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Abstract

Arbitrage costs and funding constraints are two major drivers behind limits to arbitrage. We develop

a theoretical framework that can analyze their impacts on arbitrage activities. When the funding

constraint is not binding, arbitrage costs are the main concern, and arbitrageurs will be able to adjust

investment strategy to achieve the expected risk-adjusted return (the capital allocation effect). The

higher the mispricing, the more arbitrage capital will be allocated to the investment opportunity. When

the funding constraint is binding, however, we show that the funding constraint effect dominates the

capital allocation effect, such that the available capital will dictate the level of arbitrage. Extremely

larger mispricing would rather trigger the slow moving capital effect, which further reduces arbitrage

activities. In sum, our analysis provide the prediction that overall arbitarge activites tend to display an

inverse U-shape against the magnitude and volatility of mispricing errors. We apply a state-dependent,

general error-correction model to testing our theoretical predictions in the S&P 500 index spot and

future markets. Our empirical results provide stong support for such regime-dependent nonlinear

limits to arbitrage. Furthermore, we identify the stress periods when the funding constraint has been

binding, the years of 1987, 1998, 2000 and 2007-08, consistent with the slow moving capital period

documented in the literature.
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Spot and Futures Prices, Markov Switching Model.

1. Introduction

Arbitrageurs’ active search for and the subsequent elimination of arbitrage opportunities ensure

that mispricing is short-lived. However, arbitrage is costly and risky, and the presence of limits to

arbitrage deters arbitrageurs from taking full mispricing corrections, leading to the market anomalies

and the resource misallocations. It is therefore crucial to understand what limits arbitrage, see Gromb

and Vayanos (2010) for an excellent survey.

In a broad context, there have been two main studies focusing on the impediments to arbitrage

related to the arbitrage costs and the funding constraints. On the one hand, the earlier studies highlight

the presence of arbitrage costs borne by arbitrageurs when exploiting the mispricing opportunity.

Arbitrage costs include transaction and holding cost (Pontiff, 2006): commissions, short-selling cost

and the risk exposure (Ali, Hwang and Trombley, 2003; Abreu and Brunnermeier, 2002; Doukas, Kim

and Pantzalis, 2010). Arbitrage cost tends to deter arbitrage activity if the arbitrage profit cannot

cover the costs. The earlier empirical evidence are provided in Dwyer et al. (1996) and Martens,

Kofman and Vorst (1998), who apply a threshold error correction model and find that arbitrageurs

exploit arbitrage opportunity only if mispricing error exceeds a certain threshold. See also Tse (2001)

who extends the approach by applying a smooth transition autoregressive model to heterogeneous

arbitrageurs faced with various trading costs. In this setup, arbitrageurs tactically allocate capital

across different arbitrage strategies so as to earn the maximized risk-adjusted returns, which we call

the capital allocation effect.

Whereas the initial research on limits to arbitrage focuses on the asset side of the balance sheet

(e.g., the fundamental value of the arbitrage opportunity), more recent theoretical studies focus on the

funding risk of arbitrage, and attempt to explain how the shocks to the arbitrageurs’ funding would

result in severe and prolonged mispricing (Mitchell and Pulvino, 2012). A seminal paper by Shleifer

and Vishny (1997) develops the model in which performance-based investors redeem capital from

arbitrageurs following negative performance. Consequently, arbitrageurs are forced to reduce positions,

even at the time when expected returns are highest. Eventually, large and persistent mispricing will
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be resolved only when new capital can be raised, but it takes several months, especially in the presence

of search costs and agency and information asymmetries. This phenomenon is called the slow moving

capital hypothesis (Mitchell, Pulvino and Pedersen, 2007). Brunnermeier and Pedersen (2009) further

derive the theoretical predictions that the market illiquidity and the funding illiquidity are mutually

reinforcing, leading to vicious cycle of liquidity spirals.5 See also the growing number of studies (e.g.,

Acharya, Shin and Yorulmazer, 2010; Duffie, 2010;). We call this chain of mechanisms the funding

constraint effect, which tends to deter arbitrage activities and thus destabilize prices especially in the

presence of the extremely large mispricing errors.

While most of the theoretical and empirical studies tend to focus on one aspect of limits to arbitrage,

we aim to propose a unified approach, which can provide the testable predictions associated with

both the capital allocation and the funding constraint effect. To this end we extend the seminal

work by Shleifer and Vishny (1997, henceforth SV), and analyze nonlinear impacts of mispricing on

overall arbitrage activities. To replicate the situation where arbitrageurs attempt to exploit the price

discrepancy while simultaneously facing agency problems, market frictions and funding constraints,

we should allow arbitrageurs to face a trade-off in the equilibrium between making investments now

and waiting for larger arbitrage opportunities in the subsequent period when mispricing deepens.6

To capture such multi-period arbitrage activities, Faff, Cai and Shin (2015, FCS hereafter) develop a

generalized error correction model (GECM) and estimate both the initial mispricing correction and

the subsequent noise momentum parameters where the latter is designed to measure persistence of the

uncorrected pricing errors and affect the ex ante capital allocation strategy by arbitrageurs. Applying

it to a wide range of international spot-futures market pairs, FCS document pervasive evidence of

noise momentum around the world. In this unified theoretical framework, a higher initial mispricing

correction and a lower mispricing persistence induce a faster overall speed of adjustment. Furthermore,

5A fall in prices reduces the value of the assets, leading to an increase in leverage (the loss spiral ). Simultaneously,
the subsequent increase in volatility erodes the collateral value of the assets leading to an increase in margins (the margin
spiral). This forces the arbitrageur to reduce his positions. In turn it creates a selling pressure on prices, further leading
to another round of loss and margin spirals. This vicious cycle causes market prices to deviate significantly from their
fundamental values.

6Acharya, Shin and Yorulmazer (2010) show that “the two choices — whether to invest in profitable activities or to
set aside funds for arbitrage in the future — earns the same rate of return when viewed ex ante. As a consequence,
limited provision of arbitrage capital and fire sales emerge as robust features of the equilibrium. This result explains
why crises that erupt after a long boom are associated with sharper, more severe downturns.”
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we can decompose arbitrageurs’ initial mispricing correction into the capital allocation and the funding

constraint effect. We derive the main theoretical prediction that the funding constraint effect dominates

the capital allocation effect only if the capital constraint is binding, which may heavily deter overall

arbitrage.

In particular, we will investigate the implications of these limits to arbitrage under two alterna-

tive paths to equilibrium – characterized by the partial-investment and the full-investment strategy.

Under the partial-investment equilibrium, the funding constraint is not binding and thus the larger

mispricing would induce more and faster arbitrage activities. Meanwhile we observe that the subse-

quent mispricing persistence is potentially high, which captures the higher risk of deepening error in

the next period. Hence, in this state, arbitrageurs’ main concern is to evaluate whether the maximum

risk-adjusted return can cover arbitrage costs. By contrast, under the full-investment equilibrium, the

funding constraint is binding such that the (extremely) larger mispricing may result in severe and

persistent funding constraints, which tends to deter arbitrageurs’ initial mispricing correction and slow

the overall speed of adjustment, even though mispricing persistence will be significantly lower (the sub-

sequent price recovery is less uncertain). Therefore, in this state, arbitrageurs are likely to suffer from

the limit to arbitrage mainly due to the slow moving capital. Thus, our theoretical analysis reveals

new insights about the impacts of the limits to arbitrage on arbitrageurs’ reactions to a deepening

mispricing error.

Despite that rich insights have been offered in the existing theoretical literature on the limits to

arbitrage, an analysis of short-term dynamics has been more or less under-researched, at least empiri-

cally (FCS). To the best of our knowledge, this paper is the first attempt to rigorously develop both

theoretical and empirical frameworks to investigate whether and when the binding funding constraint

becomes a major source of limits to arbitrage.7 Our theory suggests that overall arbitrage activities do

not rise linearly with mispricing errors. Rather, their relationship tends to be the regime-dependent,

and overall arbitrage activities display an inverse U-shape against the magnitude and volatility of

7?? Sofianos (1993) and Tse (2001) consider the capital constraint as one of the arbitrage cost, though the capital
constraint is not binding in their nonlinear price dynamics analysis. However, unlike their studies suggesting that
arbitrageurs may skip the small mispricing error and wait for the larger one in the presence of the limited capital, our
analysis will focus on the role of the binding capital constraint, which tends to deter arbitrage behavior even when
mispricing error is huge.
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mispricing errors. Our approach helps us to identify whether it is an arbitrage cost or a funding con-

straint, which mainly limits arbitrage activities. In particular, when the capital constraint is binding,

the capital constraint effect will dominate the capital allocation effect, which tends to render overall

arbitrage activities deterred, consistent with the slow moving capital hypothesis. Further, the esti-

mates of the regime-dependent noise momentum parameter also provide valuable information about

the future uncertainty as the critically small noise momentum (with the future arbitrage opportunity

being less attractive) induces arbitrageurs to adopt the full investment in the initial period instead of

waiting, and vice versa. To test the empirical validity of theoretical predictions about the nonlinear

state-dependent arbitrage activities, we propose to extend the general error-correction model by FCS

to the state-dependent Markov-swiching model. Applying this model with three states to the S&P 500

index spot and future markets over the period 1986 - 2015, we find strong evidence in favor of such

regime-dependent nonlinear limits to arbitrage. Furthermore, we identify the stress periods when the

funding constraint has been binding as the years of 1987, 1998, 2000 and 2007-08, consistent with the

slow moving capital period documented in the literature.

