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1. INTRODUCTION

Economies consist of heterogeneous agents who are exposed to idiosyncratic

risks, the most prominent example of which is labor income risk for households.

This was first modeled in a dynamic stochastic general equilibrium (DSGE) model

by Bewley (1977) where agents face idiosyncratic income shocks affecting their

wealth and extended by Aiyagari (1994) to include a production technology. They

show that individual precautionary savings contribute to aggregate savings be-

cause idiosyncratic risk cannot be fully insured. In general, idiosyncratic risks af-

fect aggregate variables in the economy. Other examples of idiosyncratic risks are

firm-specific productivity shocks in models of firm exit and entry as in Hopenhayn

(1992) or county-specific productivity shocks in real business cycle models as in

den Haan et al. (2011).

These models, however, do not feature aggregate risk because it makes the equi-

librium problem difficult to solve. The challenge in the construction of solution al-

gorithms lies in the cross-sectional distribution of the agents’ characteristics which

becomes an infinite-dimensional element of the state space. Krusell and Smith

(1998) were the first to propose a numerical solution algorithm for the Aiyagari

growth model with aggregate risk. They handle the dimensionality problem in

assuming bounded rationality of the agents. It means that the agents can only

observe a limited number of moments of the cross-sectional distribution to decide

on their policy. The authors solve for the optimal policy and the law of motion

of these moments in a two-step iterative procedure. In the first step, the policy

function is computed by iterating the Euler equation for a fixed law of motion. In

the second step, the exogenous shocks are simulated across time and agents and

the policy is iteratively applied to compute individual capital. The new law of mo-

tion is inferred from this simulated data. Various more recent papers improve the

original algorithm especially by eliminating the agent dimension in the simulation

step. However, these works still rely on the bounded rationality assumption and a
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two-step iterative procedure.

There are several drawbacks to the Krusell-Smith algorithm and its more recent

substitutes of similar style. Firstly, it is not clear a priori how many moments are

necessary for the equilibrium to exist. In fact, it is shown in Kubler and Schmedders

(2002) that there are models for which recursive equilibria depending only on ag-

gregate wealth, i.e. the first moment of the cross-sectional distribution, do not

exist. Moreover, Kubler and Schmedders (2002) argue that it is not feasible to

compute more general recursive equilibria because they and especially their ergodic

state distributions are too abstract. Secondly, there are no theoretical convergence

results for Krusell-Smith-style algorithms. Therefore, it is not clear whether they

approach the true equilibrium if they converge numerically.

To the best of my knowledge, there is only one algorithm which does not rely on

the bounded rationality assumption, namely Reiter (2009, 2010b). This algorithm

first solves for the optimal policy and stationary distribution of the model with-

out aggregate shocks using projection methods and then perturbs this solution

to accommodate aggregate shocks. There are two major drawbacks. Firstly, the

perturbation in aggregate shocks often is only linear. Therefore, any higher-order

nonlinear effects of aggregate shocks are not accounted for. Secondly, as for all

perturbation methods the solutions are only accurate for small aggregate shocks.

Crises scenarios in terms of a large aggregate shock or a long series of aggregate

shocks in one direction cannot be analyzed with confidence.

The contribution of this paper is to construct a general solution algorithm for

DSGE models with heterogeneous agents and aggregate risk for which convergence

is proven. We do not assume bounded rationality. Instead, we compute recursive

equilibria which depend on the whole cross-sectional distribution. Furthermore,

the dependance on the aggregate risk can be nonlinear and crisis scenarios can be

analyzed as we do not rely on perturbations around a model without aggregate

risk. In this algorithm, the dimensionality of the state space is reduced by param-
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eterizing the cross-sectional distribution using generalized polynomial chaos. This

is a technique going back to Xiu and Karniadakis (2002) which allows to project

any square-integrable random variable onto orthogonal polynomials taking basic

random variables as arguments. Ernst et al. (2012) provides a convergence result

for this projection technique. Secondly, this work ensures convergence of the full

algorithm proposed herein by leveraging on the structure of the underlying op-

timization problem and utilizing the concept of proximal points as laid out in

Rockafellar (1970, 1976a,b); Güler (1992); Salzo and Villa (2012).

This paper is related to several strands of literature. The generic existence

of solutions to DSGE models has been shown by Duffie and Shafer (1985, 1986)

and Duffie et al. (1994). However, these results only apply to models with ex-

ante heterogeneity, i.e. where agents differ on finitely many model ingredients.

Existence of a solution to the Aiyagari-Bewley growth model with aggregate risk

which features ex-post heterogeneity due to idiosyncratic risk has long been an

open research question. It has been examined by Miao (2006). A slight flaw in the

theoretical argument has been discovered in Cheridito and Sagredo (2016b) and

corrected in Cheridito and Sagredo (2016a).

Furthermore, the literature on numerical algorithms for DSGE models is re-

lated. The algorithm by Krusell and Smith (1998) has also been the subject of a

special issue of the Journal of Economic Dynamics and Control in January 2010.

This special issue presents various alternative algorithms and compares them in

den Haan (2010). They have in common that they use a small finite number of

moments instead of the full cross-sectional distribution to approximate the policy

function and the law of motion of aggregate variables. One problem which is ad-

dressed by Algan et al. (2008); Young (2010); Rı́os-Rull (1997) and summarized

in Algan et al. (2010) is the cross-sectional variation due to the simulation of a

finite number of agents in Krusell and Smith (1998). They use parametric and

nonparametric procedures to get around this issue. However, the variation due to
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simulating over common exogenous shocks remains. Reiter (2010a) also parame-

terizes the cross-sectional distribution whereas den Haan and Rendahl (2010) use

direct aggregation to obtain the moments of the cross-sectional distribution. All

of the mentioned algorithms use projection methods or a hybrid of projection and

simulation methods. The algorithm in Kim et al. (2010) differs as it utilizes a per-

turbation method. However, their approach includes a very simplified law of mo-

tion. All of these algorithms still rely on bounded rationality and component-wise

fixed-point iteration for which theoretical convergence results are outstanding. One

approach which differs from the aforementioned is the one by Mertens and Judd

(2013). Their algorithm relies on a perturbation method as the authors use an

approximation of the law of motion which is asymptotically true. They do provide

a convergence result for their algorithm which is, however, subject to the criticism

of Cheridito and Sagredo (2016b).

Another strand of literature focuses on solutions to mean field games. This

field has been established by P.-L. Lions in lectures at the Collège de France.

The present paper is related to that research area because mean field games are

essentially continuous-time versions of DSGE models with heterogeneity and in-

completeness. There are two different approaches to solve these models which are

compared in Carmona et al. (2013), a PDE approach and a probabilistic approach.

The construction of our algorithm is closer in spirit to the latter. Recently, the re-

search on mean field games turned to numerical solutions in Achdou et al. (2014).

They use partial differential equations to solve heterogeneous agent models. How-

ever, they are not able to solve models which include aggregate exogenous shocks.

Their models solely incorporate idiosyncratic shocks.

The paper proceeds as follows. In the next section, we present the Aiyagari-

Bewley growth model with aggregate risk which illustrates our algorithm through-

out the paper. In Section 3, we introduce the methodology behind the algorithm.

It explains the concept of proximal point algorithms which underlies our conver-
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gence result and the polynomial chaos expansion which is used to parameterize

the cross-sectional distribution. Section 4 then proves the convergence result. In

Section 5, our numerical results are compared to the ones from the Krusell-Smith

algorithm. The last section concludes. The appendix contains all proofs.

2. THE MODEL

For illustration, we use the same growth model with aggregate shocks as in

den Haan et al. (2010) which is used for a comparison of Krusell-Smith-style al-

gorithms in the special issue of the Journal of Economic Dynamics and Control

in January 2010. We consider a discrete-time infinite-horizon model with a con-

tinuum of agents of measure one. There are two kinds of exogenous shocks, an

aggregate shock and an idiosyncratic shock. The aggregate shock characterizes

the state of the economy with outcomes in Zag = {0, 1} standing for a bad and

good state, respectively. The idiosyncratic shock with outcomes in Z id = {0, 1}

indicates that an agent is unemployed or employed, respectively. It is i.i.d. across

agents conditional on the aggregate shock. We denote the compound exogenous

process
(

zagt , zidt
)

t≥0
by (zt)t≥0 ∈ Z with Z = Zag × Z id. The transition probabil-

ities are exogenously given by a four-by-four matrix.

