Is there an Expert-Induced Demand for Tax Evasion?

Carla Marchese* and Andrea Venturinii*

Università del Piemonte Orientale*
The role of tax advisors has drawn the attention of governments and of the press.
The role of tax advisors has drawn the attention of governments and of the press. Empirical studies found ambiguous effects (Erard, 1993 and Andreoni et al. 1998).
The role of tax advisors has drawn the attention of governments and of the press

Empirical studies found ambiguous effects (Erard, 1993 and Andreoni et al. 1998)

Recent empirical studies focussed on the type of relationship with the firm (Klassen et al., 2016)
The role of tax advisors has drawn the attention of governments and of the press

Empirical studies found ambiguous effects (Erard, 1993 and Andreoni et al. 1998)

Recent empirical studies focussed on the type of relationship with the firm (Klassen et al., 2016)

Theoretical principal agent models (Chen and Chu, 2005; Crocker and Slemrod, 2005, Biswas et al. 2013)
The role of tax advisors has drawn the attention of governments and of the press.

Empirical studies found ambiguous effects (Erard, 1993 and Andreoni et al. 1998).

Recent empirical studies focussed on the type of relationship with the firm (Klassen et al., 2016).

Theoretical principal agent models (Chen and Chu, 2005; Croocker and Slemrod, 2005, Biswas et al. 2013).

Market for (fixed cost) schemes, conjectural variation approach (Damjanovic and Ulph, 2010).
The role of tax advisors has drawn the attention of governments and of the press

Empirical studies found ambiguous effects (Erard, 1993 and Andreoni et al. 1998)

Recent empirical studies focussed on the type of relationship with the firm (Klassen et al., 2016)

Theoretical principal agent models (Chen and Chu, 2005; Croocker and Slemrod, 2005, Biswas et al. 2013)

Market for (fixed cost) schemes, conjectural variation approach (Damjanovic and Ulph, 2010)

Game theoretic approach (Lipatov, 2012)
Motivation and basic insights

- Both firms and individuals do report in many cases without assistance
Motivation and basic insights

- Both firms and individuals do report in many cases without assistance.
- The ambiguity of the role of consultants disregarded in the recent literature.
Motivation and basic insights

- Both firms and individuals do report in many cases without assistance
- The ambiguity of the role of consultants disregarded in the recent literature
- What should we learn from the physician-induced demand for health care literature?
Both firms and individuals do report in many cases without assistance.

The ambiguity of the role of consultants disregarded in the recent literature.

What should we learn from the physician-induced demand for health care literature?

Both physicians and tax advisors are not necessarily "perfect agents"
The model

- Conjectural variation approach (Cournot conjecture)
The model

- Conjectural variation approach (Cournot conjecture)
- \(m \) identical amoral risk neutral taxpayers with an exogenously given income \(I \)
The model

- Conjectural variation approach (Cournot conjecture)
- \(m \) identical amoral risk neutral taxpayers with an exogenously given income \(I \)
- Proportional tax system, with sanctions on the evaded tax

The expected return per unit of evaded tax is

\[
\rho = \left(1 + \frac{s}{p} \right) > 0
\]

Evasion entails a hiding cost \(g(E) \), strictly increasing and convex, with \(g(0) = 0 \)
The model

- Conjectural variation approach (Cournot conjecture)
- \(m\) identical amoral risk neutral taxpayers with an exogenously given income \(I\)
- Proportional tax system, with sanctions on the evaded tax
- The expected return per unit of evaded tax is

\[
r = (1 - p(1 + s)) > 0
\]
The model

- Conjectural variation approach (Cournot conjecture)
- \(m \) identical amoral risk neutral taxpayers with an exogenously given income \(I \)
- Proportional tax system, with sanctions on the evaded tax
- The expected return per unit of evaded tax is
 \[
 r = (1 - p(1 + s)) > 0
 \]
- Evasion \(E \) entails a hiding cost \(g(E) \), strictly increasing and convex, with \(g(0) = 0 \)
Taxpayers are plagued by a biased perception of the probability of audit

\[r = [1 - \phi(p)(1 + s)] > 0 \]
Rank-dependent utility approach: an example
Diversity of circumstances implies that both over and underestimation of p can occur.
Diversity of circumstances implies that both over and underestimation of p can occur.

Comparative static:

$$\frac{\partial E^*(s, t)}{\partial s} < 0 \quad (1)$$

$$\frac{\partial E^*(s, t)}{\partial t} > 0 \quad (2)$$
Contracting with the tax preparer

- The taxpayer is asked about true income and evasion \(E^* \) she would choose on her own.
Contracting with the tax preparer

- The taxpayer is asked about true income and evasion E^* she would choose on her own.
- The tax preparer informs her about the needed adjustments in hiding costs, the suggested evasion E_i and the price.
Contracting with the tax preparer

- The taxpayer is asked about true income and evasion E^* she would choose on her own.
- The tax preparer informs her about the needed adjustments in hiding costs, the suggested evasion E_i and the price.
- The quantity of the service is the improvement $(E_i - E^*)$, which can be positive or negative.
Contracting with the tax preparer

- The taxpayer is asked about true income and evasion E^* she would choose on her own.
- The tax preparer informs her about the needed adjustments in hiding costs, the suggested evasion E_i and the price.
- The quantity of the service is the improvement $(E_i - E^*)$, which can be positive or negative.
- The sharing of information between the parties renders the breaching of the contract and/or whistle-blowing unlikely.
Advice is a experience good: its benefits must confirm expectations for long term viability
The service demand I

- Advice is a experience good: its benefits must confirm expectations for long term viability.
- The total benefit is the extra expected net revenue evaluated at the true probability:

\[
B(\bar{E}) = r\bar{E} - g(\bar{E}) - [rE^* - g(E^*)]
\]
Advice is an experience good: its benefits must confirm expectations for long term viability.

