture NGARCH

model, the implied persistency being 0.9948. We notice that in the mixture case, the first Gaussian

component has an associated probability of 92.22% and its mean and variance are 0.0804 and 0.8486,

respectively. The second Gaussian component has a probability of 7.98% and exhibits a negative mean

of -0.9534 and a higher variance of 1.8099. Thus, we argue that the first mixture component captures the

14There are various ways in which one can construct the starting volatilities for the Monte-Carlo computation of option
prices. A potential alternative is to Þlter the spot volatility using the observed returns over a period of one year prior to
the option valuation date.
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“business as usual” state of the economy, while the second models the “crash” component. The implied

skewness of the NGARCH innovation is negative and the kurtosis is greater than that of a standard

Gaussian distribution.

In the second step, we proceed by estimating these models using their joint likelihoods with the same

historical returns series set and a subset of the Sample A option dataset that comprises prices quoted

during the period January 1st, 2009 - December 31st, 2009 (the dataset contains 1,829 contracts). The

estimation is implemented by maximizing the joint likelihood constructed as we described in Section 5.2

with respect to the model parameter values and, in the case of mixed Gaussian innovations, with respect

to the distribution parameters also. Additionally, when the variance dependent pricing kernel is used,

optimization is also carried out with respect to the variance premium parameter ✓(2). The results of this

estimation exercise are presented in Table 4. The figures in this table evidence the importance of using

non-Gaussian innovations combined with an exponential linear pricing kernel which contains a non-zero

price of variance risk in this context. Indeed, when using Gaussian innovations, a maximum normalized

joint log-likelihood of 2.0982 (respectively, 2.2802) is attained when using the conditional Esscher pricing

kernel (respectively, the variance dependent pricing kernel). When comparing the performance of the

conditional Esscher transform with its variance dependent analog, the main gain in the latter is obtained

out of the options part of the likelihood that goes from 0.65 to 0.80 for the optimal parameter values.

In the Gaussian mixture case, the maximum normalized log-likelihood values attained with both the

conditional Esscher (2.2846) and the variance dependent (2.3453) kernels are superior to those obtained

in the Gaussian case, and the gain when going from Esscher to its variance dependent counterpart comes

again from the options part of the likelihood that goes from 0.8092 to 0.8713. The returns likelihood

does not vary much across the models.

We notice that the values of the NGARCH parameters in the joint estimation exercise di↵er signifi-

cantly from those obtained using only on the returns likelihood. For example, in the Gaussian case the

model persistence implied from both returns and options is 0.7514 when using the conditional Esscher

transform and 0.7312 for the variance dependent kernel. There are also significant changes in the esti-

mated parameters for the Gaussian mixture distribution. The first component used to describe “business

as usual” market conditions has an associated probability of 98.76%, while the “crash” component hap-

pens in 1.24% of the cases. This latter component is very noisy with high negative means (-1.8975 for

the conditional Esscher transform and -3.3821 for the variance dependent pricing kernel) and very high

values for the corresponding variances (36.5387 for the conditional Esscher transform and 40.5314 for

the variance dependent pricing kernel).

Finally, Figure 1 depicts the dependence of the joint log-likelihood on the variance premium parameter

✓

(2). Note that all the model and distribution parameters have been kept fixed and set to their optimal

values and it is only the variance premium parameter ✓(2) that varies. In both cases this function is non-

convex, which hints the di�culties that can sometimes be faced at the time of finding the optimal variance

premium value, as well as the interest of having preliminary estimates for it. In the Gaussian case, we
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obtain ✓

(2) = ! 0.328, which indicates that the log-ratio of the risk-neutral and physical conditional

return densities has a parabolic form. The negative value of the variance risk premium parameter is

consistent with the findings of Christo↵ersen et al. (2013) and Bormetti et al. (2015) when variance

dependent pricing kernels with constant market prices of risk are applied to a�ne Gaussian GARCH

settings. For the Gaussian mixture NGARCH model, the above log-ratio will no longer have a parabolic

form, so a negative value of ✓(2) is no longer expected. Our estimation results indicate that ✓(2) = 0.009

in this case.

5.3.2 Sequential estimation and out-of-sample pricing performance

We carry out an extensive out-of-sample pricing performance assessment using the entire options dataset

described in Tables 1 and 2. This section compares the performance of the NGARCH models with

Gaussian and Gaussian mixture innovations when the pricing is carried out using exclusively the variance

dependent pricing kernel.

The parameters of the models used in this study will be determined using a sequential estimation

process (see Broadie et al. (2007), Christo↵ersen et al. (2013) among others) that is updated according

to the scheme that we now describe: for the first Wednesday in Sample A of the study, a maximum

likelihood estimation of the two models is performed using the historical daily returns of the underlying

corresponding to the ten preceding years (2,520 daily observations). The obtained model parameters are

then kept fixed and a value of the variance premium parameter ✓(2) that maximizes the options likelihood

corresponding to the options quoted that Wednesday is computed. The model/pricing kernel parameters

obtained using this sequential procedure are then used to price the options quoted the next day (the

corresponding Thursday from Sample B), as well as those quoted the next Wednesday from Sample A.

This procedure is repeated iteratively for every Wednesday from Sample A. Note that although the ✓

(2)

is calibrated weekly, the NGARCH and innovation parameters are re-estimated on a monthly basis using

a rolling window of size 2,520 observations.

The pricing performance is measured using the Implied Volatility Root Mean Squared Error (IVRMSE)

indicator, defined below:

IV RMSE =

v

u

u

t

1

N

N
X

i=1

(IV Mod ! IV

Mkt)2 * 100.