In particular, we are able to identify three distinct regimes: a normal market state with the low

mispricing error and the low volatility, a transition market state with the medium error and the

medium volatility and an extreme market state with high mispricing error and high volatility. The

normal state (capturing 53 percent of the sample) shows that the price-fundamental relationship tends

to be more efficient, in line with the cost of carry model than is suggested by a linear model. In this

state we observe a relatively small mispricing correction together with a relatively large mispricing

persistence, suggesting that arbitrageurs refuse to take a large position initially due to the fact that

the smaller arbitrage return is unable to cover arbitrage costs. The transition state covers 44 percent

of the sample, and tends to stay between the bull and the bear markets with mispricing error and

volatility being 10 and 12 basis point higher than in the normal state. Mispricing correction is the

highest among three regimes since the larger mispricing errors generally induce arbitrageurs to engage

in more corrections. Mispricing persistence is also relatively high and close to that in normal state,

suggesting that future uncertainty is still the main concern for arbitrageurs, who tend to maintain the

partial investment strategy. Finally, the extreme regime covers only 3 percent of the sample, which
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correspond to the stress periods including the market crash in 1987, the Asian and Russian financial

crisis in 1997-1998, and the latest financial crisis from the mid-2007. Mispricing errors and volatilities

are extremely higher than those in normal and transition regimes. This state is characterized by the

lowest mispricing correction and the lowest noise momentum, both of which clearly indicate that the

funding constraint is binding, consistent with our main theoretical predictions, suggesting that some

arbitrageurs are unable to raise external funds or have to withdraw internal funds, exactly when the

arbitrage opportunity is at best.

Regarding the question of speed of adjustment, our dynamic multiplier analysis documents that

during normal (transition) market states, mispricing is small (large) but longer lived (shorter lived).

Specifically, it takes approximately 25 and 17 days for the price change to converge to its long-run value

in the normal and transition regimes, respectively. This finding is more or less consistent with the

capital allocation effect hypothesis that the larger the mispricing, the stronger is the incentive of each

individual arbitrageur to trade based on that information, and the sooner the price will revert towards

the fundamental value. More importantly, during extreme market state with substantial mispricing

error, the speed of adjustment is much slower (with an overshooting) and it takes approximately 22

days for the price convergence. This finding is also consistent with our main prediction that the capital

constraint is binding during extreme state, which renders the capital constraint effect dominate the

capital allocation effect. As a result, overall arbitrage activities slow down, consistent with the slow

moving capital.

The advantage of using a Markov switching model is the ability to estimate the likelihood of being in

a given latent state, which can then be examined for potential linkages to various observable economic

factors. Our analysis linking observables to the extreme state suggests that it is a state characterized by

larger mispricing, higher cost of capital, higher transaction costs, larger trading volume and a market

downturn with higher spot volatility. Overall, it captures a period of considerable market stress. From

the perspective of arbitrageurs the extreme state presents a ‘cocktail’ of good and bad phenomena. On

the good side: it is the large mispricing and higher valuation uncertainty – thus presenting arbitrageurs

with more profitable opportunities to exploit. However, on the bad side: they will tend to face a higher

cost of capital and higher transaction costs that lower net profit.
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Our study significantly contributes to the research on limits of arbitrage. First, we extend a

theoretical model that consider the limits of arbitrage from both the left and the right hand sides of the

arbitrageurs’ balanced sheet. Work on limited arbitrage focuses mainly on the left-hand side, showing

that market frictions and risk exposure prevent arbitrageurs from forcing immediate price convergence

while work on the right-hand side demonstrate the detrimental effect of the funding constraint (Mitchell

and Pulvino, 2012). We unify both explanations in one single theoretical framework. An important

benefit of such unified framework allows us to develop a directly matching empirical method to identify

which channel of limits to arbitrage is at work in a flexible manner. Second, we demonstrate that our

proposed empirical strategy can help to enhance our understanding of the time-varying patterns of

limited arbitrage. Financial markets have been increasingly represented by financial intermediaries such

as mutual funds and hedge funds. This poses a significant challenge to a proper analysis of investment

decisions due to principle-agent and information asymmetries, especially when arbitrage opportunities

present themselves. In the face of mispricing, fund managers may like to maintain or increase their

position while their clients may decide to withdraw their funds. There is a large growing literature that

documents the significant impact of fund-flow in creating mispricing such as short-term momentum

and long-term reversal (Lamont, 2008, Luo, 2012; Akbas et al., 2015). Moreover, the binding funding

constraint is the cause of prolonged mispricing (Mitchell, Pulvino and Pedersen, 2007). In this regard,

as we have demonstrated in our empirical application, identifying the conditions and periods under

which the funding constraint is binding is, therefore, pivotal to enhance our understanding of limits to

arbitrage.

Our paper is also related to the growing literature on the slow moving capital. Mitchell, Pulvino

and Pedersen (2007) and Mitchell and Pulvino (2012) conduct case studies during the extreme market

circumstance, and provide evidence that the funding constraint is the main reason behind prolonged

mispricing. Mancini-Griffoli and Ranaldo (2012) show that the binding funding constraint, not the

arbitrage risk, is the main cause of mispricing in covered interest parity during crisis. Dick-Nielson and

Rossi (2013) also provide the empirical support for the slow moving capital by examining investors’

ownership of convertible bond during the 2005 bond market crash. Acharya et al. (2013) study

the impact of liquidity shock on bond returns using the two-regime Markov-switching and document
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evidence on the flight to liquidity, i.e., when arbitrageurs face the binding capital constraint, they

tend to provide liquidity to assets that do not use too much capital (with low volatility or higher

reputation). Schuster and Uhrig-Homburg (2015) examine the validity of the nonlinear relationship

predicted by Brunnermeier and Pedersen (2009) that the funding liquidity is strongly (marginally)

related to the market liquidity when the capital constraint does (not) bind. Employing a two-regime

Markov-switching model to the German bond market, they find that the relationship between funding

liquidity and market liquidity is significant and strong only during the stressed and low liquidity

periods. Both studies provide an empirical support for the slow moving capital hypothesis. There

are two fundamental differences between our approach and the above studies: First, we examine the

aggregate arbitrage activities through the nonlinear relationship between mispricing and overall speed

of adjustment while these studies investigate the impacts of liquidity shocks on the return spreads

and the relationship between market and funding liquidities, using the different proxies (??). Next and

importantly, our approach is more coherent as our unified can show how asset prices are affected by the

slow moving capital both theoretically and empirically whilst the above papers are mainly empirical

studies.

The remainder of our paper is organized as follows: In Section 2 we present the theoretical frame-

work which builds on an important extension of Shleifer and Vishny (1997), and develop the main

propositions and hypotheses. In Section 3 we develop a general empirical framework designed to best

capture the number of predictions derived from our theoretical framework and we link it explicitly

to the key hypotheses. In Section 4 we outline a specific empirical application based on the linkage

between S&P 500 index futures and spot markets, and we present and discuss our empirical results.

Section 5 contains concluding remarks. Mathematical proofs are collected in Appendix.

2. Theoretical Framework

2.1. The model

We begin with an introduction of a range of basic concepts that accords with the SV setup.

There are three types of market participants: noise traders, arbitrageurs and investors. Let V be

the fundamental value of the asset, which is known to the arbitrageurs but not to the fund investors
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and noise traders. Denote the noise traders’ shocks at period 1 and 2 by S1 and S2, respectively. These

shocks represent the extent to which noise traders in aggregate under-value the asset price relative to its

fundamental value, V . S1 is assumed to be known by arbitrageurs, but S2 is allowed to be stochastic,

taking a value of 0 with probability 1 − q or S2 = S∗
2 > S1 with probability q. Noise traders realize

the fundamental value, V at period 3 such that the price goes back to fundamental, i.e. P3 = V for

certainty. As a result, arbitrageurs do not invest at period 2 when S2 = 0, but they are fully invested

when S2 = S∗
2 . Similarly, we let F1 and F2 be cumulative funding resources under management by

arbitrageurs at period 1 and 2. Notice that the funding constraint is always imposed in the SV model,

such that F1 < S1. Thus, arbitrageurs are unable to fully correct the mispricing error in period 1, and

they might face a loss when mispricing deepens in period 2.

SV assume that F1 is exogenously given while F2 is determined endogenously. Arbitrageurs invest

D1 = β1F1 at period 1 where the parameter, 0 ≤ β1 ≤ 1 measures their trading strategies. Arbirageurs’

funding is performance-based such that investors may withdraw their funding if arbitrageurs lose.

Parameter α captures the sensitivity of arbitrage funds under management at time 2 to its initial

performance, suggesting that they would withdraw or increase funds according to performance-based

arbitrage. Thus, the supply of funding to arbitrageurs at period 2 becomes:

F 0
2 = F1

[
1 + aβ1

(
V

P1
− 1

)]
and F ∗

2 = F1

[
1 + aβ1

(
P ∗
2

P1
− 1

)]
(1)

whereF 0
2 and P 0

2 (F ∗
2 and P ∗

2 ) are the funding and asset price at period 2 if S2 = 0 (S2 = S∗
2 ). Notice

that arbitrageurs lose funds in the latter case, i.e.F ∗
2 < F1, since P ∗

2 < P1, and the loss is more than

the negative return if α is greater than 1.