The security market consists of a claim to aggregate capital (Kt)t≥0. An agent’s

share of physical capital is denoted by (kt)t≥0. The aggregate endogenous variable

K is hence defined by

(1) Kt =
1
∑

zid=0

∫ ∞

−∞

kdµt

(

zid, k
)

∀ t ≥ 0,

where µt is the cross-sectional distribution of idiosyncratic endogenous variables

at time t. It is simply the probability distribution of individual capital across the

unemployed and the employed agents given the trajectory of aggregate shocks

µt

(

zid, k
)

= P
({

zidt = zid
}

∩ {kt ≤ k}
∣

∣ zagt , . . . , zag0
)
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for all t ≥ 0, zid ∈ Z id and k ∈ R. The aggregate shocks cause the cross-sectional

distribution to vary over time which is indicated by the time subscript of µt.

Each agent chooses her share of physical capital and consumption such that

they satisfy certain constraints. Firstly, individual consumption must be positive

at all times ct > 0, t ≥ 0, and capital holdings are subject to a hard borrowing

constraint kt ≥ 0, t ≥ 0. Secondly, given an initial capital endowment k−1 ≥ 0 and

an initial cross-sectional distribution µ−1
1 with non-negative support, each agent

adheres to a budget constraint which equates individual consumption and current

capital stock to productive income and saved capital stock

(2) kt + ct = I (zt, Kt−1) + [1− ρ] kt−1 ∀ t ≥ 0.

The time line underlying this equation is clarified in Figure 1.2 The parameters in

· · · · · ·

zagt−2 ⇒ kt−2, ct−2

µt−2, Kt−2

t− 1

↓

zagt−1 ⇒ kt−1, ct−1

µt−1, Kt−1

t

↓

zagt ⇒ kt, ct
µt, Kt

t+ 1

↓

zagt+1 ⇒ kt+1, ct+1

µt+1, Kt+1

Figure 1. Time line of events. Before period t, the agent observes how
much capital she saved in the previous period kt−1 and what the cross-sectional
distribution of individual capital savings µt−1 and hence, aggregate capital Kt−1

is. At period t, the agent first observes the exogenous shocks zt and then decides
how much to consume ct and how much capital kt to save in that period.

this budget constraint are defined as follows. The capital stock brought forward

1 The initial cross-sectional distribution µ−1 does not only imply the initial aggregate capital
K−1, but also the initial aggregate economic state due to pe

−1 = (1/K−1)
∫

∞

0
kdµ−1 (1, k) which

is an exogenously given quantity.
2Note that I specify the time line slightly differently than den Haan et al. (2010) and

Krusell and Smith (1998). These authors substitute kt with kt+1 in the budget constraint (2)
because this is the capital which is put forward as start capital to period t+1. In contrast to that
notation, however, I want to emphasize the time period at which the agent optimally chooses
the magnitude of her capital savings. Taking this view, the optimal consumption and capital
savings choice have the same time subscript. My time line therefore indicates which filtration
the endogenous variables are adapted to.
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from period t− 1 depreciates by a rate ρ ∈ (0, 1). The productive income is given

by

I (zt, Kt−1) = R (zagt , Kt−1) kt−1(3)

+zidt [1− τt]W (zagt , Kt−1) +
[

1− zidt
]

νW (zagt , Kt−1) .

It is composed of, firstly, the return on capital stock and, secondly, labor income

which equals the individual’s wage W when the agent is employed and a propor-

tional unemployment benefit νW otherwise. The agent’s wage is subject to a tax

rate τt = ν(1− pet )/p
e
t whose sole purpose it is to redistribute money from the em-

ployed to the unemployed. The parameter ν ∈ (0, 1) denotes the unemployment

benefit rate whereas pet = P(zidt = 1|zagt ) is the employment rate at time t. It is

reasonable to assume ν < 1−τt ⇔ ν < pet for all t ≥ 0. The wage W and the rental

rate R are derived from a Cobb-Douglas production function for the consumption

good

W (zagt , Kt−1) = (1− α) (1 + zagt a− (1− zagt )a)

[

Kt−1

πpet

]α

R (zagt , Kt−1) = α (1 + zagt a− (1− zagt )a)

[

Kt−1

πpet

]α−1

,

where a ∈ (0, 1) is the absolute aggregate productivity rate and α ∈ (0, 1) is the

output elasticity parameter. Labor supply is defined by the employment rate pet

scaled by a time endowment factor π > 0.

We assume that all agents have time-separable CRRA utility with a risk aversion

coefficient γ > 1 and time preference parameter β ∈ (0, 1). Then, given an agent’s

initial capital endowment k−1 ≥ 0 and the initial cross-sectional distribution µ−1

with non-negative support, the individual optimization problem reads

max
{ct,kt}∈R2

E

[

∞
∑

t=0

βt c
1−γ
t − 1

1− γ

]

(4)

s.t. kt + ct = I (zt, Kt−1) + [1− ρ] kt−1 ∀ t ≥ 0

ct > 0, kt ≥ 0 ∀ t ≥ 0
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where the productive income I is defined as in (3).

In a competitive equilibrium, the individual problems are solved subject to the

market condition (1) that aggregate capital equals the expected optimal individ-

ual capital holdings. The question of existence of a competitive equilibrium, in

particular one which has a recursive form, has first been examined by Miao (2006)

and has later been solved by Cheridito and Sagredo (2016a,b). To define a recur-

sive equilibrium, let us switch to prime-notation for convenience, where a prime

denotes variables in the current period and variables with no prime refer to the

previous period.

Definition 1 (Recursive equilibrium) A solution to the agents’ individual op-

timization problems (4) subject to the market condition (1) given an initial cross-

sectional distribution of individual capital µ−1 with non-negative support is called

recursive if there exist functions hi : Z × R × P(Z id × R) → R, i ∈ {1, 2}, such

that, for any point in time, the current optimal consumption and capital savings

choices equal

c′ = h1 (z
′, k, µ)

k′ = h2 (z
′, k, µ)

for any agent with previous-period capital stock k who observes the previous-

period cross-sectional distribution µ and the current-period exogenous shock z′ =

(zag
′

, zid
′

).

Recursive equilibria of models with ex-post heterogeneity can rarely be com-

puted in closed form such that they have to be numerically approximated. When

designing a numerical solution algorithm, it is important to show theoretically that

the algorithm converges to a true equilibrium. This is the goal of this work. To

obtain the convergence result, however, we take a different point of view regarding
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the functions for the optimal choices. In the existing literature, these functions

are approximated point-wise w.r.t. the endogenous arguments whereas here, we

approximate these functions in terms of distributions. Hence, I make the following

assumption.

Assumption 2 (Square-integrability) (i) The initial distribution µ−1 and the

cross-sectional distributions at any point in time {µt}t≥0 are square-integrable.

(ii) Given any cross-sectional distribution µ, the corresponding functions for

the optimal consumption and savings choice hi(z
ag′ , ζ, κ, µ), i ∈ {1, 2}, are

square-integrable w.r.t. the idiosyncratic random variables (ζ, κ) ∼ µ, i.e. in

short-hand notation h1, h2 ∈ L2(Z id × R,B(Z id × R), µ).

In order to obtain a full description of equilibrium, we need to define the con-

sistent law of motion of µ to µ′. Given a fixed distribution µ over the cross-section

of individual capital at the end of the previous period and a recursive equilibrium,

the distribution in the current period changes in two steps µ → µ̃′ → µ′. In the

first step, the new shocks z′ for all agents realize and shift the quantities of em-

ployed and unemployed agents depending on the outcome of the aggregate shock.