The results of this exercise are presented in Table 5 for the Gaussian and Gaussian mixture NGARCH

models in the pricing of contracts grouped in various moneyness and time-to-maturity intervals. The

table contains three modules. In the top one, marked “In-Sample Error”, we report the average pricing

errors committed each Wednesday of Sample A at the time of pricing the options that have been used

to optimize the options likelihood with respect to ✓

(2) the very same Wednesday. In the module marked

“Next Day Pricing Error” we report the average pricing errors committed each Thursday from Sample
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B, using the models whose parameters have been estimated the preceding day. We emphasize that even

though in this case we use models that have been calibrated the day before, the spot volatility necessary

in the generation of Monte Carlo paths is updated. Finally, in the module marked “Next Week Pricing

Error” we report the average pricing errors committed each Wednesday from Sample A using the models

whose parameters have been estimated the Wednesday of the preceding week.

The figures in Table 5 show that the mixture distribution consistently outperforms the Gaussian

counterpart both in and out-of-sample. The overall IVRMSE of the Gaussian mixture NGARCH model

for the three exercises reported are: 3.334 (in sample), 3.648 (next day) and 3.802 (next week), which are

all smaller than the corresponding values for the Gaussian NGARCH model: 3.547 (in sample), 3.963

(next day) and 4.041 (next week). This overall improvement could be in principal attributed to the

performance of the mixture model for longer maturity options. For example, for the in-sample scenario,

the improvement is of 10.9% for deep OTM options and 22.2% for deep ITM options for maturities

between 180 and 250 days, while for the next week out-of-sample exercise, the improvement is 12.3% for

OTM options to 20.3% for ITM options for the same maturity category. This fact can be potentially

explained by the e↵ect of the “crash” component of the mixture density for the long maturity options.

We notice that although the Gaussian mixture NGARCH outperforms the Gaussian NGARCH for almost

all ATM and ITM option classes, there are a few cases where its performance is worse. For instance,

this is the case for deep OTM shorter maturity options.

6 Conclusions

This paper investigates the pricing and weak convergence of an asymmetric non-a�ne, non-Gaussian

GARCH model when the risk-neutralization is based on a variance dependent exponential linear pricing

kernel with stochastic market prices of risk. The risk-neutral dynamics is derived for a general setting and

specific distributional choices for the driving noise are further discussed. We emphasize the importance

of using stochastic market prices of risk, since a standard variance dependent kernel with constant prices

of risk cannot be applied in our setting.

The weak limit of our general risk-neutral GARCH model is derived under standard parametric

constraints. The resulting stochastic volatility process generalizes the class of GARCH di↵usion option

pricing models from the financial literature. We show that for several specific choices of the variance

risk aversion parameter, the GARCH di↵usion limits constructed via the conditional Esscher transform,

extended Girsanov principle, and Duan’s generalized LRNVR are obtained as special cases of our model.

Moreover, there is a one-to-one relationship between the market prices of risk from the variance dependent

pricing kernel in the GARCH case and their counterparts from the Girsanov’s theorem applied to the

GARCH di↵usion limit. For two particular di↵usions, we derive explicit expressions for the density of

the process variance. Finally, we investigate the presence of financial bubbles by deriving necessary

and su�cient conditions for the discounted continuous risk-neutral GARCH di↵usion limit to be a true
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martingale.

We provide a detailed empirical analysis to illustrate the importance of combining a non-Gaussian

distribution for the GARCH innovations with the proposed pricing kernel. In a first numerical ex-

periment, using both historical returns and a cross-section of options, we perform a joint likelihood

estimation procedure to calibrate the model and pricing kernel parameters for a Gaussian NGARCH

and a Gaussian mixture NGARCH model with two components. Our results indicate that the Gaussian

mixture NGARCH based on a non-zero market price of variance risk provides the best fit. Next, using

ten years of options data we test the out-of-sample performance for the above option pricing models

constructed solely with the variance dependent kernel. As in the previous case, the Gaussian mixture

model consistently outperforms its Gaussian counterpart, especially for longer maturity ITM options for

which the improvement is around 22%. The Gaussian model provides a slightly better alternative only

for shorter maturity OTM options.

The proposed framework can be further extended to a more sophisticated parametric mixture struc-

ture where the volatility of each component follows its own GARCH dynamic, or to a non-parametric

setting based on a kernel density estimator for the GARCH innovations. The pricing methodology can

also be used for volatility derivatives and joint estimation based on asset returns and VIX data.
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7 Appendix

7.1 Proof of Proposition 3.1

(i) Using the fact that ✓

(1)
k⌧,n and ✓

(2)
k⌧,n are Fk⌧,n-predictable processes, we proceed by computing the

one-step conditional mean of Nk⌧,n from relation (3.1). For any k = 0, . . . , nT we have:

E
⇥

Nk⌧,n|F(k�1)⌧,n

⇤

= E
h

exp
⇣

! ✓

(1)
k⌧,n�Yk⌧,n ! ✓

(2)
k⌧,n��

2
(k+1)⌧,n ! (�Y,��2)

⇣

! ✓

(1)
k⌧,n, ! ✓

(2)
k⌧,n

⌘⌘

�

�F(k�1)⌧,n

i

= 1.

Thus, the martingale property of Zn follows immediately:

E
⇥

Zk⌧,n|F(k�1)⌧,n

⇤

= Z(k�1)⌧,nE
⇥

Nk⌧,n|F(k�1)⌧,n

⇤

= Z(k�1)⌧,n.

Since ZT,n := dQn/dPn > 0 is non-negative by construction, the fact that Qn is an equivalent probability

measure with respect to Pn follows from:

E⇤[1] = E [ZT,n] = E [Z0,n] = 1.