We now introduce the stability condition that guarantee F ∗
2 > 0 even when mispricing error inten-

sifies in the second period:

a < (V − S1 + F1)/(S
∗
2 − S1 + F1). (2)

The stability condition in (2) provide a upper bound to the sensitivity parameter, a, implying that

fund investors are not overly sensitive to poor performance such that arbitrageurs won’t lose all their

fund at period 2.
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Asset price is then determined by the market clearing condition:

Pt = V − St + βtFt. (3)

Under this model setup arbitrageurs choose their investment strategy so as to maximize their final

wealth at t = 3:

EW = (1− q)F 0
2 + q

V

V − S∗
2 + F ∗

2

F ∗
2 . (4)

We obtain the following first order condition:

V

V − S1 +D1
− 1 ≥ q

(
V

V − S∗
2 + F ∗

2

− 1

)
(5)

from which arbitrageurs can determine an equilibrium trading strategy, β̂1.Notice that an inequality

holds for β̂1 = 1 (the full investment strategy) and the equality for 0 < β̂1 < 1 (the partial investment

strategy). The strategy β̂1 reflects the two choices arbitrageurs face in the initial period: to correct

the mispricing error right now or to set aside funds for the possible better opportunity in the near

future. The left hand side term in (5), V/(V − S1 + β1F1)− 1 represents the maximum return of the

arbitrageur’s investment strategy to correct the mispricing right now, denoted R13. The right hand

side, q(V/(V −S∗
2+F ∗

2 )−1) is the expected future return from period 2 to 3 if the arbitrageur sets aside

funds at period 1 and fully invests at period 2, denoted R23. It is clear from (5) that the full investment

strategy is optimal only if R13 > R23. Suppose that arbitrageurs maintain the full investment strategy

but observe that R13 < R23. In this case it is optimal to reduce investment until R13 = R23
8. This

implies that the two returns should be equalized under the partial-strategy equilibrium.

SV consider an example of the extreme circumstance under which arbitrageurs tend to adopt the

full investment strategy due to the huge mispricing error at an initial period. However, when mispricing

deepens in period 2, SV highlight that arbitrageurs have to liquidate their holdings, causing the further

downward pressure on asset price and resulting in a loss spiral (Brunnermeier and Pedersen, 2009).

We provide a formally proposition for binding funding constraint based on the consequence that

8Asβ̂1 falls, R13 rises and R23 falls, see appendix for proof.
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asset fire sale is triggered.

Proposition 1. Consider the model with (1) - (5). Suppose that mispricing error deepens in period 2;

namely S∗
2 > S1. Then, arbitrageurs will lose their funds in period 2 as F ∗

2 < F1. Furthermore, in the

extreme case where the funding losses are so huge that F ∗
2 < D1, then arbitrageurs must liquidate their

holdings in period 2. We call this the binding funding constraint, which occurs only if the investment

strategy (β̂1) exceeds the liquidation bound, P1/(a(S
∗
2 − S1) + P1) .

The liquidation bound is not necessarily equal to 1, but still close to 1, since the difference in

noise trader shocks, S∗
2 − S1 is much smaller than P1. Thus, Proposition 1 provides a more general

liquidation bound and completes the SV’s conjecture that the full investment is a sufficient but not

necessary condition for liquidation. The funding constraint is always imposed under the SV setup,

but it is still useful to derive such condition. Proposition 1 is also consistent with the existing studies,

documenting that the funding constraint tends to be binding when speculators have large holdings,

e.g. Comerton-Forde et al. (2008), Acharya, Shin and Yorulmazer (2009) and Brunnermeier and

Pedersen (2009). We will investgate the two equilibrium startegies: the partial investment equilibrium

in which arbitrageurs is not likely to face with the binding funding constraint, and the full investment

equilibrium under which the funding constraint is binding.

2.2. Mispricing correction and noise momentum

Recently, FCS introduce the concept of the initial mispricing correction and the subsequent mis-

pricing persistence (called “noise momentum”) in the framework of the two-period generalized ECM

(GECM), in order to provide the better framework for analyzing the asset pricing dynamics and overall

arbitrage process. They document the empirical evidence in S&P 500 index-future relationship that

the traditional one-period ECM is misleading in the presence of noise momentum. Following FCS, we

define the initial mispricing correction by

K =
D1

S1
=

β1F1

S1
, (6)

where S1 and F1 are the mispricing error and arbitrageurs’ fund in period 1. K is designed to capture

the proportion of mispricing correction achieved by arbitrageurs in period 1. At one extreme, K = 0,
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implying that there is no error correction. At the other extreme, κ = 1, indicating that the full and

immediate adjustment occurs. FCS also demonstrate that the subsequent mispricing error persistence,

called the noise momentum, is another important parameter to understanding mispricing dynamics.

Define the noise momentum by

Λ =
V − P2

V − P1
=

V − P2

S1 −D1
, (7)

where V is the fundamental value, P1 and P2 are the price in period 1 and 2. Λ is designed to capture

the degree of mispricing error persistence. At one extreme, when V = P2 such that none of the error

persists or S2 = 0, we have Λ = 0. Conversely, if all of period 1 pricing error persists, then P2 = P1 in

which case there is 100% error persistence, i.e., Λ = 1.

To develop further testable hypotheses for K and Λand match them with empirical analysis, we

express the two parameters as the expectation with respect to q in period 1, such that

κ = Eq (K) =
β̂1F1

S1
, λ = Eq (Λ) = q

V − P ∗
2

V − P1
= q

V − P ∗
2

S1 −D1
, (8)

whereβ̂1 is the equilibrium investment strategy informed by the FOC (Eq. (5)); q the probability

that S2 = S∗
2 > S1, P ∗

2 < P1 is is the price observed in period 2 when S∗
2 > S1. The expectation

form implies that both κ and λare below unity9 when rational arbitrageurs choose the equilibrium

investment strategy to engage in the arbitrage opportunity.

Notice that the initial arbitrage effect, κ is the product of β̂1 and the F1/S1, which we call the

capital allocation effect and the funding constraint effect, respectively. The capital allocation effect

captures arbitrageurs’ strategical response to the risky arbitrage opportunity as they are faced with

the trade-off between correcting mispricing now and waiting for future arbitrage opportunities. On

the other hand, the funding constraint effect measures the arbitrage capital availability relative to the

9To derive λ < 1, we rewrite the first order condition, Eq. (5) as

V − P1

P1
≥ q

(
V − P ∗

2

P ∗
2

)
,

where the inequality is likely to hold when the arbitrageurs tend to adopt the full investment strategy. Then it is easily
seen that

λ = q
V − P ∗

2

V − P1
≤

P ∗
2

P1
< 1.
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mispricing shocks. The former represents arbitrageurs’ willingness to engage in arbitrage activities

whereas the latter the capability to conduct arbitrage. When arbitrageurs are partially invested, κ is

determined by the interplay between the capital allocation and the funding constraint effects. Under

the full investment, however, κ is determined mainly by the funding constraint effect. Therefore, the

initial arbitrage effect reflects the two important impediment to arbitrage activities: arbitrage cost

and funding constraint.

While the mispricing correction parameter measures the immediate arbitrage effect, the noise mo-

mentum will capture the subsequent price recovery. It is highlighted in Duffie (2010) that the pattern

of subsequent price recovery also implies the limits to arbitrage borne by arbitrageurs. In the SV

model, the probability q of deepening error in the subsequent period reflects the future arbitrage risk.

There exist a threshold point q∗, such that when q < q∗, the probability that mispricing error deep-

ens is relatively low, arbitrageurs will be more likely to fully invest at time 1. Alternatively, when

q > q∗ (i.e. the probability of deepening misperceptions is ‘critically’ high), arbitrageurs will defer

some of their investment. However, both q and q∗ are unobservable in practice. Eq. (8) shows that λ

captures the important information of the probability q, such that higher noise momentum indicates

high probability of deepening misperceptions, thus results in higher uncertainty in the pattern of price

recovery.

FCS suggest that mispricing correction together with noise momentum provide a better description

of price dynamics and the overall speed of adjustment. We now analyse the impacts of the initial

mispricing error, S1 on the arbitrage activities: k and λ, and develop the testable hypotheses for

further empirical studies.

First, it is clear that the capital allocation effect, dβ̂1/dS1 > 0 is always positive under the partial

investment strategy, but becomes nil under the full investment strategy.

Next, we provide the impacts of the mispricing errors on the pricing efficiency in Proposition 2.

Proposition 2. Consider the model with (1) - (5). Then, we derive the impacts of mispricing errors
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on pricing efficiency as follows:

∂P1

∂S1
< 0,

∂P ∗
2

∂S1


= 0 for β̂1 = 0

< 0 for 0 < β̂1 < 1

> 0 for β̂1 = 1

 ,

and | ∂P1

∂S1
|0<β̂1<1<| ∂P1

∂S1
|β̂1=1.

Proposition 2 shows that a larger initial pricing deviation is caused by a larger current shocks

S1. It captures the simple intuition that financial constraint arbitrageurs are limited to bear against

the mispricing. What’s worth noticing is that the increment in mispricing is different with respect to

trading strategies. It is easily seen that in partial investment strategy, since arbitrageurs keep investing

more of their funds in period 1, it will slow down the speed of increment in mispricing error. But they

fail to do so in full investment strategy, where mispricing error grows faster.

We are also interested in investigating the pricing impact of the period 1 mispricing (S1) on the

second pricing efficiency. Proposition 2 shows that the pricing impact of S1 at t = 2 depends crucially

on the investment strategy. In particular, under partial investment strategy, arbitrageurs tend to

augment their investment in response to greater mispricing error, thus they might lose more funding

when mispricing deepens, which deteriorates the pricing efficiency in the subsequent period. When

arbitrageurs are fully invested, however, these rational arbitrageurs ensure that to take the arbitrage

opportunity initially must earn at least the same the rate of return, in most case even higher returns

(See the inequality relation in Eq. (5)), as to wait for future opportunity. It means that the second

period arbitrage opportunity is relatively smaller, as well as the second period loss when mispricing

error deepens. As a result, under the full investment strategy, the larger shocks S1 can lead to more

efficient pricing for P ∗
2 . This additional information will become a crucial input to an analysis of the

overall mispricing persistence or the duration of mispricing errors as we shall explain next.

