Dynamic Tax Evasion with Habit Formation

Michele Bernasconi1 Rosella Levaggi2 Francesco Menoncin2

1Department of Economics
University Cà Foscari of Venice

2Department of Economics and Management
University of Brescia

XXVII Conferenza SIEP Ferrara 2015
Tax evasion is a world-wide problem

- US: not reported 18-19% of total income leading to a tax gap of about 500 billion dollars

- Europe: not reported about 20% of GDP, accounting for potential loss of about 1 trillion euros each year

- Widely studied problem, no effective solutions found
Motivation

- Tax evasion is a world-wide problem
- US: not reported 18-19% of total income leading to a tax gap of about 500 billion dollars
- Europe: not reported about 20% of GDP, accounting for potential loss of about 1 trillion euros each year
- Widely studied problem, no effective solutions found
Motivation

- Tax evasion is a world-wide problem

- US: not reported 18-19% of total income leading to a tax gap of about 500 billion dollars

- Europe: not reported about 20% of GDP, accounting for potential loss of about 1 trillion euros each year

- Widely studied problem, no effective solutions found
Motivation

- Tax evasion is a world-wide problem
- US: not reported 18-19% of total income leading to a tax gap of about 500 billion dollars
- Europe: not reported about 20% of GDP, accounting for potential loss of about 1 trillion euros each year
- Widely studied problem, no effective solutions found
Mainly static framework (theoretical explanation of Ytzaky's paradox)

- Few works in a dynamic context
- There exists an intertemporal substitution effect on consumption
Mainly static framework (theoretical explanation of Ytzaky's paradox)

Few works in a dynamic context

There exists an intertemporal substitution effect on consumption
Mainly static framework (theoretical explanation of Ytzaky’s paradox)
Few works in a dynamic context
There exists an intertemporal substitution effect on consumption
Our contribution – Capital Accumulation (1/2)

- With a Wiener process, the capital k_t evolves according to

$$dk_t = ((1 - \tau + \tau e_t) y_t (k_t) - c_t) \, dt + \sigma \tau e_t y_t (k_t) \, dW_t$$

- This approach suffers of some problems:
 - (i) only small (infinitesimal) changes are allowed
 - (ii) both positive and negative changes may occur (dW_t is Gaussian)
 - (iii) on average the fee does not affect dk_t ($\mathbb{E}_t [dW_t] = 0$)
 - (iv) the fee is strictly proportional the evaded taxes
With a Wiener process, the capital k_t evolves according to

$$dk_t = ((1 - \tau + \tau e_t) y_t (k_t) - c_t) dt + \sigma \tau e_t y_t (k_t) dW_t$$

This approach suffers of some problems:

(i) only small (infinitesimal) changes are allowed

(ii) both positive and negative changes may occur (dW_t is Gaussian)

(iii) on average the fee does not affect dk_t ($\mathbb{E}_t [dW_t] = 0$)

(iv) the fee is strictly proportional the evaded taxes
With a Wiener process, the capital k_t evolves according to

$$dk_t = ((1 - \tau + \tau e_t) y_t (k_t) - c_t) dt + \sigma \tau e_t y_t (k_t) dW_t$$

This approach suffers of some problems:

(i) only small (infinitesimal) changes are allowed

(ii) both positive and negative changes may occur (dW_t is Gaussian)

(iii) on average the fee does not affect dk_t ($\mathbb{E}_t [dW_t] = 0$)

(iv) the fee is strictly proportional the evaded taxes
With a Wiener process, the capital k_t evolves according to

$$dk_t = ((1 - \tau + \tau e_t) y_t (k_t) - c_t) dt + \sigma \tau e_t y_t (k_t) dW_t$$

This approach suffers of some problems:

- (i) only small (infinitesimal) changes are allowed
- (ii) both positive and negative changes may occur (dW_t is Gaussian)
- (iii) on average the fee does not affect dk_t ($\mathbb{E}_t [dW_t] = 0$)
- (iv) the fee is strictly proportional the evaded taxes
Our contribution – Capital Accumulation (1/2)

- With a Wiener process, the capital k_t evolves according to

$$dk_t = ((1 - \tau + \tau e_t) y_t (k_t) - c_t) dt + \sigma \tau e_t y_t (k_t) dW_t$$

- This approach suffers of some problems:
 - (i) only small (infinitesimal) changes are allowed
 - (ii) both positive and negative changes may occur (dW_t is Gaussian)
 - (iii) on average the fee does not affect dk_t ($\mathbb{E}_t [dW_t] = 0$)
 - (iv) the fee is strictly proportional the evaded taxes
With a Wiener process, the capital k_t evolves according to

$$dk_t = ((1 - \tau + \tau e_t) y_t (k_t) - c_t) dt + \sigma \tau e_t y_t (k_t) dW_t$$

This approach suffers of some problems:

- (i) only small (infinitesimal) changes are allowed
- (ii) both positive and negative changes may occur (dW_t is Gaussian)
- (iii) on average the fee does not affect dk_t ($\mathbb{E}_t [dW_t] = 0$)
- (iv) the fee is strictly proportional the evaded taxes
Our proposal: use Poisson jumps ($d\Pi_t$):

$$dk_t = ((1 - \tau + \tau e_t)y_t(k_t) - c_t) dt - \eta(\tau)e_t y_t(k_t) d\Pi_t$$