Here we denote by E⇤[·] the expectation under the risk-neutral measure Qn. The proof that Qn is a

risk-neutral measure is at the end of (ii).

(ii) Since ✏k⌧,n :=
p

Rk⌧,n✏
⇤
k⌧,n + Pk⌧,n and both Pk⌧,n and Rk⌧,n are Fk⌧,n-predictable, we have that

Fk⌧,n = �(✏0,n, . . . , ✏k⌧,n) = �(✏⇤0,n, . . . , ✏
⇤
k⌧,n). Then we compute the conditional cumulant generating

function of ✏k⌧,n under Qn. Next, we evaluate the conditional moment generating function of ✏k⌧,n under

Qn, denoted by 

⇤
✏ (·), as a function of the bivariate cumulant generating function of

⇣

✏k⌧,, ✏
2
k⌧,n

⌘

under

Pn. Let u > 0 and for any z %(! u, u). Using (3.3) we have:


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⇤
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h
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(1)
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(2)
k⌧,n��

2
(k+1)⌧,n ! (�Y,��2)

⇣

! ✓

(1)
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= log E
⇥

exp
�

z✏k⌧,n +Ak⌧,n✏k⌧,n +Bk⌧,n✏
2
k⌧,n ! (✏,✏2) (Ak⌧,n, Bk⌧,n)

�|F(k�1)⌧,n

⇤

= (✏,✏2) (z +Ak⌧,n, Bk⌧,n) ! (✏,✏2) (Ak⌧,n, Bk⌧,n) . (7.1)

It follows that the first and second raw moments of ✏k⌧,n under Qn are given by:

E⇤ ⇥
✏k⌧,n|F(k�1)⌧,n
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=
d
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We define by ✏

⇤
n = (✏n ! Pn) /

"
Rn the new innovation process under Qn with mean zero and unit vari-

ance, and denote its distribution by D⇤(0, 1). In order to show that ✏⇤k⌧,n are conditionally uncorrelated,
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we let l > s > 1 and have:
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Now we show that if the market prices of risk ✓

(1)
k⌧,n and ✓

(2)
k⌧,n satisfy (3.6) for any k = 0, . . . , nT , then

discounted asset prices are martingales under Qn (i.e. Qn is a risk-neutral measure). This is equivalent

to showing that ⇤
�Y (1) = r⌧ holds for all k = 0, . . . , nT . Indeed we have:



⇤
�Y (1) = log E⇤ ⇥exp (�Yk⌧,n) |F(k�1)⌧,n

⇤

= ⌧µk⌧,n + 
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�

.

Using (7.1), the above martingale constraint becomes:

µk⌧,n = r !
1

⌧
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(✏,✏2)
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⌧�k⌧,n, Bk⌧,n

�
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⌘

, (7.2)

which coincides with (3.6).

(iii) The risk-neutral dynamics (3.8)-(3.9) follow by substituting (3.6) and (3.7) into (2.1)-(2.2). ⌅

7.2 Proof of Corollary 3.2

Using the expression in (3.15) for the conditional bivariate cumulant generating function in the Gaussian

case we evaluate the first and second partial derivatives with respect to z1 and we find:

Pk⌧,n =
Ak⌧,n

1 ! 2Bk⌧,n
and Rk⌧,n =

1

1 ! 2Bk⌧,n
. (7.3)

Moreover, for any x %R we have:

(✏,✏2) (z1 + x, z2) ! (✏,✏2) (z1, z2) =
1

1 ! 2z2

✓

z1x+
x

2

2

◆

. (7.4)

Evaluating (7.4) at z1 = Pk⌧,n, z2 = Rk⌧,n and x =
"
⌧�k⌧,n, and substituting this, together with (7.3),

into the general risk-neutral dynamics from (3.8)-(3.9), we obtain the desired equations (3.16)-(3.17)

for the Gaussian case. The martingale constraint is obtained by substituting the same quantities into

equation (3.6). The only remaining thing to be shown is that ✏⇤k⌧,n # N(0, 1) given Fk⌧,n. Using (3.10),

we compute the conditional cumulant generating function of ✏⇤k⌧,n under Qn. For any z %R we have:
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Replacing (7.3) into the above relationship we obtain that 

⇤
✏⇤(z) = z

2
/2, and therefore ✏

⇤
k⌧,n follow

standard Gaussian distributions under Qn. ⌅

7.3 Proof of Corollary 3.3

Using a second-order Taylor expansion around the origin, we can approximate (✏,✏2)(z1, z2) by:
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Using the relationships between joint moments and cumulants we find:
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Substituting the above in (7.5) we obtain the following approximation:

(✏,✏2)(z1, z2) + z2 +
1

2

�

z

2
1 + 2z1z2M3 + z

2
2(M4 ! 1)

�

. (7.6)

Using a similar approach to the previous proof, we first find:

Pk⌧,n = Ak⌧,n +M3Bk⌧,n and Rk⌧,n = 1.

It follows that:
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Substituting the above relations into (3.8)-(3.9) leads to the dynamics from (3.23)-(3.24). The martingale

constraint (3.25) follows immediately. Using (3.10), the conditional cumulant generating function of ✏⇤k⌧,n

under Qn is given by:
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Therefore, ✏⇤k⌧,n # N(0, 1) under Qn. ⌅
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7.4 Proof of Proposition 3.4

Taking the first and second partial derivatives of (✏,✏2)(z1, z2) from (3.27) with respect to z1 at z1 = Ak⌧,n

and z2 = Bk⌧,n we obtain the desired relationships for Pk⌧,n and Qk⌧,n from (3.33) and (3.34), where the

risk-neutral weights, denoted by p

⇤
i,k⌧,n, are given by (3.30). As in the Gaussian case, we next evaluate

for any real-valued x the following quantity:
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I
X

i=1

p

⇤
i (z1, z2) exp

✓✓✓

z1 +
mi

hi

◆

x+
x

2

2

◆

hi

1 ! 2z2hi

◆

!