Formerly employed agents either stay employed or become unemployed, the same

holds for the formerly unemployed. Therefore, the distribution at the beginning

of the current period µ̃′ is given by

µ̃′
(

zid
′

, k
)

=
∑

zid∈Zid

p(z
ag′ ,zid

′
)|(zag,zid)

pzag
′ |zag

µ
(

zid, k
)

(5)

=
∑

zid∈Zid

p(z
ag′ ,zid

′
)|(zag,zid)

pzag
′ |zag

P
({

ζ = zid
}

∩ {κ ≤ k}
∣

∣ zag
)

for all zid
′

∈ Z id and k ∈ R. The multipliers in front of the previous distribution

are the probabilities that the employment status changes from zid to zid
′

given the

observed trajectory of zag to zag
′

. In the second step, the agents implement their
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optimal capital savings which leads to the new current-period distribution

µ′
(

zid
′

, k
)

=
∑

zid∈Zid

p(z
ag′ ,zid

′
)|(zag,zid)

pzag
′ |zag

(6)

P

(

{

ζ = zid
}

∩
{

h2

(

zag
′

, zid
′

, κ, µ
)

≤ k
}
∣

∣

∣
zag

′

, zag
)

.

From this definition of the new distribution, the new aggregate capital K ′ follows

immediately due to (1). Now that all model ingredients are defined, the next

section lays out the methodology to compute the recursive equilibrium.

3. THE METHODOLOGY

The methodology proposed herein builds on the observation that the optimal

policy functions h1 for consumption and h2 for capital savings solve the Euler equa-

tion which is equivalent to the first-order condition of the following constrained

optimization problem

min
{h1,h2}

− u(h1)−
∑

z′′∈Z

pz
′′|z′βu (I (z′′, K ′) + [1− ρ] h2 − h2 ◦ h2)(7)

s.t. 0 = I (z′, K) + [1− ρ] k − h1 − h2

0 ≥ −h1, 0 ≥ −h2.

The utility function u : R>0 → R, c 7→ 1
1−γ

(c1−γ − 1) is defined as in (4), pz
′′|z′ is

the exogenously given transition probability that z′ is followed by z′′ and I is as

in (3).

The standard way of solving a constrained optimization problem is to set up

the corresponding Lagrangian and to find a saddle point by minimizing over the

policies and maximizing over the Lagrange multipliers. This can be done using

the proximal point algorithm as explained subsequently. However, complications

arise due to the ex-post heterogeneity which introduces the cross-sectional distri-

bution to the state space. We have to discretize the space of distributions which
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is an infinite-dimensional object. A solution to this challenge is discussed after

introducing the proximal point algorithm.

3.1. The Proximal Point Algorithm

Applying the proximal point algorithm to minimax problems on saddle functions

like Lagrangians goes back to a series of papers by Rockafellar (1970, 1976a,b) who

sets the theoretical base for the convergence of said algorithm. Let me first define

what a saddle function is in this context.

Definition 3 (Saddle function (see Rockafellar, 1970)) (i) Let C and D be Hilbert

spaces over R. A saddle-function is an everywhere-defined function L : C ×

D → [−∞,∞] such that L(c, d) is a convex function of c ∈ C for any d ∈ D

and a concave function of d ∈ D for any c ∈ C.

(ii) A saddle function is called proper if there exists a point (c, d) ∈ C × D with

L(c, d̃) < +∞ for any d̃ ∈ D and L(c̃, d) > −∞ for any c̃ ∈ C.

(iii) The operator associated with the saddle function L is defined as the set-valued

mapping

TL(c, d) = {(v, w)|L(c̃, d)− 〈c̃, v〉+ 〈d, w〉

≥ L(c, d)− 〈c, v〉+ 〈d, w〉

≥ L(c, d̃)− 〈c, v〉+ 〈d̃, w〉 ∀(c̃, d̃) ∈ C ×D
}

.

A saddle point is a point (c∗, d∗) ∈ C × D such that 0 ∈ TL(c
∗, d∗).3

According to this definition, finding a recursive equilibrium translates into the

following task: Given that a zero of the operator TL associated with the saddle

function of (7) exists (see Cheridito and Sagredo, 2016a), we want to construct

a saddle point corresponding to the root of TL. This saddle point construction

3 The operator TL is closely related to the subdifferential of the saddle function L as v equals
the subgradient of L(., d) at c ∈ C and w is the subgradient of −L(c, .) at d ∈ D.
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relies on an important mathematical property called maximal monotonicity.4 The

operator TL associated with a saddle function L possesses this property if the

following corollary is satisfied.

Corollary 4 (Rockafellar (1970)) Let C and D be Hilbert spaces over R. If

L(c, d) is a proper saddle function on C × D which is lower semicontinuous in its

convex element c ∈ C and upper semicontinuous in its concave element d ∈ D,

then the operator TL associated with L is maximal monotone.

The reason for the importance of this property is that the resolvent5 of a maxi-

mal monotone operatorT is firmly nonexpansive.6 This fact is due to Minty (1962).

It is well known that any firmly nonexpansive operator is equivalent to a mixture

(1/2)Id+ (1/2)R of the identity operator Id and a nonexpansive operator R (see

e.g. Bauschke and Combettes, 2011, Remark 4.24 (iii)). Weak convergence of the

iteration of such a mixture to its fixed point is well established (see e.g. Zeidler,

1986a, Proposition 10.16). This procedure is also known as damped fixed-point

iteration.

Iterating on the resolvent of a maximal monotone operator yields the proximal

point algorithm. This algorithm hence results in the fixed point of the resolvent

which is equivalent to a root of the operator T itself. Therefore, it leads to a

recursive equilibrium when we consider the resolvent of the operator TL associated

with the saddle function of (7). To understand how such a resolvent is constructed,

let us look at a simplified example first.

4 Maximal monotonicity (see e.g. Phelps, 1997; Bauschke and Combettes, 2011): Let E be a
Hilbert space. An operator T : E → E is called a monotone operator if for any two elements of
its graph (e, f), (ẽ, f̃) ∈ G(T) = {(e, f) ∈ E2|f ∈ T(e)} it holds that 〈e − ẽ, f − f̃〉 ≥ 0. It is,
additionally, called maximal monotone if any (ẽ, f̃) ∈ E2 with 〈e− ẽ, f − f̃〉 ≥ 0 ∀ (e, f) ∈ G(T)
is necessarily also an element of the graph (ẽ, f̃) ∈ G(T).

5 Resolvent (see e.g. Bauschke and Combettes, 2011): Let E be a Hilbert space. The resolvent
of an operator T : E → E is the operator (Id+T)−1 where Id is the identity operator.

6 Nonexpansiveness (see e.g. Bauschke and Combettes, 2011): Let E be a Hilbert space. An
operator T : E → E is called nonexpansive if it is Lipschitz continuous with constant 1. It is
called firmly nonexpansive if for all e, ẽ ∈ E it holds that ‖T(e)−T(ẽ)‖2 ≤ 〈e− ẽ,T(e)−T(ẽ)〉.
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Example (Resolvent of a subdifferential) Let E be a Hilbert space. Consider a

lower semicontinuous proper convex function F : E → [−∞,∞]. It is well known

that its subdifferential ∂F is maximal monotone (see e.g. Bauschke and Combettes,

2011, Theorem 20.40). We are looking for a fixed point e∗ ∈ E of the resolvent of

F which can be computed by simple iteration with iteration count n

en
n→∞
−→ e∗ with en+1 = (Id+ ∂F )−1 (en).

The resolvent (Id+ ∂F )−1 can be represented by

en+1 = (Id+ ∂F )−1 (en) ⇔ en = (∂F + Id) (en+1)

⇔ 0 = (∂F + Id) (en+1)− Id(en)

⇔ en+1 = argmin
e∈E

F (e) +
1

2
‖e− en‖

2.

The latter is the update of the proximal point algorithm.7

This example shows that the proximal point algorithm in our case translates into

an algorithm on augmented Lagrangians. To ensure convergence, a regularization

term containing the previous iterate has to be added to the Lagrangian. We define

the update of the proximal point algorithm for the Lagrangian of our agents in

the growth model in the following.