Finally, we provide the main results on the impacts of the mispricing errors on arbitrage activities

in Proposition 3.

Proposition 3. Consider the model with (1) - (5). Then, the impacts of mispricing error on arbitrage



2.2 Mispricing correction and noise momentum 15

activities are derived as follows:

∂κ

∂S1


= 0 for β̂1 = 0

> 0 for 0 < β̂1 < 1

< 0 for β̂1 = 1

 ,
∂λ

∂S1
< 0.

Furthermore, we have:

| ∂λ

∂S1
|0<β̂1<1<| ∂λ

∂S1
|β̂1=1 .

Proposition 3 shows arbitrageurs’ response to initial noise trader shocks. As mispricing error, S1

becomes higher, arbitrageurs are willing to invest more funds (higher β̂1) to correct under the partial

investment strategy, which is consistent with the earlier studies documenting that the larger mispric-

ing error induces the greater mispricing correction10. However, arbitrageurs’ funds also shrink (lower

F1/S1). Proposition 3 shows that the positive capital allocation effect dominates the negative funding

constraint effect under the partial investment equilibrium, i.e. dκ/dS1 > 0. On the contrary, under

the full investment equilibrium when the funding constraint becomes binding, the initial mispricing

correction is determined mainly by the funding availability (i.e. dβ1/dS1 = 0.). As S1 grows, arbi-

trageurs is forced to face with a deteriorating funding condition and disengage in arbitrage activities,

i.e. dκ/dS1 < 0.

Proposition 3 clearly demonstrates that the mispricing correction, κ does not always have a positive

association with the magnitude of the mispricing errors, as suggested by the earlier studies focusing

only on the arbitrage costs, but it also highlights an importance of taking into account the limit

to arbitrage related to funding illiquidity. In particular, we find an inverse U-shaped relationship

between mispricing error and arbitrage activities, which provides a number of important implications

in relation to the slow moving capital. First, when the funding constraint does not bind under the

partial investment strategy, conventional arbitrage costs such as transaction cost and arbitrage risk,

tend to be the dominant factors of arbitrage, suggesting that arbitrageurs’ correction rises mostly with

10Under the presence of transaction costs and heterogeneous traders, the price dynamics are nonlinear, and will
positively adjust according to the size of deviation. Empirical evidence are documented under threshold ECM model
(Dwyer et al. (1996) and Martens, Kofman and Vorst (1998)) and smooth transition model (Tse (2001)).
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mispricing error during normal periods. Next, in the extreme periods, however, the funding constraint

is likely to be binding due to margin\haircut increases and the industry-wide fire sales. Suppose that

the magnitude of initial mispricing error is sufficiently large, prompting arbitrageurs to take relatively

large positions. The subsequent severe arbitrage funding constraints rather deter or prevent arbitrage

activities as our proposition also derives the prediction that an extremely large mispricing error may

result in the lower mispricing correction.

Furthermore, Proposition 3 provides the additional important implications about the mispricing

impacts on the noise momentum parameter. First, λ is always negatively related to S1, rendering an

overall speed faster as S1 rises. However, the negative relationship between λ and S1 is not monotonic

between the partial and the full investment strategy. Consider the partial investment strategy under

which arbitrageurs tend to take relatively small positions in period 1 and invest more funds to exploit

the more profit opportunities in period 2, the magnitude of λ is large, capturing the high probability

(q) of deepening errors. As S1 rises, the naegative impact of S1 on λ is relatively small since the

increase in S1 renders both P1 and P2 less inefficient (see Proposition 2). On the contrary, under the

full investment, λ declines more sharply with S1, because the larger mispricing error can lead to a

more efficient pricing for P ∗
2 in this case (see Proposition 2). The smaller noise momentum reflects

the relatively lower probability (q) of deepening errors in the second period, suggesting that the future

uncertainty is relatively small and the funding liquidity would be the priority concern.

From Proposition 4 we also derive the predictions on overall speed of price adjustment as follows:

When mispricing error is relatively small, κ is relatively small and λ relatively large. As a result,

the speed of price adjustment becomes relatively slow. As S1 increases, κ rises and λ marginally

falls simultaneously until β1 reaches the liquidation bound (see Proposition 1). Thus, in this region,

the overall speed of adjustment improves with S1. However, with extremely large mispricing error

and substantially low λ, arbitrageurs will be more likely to fully invest and face with the binding

funding constraint. In this situation κ starts to drop due to the slow moving capital while λ keeps

falling significantly. In this case, the impact of S1 on the overall speed of adjustment is uncertain and

empirically determined.

Figure 1 illustrates how arbitrageurs’ initial mispricing correction and subsequent noise persistence
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Figure 1: Strategic response effect on mispricing correction and noise persistence
Figure 1 shows the nonlinear impact of mispricing errors on mispricing correction (Left) and noise mo-
menutm (Right). The left figure also plots the capital allocation effect (β̂1) and the funding constraint
effect (F1/S1), while the right figure provides additional plots of prices in period 1 and 2. Both figures
highlights the nonlinearity of the impact under different investment strategy.

innovates with respect to mispricing error. The impact of mispricing error is nonlinear based on the

partial and full investment equilibrium. In particular, the initial mispricing correction shows an inverse

U-shape relation with respect to mispricing error. Under the partial investment equilibrium, both the

capital allocation and funding constraint effect contribute to the mispricing correction, while only the

negative funding constraint effect remains under full investment equilibrium. Noise momentum remains

stable under partial investment equilibrium since prices in period 1 and 2 drops simultaneously, but

sharply drops under full investment equilibrium due the the pricing efficiency in P2.

2.3. Hypotheses Developments

We consider the three regimes according to magnitude of mispricing error (small, medium and

large), and denote κr and λr with r ∈ (s, m, l). In the SV model there is a key parameter, a

threshold point for q, denoted q∗. If q > q∗ (i.e. the probability of mispricing deepening is relatively

high), arbitrageurs will defer some of their investment, expecting that the time 2 price will be further

away from fundamentals. Alternatively, when q < q∗ (i.e., the probability that mispricing deepens is

‘critically’ low), arbitrageurs will be more likely to fully invest in period 1. Specifically, the concept
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of noise momentum This logic can be captured exactly by the concept of noise momentum parameter,

λ under our setup, which delivers an extra, rich dimension into understanding the price discovery

process. Thus, the full (partial) investment strategy is characterized by the critically low (high) value

of λ.

We summrise three main predictions derived from our theoretical framework as follows:

Hypothesis 1: The U-shaped initial arbitrage activities. (i) κm > κs; an initial mispricing

correction rises with the size of mispricing error. (ii) κl < κm; In the presence of the binding funding

constraint, further rise in mispricing error will induce the slower mispricing correction.11

Hypothesis 2: The regime-dependent mispricing persistence. (i) λs is relatively large,

suggesting that mispricing tends to persist in period 2 as the initial mipricing error is too small.

(ii) λm ≈ λs; the difference between λs and λm is relatively negligible under the partial investment

strategy. (iii) If β1 is greater than the liquidation bound, then λl will be significantly smaller than λs

and λm.

Hypothesis 3: The overall speed of adjustment (SOA) tends to be faster with the larger mispricing

error under the partial investment strategy when the funding constraint is not binding. On the contrary

the impact of mispricing error on SOA will be uncertain when the funding constraint is binding.

We now discuss the mispricing dynamics in terms of the interplay between κ and λ with respect

to mispricing error, S1 across three regimes. State l is characterized by relatively lower mispricing

error and relatively high λ. As we move from state s to m with the larger S1, arbitrageurs tend to

maintain the partial investment strategy in which case we expect that κ rises significantly while λ

falls very slightly. As a result, the overall speed of adjustment tends to be faster. Next, consider the

case when we move from state m to l, where state l is characterized by extremely large mispricing

error and substantially low λ. In this situation, arbitrageurs are more likely to not only adopt the full

investment strategy but they are also faced with the binding funding constraint. We then expect that

both κ and λ fall with S1. Hence, the overall speed of adjustment may increase or decrease, though it

is more likely to be slower especially when the funding constraint.

11For completeness we may also consider the case when κl > κm in which we have:
(
κl − κm

)
/
(
Sl
1 − Sm

1

)
<

(κm − κs) /
(
Sm
1 − Ss

1

)
, implying that the slope is flatter as we move from state m to l.
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3. Nonlinear approach: a Markov-Switching Generalized Error Correction Model

3.1. Basic GECM set-up

Building upon the basic analytic foundation provided in in the previous section, we develop a

two-period regime-switching generalized error correction model to explicitly test the validity of the

main hypotheses regarding the limits of arbitrage and its impact on the asset pricing dynamics. We

first follow FCS for the two-period GECM, capturing the initial mispricing correction κ and noise

momentum λ in an arbitrage process:

∆ft = κzt−1 + λ (1 + κ) zt−2 + δ∆f∗
it + γ∆fit−1 + µt, µt ∼ iid(0, σ2

µ) (9)

where where ft is the (observed) market price; f∗
t is the fundamental value for the asset; zt = ft − f∗

t ,

the pricing error; ∆ is the difference operator and κ, λ, δ, γ are the parameters of interest. Equation

(9) is called a generalized error correction model (GECM).

The GECM simultaneously captures the (complex) dynamics of the two-period interaction between

arbitrageurs and noise traders. The distinguishing feature of the GECM is that we can accommodate

‘noise momentum’ effects through the term λ (1 + κ) zt−2, with the parameter λ measuring the strength

of noise momentum and (1 + κ) zt−2 represents the unarbitraged component of the pricing errors from

the previous period12.