, (7.7)

where p

⇤
i (z1, z2) are given by:
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Taking z1 = Ak⌧,n, z2 = Bk⌧,n and x =
"
⌧�k⌧,n, and using the fact that p

⇤
i (Ak⌧,n, Bk⌧,n) = p

⇤
i,k⌧,n,

we obtain the risk-neutral dynamics from (3.28)-(3.29) together with the corresponding martingale con-

straint. Finally, we verify that ✏⇤k⌧,n follows a conditional Gaussian mixture distributions with mean zero

and unit variance and have its parameters given in (3.28). We have



⇤
✏⇤(z) = ! z

Pk⌧,n
p

Rk⌧,n

+ (✏,✏2)

 

z

p

Rk⌧,n

+Ak⌧,n, Bk⌧,n

!

! (✏,✏2) (Ak⌧,n, Bk⌧,n)

= ! z

Pk⌧,n
p

Rk⌧,n

+ log

 

I
X

i=1

p

⇤
i,k⌧,n exp

  

✓

Ak⌧,n +
mi

hi

◆

z

p

Rk⌧,n

+
z

2

2Rk⌧,n

!

hi

1 ! 2Bk⌧,nhi

!!

= log

 

I
X

i=1

p

⇤
i,k⌧,n exp

 

m

⇤
i,k⌧,nz +

h

⇤
i,k⌧,nz

2

2

!!

,

where m

⇤
i,k⌧,n and h

⇤
i,k⌧,n are those given in (3.31)-(3.32).
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7.5 Proof of Proposition 3.5

We proceed as follows:

(✏,✏2)(z1, z2) = E

⇥

exp
�

z1✏k⌧,n + z2✏
2
k⌧,n

� | F(k�1)⌧,n

⇤

=

1
Z

�1

exp
�

z1y + z2y
2
�

f✏(y)dy

=

1
Z

�1

exp
�

z1y + z2y
2
�

0

@

pu

I
X

i=1

piai exp (! aiy)1y�0 + qd

J
X

j=1

qjbj exp (bjy)1y<0

1

A

dy

= pu

I
X

i=1

piai

Z 1

0

exp
�

(z1 ! ai) y + z2y
2
�

dy + qd

J
X

j=1

qjbj

Z 0

�1
exp

�

(z1 ! bj) y + z2y
2
�

dy

= pu

I
X

i=1

piaie
� (z1�ai)

2

4z2

r

⇡

z2
�

✓

ai ! z1"
2z2

◆

+ qd

J
X

j=1

qjbje
� (z1+bj)

2

4z2

r

⇡

z2
�

✓

z1 + bj"
2z2

◆

.

Here we used the following identity

Z 1

0

exp
�

c(y + d)2
�

dy =

r

⇡

c

�(!
"
2cd), c > 0.

7.6 Proof of Proposition 4.1

First, we notice that although the GARCH innovations under Qn have mean zero and unit variance, we

do not have any information concerning the higher moments. In particular, unlike in the physical world,

we do not know whether the higher moments are independent of the time step ⌧ or not. Thus, we make

the following notations for the limiting risk-neutral raw moments, provided that they exist:

M

⇤
j = lim

⌧!0
E⇤
h

(✏⇤)jk⌧,n|F(k�1)⌧,n

i

. (7.8)

We follow the standard approach on weak convergence analysis to compute the drift  (Xt) and the

di↵usion ⌃(Xt) of the risk-neutral limiting di↵usion:

dXt =  (Xt)dt+ ⌃(Xt)dB
⇤
t . (7.9)

Here, Xt =
�

Yt,�
2
t

�T
and B

⇤
t = (B⇤

1t, B
⇤
2t)

T , with B

⇤
1t and B

⇤
2t being two independent standard Brow-

nian motions under Q. To proceed, we evaluate the conditional first and second limiting risk-neutral

moments of �Yk⌧,n and �

2
(k+1)⌧,n. All limits considered are conditional on the filtrationF�

(k�1)⌧,n :=

F(k�1)⌧,n

S

n

�

2
k⌧,n = �

2
t

o

. First, using (3.4)-(3.5) and the parametric constraints, we notice that both

Ak⌧,n and Bk⌧,n are O(
"
⌧) as ⌧ approaches zero such that:

lim
⌧!0

Ak⌧,n"
⌧

= ! ✓

(1)
t �t + 2�

"
!2✓

(2)
t �

2
t and lim

⌧!0

Bk⌧,n"
⌧

= !
"
!2✓

(2)
t �

2
t . (7.10)
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Examining the quantities to compute, we notice that there are a few types of special limits which show

up throughout the proof, and we deal with them below:

• First limit type: lim
⌧!0

(✏,✏2)(Ak⌧,n,Bk⌧,n)

⌧ .

• Second limit type: lim
⌧!0

Pk⌧,np
⌧

.

• Third limit type: lim
⌧!0

Rk⌧,n and lim
⌧!0

1�Rk⌧,np
⌧

.