3.1.1. The Proximal Point Algorithm for the Growth Model

We follow Rockafellar (1976b) for defining the proximal point algorithm’s up-

date. This algorithm iterates on the resolvent of the operator associated with

the Lagrangian of (7). Hence, each iteration on the resolvent updates the agents’

optimal choices for consumption h1 and individual capital h2 as well as the three

Lagrange multipliers y1 for the equality constraint and y2 and y3 for the inequality

7 The proximal point update presented here is a simplified version. Rockafellar (1976a) proves
convergence for a resolvent (Id+ λn

T)−1 where {λn}∞n=1 is either constant and bounded away
from zero or a series 0 < λn ր λ∞ ≤ ∞.
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constraints of (7). Similarly to the simplified example in the previous section, the

[n+1]-th iterate of the agent’s optimal choices, i.e. hn+1
1 and hn+1

2 , is the minimizer

of the Lagrangian which is augmented by terms featuring the n-th iterate. The aug-

mented Lagrangian is a function LA :
∏5

i=1L
2(Z id×R,B(Z id×R), µ) → [−∞,∞]

given by

LA (h1, h2, y1, y2, y3; h
n) =− u(h1)(8)

−
∑

z′′∈Z

pz
′′|z′βu (I (z′′, K ′) + [1− ρ] h2 − h2 ◦ h2)

+
1

2λ
‖h1 − hn

1‖
2 +

1

2λ
‖h2 − hn

2‖
2

+ y1 (I (z
′, K) + [1− ρ] k − h1 − h2)

+
λ

2
(I (z′, K) + [1− ρ] k − h1 − h2)

2

+















−y2h1 +
λ
2
(h1)

2 , h1 ≤
y2
λ

− 1
2λ
(y2)

2 , h1 >
y2
λ

+















−y3h2 +
λ
2
(h2)

2 , h2 ≤
y3
λ

− 1
2λ
(y3)

2 , h2 >
y3
λ

,

where hn = (hn
1 , h

n
2 ) and λ > 0 is the step size parameter of the proximal point al-

gorithm. The first two lines of the Lagrangian features the objective of (7) whereas

the fourth line contains its equality constraint with its Lagrange multiplier. The

third and fifth line consist of the objective and the equality constraint’s proximal

point augmentations which transform the saddle-point operator into its resolvent.

The last two lines correspond to the inequality constraints. They also consist of the

Lagrange term and the augmentation but they are defined piecewise to account

for the case of a binding inequality.

With the augmented Lagrangian as above, we now state the algorithm to ap-

proximate a recursive equilibrium of the growth model in Algorithm 1. Note that

Rockafellar (1976a) shows that the proximal point algorithm converges to a sad-
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Algorithm 1 Proximal point algorithm for the growth model

⊲ A Initialization
1: Set n = 0. Initialize the agents’ choices of consumption and individual capital

and the Lagrange multipliers Hn = (hn
1 , h

n
2 , y

n
1 , y

n
2 , y

n
3 ).

2: Set the parameter λ > 0.
3: Set the termination criterion small τ > 0 and the initial distance larger d > τ .

⊲ B Iterative procedure
4: while d > τ do

5: Update Hn+1 by

hn+1 ≈ arg min
h1,h2

LA (h1, h2, y
n
1 , y

n
2 , y

n
3 ; h

n)

yn+1
1 = yn1 + λ

(

I (z′, K) + [1− ρ] k − hn+1
1 − hn+1

2

)

yn+1
2 = max

(

0, yn2 − λhn+1
1

)

yn+1
3 = max

(

0, yn3 − λhn+1
2

)

where LA is defined as in (8).
6: Compute the distance d = ‖Hn+1 −Hn‖.
7: Set n = n+ 1.
8: end while

dle point of the Lagrangian even if the update of the optimal consumption and

individual capital is only approximate. This is important as the minimizer of the

Lagrangian is often not known in closed form, but it can be approximated with

standard nonlinear solvers. Salzo and Villa (2012) extend this result to different

concepts of approximation. Let me define which kind of approximation applies in

this work.

Definition 5 (Resolvent approximation8) Let C and D be Hilbert spaces over

R. Consider the resolvent (Id+λTL)
−1(c, d) of an operator λTL associated with a

saddle function L at (c, d) ∈ C×D with λ > 0. The approximation with ǫ-precision

of this resolvent at (c, d) ∈ C × D is defined as (c̃, d̃) ∈
(

Id+ λT
ǫ2/(2λ)
L

)−1

(c, d)

8 This definition corresponds to the type 2 approximation with ǫ-precision in Salzo and Villa
(2012).
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where

T
ǫ2/(2λ)
L (c, d) = {(v, w)|L(c̃, d)− 〈c̃, v〉+ 〈d, w〉

≥ L(c, d)− 〈c, v〉+ 〈d, w〉 −
ǫ2

2λ

≥ L(c, d̃)− 〈c, v〉+ 〈d̃, w〉 ∀(c̃, d̃) ∈ C × D
}

.

It is denoted by (c̃, d̃) ≈ (Id+ λTL)
−1(c, d).

The convergence rate of Algorithm 1 is O(n−1) as is shown by Güler (1991).

The proximal point algorithm can, however, be accelerated which goes back to

Güler (1992). The convergence rate of the accelerated algorithm is O(n−2) which

was proven in Salzo and Villa (2012). In the following, I explain the acceleration.

3.1.2. The Accelerated Proximal Point Algorithm for the Growth Model

The idea behind the acceleration is to approximate the highly nonlinear aug-

mented Lagrangian with a sequence of simple convex quadratic functions {φn}∞n=1

such that the difference to the Lagrangian is reduced by a fraction (1−αn) ∈ (0, 1]

in every iteration step

φn+1 − LA ≤ (1− αn)(φn − LA).

The update for the agents’ optimal choices h = (h1, h2) is then determined such

that the following condition is satisfied

LA
(

hn+1, yn1 , y
n
2 , y

n
3 ; h

n
)

≤ φ̂n+1 = min
h

φn+1(h),

where φn+1 is of the form φn+1(h) = φ̂n+1 + (An+1/2)‖h− νn+1‖2.

Salzo and Villa (2012) show that this is achieved by Algorithm 2. Furthermore,

they show that this algorithm has a convergence rate of O(n−2) if the resolvent

approximation precision increases by ǫn = O(1/nq) with q > 3/2.



18

Algorithm 2 Accelerated proximal point algorithm for the growth model

⊲ A Initialization
1: Set n = 0. Initialize the agents’ choices of consumption and individual capital

and the Lagrange multipliers Hn = (hn
1 , h

n
2 , y

n
1 , y

n
2 , y

n
3 ). Set ν

n = hn = (hn
1 , h

n
2 ).

2: Set the parameters λ > 0, An > 0 and b ∈ [0, 2).
3: Set the resolvent approximation precision {ǫn}∞n=0.
4: Set the termination criterion small τ > 0 and the initial distance larger d > τ .

⊲ B Iterative procedure
5: while d > τ do

6: Update αn = 1
2

(

√

(bλAn)2 + 4bλAn − bλAn
)

.

7: Update xn = (1− αn)hn + αnνn.
8: Update Hn+1 by

hn+1 ≈ arg min
h1,h2

LA (h1, h2, y
n
1 , y

n
2 , y

n
3 ; x

n)

yn+1
1 = yn1 + λ

(

I (z′, K) + [1− ρ] k − hn+1
1 − hn+1

2

)

yn+1
2 = max

(

0, yn2 − λhn+1
1

)

yn+1
3 = max

(

0, yn3 − λhn+1
2

)

where LA is defined as in (8).
9: Update An+1 = (1− αn)An.

10: Update νn+1 = νn − αn

(1−αn)λAn (x
n − hn+1).

11: Compute the distance d = ‖Hn+1 −Hn‖.
12: Set n = n+ 1.
13: end while

3.2. Discretizing the Space of Distributions

So far, I just introduced the standard methodology of the proximal point algo-

rithm. However, our model demands an extension. The recursive equilibrium, we

want to solve for, depends on the cross-sectional distribution which is an element

of the state space. Therefore, we need to discretize the space of distributions. If we

simply use a spline interpolation on the distribution, the discretized state space

becomes very large very quickly. Another option would be a projection on orthog-

onal polynomials but a prerequisite is a smooth distribution. Due to the borrowing

constraint which is occasionally binding, however, the cross-sectional distribution

exhibits mass points at the constraint and elsewhere as is proven in the following.
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Proposition 6 (A condition for mass points9) Consider a recursive equilibrium

as in Definition 1 with an explicit debt constraint k ≥ δ with δ ∈ R. Suppose that

there exists a ẑ ∈ Z with pẑ|ẑ > 0 and a k̂ > δ such that h2(ẑ, k, µ) ≤ k for all

k ∈ [δ, k̂]. Furthermore, assume that the optimal capital savings function has a

kink at k∗ := max{k ≥ δ | h2(ẑ, k, µ) = δ} > δ, i.e. the debt constraint is binding,

and that h2 is strictly increasing in k ≥ k∗. Then, the cross-sectional distribution

has a mass point at the constraint δ. If, additionally, there exists a z̄ ∈ Z with

pz̄|ẑ > 0 and h2(z̄, δ, µ) > δ, then the cross-sectional distribution has multiple mass

points.