The total benefit is the extra expected net revenue evaluated at the true probability:

\[B(\overline{E}) = rt\overline{E} - g(\overline{E}) - [rtE^* - g(E^*)] \]

Since \(E^* \) is given, the marginal benefit depends only on the suggested evasion \(\overline{E} \) on the market.
Example of the total benefit of suggested evasion
The demand price is the slope of the total benefit.
It becomes negative when evasion is larger than the optimal one.

Lemma

The participation constraint is never binding.
Unbiased and biased demand for

\[\phi(p) > p \]
Unbiased and biased demand for

\[\phi(p) < p \]
The market equilibrium

- We have worked out the case in which $\varphi(p) > p$
- Competition is in per capita quantities
- We show that second order conditions are compatible with concave or convex demand and the stability condition is satisfied
- The equilibrium price is:

$$P(\bar{E}^*) = c \left[1 - \frac{1}{n\eta} \left(\frac{E^* - \bar{E}^*}{E^*} \right) \right] = c\mu$$

Lemma

The equilibrium price is decreasing in the absolute value of the elasticity and in the number of tax preparers, while it is increasing in the absolute value of the percentage difference between the suggested evasion and the evasion amount the representative taxpayer would have chosen without advice.
hp: \(\varphi(p) > p \) and also the tax preparer risks a sanction proportional to the taxpayer’s evaded tax

Proposition

Whenever \(f(p) > p \), increasing the sanction on the taxpayer is more effective than increasing the sanction on the tax preparer.

- Intuition: the mark-up is larger. The effect is reinforced if demand is convex.
The model is easily extended to the case in which incomes differ and costs are proportional to the share of income which is hidden.
The model is easily extended to the case in which incomes differ and costs are proportional to the share of income which is hidden.

Let also assume that:

\[\varphi(p_g) > p_g! E > E > E, \]

\[\varphi(p_g) < p_g! E > E > E. \]

The Tax Agency only observes \(E \) and \(E \).

Tax preparation has ambiguous effects with respect to tax compliance. Targeting the clients of a tax preparer can pay only if the latter specializes.
The model is easily extended to the case in which incomes differ and costs are proportional to the share of income which is hidden.

Let also assume that:

- the probability of detection vary according to visibility differences.
Extensions

- The model is easily extended to the case in which incomes differ and costs are proportional to the share of income which is hidden.
- Let also assume that:
 - the probability of detection vary according to visibility differences
 - some unbiased taxpayers evade the optimal amount.
Extensions

- The model is easily extended to the case in which incomes differ and costs are proportional to the share of income which is hidden.
- Let also assume that:
 - the probability of detection vary according to visibility differences
 - some unbiased taxpayers evade the optimal amount
- Then $\phi(p_g) > p_g \rightarrow E^{**} > \bar{E} > E^*$, while $\phi(p_g) < p_g \rightarrow E^* > \bar{E} > E^{**}$.
The model is easily extended to the case in which incomes differ and costs are proportional to the share of income which is hidden.

Let also assume that:
- the probability of detection vary according to visibility differences
- some unbiased taxpayers evade the optimal amount

Then \(\phi(p_g) > p_g \rightarrow E^{**} > \bar{E} > E^* \), while \(\phi(p_g) < p_g \rightarrow E^* > \bar{E} > E^{**} \).

The Tax Agency only observes \(\bar{E} \) and \(E^{**} \).
Extensions

- The model is easily extended to the case in which incomes differ and costs are proportional to the share of income which is hidden.
- Let also assume that:
 - the probability of detection vary according to visibility differences
 - some unbiased taxpayers evade the optimal amount
- Then \(\phi(p_g) > p_g \rightarrow E^{**} > \bar{E} > E^* \), while \(\phi(p_g) < p_g \rightarrow E^* > \bar{E} > E^{**} \).
- The Tax Agency only observes \(\bar{E} \) and \(E^{**} \).
- Tax preparation has ambiguous effects with respect to tax compliance.
The model is easily extended to the case in which incomes differ and costs are proportional to the share of income which is hidden.

Let also assume that:
- the probability of detection vary according to visibility differences
- some unbiased taxpayers evade the optimal amount.

Then \(\phi(p_g) > p_g \rightarrow E^{**} > \bar{E} > E^* \), while \(\phi(p_g) < p_g \rightarrow E^* > \bar{E} > E^{**} \).

The Tax Agency only observes \(\bar{E} \) and \(E^{**} \).

Tax preparation has ambiguous effects with respect to tax compliance.

Targeting the clients of a tax preparer can pay only if the latter specializes.
THANK YOU!