For the first type of limits it is su�cient to use a second-order Taylor expansion for (✏,✏2) (Ak⌧,n, Bk⌧,n)

around the origin. Using results from the previous proof, we can write:

(✏,✏2) (Ak⌧,n, Bk⌧,n) = Bk⌧,n +
1

2

�

A

2
k⌧,n + 2Ak⌧,nBk⌧,nM3 +B

2
k⌧,n(M4 ! 1)

�

+ o(⌧). (7.11)

For the second type of limits, we only need a first-order Taylor expansion of the first derivative of

(✏,✏2)(z1, z2) with respect to z1 about the origin. Using the above results, we can write:

Pk⌧,n :=
@(✏,✏2) (Ak⌧,n, Bk⌧,n)

@z1
= Ak⌧,n +M3Bk⌧,n + o(

"
⌧). (7.12)

For the third type of limits we shall also perform a first-order Taylor expansion of the second derivative

of (✏,✏2)(z1, z2) with respect to z1 about the origin. Using the following joint cumulant relationships:

@

3
(✏,✏2) (0, 0)

@z

3
1

= M3 and
@

3
(✏,✏2) (0, 0)

@z

2
1@z2

= M4 ! 1,

we have:

Rk⌧,n :=
@

2
(✏,✏2) (Ak⌧,n, Bk⌧,n)

@z

2
1

= 1 +M3Ak⌧,n + (M4 ! 1)Bk⌧,n + o(
"
⌧). (7.13)

Using (7.10) and (7.11), we have:
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h

�Yk⌧,n

�

�

�

F�
(k�1)⌧,n

i

= lim
⌧!0

✓

r +
�k⌧,nPk⌧,n"

⌧

+
(✏,✏2) (Ak⌧,n, Bk⌧,n)

⌧

!
(✏,✏2) (Ak⌧,n +

"
⌧�k⌧,n, Bk⌧,n)

⌧

◆

= r + �t lim
⌧!0

Ak⌧,n +M3Bk⌧,n"
⌧

!
�

2
t

2
! �t lim

⌧!0

Ak⌧,n +M3Bk⌧,n"
⌧

= r !
�

2
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.
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Using (7.10), (7.12) and (7.13), we can calculate the limiting expected conditional variance:
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Furthermore, we can express ✓

(1)
t as a function of ✓(2)t by taking the limit of the martingale equation

(3.6):
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Replacing this into the conditional first moment of the conditional variance process, the drift term of

the limiting di↵usion is given by:

 (Yt,�
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A (7.14)

The second-order moments are computed in a similar fashion. We have:
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Therefore, the risk-neutral second moment matrix is given by:
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Finally, using a Cholesky decomposition of ⌃(Yt,�
2
t ), we obtain the di↵usion coe�cient of the GARCH

di↵usion limit:

⌃(Yt,�
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�t 0
"
!2 (M⇤

3 ! 2�)�2
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. (7.15)

Finally, we show that the limiting risk-neutral third and fourth moments defined in (7.8) coincide with

the corresponding physical ones (i.e. M

⇤
3 = M3 and M

⇤
4 = M4). To do this, we compute the limiting

third and fourth risk-neutral cumulants. The result follows from using (3.10) and first-order Taylor

expansions around the origin for the third and fourth partial derivatives of (✏,✏2)(·, ·) with respect to

the first argument:
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4
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This concludes the proof. ⌅

7.7 Proof of Proposition 4.2

The main idea of the proof is to utilize the deterministic necessary and su�cient conditions for the

martingale property in Proposition 4.1 of Bernard et al. (2015), and this involves checking the finiteness

of some test functions evaluated at the boundaries. Using similar notations with Bernard et al. (2015),

we let b(x) =
"
x, µ(x) = c + a

0
x, �(x) = ⇣x. Following Proposition 2.8 of Bernard et al. (2015), we

introduce the measure Q̄ under which the risk-neutral variance process satisfies the following SDE:

d�

2
t =

�

c+ a

0
�

2
t + ⇢⇣�

3
t

�

dt+ ⇣�

2
t dB̄3t.

We denote & = 4a0

⇣2 ! 1, $ = 4⇢
⇣ and ⌘ = 2c

⇣2 ( 0, and compute the scale function under Q̄:
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x
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·
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�
yR

·

2c+2a0u+2⇢⇣u3/2

⇣2u2 du
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x
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·
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� &+1
2
e

�$
p
y�⌘/y

dy, x %J,

where C1 is a positive constant. The other test functions are given below:

v̄(x) = C2

x
Z

·

y
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2
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Note that there is an extra term e

�⌘/z and/or e

⌘/y in the above expressions compared to the original

test functions for the correlated Hull-White stochastic volatility model (the special case corresponding

to c = 0) given in Section 5.4 of Bernard et al. (2015), which we recall here
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x
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·

y

� &+1
2
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�$
p
y
dy, x %J,
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p
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2
e

�$
p
z
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1

A

dy.

We first establish the following lemma about the asymptotic relations of our test functions v̄, v̄b and the

corresponding test functions ev, evb for the Hull-White stochastic volatility model.

Lemma 7.1 For ⌘ ( 0, we have the following statements:

(i) v̄(x) ( ev(x) for all x %J , and similarly for v̄b(x) and evb(x).

(ii) v̄(x) # ev(x) as x , ' , and similarly for v̄b(x) and evb(x).

Proof: For (i), we have:
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Note that in the last inequality we consider two cases: (1) if x ( y, then ⌘/y ( ⌘/z for z %(y, x), and

(2) if x < y, then ⌘/y < ⌘/z for z %(x, y), but
x
R

y

z

� &+1
2
e

�$
p
z
e

⌘/y�⌘/z
dz = !

y
R

x

z

� &+1
2
e

�$
p
z
e

⌘/y�⌘/z
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and the inequality still follows. The proof for v̄b(x) and evb(x) can be done in a similar way.

For (ii), note that we have lim
z!1

e

�⌘/z = 1 and lim
y!1

e

⌘/y = 1, and the result follows. This completes

the proof of the lemma. ⌅
In Table 6 we recall the classification table Table 5.7 from Proposition 5.11 of Bernard et al. (2015)

which summarizes the essential information for applying their Proposition 4.1. Combining Table 6 with

Lemma 7.1 (i) and (ii), we construct a similar classification for our model in (4.6), which is illustrated

in Table 7.