This result implies jumps in the cross-sectional distribution µ. Hence, standard

orthogonal polynomial projection methods do not work here. There is, however,

an efficient way of approximating distributions called polynomial chaos. This is a

technique which projects the distribution on orthogonal polynomials of random

variables rather than the real line. As such, it can also handle discontinuous dis-

tributions. In the following, I will summarize polynomial chaos in general and

subsequently, I this technique is used for discrete distributions.

3.2.1. Polynomial Chaos

The standard polynomial chaos expansion is an approach to represent random

variables by a series of polynomials mapping basic random variables into the

space of square-integrable random variables L2. Originally, this approach yields the

so-called Wiener-Hermite expansion, i.e. a projection onto Hermite polynomials

which take Gaussians as basic random variables. The well known Cameron-Martin

theorem (see e.g. Ernst et al., 2012, Theorem 2.1) shows that this construction

spans all square-integrable random variables which are measurable w.r.t. the ba-

sic random variables. Xiu and Karniadakis (2002) extend this concept to sets of

orthogonal polynomials mapping more general basic random variables, e.g. uni-

9The proof can be found in Appendix A.
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form, gamma or binomial variables, into L2. The L2-convergence result for these

generalized polynomial chaos expansions is proven in Ernst et al. (2012). The main

purpose of this generalization is the gain in convergence speed when the basic ran-

dom variables are chosen such that they are similar to the approximated random

variable. To summarize, given a basic random variable ξ ∈ L2 with distribution

ξ ∼ F which has finite moments of all orders and a set of orthogonal polynomi-

als {Φi}
∞
i=0 where i denotes the order of each polynomial, we can represent any

random variable κ ∈ L2 with distribution κ ∼ µ by

(9) κ =
∞
∑

i=0

ϕiΦi (ξ) ,

where ϕi are constant projection coefficients.

It is important to note that there is a specific connection between the basic

random variable and the set of orthogonal polynomial used. The orthogonality

condition of the polynomials reveals this relation. For polynomials of order i, j ∈

{0, 1, . . .}, it reads

(10) 〈Φi,Φj〉 =

∫ ∞

−∞

Φi (ξ)Φj (ξ) dF (ξ) =
δij
a2i

,

where δij denotes the Kronecker symbol and ai 6= 0 are constants. One can see

that the weighting function which defines the orthogonal polynomials has to equal

the distribution of the basic random variable. Once a basic random variable is

fixed, we can generate the corresponding orthogonal polynomials by the three-

term recurrence relation (see e.g. Gautschi, 1982; Zheng et al., 2015)

(11) Φi+1 (ξ) = (ξ − θi)Φi (ξ)− ωiΦi−1 (ξ) , i ∈ {0, 1, . . .},

where the starting polynomials are defined as Φ−1(ξ) = 0 and Φ0(ξ) = 1 and the

constant parameters are given by θi, ωi ∈ R with ωi > 0.
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The projection coefficients in the polynomial chaos expansion of a random vari-

able κ ∈ L2 with distribution κ ∼ µ are defined as usual by ϕi = 〈κ,Φi〉/〈Φi,Φi〉

for all i ∈ {0, 1, . . .}. If κ is not a direct function of the basic random variable ξ,

one uses the fact that both µ, F ∼ U [0, 1] are uniform to compute the coefficients

(12) ϕi =
1

〈Φi,Φi〉

∫ ∞

−∞

µ−1 (F (ξ)) Φi (ξ) dF (ξ) ∀ i ∈ {0, 1, . . .},

where µ−1 is the generalized inverse distribution function of κ. Hence, with the

polynomial chaos expansion, we can translate any square integrable random vari-

able κ ∼ µ into a countable series of constant projection coefficients {ϕi}
∞
i=0. For

computational reasons, we later truncate the series of projection coefficients.

3.2.2. Applying Polynomial Chaos to our Growth Model

We apply the polynomial chaos expansion to discretize the cross-sectional distri-

bution of our growth model. Let us first condition the distribution on the employ-

ment status, i.e. µ0(k) = µ(0, k)/pz
id=0|zag denotes the cross-sectional distribution

of the unemployed. Accordingly, we denote the basic random variable, the projec-

tion coefficients and the polynomials of the unemployed with superscript 0 and

of the employed with superscript 1, respectively. The optimal consumption and

capital savings choices can then be rewritten as c′ = h1(z
′, k, {ϕ0

i }
∞
i=0, {ϕ

1
i }

∞
i=0) and

k′ = h2(z
′, k, {ϕ0

i}
∞
i=0, {ϕ

1
i}

∞
i=0). Similarly ,we can derive the law of motion of the

projection coefficients from (12), (9) and (6). W.l.o.g. we will write down formulas

only w.r.t. the distribution of the unemployed in the following. The law of motion

for the projection coefficients of the unemployed reads

ϕ0
i
′
=

1

〈Φ0
i ,Φ

0
i 〉

∫ ∞

−∞

[

µ0′
]−1
(

F 0
(

ξ0
))

Φ0
i

(

ξ0
)

dF 0(ξ0), ∀ i ∈ {0, 1, . . .}
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with

µ0′ (k) =
1

pzid
′=0|zag′

1
∑

j=0

p(z
ag′ ,0)|(zag,j)

pzag
′ |zag

P ({ζ = j}∩

{

h2

(

zag
′

, 0,
∞
∑

i=0

ϕj
iΦ

j
i

(

ξj
)

, {ϕ0
i }

∞
i=0, {ϕ

1
i }

∞
i=0

)

≤ k

}
∣

∣

∣

∣

∣

zag
′

, zag

)

.

3.2.3. A Specific Choice of the Basic Random Variables

It was illustrated in Xiu and Karniadakis (2002) that the speed of convergence

significantly improves if the distribution of the basic random variable is not too

far from the distribution we want to approximate. Since the cross-sectional distri-

bution in our growth model is an endogenous object, we do not know its shape

a priori. We do know, however, that it will have mass points according to Propo-

sition 6. Also, we know that the same growth model without aggregate shocks,

i.e. where zag is fixed at either 0 or 1, has an endogenous cross-sectional distribu-

tion which stays constant as time goes on. This case is easy to compute because

K ′ = K in the agents’ optimization problem (7). Therefore, one just has to solve

the individual optimization problem at different values of aggregate capital K.

In a second step, given these optimal responses, one can compute the stationary

distribution as a fixed point of the distribution’s law of motion (6). Naturally, this

cross-sectional distribution will have features similar to the distribution of the

model with aggregate shocks. Hence, we fix ξ0 as the cross-sectional distribution

of the unemployed in the model without aggregate shocks averaged over the two

cases of keeping zag fixed as 0 or 1. Analogously, ξ0 is fixed as the distribution of

the employed. I compute these stationary distributions using the histogram ap-

proach by Young (2010). They are displayed in Figure 2. The distributions exhibit

several mass points measured as the local extrema in the histogram representa-

tion. One can observe that the distribution of the unemployed is shifted to the left

compared to the distribution of the employed as they generally have lower capi-

tal savings. Furthermore, the capital constraint is binding solely for a fraction of
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Figure 2. Stationary cross-sectional capital distribution for the

growth model without aggregate shocks. Panel A shows the histogram rep-
resentation with bin size 0.1 of the stationary distribution conditional on the
employment status of the agents. A mass point is identified as a bin whose prob-
ability is higher than the ones of its direct neighbors, but the global maxima are
excluded. Panel B zooms into the left tail of the distribution.

the unemployed agents. To obtain an accurate approximation of these stationary

distributions, one should choose a reasonably small bin size for the histogram.