δ measures the degree of the over- or under-reaction with respect to the contemporaneous funda-

mental changes, while γ presents the short-run momentum effect. Generally, ω = δ − 1 is likely to be

non-zero unless the market is perfectly efficient. The sign of ω determines the direction of the price

reaction to fundamental impact. If ω is positive (i.e. the pricing error innovation, εt is positively

correlated with the fundamental valuation innovation, et), then the price overreacts on impact to the

fundamentals irrespective of the signs of the innovation. On the other hand, a negative ω implies that

the price underreacts on impact. The sign of γ (γ = −ωπ) is generally ambiguous since it depends on

the product of the correlation coefficient, ω, and the feedback trading coefficient, π. As such this is

an empirical issue. The last component, ut is an idiosyncratic error term with zero mean and finite

12See Appendix B for a derivation
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variance, σ2
u. Notice that the total variance of the mispricing innovation, εt, is obtained simply as the

sum of the variance of fundamental innovation, et, and the variance of idiosyncratic error, ut.

Finally, in the context of equation (9) we see that the magnitude and amplitude of the initial pricing

errors are determined mainly by parameters ω, γ and σ2
u, while the overall speed of convergence to

equilibrium is determined jointly by k and λ, namely (k + λ(1 + κ)). Importantly, positive noise

momentum would make the pricing errors more persistent.

3.2. Regime Switching Analysis

One of our key theoretical predictions is that arbitrage activities depends on the level of mispricing

error. By construction the linear model cannot test our hypotheses because it imposes (potentially

invalid) symmetry restrictions and, thus, is likely to yield misleading results. Accordingly, in our

empirical application we choose to embed the GECM within the popular Markov switching model. In

particular, we consider a three-state (regime) setup which is compatible with our hypotheses of three

different magnitude of mispricing error (small, medium and large):

∆fit = κRj
zit−1 + λ∗

Rj
zit−2 + δRj

∆f∗
it + γRj

∆fit−1 + µitRj
, (10)

where Rj is a scalar geometric ergodic Markov chain with a 3-dimensional state space, having associated

transition probabilities ρij = Pr (Ri | Rj), for i, j = 1, 2, 3. The model is designed to provide further

insights into the asymmetric price discovery process in a flexible manner.

3.3. Price Discovery Analysis with Dynamic Multipliers

While the estimation results obtained from equation (10) will provide useful insights, we are also

interested in uncovering the dynamic price discovery process in a more intuitive manner. To this

end, we present such information through a dynamic multiplier analysis that evaluates the impact

of a one unit change in the fundamental value on the price change. In the long-run, the dynamic

multiplier ought to converge to the equilibrium value of unity, implying that one percent change in the

fundamentals will result in one percent change in the market price. As discussed above, however, we

expect to observe over- or under-reaction of the market price to fundamental changes in the short run

due to market frictions.
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The combined impact on the dynamic price discovery process will be completely represented by

a dynamic multiplier analysis13. The ability of the dynamic multipliers to illuminate the trajectory

between initial equilibrium, short-run disequilibrium following a shock to the fundamentals, and a

long-run equilibrium makes them a powerful tool for the analysis of the price-fundamental dynamics.

4. Empirical Application to Index Future

4.1. Empirical Model

To apply our model, a long-run price-fundamentals relationship is required to be well-defined,

although the long-run coefficient need not take a value of unity. In what follows we focus on examining

the short-term dynamics in the index futures market. The cost of carry model is based on the exclusion

of arbitrage and assumes that the risk-free rate and dividend yield are given. Specifically, we expect

the following relationship to hold in equilibrium:

F ∗
t,T = St × exp [(rt − qt) τt] (11)

where F ∗
t,T is “fair value” of a futures contract maturing at time T; St is the current value of the spot

index; rt is the risk-free interest rate, and qt is the dividend yield on the index; τt is the the time to

maturity.

Assuming that the risk-free rate and dividend yield are deterministic, and will share the same

stochastic trend. The futures and spot prices are cointegrated under general conditions (Ghosh (1993),

Wahab and Lashgari (1993), Brenner and Kroner (1995)). Significant deviations from the prediction

of cost of carry can reflect violations of the model’s assumptions. The key assumption underlying the

cost of carry model is that market participants take advantage of arbitrage opportunities as soon as

they occur (Hull (2008, Ch. 3)). However, empirically, only partial adjustment is found (e.g., Stoll

and Whaley (1986), MacKinlay and Ramaswamy (1988)). The MS-GECM developed above provides

an ideal tool for helping us understand the rich dynamics behind the pricing error generated and the

13see Appendix C for a derivation
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associated convergence processes. Its empirical counterpart is given by:

∆ft = αRj + κRj ẑt−1 + λ∗
Rj

ẑt−2 + δRj∆f∗
t + γRj∆ft−1 + µtRj , µtRj ∼ iid

(
0, ΣRj

)
, (12)

where ft is the natural log of the futures contract price; f∗
t is the natural log of the fundamental

value implied by the cost of carry model St + [(rt − qt) τt]; St is the natural log of the spot index

price; rt is the risk-free rate; qt is the dividend yield on the index; and {αRj
,κRj

, λ∗
Rj

, δRj
, γRj

} are

state-dependent coefficients with the covariance of the residuals (
∑

Rj
) taking different values across

the two states. The pricing error, ẑt, is estimated from the long-run equation:

ft = µ+ θf∗
t + zt (13)

Comparing equation Eq. (12) with (10), we allow for both an intercept and a non-unity long-run

coefficient for general purposes. According to the cost of carry model, the theoretical value of θ equals

1 which (as will be seen below) is strongly supported by our empirical analysis.

The regime-specific noise momentum coefficients, λRj
can then be obtained from:λ∗

Rj
= λRj

(
1 + κRj

)
for j = 1, 2, 3. We estimate a three-regime model. The transition matrix is given by:


P11 P21 P31

P12 P22 P32

P13 P23 P33


The parameter Pij is the probability that State i is followed by State j, i.e., the transition probability

from State i to State j.

4.2. Data

Our empirical approach is different from previous studies in two primary respects. First, we use

daily data instead of intraday transactions data. Most previous studies on the linkage between spot

and futures indices have focused on very short-term dynamics using high-frequency intraday data (e.g.

Dwyer et al. (1996) – though a notable exception is Sarno and Valente (2000) who use daily data).
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While higher frequency data contain more information, they are also more prone to excessive noise.

Over a very short window as is typically used in high-frequency datasets, the only input in the cost of

carry model expected to change is the spot price. For the interest rate and dividend yield, one would

expect negligible changes over a narrow intraday window. Our study complements previous works by

examining a longer window in which meaningful changes in interest rates and dividend yields would

be captured.

Second, one of the constraints in using high-frequency data is the length of the sample period: a

short sample period of 3 to 6 months is commonly used. Using longer periods of high-frequency data

would be computationally expensive. Using lower frequency data allows us to study the dynamics over

a longer sample period. Hence, the current study uses a time period covering the complete lifespan of

the daily S&P 500 index spot and futures contract between June 1986 and December 2015. 14

Our proxies for the risk-free interest rate is the US three-month T-bill rate. Divided yields on the

indices are also collected. All data are sourced from DataStream. A continuous series of the nearest

term futures contracts is constructed by DataStream. The series switch to the next nearest contract

on the first day of the expiry month for the nearest term contract. We use a full set of daily price

information of every contract to ensure correct matching of the date to maturity with the continued

futures price series. Table 1 reports the descriptive statistics for all variables (measured in percentage

terms).

As expected, the movements of the spot and futures prices closely mimic each other. The average

price changes are of the same magnitude while the volatilities are slightly higher in the futures contracts.

The average basis (the log difference between futures and spot prices) is 0.24 percent. After applying

the cost of carry model, the difference between the futures price and the fair estimate (f −f∗) is about

a quarter of the basis (0.05 percent).

14We do not use the early data from 1982 to 1986, since the estimated mispricing errors are more than doubled on
average during this early period comparing to the period of 1986-2015. The index future contracts are first introduced
in 1982, where the market has lack of index arbitrage and higher transaction costs. Thus larger mispricing errors occur.
Errors then become more stable after 1986, and fluctuates with major market events. See also Figure ?? in Appendix
for a plot of the moving-average mispricing error through time.
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Mean Median Minimum Maximum Std Dev
∆s 0.028 0.058 -22.833 10.957 1.169
∆f 0.028 0.062 -33.700 17.749 1.262
f − s 0.243 0.196 -11.027 2.958 0.541
f − f∗ 0.055 0.056 -11.451 2.767 0.294

r 3.380 3.790 0.000 9.100 2.493
q 2.275 2.080 1.070 4.100 0.718

Table 1: Basic Descriptive Statistics
Table 1 reports the the descriptive statistics for all variables. The sample used is the daily series of
the S&P 500 index and its futures contract covering the period June 4, 1986 to December 3, 2015.
There are a total of 7,442 observations. ∆s (∆f ) is the first difference of log spot (futures) price.
f∗
t,T = st+(rt − qt) τt where st = ln (St)and rt is the annualized risk-free (3 month T-bill) interest rate

on an investment for the period , and qt is the annualized dividend yield on the index. All numbers
are recorded in percentage point terms.

5. Empirical results

5.1. Characterizing the Three Regimes

The estimation results for the MS-GECM in equation (12) are reported in Table 2 and the smoothed

regime probability is plotted in Figure 2. We see that the three estimated regimes contrast each other

in three distinctive ways. First, they differentiate periods of low volatility from those of medium and

(extremely) high volatility. The variance ( Σ ) of the medium volatility state (State 2) is twice as large

as that in the low volatility state (State 1). The extremely high volatility state (State 3) is around 5

times greater than that in State 2. Second, we find that the mispricing error (| zt−1 |) is the smallest

in State 1 with a magnitude of 0.103, whereas they slight grow to 0.207 in State 2. Notice that the

average mispricing error estimated from equation (4) throughout the sample period is 0.161. However,

they are still relatively small comparing to that in State 3, which is substantially large (0.774) in

absolute term.