The two “undetermined” entries in Table 7 are due to the fact that knowing ev(`) < ' , combined with

v̄(`) ( ev(`) (from Lemma 7.1 (i)), is not su�cient to determine whether v̄(`) is infinite or not. However,
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we observe that it does not matter in determining the martingale property of S. For all parameter

settings, from Table 7, we always have v̄(`) = ' and v̄b(r) = ' . This, together with Proposition 4.1 of

Bernard et al. (2015), allows us to conclude that the stock price {St}t2[0,...,T ] in (4.6) with the variance

dynamics from (4.8) is a true martingale if and only if v̄(r) = ' , which is equivalent to $ ) 0 from

Table 7. By definition, $ ) 0 is equivalent to ⇢ ) 0. The remaining result follows from the expression

in (2.9). This completes the proof. ⌅

7.8 Proof of Proposition 4.3

The idea of the proof is to first introduce a measure Q̃ with a simpler process under it (e.g. geometric

Brownian motion), and then apply a measure change, so that the process will have the same SDE as

(4.8) under the new measure. Thus, we consider under Q̃ the following geometric Brownian motion

d�

2
t = a

0
�

2
t dt + ⇣�

2
t dB̃3t, with �

2
0 > 0 and state space J = (0, ' ). From Feller’s test of explosions,

�

2
t does not explode from J under Q̃. Define f(x) = exp(! cx

�1
/⇣

2), and it is easy to check that

f(x) > 0, x %J and f(·) %C

2(J).

The Radon-Nicodym derivative associated with the exponential measure change in Palmowski and

Rolski (2002) is given by:
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LQ̃
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. (7.16)

Note that LQ̃ is the infinitestimal generator under Q̃ and is given by:

LQ̃
f(x)

f(x)
= c

✓
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0
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2
! 1

◆

x

�1 +
c

2

2⇣2
x

�2
. (7.17)

Using Girsanov’s theorem, the risk-neutral variance �

2
t satisfy the following SDE under Q:

d�

2
t = (c+ a

0
�

2
t )dt+ ⇣�

2
t dB

⇤
3t,

which has the same unique-in-law weak solution as that of (4.8). Since c ( 0, from Feller’s test of

explosions, �

2
t does not explode from J under Q. Then following Palmowski and Rolski (2002), we

conclude that Q is equivalent to Q̃.
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Now we have:
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Here we denoted ⌫ = a0

⇣2 ! 1
2 . In the last equality we have used the formula (9.1.21.8) on page 620 of

Borodin and Salminen (2002) with substitution � - ! 1. The special function eiy(v, t, z, x) is defined on

page 645 of Borodin and Salminen (2002). This completes the proof. ⌅

7.9 Proof of Proposition 4.4

Following a similar idea as the proof of Proposition 4.3, we introduce a new measure Q̃, under which we

have the following geometric Brownian motion (with di↵erent coe�cients than in the previous proposi-

tion) d�

2
t = a�

2
t dt + ⇣�

2
t dB̂

Q̃
3t with �

2
0 > 0 and state space J = (0, ' ). If we let k = g✓

(2) with k ( 0

(i.e. this corresponds to a negative variance risk premium, ✓(2) ) 0) and define f(x) = exp(kx/⇣2), it

is easy to check that f(x) > 0, x %J and f(·) %C

2(J). Define the new measure Q similar in form as

(7.16) with:

LQ̃
f(x)

f(x)
=

ak

�

2
x+

k

2

2⇣2
x

2
.

It follows that under Q the risk-neutral variance satisfies the SDE below:

d�

2
t = (a�2

t + k�

4
t )dt+ ⇣�

2
t dB

⇤
3t,

which has the same unique-in-law weak solution as that of (4.9). From Feller’s test of explosions, we

can check that �2
t does not explode from J under Q. Thus, Q is equivalent to Q̃. The result follows in

a similar way as the proof of Proposition 4.3 using the formula (9.1.21.8) on page 620 of Borodin and

Salminen (2002) with substitution � - ↵ ! 1 and ⌫ = a
⇣2 ! 1

2 . This completes the proof. ⌅
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BASIC FEATURES OF THE SAMPLE A OPTION DATASET (WEDNESDAYS)

Moneyness (F/K) Across

Maturities [0.900, 0.950] [0.950, 0.975] [0.975, 1.000] [1.000, 1.025] [1.025, 1.050] [1.050, 1.100] Moneyness

Number
of Contracts

T < 30 1862 1413 1388 783 232 141 5819
30 ) T < 80 3019 2224 2506 1613 380 226 9968
80 ) T < 180 1274 693 803 560 172 117 3619
180 ) T ) 250 502 217 346 313 82 46 1506

Across Maturities 6657 4547 5043 3269 866 530 20912

Average
Prices

T < 30 2.667 6.573 16.750 32.234 56.781 88.812 33.970
30 ) T < 80 6.874 14.302 29.147 44.634 67.664 97.604 43.371
80 ) T < 180 21.699 38.042 55.878 72.121 90.722 119.299 66.293
180 ) T ) 250 39.526 63.879 80.824 93.873 111.040 135.460 87.434

Across Maturities 17.691 30.699 45.650 60.715 81.552 110.294 57.767

Average
Implied Volatilities

T < 30 0.167 0.148 0.158 0.172 0.199 0.232 0.179
30 ) T < 80 0.159 0.153 0.168 0.185 0.208 0.230 0.184
80 ) T < 180 0.161 0.172 0.183 0.189 0.206 0.231 0.190
180 ) T ) 250 0.166 0.188 0.189 0.195 0.199 0.213 0.192