3.2.4. Generation of the Corresponding Orthogonal Polynomials

As our basic random variables are represented by histograms, they are essentially

discrete distributions where the midpoints of the bins {ξ0n}
N
n=1 have probability

{p0n}
N
n=1. Generally, orthogonal polynomials w.r.t. a discrete distribution with finite

support are considered discrete as well in the sense that their maximal degree is N .

Furthermore, the highest-order polynomial ΦN has the midpoints {ξ0n}
N
n=1 as roots.

In Zheng et al. (2015), different methods for generating polynomials corresponding

to discrete distributions are compared. Of their suggested methods, we use the

Stieltjes method which performs well in terms of precision. It directly computes

the parameters θi and ωi in (11) using the standard inner product of L2 and is
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explained in detail in Gautschi (1982). The constant parameters are given by

θi =
〈Φi, ξΦi〉

〈Φi,Φi〉
, i ∈ {0, 1, . . .}

ωi =
〈Φi,Φi〉

〈Φi−1,Φi−1〉
, i ∈ {1, 2, . . .}

with 〈., .〉 denoting the standard inner product of L2 w.r.t. the corresponding basic

distribution. As these distributions are represented as discrete distributions, the

inner product is a sum rather than an integral. The definitions of these parameters

follow from inserting the three-term recurrence relation (11) into the orthogonality

condition (10). With the parameters defined as above, the orthogonal polynomials

are easily constructed using (11). They are displayed in Figure 3. As usual, the
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Figure 3. Orthogonal polynomials corresponding to the stationary

distribution for the model without aggregate shocks. Panel A shows the
polynomials up to order 2 and Panel B displays the polynomials of order 3 and 4.

number of roots of each polynomial corresponds to its degree. Note that the first-

order polynomial has its root at the mean of the distribution F 0 of the basic

random variable.

With the basic random variables defined and the corresponding polynomials

generated, the polynomial chaos expansion is fully defined up to order N . Any

square integrable distribution measurable w.r.t. the basic random variables can

now be projected. The polynomials with different degrees have different effects in
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this projection as can be seen in Figure 4. In this figure, we consider a polynomial
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Figure 4. Example distributions resulting from truncated polynomial

chaos expansions. The graph displays the histogram representations with bin
size 0.1 of distributions which result from the polynomial chaos series truncated
at different orders ranging from order 0 to 4. The basic random variable used
is the stationary cross-sectional distribution of the unemployed in the growth
model without aggregate shocks as in Figure 2. The projection coefficients for this
example are fixed as [ϕ0, . . . , ϕ4] = [38, 1, 0.01, 0.0002,−0.000001].

chaos expansion with fixed projection coefficients {ϕi}
∞
i=0 which is truncated at

different orders. The zeroth-order polynomial results in a mass point at ϕ0 which

due to its definition is the mean of the projected distribution. Adding the second-

order polynomial simply shifts the distribution of the basic random variable to

the left or right depending on the projection coefficients. Adding the third-order

polynomial modifies the skewness of the basic random variable whereas the fourth-

order polynomial adjusts the kurtosis. In the example projection, the fifth-order

does not seem to modify the tails much further but rather shapes the distribution

in the high-probability region.

4. CONVERGENCE RESULTS

With the methodology laid out in the previous section, we now show conver-

gence of the proposed accelerated proximal point algorithm which uses polyno-
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mial chaos to discretize the cross-sectional distribution. This is done in two steps.

Firstly, the convergence for the theoretical resolvent, i.e. the iteration on the pol-

icy functions c′ = h1(z
′, k, {ϕ0

i}
∞
i=0, {ϕ

1
i }

∞
i=0) and k′ = h2(z

′, k, {ϕ0
i }

∞
i=0, {ϕ

1
i }

∞
i=0) is

shown. In the second step, we show that also the discretized resolvent, i.e. the

iteration on the discretized policy functions c′ = ĥ1(z
′, k, {ϕ0

i}
M
i=0, {ϕ

1
i}

M
i=0) and

k′ = ĥ2(z
′, k, {ϕ0

i}
M
i=0, {ϕ

1
i }

M
i=0), converges. The hat denotes the finite-element dis-

cretization w.r.t. the second argument k, whereas M ≤ N denotes the order at

which the polynomial chaos is truncated.

4.1. Convergence of the Theoretical Solution Operator to the Recursive

Equilibrium

According to the theory on the proximal point algorithm (i.e. Rockafellar, 1970,

1976a,b; Güler, 1992; Salzo and Villa, 2012) summarized in Section 3.1, it suffices

to show that the Lagrangian of the agents’ optimization problem (7) satisfies the

conditions of Corollary 4. This guarantees the nonexpansiveness of the correspond-

ing resolvent and hence, convergence of the proximal point algorithm.

Theorem 7 (Convergence) Consider the growth model from Section 2. Consider

the function space H defined in Proposition 8 for the consumption and capital

savings choice. The Lagrangian L : H×
∏3

i=1 L
2(Z id×R,B(Z id×R), µ) → [−∞,∞]

of the agents’ optimization problem (7) in the growth model given by

L (h1, h2, y1, y2, y3) =− u(h1)(13)

−
∑

z′′∈Z

pz
′′|z′βu (I (z′′, K ′) + [1− ρ] h2 − h2 ◦ h2)

+ y1 (I (z
′, K) + [1− ρ] k − h1 − h2)− y2h1 − y3h2

satisfies the conditions of Corollary 4 and therefore, Algorithm 1 and Algorithm 2

converge to a recursive equilibrium of the growth model.
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5. COMPARISON TO THE KRUSELL-SMITH ALGORITHM

We compute the recursive equilibrium solution of Algorithm 2 using Matlab.10

As an example, we analyze the worst-case scenario for 25 periods, i.e. we set the 25

aggregate shocks to the bad economic state. As we consider months as the time pe-

riod in our calibration of the model, this corresponds to a two year long downturn

after initial time. Furthermore, we run the Krusell-Smith algorithm implemented

by Maliar et al. (2010) in Matlab for the same grid on individual capital and the

same policy function initialization to obtain a Krusell-Smith equilibrium solution.

Since the Krusell-Smith does not explicitly compute the stationary distribution,

we solve for it by finding a fixed point of the law-of-motion operator

(

DhKSµ
k|z
KS

)

(v|u) =
∑

z∈Z

p∗z
pz

′=u|z

p∗z′=u
µ
k|z
KS

(

K̃v
u

)

where

K̃v
u =

{[

0, max
k̃∈R≥0

k̃

]
∣

∣

∣

∣

∣

hKS

(

u, k̃,Eµk
KS(k)

)

= v

}

.

We then use the corresponding law of motion to compute the distributions and

their first moments produced by the Krusell-Smith policy at every time point in

the worst-case scenario.

One way of comparing these two sets of numerical solutions is to analyze their

errors. There have been two error tests put forward in the literature (see e.g.

den Haan, 2010), the standard Euler equation error test and the dynamic Euler

equation error test. The standard Euler equation errors are calculated by com-

paring the numerical solution for optimal consumption c(z′; k;µk) against the

explicitly calculated conditional expectation in the Euler equation denoted by

10The computations were performed on the Baobab cluster at the University of Geneva.
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c̃(z′; k, µk). It is the percentage error

ǫSEE(z′; k, µk) =
c(z′; k;µk)− c̃(z′; k, µk)

c̃(z′; k, µk)
.

In contrast to the standard Euler equation error, the dynamic equivalent denoted

by ǫDEE is computed for several consecutive periods. This test is more stringent

as the numerical solution and the explicit conditional expectation usually diverge

with more periods.