Third, these three regimes do not have a balanced incidence over time. Panel C of Table 2 shows

that State 1 is one of the dominants with an ergodic probability of 50%. Moreover, the transition

probabilities confirm that State 1 is one of the dominants with an ergodic probability of 53%. Moreover,

the transition probabilities confirm that State 1 is very persistent with a transition probability of 98%.

According to Figure 2, the state coincides with the three major bull markets during the sample period,

1991-1996, 2003-2006 and 2012-2015. We classify State 1 as the normal regime, while State 2 is another
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Panel A: Estimation Results
State 1 State 2 State 3 State 2-1 State 3-2

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
α -0.005*** -2.51 0.016*** 3.34 0.058 0.66 0.022*** 4.15 0.042 0.64

δ 0.991*** 332. 1.024*** 259. 1.142*** 48.3 0.031*** 6.36 0.118*** 4.93

γ -0.004 -1.38 0.015*** 4.18 0.092*** 3.58 0.018*** 4.11 0.078*** 2.98

κ -0.699*** -36.7 -0.819*** -41.5 -0.596*** -6.56 -0.120*** -4.38 0.224** 2.41

λ∗ 0.113*** 12.8 0.167*** 9.24 0.113 1.29 -0.079*** -3.00 -0.053 -0.59

Σ 0.113*** 59.1 0.239*** 43.2 1.077*** 13.2 0.126*** 21.4 0.838*** 10.2

SOA 0.453*** 19.1 0.652*** 27.6 0.482*** 8.73 -0.199*** -5.98 0.171*** 2.84

| zt−1 | 0.103 0.207 0.774

Panel B. Recovered Coefficients
ω -0.008** -2.67 0.024*** 5.94 0.142*** 5.99 0.032*** 6.35 0.118*** 4.93

π -0.474 -1.24 -0.630*** -3.42 -0.652*** -3.22 -0.156 -0.36 -0.022 -0.09

λ 0.817*** 8.96 0.922*** 5.86 0.279 1.03 0.107 0.58 -0.647*** -4.92

Panel C. Matrix of Markovian Transition Probabilities
State 1t−1 State 2t−1 State 3t−1

State1t 0.980 0.024 0.000
State2t 0.019 0.968 0.143
State3t 0.000 0.008 0.857
Ergodic 0.531 0.443 0.024

Table 2: Estimation of the Markov Switching Generalized Error Correction Model
Table 2 reports the estimation of the Markov Switching Generalized Error Correction Model. The
sample used is the daily series of the S&P 500 index and its futures contract covering the period June
4, 1986 to December 3, 2015. There are a total of 7,442 observations, of which 4,070 , 3,222 and 148
fall into State 1, State 2 and State 3. Specifically, Panel A reports the estimation results for:

∆ft = αRj + κRj ẑt−1 + λ∗
Rj

ẑt−2 + δRj∆f∗
t + γRj∆ft−1 + µtRj

where ẑt is estimated from equation 13, {αRj
, δRj

, γRj
, κRj

, λ∗
Rj

} are state-dependent coefficients
with the covariance of the residuals (ΣRj ) taking different values across the two states. Panel B
reports the recovered coefficients. Specifically, ωRj

is recovered by δRj
− 1; πRj

= −γRj
/ωRj

and
λRj

= λ∗
Rj

/(1 + κRj
). The final two columns in Panels A and B report the difference in estimated

coefficients and associated t-statistic between States 1 and 2. For non-linear combinations of the
coefficients, a delta method is applied to obtain the variance of the recovered coefficients and their
differences. Panel C reports the transition and ergodic probabilities. ***, ** and * indicate significance
at 1%, 5% and 10% levels, respectively.
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Figure 2: The smoothed regime probability
Figure 2 plots the smoothed regime probability of being in State 1, 2 and 3. State 1 consists of the
years 1991-1996, 2003-2007 and 2012-2015, State 2 consists of the years 1986-1991 and 1996-2002,
while State 3 are found in the years of 1987-1991, 1997, 1998 and also 2007-2008.

dominant, labeled as the transition regime and characterized by slightly higher pricing errors and high

volatility. Difference in pricing error indicates that arbitrageurs’ trading strategy might change in

between the two regimes. This State captures the transition period from bull to bear market state,

especially the period around 1986-1991 and 1996-2002. State 3 is characterized as the extreme regime,

with an ergodic probability of only 2.6% but also extremely high pricing error and volatility. During this

state, arbitrageurs might face binding capital constraint due the existence of extremely high mispricing

error. The regime tends to reside in the early part of the sample, with specific concentrations around

the years of 1987-1988, 1997-1998, and also 2007-2008. Given that these periods coincide with the 1987

stock market crash, the Asian and Russian financial crises in 1997 and 1998, and the global financial

crisis in 2007, we are encouraged that the Markov regimes have meaningfully distinguished between

major stressful (large mispricing error), the transition period (medium mispricing error) and the calm

periods (small mispricing) witnessed over our sample period.

5.2. Main Results

In Table 2, various findings are worthy of special focus – primarily, those linking to our key hy-

potheses. Due to the various mispricing erro across the three regimes, we expect that the interplay of

κ and λ should follow Hypothesis 1 and 2. . We see in the table, that the estimated error correction
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parameters, κRj
, are negative and significantly less than unity in both regimes, supporting the hypoth-

esis in the work of FCS. Based on the point estimates, more than half of the prior period pricing error

is corrected 69.9% in State 1, which is the medium among the regimes. The relatively small correction

in State 1 is in line with its smallest pricing error (0.103), where arbitrageurs are less tempting to

exploit the arbitrage profit. Arbitrageurs in State 2 face a relatively higher mispricing error (0.207),

and are now able to correct nearly 82% of the pricing error. The difference between State 2 and 1 is

a significant 12% of correction with the mispricing error doubled. It indicates the positive reaction of

arbitrageurs in response to the pricing error, when funding constraint is not binding. Although the

mispricing error is massively higher in the State 3, it appears that arbitrageurs’ activities are limited

with a significant smaller mispricing correction. Only 59.5% of the pricing errors are corrected initially

by arbitrageurs, which is a strong implication of binding capital constraint and limits of arbitrage.

The initial correction drops around 22.4%, comparing to the transition state. Therefore, under the

extreme market circumstance, arbitrageurs fail to bring the price back to its fundamental value due

to their funding condition. Overall, these results support our prediction of κRj
in Hypothesis 1.

Our primary focus is on the estimated noise momentum coefficients ( λRj
). Notably, we find that

the effect of noise momentum is significant among the normal and transition regimes – the estimated

coefficients are positive as predicted (Panel B). This finding provides strong support for FCS noise

momentum hypothesis which highlights that λ is an important parameter in characterizing the overall

speed of adjustment process. Consistent with FCS, λRj
in all regimes are less than unity, indicating

the dominating position of rationael arbitrageurs in the market. Panel B of Table 2 shows that there

is approximately 82%, 92% and 28 %, in normal, transition and extreme state respectively, of the

unarbitraged error coming from the previous period being reflected in the current trading period. This

differential is consistent with Hypothesis 2 – indeed, the state-dependent difference for parameter λ

shown in Panel B of Table 2 indicates formal support of this hypothesis i.e. the State 1 estimate is

indifferent from that in Sate 2, while, at the 1% level of significance, the State 3 estimate substantially

exceeds its State 2 counterpart.

Our findings qualitatively suggest a combination of nonlinear price dynamics, and gives statistical

support for the interplay of κ and λ at conventional levels. Moreover, combining both the error
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correction and noise momentum coefficients, we find that overall speeds of adjustment (given by the

quantity κ+λ(1+κ)) are 45.3%, 65.2% and 48.2%, respectively, for the normal, transition and extreme

regimes. We find that the overall speed of adjustment in the transition state is much faster that in

normal state. Notably, the results suggest that the κ asymmetry, i.e. the increment of mispricing

correction, is the main driver behind the increased adjustment speed between these two states, while

the λ asymmetry has only a marginal effect. Comparing between transition and extreme states, the

slower speed of adjustment is mainly derived by the interplay between κ and λ. The reduction of

mispricing correction overpowers the reduction in noise persistence, and results in a significant slower

speed of adjustment. The outcomes again suggest the limits of arbitrage during the extreme market

state, and support our Hypothesis 3.

The empirical results suggest that the aggregate arbitrage behavior we captured in the Markov-

switching Error Correction model provide a strong support of slow moving capital during the stress

period. Consistent with the literature on slow moving capital, the regimes with binding capital con-

straint coincide with the 1987 market crash and 1998 collaspe of Long Term Capital Management,

which are found in Mitchell, Pulvino and Pedersen (2007), as well as the 2007 global crisis, which is

found in Schuster and Uhrig-Homburg (2015).

We also observe a range of notable findings for the other parameters in our model. First, the

intercepts (αRj ) in state 1 and 2 are statistically significant. A large positive intercept is found in

State 2 and 3, while it is negative but negligible in State 1 – the positive sign indicating a regime, in

which the futures price is more bullish than the spot price, other things equal. As such, this suggests

that the transition and extreme regime coincides with periods in which the futures market is more

bullish relative to the spot market. On average, during these two regimes, there are more than 16 and

58 basis point returns daily in the futures market, respectively, regardless of the spot market movement.

However, such returns are accompanied by larger risks as reflected by the variance of the futures return.