Across Maturities 0.163 0.165 0.174 0.185 0.203 0.226 0.186

Table 1: Basic features of the Sample A option dataset (Wednesdays). Prices in this dataset correspond to the period January 1st, 2004ÐDecember 31st, 2013.
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BASIC FEATURES OF THE SAMPLE B OPTION DATASET (THURSDAYS)

Moneyness (F/K) Across

Maturities [0.900, 0.950] [0.950, 0.975] [0.975, 1.000] [1.000, 1.025] [1.025, 1.050] [1.050, 1.100] Moneyness

Number
of Contracts

T < 30 1533 1394 1412 879 286 165 5669
30 ) T < 80 3176 2368 2551 1772 377 256 10500
80 ) T < 180 1288 690 764 599 175 127 3643
180 ) T ) 250 471 213 320 291 78 43 1416

Across Maturities 6468 4665 5047 3541 916 591 21228

Average
Prices

T < 30 3.011 6.191 16.363 32.984 57.235 87.258 33.840
30 ) T < 80 6.961 14.065 28.206 45.048 67.842 98.542 43.444
80 ) T < 180 21.800 38.831 54.947 72.386 93.653 120.074 66.948
180 ) T ) 250 39.623 62.585 79.195 94.991 112.969 140.420 88.297

Across Maturities 17.848 30.418 44.678 61.353 82.925 111.573 58.132

Average
Implied Volatilities

T < 30 0.172 0.145 0.154 0.177 0.208 0.249 0.184
30 ) T < 80 0.159 0.151 0.164 0.185 0.216 0.240 0.186
80 ) T < 180 0.163 0.173 0.180 0.193 0.207 0.225 0.190
180 ) T ) 250 0.167 0.185 0.190 0.197 0.216 0.217 0.195

Across Maturities 0.165 0.163 0.172 0.188 0.212 0.233 0.189

Table 2: Basic features of the Sample B option dataset (Thursdays). Prices in this dataset correspond to the period January 1st, 2004ÐDecember 31st, 2013.
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Maximum Likelihood Estimations on Returns

Innovations Type Gaussian Innovations Gaussian Mixture Innovations

NGARCH Parameters
↵0 1.467 · 10�6 1.204 · 10�6

(4.882 · 10�9) (4.362 · 10�9)

↵1 0.0523 0.0466
(6.145 · 10�5) (1.484 · 10�4)

�1 0.8279 0.8317
(3.596 · 10�4) (3.674 · 10�4)

� 1.4599 1.5814
(2.468 · 10�3) (4.209 · 10�3)

� 0.0209 0.0035
(3.378 · 10�4) (1.606 · 10�4)

Ditribution Parameters
p —— (0.9222, 0.0778)

—— (1.228 · 10�3)

h —— (0.8486, 1.8099)
—— (1.019 · 10�3)

m —— (0.0804, ! 0.9534)
—— (7.199 · 10�4)

Skewness 0 ! 0.2809

Kurtosis 3 3.6198

Normalized logL 3.1276 3.1376

Table 3: Joint likelihood estimation of the Gaussian and Gaussian mixture NGARCH models using 2,520 daily log-returns
of the S&P500 index over the period December 22nd, 1999ÐDecember 30th, 2009. The standard errors for the
distribution parameters correspond to the estimation errors of the Þrst components of p , h , and m since the
values of p2,m2, h2 are determined by the relations p1 + p2 = 1 and ( 3.26). The implied skewness and kurtosis of
the GARCH innovations are also reported.



Non-a�ne GARCH option pricing models, variance dependent kernels, and di↵usion limits 48

Joint Likelihood Estimation on Returns and Options

Innovations Type Gaussian Innovations Gaussian Mixture Innovations

Pricing Kernel ✓

(2)
t = 0 ✓

(2)
t = ✓

(2)
/�

2
t ✓

(2)
t = 0 ✓

(2)
t = ✓

(2)
/�

2
t

GARCH Parameters
↵0 1.209 · 10�4 6.426 · 10�5 1.578 · 10�4 1.795 · 10�4

(1.146 · 10�8) (6.342 · 10�9) (3.883 · 10�8) (7.306 · 10�8)

↵1 0.3264 0.3869 0.3421 0.3407
(3.697 · 10�4) (5.839 · 10�5) (9.093 · 10�5) (2.722 · 10�4)

�1 0.3607 0.2000 0.3381 0.3414
(3.067 · 10�4) (8.481 · 10�5) (1.269 · 10�4) (2.563 · 10�4)

� 0.4439 0.6108 0.5502 0.4012
(8.162 · 10�4) (1.022 · 10�4) (3.780 · 10�4) (8.158 · 10�4)

� 0.1238 0.1606 0.1159 0.1304
(2.303 · 10�5) (2.490 · 10�6) (1.019 · 10�5) (1.379 · 10�5)

Ditribution Parameters
p —— —— (0.9876, 0.0124) (0.9893, 0.0107)

—— —— (1.462 · 10�7) (5.860 · 10�8)

h —— —— (0.5075, 36.5387) (0.4480, 40.5314)
—— —— (3.476 · 10�5) (1.045 · 10�4)

m —— —— (0.0238, ! 1.8975) (0.0365, ! 3.3821)
—— —— (9.176 · 10�6) (7.260 · 10�6)

Skewness 0 0 ! 2.6404 ! 4.7691

Kurtosis 3 3 60.464 84.40

Variance Premium Parameter (✓2)
—— ! 0.328 —— 0.009
—— (4.028 · 10�5) —— (3.360 · 10�6)