Table 1 compares the Euler equation errors for our numerical solution and the

Krusell-Smith solution. We see that when we consider the grid on which the algo-

E
(
∣

∣ǫSEE
∣

∣

)

max
{
∣

∣ǫSEE
∣

∣

}

E
(
∣

∣ǫDEE
∣

∣

)

max
{
∣

∣ǫDEE
∣

∣

}

Algorithm Grid

PPA with gPC 2.4741e-09 5.9722e-08 1.4035e-05 2.0232e-04
Krusell-Smith 1.7323e-02 2.6728e-01 1.7323e-02 2.6728e-01

Finer Grid

PPA with gPC 5.1879e-05 1.4417e-01 4.9455e-05 1.4418e-01
Krusell-Smith 3.5920e-02 3.5823e-01 3.5924e-02 3.5824e-01

Table 1. Average and maximum standard (SEE) and dynamic (DEE) Euler
equation errors in % for the numerical solution of the growth model’s recursive
equilibrium from the proximal point algorithm with polynomial chaos and the
Krusell-Smith solution. The first panel shows the errors w.r.t. the grid which
has been used in the algorithms to obtain the numerical solutions. The second
panel shows the errors w.r.t. a finer grid than the algorithm grid and therefore
incorporates the approximation error.

rithms were computed, the average standard Euler equation errors for our solution

algorithm are in the region of the termination criterion 1e − 8. This is expected

because the algorithm is designed to correctly match the Euler equation for all

time steps by keeping track of the exact law of motion. This holds even for the

more stringent dynamic test. The Krusell-Smith algorithm, however, exhibits a

considerably larger error for both tests which comes from the parametric approxi-

mation of the law of motion whose estimation relies on an error-prone simulation.

The picture is not as clear when we compute the errors w.r.t. a finer grid. These
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errors include the actual approximation failure. The errors for our solution algo-

rithm worsen considerably. However, when we consider the whole error distribu-

tions, the outperformance of our solution algorithm is confirmed. Let us look at

the whole error distributions in form of boxplots in Figure 5. The boxplots show

−0.2

−0.1

0

0.1

0.2

KS: SEE DEE DGMM 1: SEE DEE

Boxplots of the Euler Equation Error Distributions of Consumption for the Algorithm Grid

Figure 5. Boxplots of the distributions of the standard (SEE) and dynamic
(DEE) Euler equation errors for the numerical solution of the growth model’s
recursive equilibrium from the proximal point algorithm with polynomial chaos
and the Krusell-Smith solution. The central marker corresponds to the median
whereas the edges of each box indicate the 25th and 75th percentile. The whiskers
indicate the extreme values not considered as outliers. Outliers are shown as dots
outside the whiskers, they are the data points outside the 25th and 75th percentile
±1.5 times the difference of these percentiles.

very clearly that the error distributions of our solution algorithm are clustered

very closely around zero except for outliers whereas the error distributions of the

Krusell-Smith algorithm are significantly more dispersed. The analysis of the Eu-

ler equation errors indicates that our solution algorithm is superior in terms of a

precise computation of the law of motion of individual capital.

Let us now analyze which benefits the abandonment of the assumption of

bounded rationality has. Theoretically, our solution should be closer to an ex-

act equilibrium in terms of the agent’s utility, i.e. it should result in higher utility

at all dates and states. Let us compare the utility summed over all dates of our test
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scenario and averaged over the cross-sectional distribution of optimal consumption

U =

24
∑

t=0

βt
E
µc

(

c1−γ − 1

1− γ

)

.

The aggregate utility is given in Table 2. We see that it is marginally higher for

UDGMM UKS K0

32.1461 31.9289 23.0276

Table 2. Aggregate utility for the worst-case scenario of 25 bad aggregate
shocks in the growth model computed by the numerical solution of the recursive
equilibrium from the proximal point algorithm with polynomial chaos compared
to the aggregate utility given by the Krusell-Smith policy at the same beginning-
of-period aggregate capital Kt as the former two.

our solution algorithm for any order of Taylor approximation when comparing to

the Krusell-Smith algorithm. Also, the utility is higher for the first-order Taylor

approximation compared to the second-order approximation. The reason for that

is that the conditional stationary distributions for these two solutions differ which

can be seen in the stationary initial beginning-of-period capital K0.

Let us compare these two stationary distributions in detail. We compute the

stationary conditional distribution for the Krusell-Smith policy by solving for a

fixed point of the law-of-motion operator. The stationary conditional distributions

µk|z are compared in Figure 6. The differences in distributions are especially vis-

ible in the right tail. The Krusell-Smith policy will lead to higher capital than

the recursive equilibrium for the richest agents in the economy. Furthermore, the

capital of the richest agents shrinks with higher order of approximation of the

recursive equilibrium.

These significant differences in the cross-sectional distributions, in particular in

the aggregate capital, imply that we cannot compare utility in nominal terms. We

have to look at it in relative terms. I suggest to consider the aggregate consumption
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Figure 6. The stationary conditional distributions of the growth model µk|z

by the recursive equilibrium from the proximal point algorithm with polynomial
chaos and the Krusell-Smith solution.

to aggregate wealth ratio

Ct

Ωt+1

=
Ct

pet+1W
(

zagt+1;µ
k
t

)

+
[

1 +R
(

zagt+1;µ
k
t

)

− δ
]

Kt

,

where aggregate wealth Ω results from the aggregated budget constraint. The

ratio is displayed in Table 3. We see that the aggregate consumption-to-wealth

initial ratio after 1 year after 2 years

PPA with gPC 16.1600 16.2437 16.3126
Krusell-Smith 15.0945 15.1594 15.2147

Table 3. Aggregate consumption-to-wealth ratio (in %) at t = 0, 12, 24 for the
worst-case scenario of 25 bad aggregate shocks in the growth model computed
by the numerical solution of the recursive equilibrium from the proximal point
algorithm with polynomial chaos and the Krusell-Smith solution.

ratio is higher for our solution algorithm. The reason for the higher portion of

wealth being consumed by the agents in our algorithm lies in the abandonment

of the assumption of bounded rationality. By letting the response depend on the

whole distribution, the agents can evaluate their position w.r.t. the tails of the

distribution. It leads to higher curvature in the policy for medium-sized individual

capital, i.e. these agents consume more. This leads to a decrease in aggregate

capital for higher relative consumption.
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Alternatives to the Krusell-Smith algorithm were developed in Algan et al.

(2008, 2010); den Haan and Rendahl (2010); Reiter (2010a) and Young (2010).

They avoid the simulation across agents in using different techniques to approx-

imate the distribution over a continuum of agents. Most of them use a paramet-

ric law of motion of aggregate capital using higher-order moments of the cross-

sectional distribution rather than the correct law of motion. Even though this is

certainly an improvement regarding the approximation of the law of motion, the

assumption of bounded rationality remains. More importantly, these algorithms

still rely on component-wise fixed-point iteration. They use a finite number of sim-

ulation steps for the aggregate shock to compute the evolution of the stationary

capital distribution from which they then derive the law of motion.

In contrast, Reiter (2009, 2010b) does not assume bounded rationality. This

algorithm deals with aggregate shocks by approximating the model without ag-

gregate shocks first and then perturbing the solution around the volatility of the

aggregate shock. In the first step, they also use a component-wise iterative proce-

dure. Without aggregate shocks, this procedure does not cause problems because

the equations for the policy and the distribution are sufficiently decoupled. How-

ever, due to the linear perturbation in the aggregate risk dimension, this algorithm

cannot handle large and nonlinear aggregate shocks.

6. CONCLUSIONS

In this paper, I develop a novel solution algorithm to solve a wide group of

DSGE models with ex-post heterogeneity and aggregate risk. There are two ma-

jor differences to the existing algorithms, most prominently the Krusell and Smith

(1998) algorithm. Firstly, the algorithm herein does not require bounded rational-

ity of the agents and hence, it does not rely on an additional model assumption.

Instead I solve for the original recursive equilibrium where agents observe the

full cross-sectional distribution. Because I do not abstract from the cross-sectional

distribution, the whole state distribution is an integral part of my algorithm. I pa-
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rameterize it using polynomial chaos expansions which projects the distribution

onto an orthogonal basis spanning the whole space of square-integrable random

variables. Economically, this leads to more curvature in the optimal policy and

thus higher levels of consumption relative to wealth, especially at the core of the

wealth distribution.

Another advantage of the proposed algorithm is that it is designed using the

theory of monotone operators and proximal points such that a theoretical con-

vergence result carries over. This ensures that any solution resulting from the

algorithm is indeed close to a recursive rational equilibrium.

Overall, my approach provides a new tool to analyze numerical solutions of

DSGE models for which convergence is ensured. It provides insights into the tails

of the cross-sectional distribution after large or persistent aggregate shocks which

is important for risk analysis. This is interesting for instance for macro-finance

models which investigate systemic risk in financial markets and its effect on the

real economy.