Such a pricing difference between the two markets under different market conditions is not directly

considered in previous theories, and thus presents a new result to the literature.wRj
= δRj

− 1

Second, Table 2 shows that the contemporaneous market reaction coefficient, wRj = δRj − 1,

is statistically different from zero, but small and negative in the normal regime, while it is highly
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Figure 3: Dynamic Multiplier Analysis
Figure 3 plots the accumulated dynamic multipliers for the Markov Switching GECM (as reported in
Table 2). The dynamic multipliers are constructed as outlined in Appendix C.

significant and positive in the transition and extreme regime. In the case of the latter, it suggests that

for a one percentage point change (up/down) in the fundamental value there will be 0.24 and 1.42

percentage point price movement in the futures market in the same direction (i.e. a 2.4 and 14 basis

point overreaction respectively). Third, Table 2 also shows that while in the normal market regime

there is no feedback trading (i.e. we cannot reject π = 0), there is large negative (and significant)

feedback trading in extreme market conditions. Such negative feedback trading is consistent with lower

noise momentum in the market under this regime.

5.3. Dynamic Multiplier Analysis

Dynamic multipliers evaluate the impact of a unit change in the fundamental value (the fair value

estimated by the cost of carry model) on the price of the futures contract. Our main interest lies in

discovering the dynamic reaction of futures prices with respect to such changes, before converging to

the long-run equilibrium level. Figure (3) plots the accumulated dynamic multipliers. Panels A, B

and C, respectively, show the multipliers relating to the normal, transition and extreme states of the

nonlinear model in Table 2.

Under the normal market state, although the initial underreaction is the lowest, the duration of
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the error convergence process is the longest. This is mainly caused by a relatively low level of initial

arbitrage price pressure and a far higher level of noise momentum trades. These two effects outweigh

the increased positive feedback trading effect in this regime. Thus in normal market conditions the

divergence from the cost of carry model is very low but long lived. On the other hand, under transition

state, although the initial overreaction is higher, the duration of the error convergence process is the

shortest. Our findings provide direct support for the proposition of Abreu and Brunnermeier (2002)

that very large mispricing cannot be sustained for very long, while small mispricing can persist for

some time due to the differential incentives of arbitrageurs when facing different levels of mispricing.

However, that is only half of the story. In the extreme market circumstance with the highest overre-

action, the duration of error convergence process is rather similar to that in normal states, due to a

difference reason. Although the level of noise momentum is the lowest, the level of initial price pressure

also reaches the lowest since funding constraint is binding.

Furthermore, our evidence documents new insights into the cause(s) of a prolonged error correction

process which is often explained by the presence of transaction costs in the previous literature (Sercu

et al. (1995), Panos et al. (1997) and Roll et al. (2007)). We show that arbitrageurs’ anticipation of

noise momentum (arbitrage risk) can play an important role in delaying price convergence. We find

that in extreme market conditions, arbitrageurs expect mispricing is more likely to be reduced than

enlarged which is supported by the empirical evidence of significant negative feedback trading during

the period. In other words, noise momentum is lower in extreme market conditions.

5.4. Linking the Hidden States to Obervables (rewrite when update)

TBC

6. Conclusions

We develop a unified approach, which can provide the main theoretical predictions on the effects of

both the capital allocation and the funding constraint on limits to arbitarge. Building on the seminal

work by Shleifer and Vishny (1997), we analyze the nonlinear impacts of mispricing on arbitrage

activities. To replicate the situation where arbitrageurs attempt to exploit the price discrepancy while

simultaneously facing agency problems, market frictions and funding constraints, we allow arbitrageurs
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to face a trade-off between making investments now and waiting for larger arbitrage opportunities in

the subsequent period. To capture such multi-period arbitrage activities, we follow the framework

advanced by FCS and investigate the impacts of mispricing on both the initial mispricing correction

and the subsequent mispricing persistence, where the latter is designed to measure persistence of the

uncorrected pricing errors and affect the ex ante capital allocation strategy of arbitrageurs.

We investigate these issues under two alternative paths to equilibrium. Under the partial-investment

strategy characterized by the substantially high future mispricing persistence, the funding constraint

is not binding and thus the larger mispricing would induce faster arbitrage activities. Next, consider

the extreme market state characterized by extremely large mispricing error and critically low future

mispricing persistence. Arbitrageurs are then more likely to adopt the full investement strategy but

also face with the severe and persistent funding constraints. This tends to deter arbitrageurs’ initial

mispricing correction and slow the overall speed of adjustment. In sum, our theory suggests that

overall arbitrage activities do not rise linearly with mispricing errors. Rather, their relationship tends

to be the regime-dependent, and overall arbitarge activites display an inverse U-shape against the

magnitude and volatility of mispricing errors. Our approach helps us to identify whether it is an

arbitrage cost or a funding constraint, which mainly limits arbitrage activities. In particular, when

the funding constraint is binding, the funding constraint effect dominates the capital allocation ef-

fect, rendering overall arbitrage activities deterred, consistent with the slow moving capital hypothesis

(Mitchell, Pulvino and Pedersen, 2007; Brunnermeier and Pedersen, 2009). Further, the estimates of

the regime-dependent noise momentum parameter also provide valuable information about the future

uncertainty as the critically small noise momentum (with the future arbitrage opportunity being less

attractive) induces arbitrageurs to adopt the full investment in the initial period instead of waiting,

and vice versa.

To test the empirical validity of theoretical predictions, we extend the general error-correction

model by FCS to the state-dependent Markov-swiching model. Applying this model with three states

to the S&P 500 index spot and future markets over the period 1986 - 2015, we find strong evidence in

favor of regime-dependent nonlinear limits to arbitrage. Furthermore, we are able to identify the stress

periods when the funding constraint has been binding as the years of 1987, 1998, 2000 and 2007-08,
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consistent with the slow moving capital period documented in the literature.

Our paper is closely related and significantly contributes to the growing literature on limits of arbi-

trage and the slow moving capital theory (Mitchell, Pulvino and Pedersen, 2007; Mitchell and Pulvino,

2012; Acharya et al., 2013; Schuster and Uhrig-Homburg, 2015). First, we extend a theoretical model

that consider the limits of arbitrage from both the left and the right hand sides of the arbitrageurs’

balanced sheet. Our unified framework allows us to develop a directly matching empirical method to

identify which channel of limits to arbitrage is at work in a flexible manner. Next, we demonstrate

that our empirical strategy can help to enhance our understanding of how the capital allocation and

the funding constraint interact to derive regime-dependent nonlinear limits to arbitrage. Therefore,

our approach is more coherent and direct as we are able to analyse an implication of how asset prices

are affected by the slow moving capital both theoretically and empirically.

The potential applications of this approach go well beyond that developed in the current paper. For

example, our approach can be applied to explore the short-term dynamics associated with fundamen-

tal long-run cointegrating relationships (e.g., price-dividend relationship) and the pricing dynamics

between segmented markets for single assets (for example, cross-listing and commodity contracts in

different markets). Another important extension is to develop the unified framework for analysing the

liquidity spiral (i.e. the market illiquidity and the funding illiquidity can be reinforcing during the

stressed period) predicted by Brunnermeier and Pedersen (2009), theoretically and empirically. We

commend these and other meaningful extensions to future research agenda.

AppendixA. Proofs

This Appendix provides additional details about the our discussion of the SV model in Section 2.

We first provide three implications from the SV model which will be used in developing the proof of

the main propositions.

Fact 4. Consider the SV model with (1) - (5). For fixed investment strategy β1, then F ∗
2 increases as

S1 rises.
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Proof. From (1) we have

F ∗
2 = F1

[
1 +

aβ1S1 + aβ1F1 (1− β1)− aβ1S
∗
2

V − S1 − (a− 1)β1F1

]
= F1 + F1

[
aβ1F1 (1− β1)− aβ1 (S

∗
2 − S1)

V − S1 − (a− 1)β1F1

]

Taking the first differentiation with respect to S1, we have

∂F ∗
2

∂S1
= aβ1F1

V − S∗
2 + (1− aβ1)F1

(V − S1 − (a− 1)β1F1)
2 .

Under the stability condition, V > aS∗
2 + (a− 1) (F1 − S1), it is easily seen that

V − S∗
2 > (a− 1) (S∗

2 + F1 − S1) > (a− 1)F1 ≥ (aβ1 − 1)F1

QED.

Fact 5. Consider the SV model with (1) - (5). Suppose that mispricing error deepens at period 2;

namely S∗
2 > S1. In this case arbitrageurs lose their funds as P ∗

2 < P1 and F ∗
2 < F1.

Proof. Consider the partially invested case. Then, we obtain the equality of the first order condition

(5) at 0 < β∗
1 < 1, which can be expressed as

V

P1
− 1 = q

(
V

P ∗
2

− 1

)

For 0 < q < 1, we must have V
P1

< V
P∗

2
, which proves that P ∗

2 < P1. Using the definition of F ∗
2 in (1),

it is easily seen that F ∗
2 < F1.

Next, consider the full investment case where we have F ∗
2 = F1

(
1− a(S∗

2−S1)
P1−aF1

)
with β1 = 1. When

P ∗
2 < P1, then F ∗

2 < F1 from (1). Suppose that P ∗
2 = P1. Then, we must have: F ∗

2 = F1 from

(1). Using F ∗
2 in full investment case, this implies that S∗

2 − S1 = 0, but this violates the mispricing

deepening assumption, S∗
2 > S1. Next, suppose that P ∗

2 > P1, and thus F ∗
2 > F1 from (1). Again

using F ∗
2 , this implies that P1 − aF1 < 0, but this violates the original SV condition, P1 − aF1 > 0.