Normalized logL
Total (logLJ) 2.0982 2.2802 2.2846 2.3453
From Returns (logLR) 1.4400 1.4774 1.4754 1.4740
From Options (logLO) 0.6582 0.8028 0.8092 0.8713

Table 4: Joint likelihood estimation of the model and pricing kernel parameters using the 2009 options dataset. The
standard errors for the distribution parameters correspond to the estimation errors of the Þrst components of p ,
h , and m since the values of p2,m2, h2 are determined by the relations p1 + p2 = 1 and ( 3.26). The pricing

kernels are the conditional Esscher transform obtained from ( 3.1) by taking ✓
(2)
t = 0 (no variance premium) and

a variance dependent SDF obtained from ( 3.1) by taking ✓
(2)
t = ✓(2)/�2

t .
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Figure 1: Dependence of the joint log-likelihood on the variance premium parameter. All the model and distribution
parameters have been kept Þxed and set to the optimal values reported in Table 4 and it is only the variance
premium parameter ✓(2) that varies. The top (respectively, bottom) panel refers to the case with Gaussian
innovations (respectively, Gaussian mixture).
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IMPLIED VOLATILITY ROOT MEAN SQUARED ERROR (IVRMSE) WITH SEQUENTIALLY ESTIMATED PARAMETERS

Moneyness (F/K) Across

Maturities [0.900, 0.950] [0.950, 0.975] [0.975, 1.000] [1.000, 1.025] [1.025, 1.050] [1.050, 1.100] Moneyness

Model Gaussian GaussMix Gaussian GaussMix Gaussian GaussMix Gaussian GaussMix Gaussian GaussMix Gaussian GaussMix Gaussian GaussMix

In-Sample
Error

T < 30 2.975 3.431 1.947 2.278 2.154 2.266 2.483 2.470 3.649 3.668 5.460 5.278 3.111 3.232
30 ) T < 80 2.071 2.694 1.865 2.194 2.232 2.293 2.605 2.520 3.165 3.057 4.858 4.175 2.799 2.822
80 ) T < 180 2.554 2.817 2.809 2.728 3.464 2.944 3.541 3.183 4.391 3.943 5.321 4.054 3.680 3.278
180 ) T ) 250 3.562 3.172 3.852 3.697 4.704 3.778 4.768 4.217 4.443 4.291 6.255 4.868 4.597 4.004

Across Maturities 2.790 3.029 2.618 2.724 3.138 2.820 3.349 3.098 3.912 3.740 5.474 4.594 3.547 3.334

Next Day
Pricing Error

T < 30 3.658 3.936 2.553 2.695 2.577 2.606 3.135 2.990 3.735 3.796 5.322 5.396 3.497 3.570
30 ) T < 80 2.769 3.196 2.682 2.706 2.707 2.726 3.112 2.946 3.625 3.664 4.918 4.628 3.302 3.311
80 ) T < 180 2.988 3.133 3.120 3.179 3.841 3.196 4.386 3.417 4.912 3.998 5.795 4.478 4.174 3.567
180 ) T ) 250 3.717 3.311 4.255 3.917 4.979 4.034 4.904 4.389 5.536 4.805 5.885 4.419 4.879 4.146

Across Maturities 3.283 3.394 3.152 3.124 3.526 3.141 3.884 3.435 4.452 4.066 5.480 4.730 3.963 3.648

Next Week
Pricing Error

T < 30 3.635 3.952 2.571 2.846 2.686 2.852 2.992 3.089 3.943 4.084 5.770 5.870 3.600 3.782
30 ) T < 80 2.708 3.192 2.359 2.625 2.730 2.821 3.308 2.998 3.569 3.642 5.284 4.606 3.326 3.314
80 ) T < 180 3.038 3.192 3.545 3.025 4.156 3.219 4.392 3.515 4.913 4.220 5.788 4.679 4.305 3.641
180 ) T ) 250 4.135 3.627 4.001 4.097 4.828 4.250 5.028 4.606 5.305 5.207 6.306 5.027 4.934 4.469

Across Maturities 3.379 3.491 3.119 3.148 3.600 3.285 3.930 3.552 4.432 4.288 5.787 5.046 4.041 3.802

Table 5: Results of the out of sample pricing exercise. The module marked ÒIn-Sample ErrorÓ reports the average IVRMSE committed each Wednesday at the time of pricing the
options that have been used to optimize the options likelihood with respect to ✓(2) the very same Wednesday. The module marked ÒNext Day Pricing ErrorÓ reports the
average IVRMSE committed each Thursday using the models whose parameters have been estimated the preceding day. The module marked ÒNext Week Pricing ErrorÓ
reports the average IVRMSE committed each Wednesday using the models whose parameters have been estimated the Wednesday of the preceding week.
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Case ev(`) ev(r) evb(`) evb(r)

(I) a0 > ⇣2

2

$ ) 0 ' ' ' '
$ > 0 ' < ' ' '

(II) a0 = ⇣2

2

$ ) 0 ' ' ' '
$ > 0 ' < ' ' '

(III) a0 < ⇣2

2

$ ) 0 ' ' < ' '
$ > 0 ' < ' < ' '

Table 6: ClassiÞcation table for the Hull-White model

Case v̄(`) v̄(r) v̄b(`) v̄b(r)

(I) a0 > ⇣2

2

$ ) 0 ' ' ' '
$ > 0 ' < ' ' '

(II) a0 = ⇣2

2

$ ) 0 ' ' ' '
$ > 0 ' < ' ' '

(III) a0 < ⇣2

2

$ ) 0 ' ' undetermined '
$ > 0 ' < ' undetermined '

Table 7: ClassiÞcation table for the model ( 4.6)
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