APPENDIX A: PROOFS

A.1. Proof of Proposition 6

Proof: Let us denote the support of the marginal distribution w.r.t. k of the

cross-sectional distribution by supp µk. The minimum value of k which has positive

probability is denoted by k = mink supp µ
k. First, let us show that the constraint

has positive probability δ ∈ supp µk. Because of pẑ|ẑ > 0, eventually we have ẑag in

the previous and the current period. Suppose that the start capital at which the

constraint starts binding is not in the support k∗ < k ≤ k̂. Applying the optimal

capital savings function, we obtain that k′ = h2(ẑ, k, µ) ≤ k. By induction, this

contradicts k∗ /∈ supp µk. Now let us show that there is a mas point at δ. Assume

that δ < k∗ = k. Because h2 is continuous and strictly increasing to the right of its

kink, there exists an interval [k∗, k̄] with k̄ := max{k ≥ δ | h2(ẑ, k, µ) = k∗} > k∗



34

and positive measure µk([k∗, k̄]) > 0. Due to pẑ|ẑ > 0, a strictly positive part of

this mass will stay at ẑ and have future value δ. Hence, µk(δ) > 0 and k = δ. This

yields the mass point at the constraint for the cross-sectional distribution. Using

the same reasoning, one can easily see that this mass point at zero propagates to

higher levels of individual capital at z̄ ∈ Z. Q.E.D.

A.2. Proof of Theorem 7

In order to proof Theorem 7, we need the following preliminary result.

Proposition 8 (Admissible Set of the Growth Model) Consider the growth

model from Section 2. Define a subspace H of the intersection of the square-

integrable functions w.r.t. µ ∈ L2, i.e. L2
(

Z id × R,B(Z id × R), µ
)

, and the func-

tions with bounded first and second variation11 such that for any element h =

(h1, h2) ∈ H, the following inequalities are satisfied almost surely for any z, z′ ∈ Z

and (zid, κ) ∼ µ

(i) Nonnegative consumption: h1 (z
′, κ, µ) ≥ 0

(ii) Limited capital savings: h2 (z
′, κ, µ) ≤ I (z′, κ) + [1− ρ] κ

(iii) Lower bound on the average second variation of capital savings:

∑

z′∈Z

P (z′, z, κ) δ2h2 (z
′, κ, µ; κ̃) ≥

∑

z′∈Z

P (z′, z, κ)

[

δ2I (z′, κ; κ̃)− γ
[δC (z′, κ; κ̃)]2

C (z′, κ)

]

where P denotes the probability operator, C denotes the consumption operator and

11 nth variation (see e.g. Zeidler, 1986b): Let E be a Hilbert space. The nth variation of
an operator T : E → E at a point e ∈ E in the direction ẽ ∈ E is defined by δnT(e; ẽ) =
dn/dtnT(e + tẽ)|

t=0
.
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I denotes the income operator defined as follows

P (z′, z, κ) =
pz

′|zC(z′, κ)−γ

∑

z′∈Z pz′|zC(z′, κ)−γ

C (z′, κ) = I (z′, κ) + [1− ρ] κ− h2 (z
′, κ, µ)

I (z′, κ) = αã(zag
′

)

[

〈κ, 1〉

πpe′

]α−1

κ+ [1− α]ã(zag
′

)ν̃ (z′)

[

〈κ, 1〉

πpe′

]α

with

ã(zag
′

) = 1 + zag
′

a− [1− zag
′

]a

ν̃ (z′) = ν + zid
′

[

1−
ν

pe′

]

.

Then, H is a Hilbert space.

Proof: It is well known that the subspace of functions with bounded variation

within L2 is complete and hence, a Hilbert space itself. With conditions (i)− (iii),

we take yet another subset of functions with bounded variations. It is easy to see

that any limiting element h∗ of a Cauchy sequence hn ∈ H, n ∈ {1, 2, . . .}, satisfies

conditions (i)− (iii) as well. The subspace H is therefore complete and a Hilbert

space itself. Q.E.D.

Remark Note that condition (iii) implies that the expected second variation

of capital savings in a nonnegative direction κ̃ ≥ 0 is greater equal a nonpositive

threshold if K ≥ ([2 − α]πpe
′

)/([1 − α]ν). In our calibration, this translates into

K ≥ 18.2222 which seems to be a reasonable minimum value for aggregate capital.

Due to this fact, additionally to convex capital savings functions, the subspace also

allows for capital savings functions with concave sections.

Proof of Theorem 7: It suffices to show that the Lagrangian (13) of the

agents’ optimization problem (7) satisfies the conditions of Corollary 4. This guar-

antees the nonexpansiveness of the corresponding resolvent and therefore implies
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convergence of the (accelerated) proximal point algorithm.

Saddle function: Let us start by specifying the Hilbert spaces C × D the La-

grangian is defined on. L depends on the optimal controls h = (h1, h2). Hence, we

define the first Hilbert space by H as given in Proposition 8. The Lagrange multi-

pliers lie in the corresponding dual space which implies D ⊆ L2(Z id ×R,B(Z id ×

R), µ) such that y2, y3 ≥ 0 for any exogenous shock and start capital.

Now it remains to show that the Lagrangian is convex in the optimal controls

and concave in the Lagrange multipliers. The latter is trivial as the Lagrangian

is linear in the multipliers. The former means that the Hessian (in terms of sec-

ond variations) w.r.t. h1 and h2 is positive semidefinite (see e.g. Zeidler, 1986b,

Corollary 42.8). As the cross-variation is zero and the second variation of the La-

grangian w.r.t. h1 is nonnegative, we need to show that the second variation of

the operator

U(h2) =
∑

z′′∈Z

pz
′′|z′βu (I (z′′, h2) + [1− ρ] h2 − h2 ◦ h2)

is nonpositive. Defining C (z′′, h2) = I (z′′, h2) + [1− ρ]h2 − h2 ◦ h2, we have

δ2U
(

h2; h̃
)

=
∑

z′′∈Z

pz
′′|z′β

{

ucc (C (z′′, h2))
[

δC
(

z′′, h2; h̃
)]2

+uc (C (z′′, h2)) δ
2C
(

z′′, h2; h̃
)}

and therefore convexity is achieved by a next-period consumption choice with

second variation bounded from above

∑

z′′∈Z

pz
′′|z′βC

(

z′′, h2
)−γ

δ2C
(

z′′, h2; h̃
)

≤ γ
∑

z′′∈Z

pz
′′|z′βC

(

z′′, h2
)−γ

[

δC
(

z′′, h2; h̃
)]2

C (z′′, h2)
.

This condition is equivalent to our condition (iii) of bounded second variation for

h ∈ H and is therefore satisfied. Applying the resolvent corresponding to the La-

grangian amounts to finding the minimum of the augmented Lagrangian (8). Any
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such minimum stays in H (see e.g. Bauschke and Combettes, 2011, Proposition

23.2) which ensures convexity throughout the algorithm.

Properness: We proceed in two steps. First we show that there exist Lagrange

multipliers y = (y1, y2, y3) ∈ D such that L(h, y) > −∞ for all h ∈ H. Let y = 0,

then L(h, y) > −∞ by definition because any h ∈ H results in a number on the

real line excluding ∞. Secondly, there exists a capital savings and consumption

choice h = (h1, h2) ∈ H such that L(h, y) < ∞ for all y ∈ D. For any µ with

aggregate capital K > 0, the productive income for any agent is positive I > 0.

Fix a constant 0 < ǫ < I and set h1 = ǫ for any exogenous shock and start

capital. Set capital savings according to the budget constraint. Then, the value of

y1 does not change the value of the Lagrangian. The nonnegativity of the other

two multipliers ensures L(h, y) < ∞.

Semicontinuity: What is missing to conclude, is the continuity property of

the Lagrangian in the policies h ∈ H as well as in the Lagrange multipliers y ∈ D

which simply follows from the definition of the Lagrangian. Q.E.D.
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Osman Güler. On the convergence of the proximal point algorithm for convex minimization.

SIAM Journal on Control and Optimization, 29(2):403–419, 1991.
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