Hence, under the full investment strategy, we can only have: P ∗
2 < P1 and F ∗

2 < F1.
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QED

Fact 6. Consider the SV model with (1) - (5). Suppose that arbitrageurs adopt the partial investment

strategy
(
0 < β̂1 < 1

)
. Then, the sign of ∂P1

∂S1
is the same as that of ∂P∗

2

∂S1
.

Proof. We rewrite (5) as

P ∗
2 =

qV P1

V − (1− q)P1

Taking the first differentiation with respect to S1, then

∂P ∗
2

∂S1
= qV

[
θ (V − (1− q)P1) + θ (1− q)P1

(V − (1− q)P1)
2

]
=

θqV 2

(V − (1− q)P1)
2

where θ = ∂P1

∂S1
. Hence, the proposition holds. QED.

Proof. Proposition 2:

SV show that ∂P1

∂S1
< 0, ∂P∗

2

∂S∗
2
< 0 and ∂P1

∂S∗
2

under the assumption of fixed F1. For β1 = 0, F2 = F1,

and thus by definition of asset price, ∂P∗
2

∂S1
= 0. Using Fact 6, we have ∂P∗

2

∂S1
< 0 for 0 < β1 < 1. Finally,

for β1 = 1, it is seen that F ∗
2 rises as S1 rises (See Fact 4). Thus, P ∗

2 rises with S1. QED.

Proof. Proposition 3:

We first consider the partial investment strategy with 0 < β̂1 < 1. We rewrite (5) in equality as:

P1 =
P ∗
2 V

qV + (1− q)P ∗
2

then we can express P∗
2

P1
as:

P ∗
2

P1
= q + P ∗

2

1− q

V
(A.1)

Solving asset price Pt and (1) for P ∗
2 , we have:

P ∗
2

P1
= 1− S∗

2 − S1

P1 − aβ̂1F1
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or

P1 − P ∗
2 =

P1(S
∗
2 − S1)

P1 − aβ̂1F1

(A.2)

Using (5), we can express (A.2) as

S∗
2 − S1

P1 − aβ̂1F1

=
1− q

V
(V − P2) (A.3)

Since ∂P∗
2

∂S1
< 0, the left hand side of (A.3) is an increasing function of S1. Taking the first differentiation

we have the following result:
∂β̂1

∂S1
>

V − S∗
2 − (a− 1)β̂1F1

(a− 1)F1 (S∗
2 − S1)

(A.4)

The first differentiation of κ = β̂1F1

S1
with respect to S1 is given by

∂κ

∂S1
= F1

 ∂β̂1

∂S1
S1 − β̂1

S2
1


Using (A.4), it is straightforward to show that the numerator is positive:

∂β̂1

∂S1
S1 − β̂1 >

V − S∗
2 − (a− 1) β̂1F1

(a− 1)F1 (S∗
2 − S1)

S1 − β̂1

>
S1 (V − S∗

2 )− (a− 1)S∗
2 β̂1F1

(a− 1)F1 (S∗
2 − S1)

>
S1 (V − S∗

2 )− (a− 1)S∗
2F1

(a− 1)F1 (S∗
2 − S1)

> 0

The inequality holds under the stability condition, V − S∗
2 > (a− 1)S∗

2 + (a− 1) (F1 − S1).

Further, from (5) under partial investment case, we can express λ as

λ = q
V − P ∗

2

V − P1
(A.5)

=
P ∗
2

P1
(A.6)

= q + P ∗
2

1− q

V
(A.7)
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The last equality comes from the expression of the first order condition in Eq. (A.1). Using Proposition

2, it is easily seen that as S1 rises, λ falls. This proves ∂κ
∂S1

> 0 and ∂Λ
∂S1

< 0 for 0 < β1 < 1.

Next, we consider the full investment case β̂1 = 1, in which case

κ =
β̂1F1

S1
=

F1

S1
.

Then, it is easily seen that ∂κ
∂S1

< 0. Furthermore, from the definition of λ and Fact 5, it is straight-

forward to show ∂λ
∂S1

< 0.

Finally, when β̂1 = 0, the results follow trivially. QED

AppendixB. The Generalized Error Correction Model (GECM)

In this appendix, we show detailed steps in developing the GECM, given by equation (1) introduced

in the main text. Consider the long-run price-fundamentals relationship given by:

ft = f∗
t + zt (B.1)

where ft is the observed market price, f∗
t is the fundamental value of the asset, and zt is the short-term

deviation of observed price from its fundamental value. Notice that f∗
t is the martingale difference

sequence such that zt is stationary but serially correlated. For simplicity we represent zt as an AR

process:

zt = φzt−1 + εt, εt ∼ iid
(
0, σ2

ε

)
where εt is regarded as the mispricing innovations. Taking the first difference of (B.1), and using

∆zt = κzt−1 + εt with κ = φ− 1, we obtain the standard ECM:

∆ft = ∆f∗
t + κzt−1 + εt (B.2)

The parameter, κ, measures the impact of arbitrage trading activity in correcting the pricing error

towards the long-run equilibrium relationship, and lies between -1 and 0. Next, we suppose that the
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reduced form data generating process for f∗
t is given by:

∆f∗
t = π∆ft−1 + et, et ∼ iid

(
0, σ2

e

)
which allows for the (possible) feedback trading pattern, where positive (negative) π implies positive

(negative) feedback trading, and et captures the innovations from the fundamental value of the asset,

after controlling for feedback trading. This setup is motivated by both empirical and theoretical

evidence that market price might potentially induce fundamental changes. It has been documented

that the futures market can influence pricing of the underlying index (see, e.g., Chen, 1992).

One important issue is whether or not the pricing error innovation (εt) and the innovation of

fundamentals (et) are independent of each other. If they are not correlated, then the pricing error

innovation is random noise. In general, the pricing error is likely to be linked to fundamental news,

in which case these two error innovations are correlated. If their contemporaneous correlation is

significantly different from zero, ∆f∗
t is weakly endogenous with respect to εt in (B.2). To deal with

this issue, we consider the following regression:

εt = ωet + µt = ω (∆f∗
t − π∆ft−1) + µt, µt ∼ iid

(
0, σ2

µ

)
(B.3)

where ut is uncorrelated with et by construction. Then, replacing εt in (B.2) by (B.3) and rearranging,

we obtain the more efficient ECM as follows:

∆ft = κzt−1 + γ∆ft−1 + δ∆f∗
t + µt (B.4)

where γ = −ωπ and δ = 1+ω. Notice that the model (B.4) accommodates the dynamics of price over-

reaction or underreaction with respect to fundamental changes through the contemporaneous reaction

coefficient, δ, as well as the short-run momentum effects through the coefficient, γ. Only if the market

is efficient (i.e. εt is iid, in which case ω = 0 trivially), then we expect that one unit (permanent)

change in fundamentals should cause one unit change in the market price, instantaneously.

The model developed so far, called the standard (one-period) ECM, is a natural starting point
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for an analysis of hypotheses relating to the limits of arbitrage. However, the ECM suffers from a

fundamental drawback as only limited dynamics are covered; namely, the speed of adjustment (or

duration of mispricing) in (B.2) is measured solely by the error correction coefficient, κ. SV’s model

suggests that extending the analysis of arbitrage into a two-period model is important. Our extended

theoretical analysis shows that the error persistence in the second period is significantly different

under alternative investment strategies. Specifically, we examine the second period error correction by

measuring the percentage of uncorrected pricing error persisting after time 2 trading.

To accommodate this important issue, we now suppose that the pricing errors, zt follow an AR(2)

process of the form:

zt = φzt−1 + λ (φzt−2) + εt, εt ∼ iid
(
0, σ2

ε

)
where φzt−2 = (1 + κ)zt−2 is the unarbitraged error carried over from the previous period and the

parameter, λ, measures the further pricing impact of these (initial) unarbitraged pricing error compo-

nents, which we call ‘noise momentum’ effects. The higher is the λ, the higher is the noise momentum

in the price. Thus we finally obtain the two-period GECM given by:

∆ft = κzt−1 + λ∗zt−2 + γ∆ft−1 + δ∆f∗
t + µt (B.5)

where λ∗ = λφ.

AppendixC. Dynamic Multipliers

To conduct the dynamic multiplier analysis, it is more convenient to transform the GECM, (B.5),

into the following autoregressive distributed lag (ARDL) specification:

ft = φ1ft−1 + φ2ft−2 + γ0f
∗
t + γ1f

∗
t−1 + γ2f

∗
t−2 + µt

where

φ1 = 1 + κ+ γ, φ2 = λ (1 + κ)− γ, γ0 = δ, γ1 = − (δ + κ) , γ2 = −λ (1 + κ)
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It is clear that the overall speed of adjustment associated with (B.5) is evaluated by φ1 + φ2 − 1 =

κ+ λ(1 + κ).

Dynamic multipliers are defined as the effect of a unit change in f∗
t at time t on the future trajectory

of f(t+ h) for h = 0, ...., H. Rewriting (B.1) as:

Φ(L) ft = a+ Γ (L) f∗
t + µt

where Φ(L) = 1 − φ1L − φ2L
2, and Γ (L) = 1 − γ1L − γ2L

2, then the dynamic multipliers can be

evaluated by:

mh =

h∑
j=0

∂ft+j

∂f∗
t

=

h∑
j=0

ηj , h = 0, ...., H,

where ηjfor j = 0, 1, 2, . . . , H can be evaluated easily using the following recursive relationships:

ηj = φ1ηj−1 + φ2ηj−2 + · · ·+ φj−1η1 + φjη0, j = 3, 4, . . .

with η0 = γ0, η1 = φ1η0 + γ1, and η2 = φ1η1 + φ2η0 + γ2. Notice that by construction, as h → ∞,

mh → θ, where θ is the long-run coefficient.
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