- The fee is a function of τ: $\eta(\tau) = \eta_0 + \eta_1 \tau$
- Only negative jumps (when audited) are allowed:
 $$d\Pi_t = \begin{cases}
1, & \lambda dt \\
0, & 1 - \lambda dt
\end{cases}$$
- Finite jumps are allowed
- On average the fee affects dk_t:

$$\mathbb{E}_t \left[-\eta(\tau)e_t y_t(k_t) d\Pi_t\right] = -\eta(\tau)e_t y_t(k_t) \lambda dt$$
Our contribution – Capital Accumulation (2/2)

- Our proposal: use Poisson jumps \(d\Pi_t\):

\[
dk_t = \left((1 - \tau + \tau e_t) y_t (k_t) - c_t\right) dt - \eta(\tau) e_t y_t (k_t) d\Pi_t
\]

- The fee is a function of \(\tau\): \(\eta(\tau) = \eta_0 + \eta_1 \tau\)

- Only negative jumps (when audited) are allowed:

\[
d\Pi_t = \begin{cases}
1, & \lambda dt \\
0, & 1 - \lambda dt
\end{cases}
\]

- Finite jumps are allowed

- On average the fee affects \(dk_t\):

\[
E_t [-\eta(\tau) e_t y_t (k_t) d\Pi_t] = -\eta(\tau) e_t y_t (k_t) \lambda dt
\]
Our proposal: use Poisson jumps \(d\Pi_t \):

\[
dk_t = ((1 - \tau + \tau e_t) y_t(k_t) - c_t) dt - \eta(\tau) e_t y_t(k_t) d\Pi_t
\]

The fee is a function of \(\tau \): \(\eta(\tau) = \eta_0 + \eta_1 \tau \)

Only negative jumps (when audited) are allowed:

\[
d\Pi_t = \begin{cases}
1, & \lambda dt \\
0, & 1 - \lambda dt
\end{cases}
\]

Finite jumps are allowed

On average the fee affects \(dk_t \):

\[
\mathbb{E}_t \left[-\eta(\tau) e_t y_t(k_t) d\Pi_t \right] = -\eta(\tau) e_t y_t(k_t) \lambda dt
\]
Our proposal: use Poisson jumps \((d\Pi_t)\):

\[dk_t = ((1 - \tau + \tau e_t) y_t (k_t) - c_t) \, dt - \eta (\tau) e_t y_t (k_t) \, d\Pi_t \]

- The fee is a function of \(\tau\): \(\eta (\tau) = \eta_0 + \eta_1 \tau\)
- Only negative jumps (when audited) are allowed:
 \[
 d\Pi_t = \begin{cases}
 1, & \lambda \, dt \\
 0, & 1 - \lambda \, dt
 \end{cases}
 \]
- Finite jumps are allowed
- On average the fee affects \(dk_t\):

\[
E_t [-\eta (\tau) e_t y_t (k_t) \, d\Pi_t] = -\eta (\tau) e_t y_t (k_t) \lambda \, dt
\]
Our proposal: use Poisson jumps ($d\Pi_t$):

$$dk_t = ((1 - \tau + \tau e_t) y_t(k_t) - c_t) \ dt - \eta(\tau) e_t y_t(k_t) d\Pi_t$$

- The fee is a function of τ: $\eta(\tau) = \eta_0 + \eta_1 \tau$

- Only negative jumps (when audited) are allowed:

$$d\Pi_t = \begin{cases}
1, & \lambda \ dt \\
0, & 1 - \lambda \ dt
\end{cases}$$

- Finite jumps are allowed

- On average the fee affects dk_t:

$$\mathbb{E}_t [-\eta(\tau) e_t y_t(k_t) d\Pi_t] = -\eta(\tau) e_t y_t(k_t) \lambda \ dt$$
Preferences usually belong to the CRRA family ($\delta = 1 \Rightarrow \ln c_t$):

$$U(c_t) = \frac{c_t^{1-\delta} - 1}{1 - \delta}$$

- We have used HARA preferences:

$$U(c_t) = \frac{(c_t - c_0)^{1-\delta}}{1 - \delta}$$

- (i) take into account a subsistence consumption
- (ii) richer model (two parameters instead of one)
- (iii) optimal consumption as an affine transformation of GDP
- (iv) time dependent risk aversion: $RRA = \frac{\delta}{c_t - c_0}$
Preferences usually belong to the CRRA family ($\delta = 1 \Rightarrow \ln c_t$):

$$U(c_t) = \frac{c_t^{1-\delta} - 1}{1 - \delta}$$

We have used HARA preferences:

$$U(c_t) = \frac{(c_t - c_0)^{1-\delta}}{1 - \delta}$$

- (i) take into account a subsistence consumption
- (ii) richer model (two parameters instead of one)
- (iii) optimal consumption as an affine transformation of GDP
- (iv) time dependent risk aversion: $RRA = \frac{\delta}{c_t - c_0}$
Our contribution – Preferences (1/2)

- Preferences usually belong to the CRRA family ($\delta = 1 \Rightarrow \ln c_t$):
 \[
 U(c_t) = \frac{c_t^{1-\delta} - 1}{1 - \delta}
 \]

- We have used HARA preferences:
 \[
 U(c_t) = \frac{(c_t - c_0)^{1-\delta}}{1 - \delta}
 \]

- (i) take into account a subsistence consumption
- (ii) richer model (two parameters instead of one)
- (iii) optimal consumption as an affine transformation of GDP
- (iv) time dependent risk aversion: $RRA = \frac{\delta}{c_t - c_0}$
Preferences usually belong to the CRRA family ($\delta = 1 \Rightarrow \ln c_t$):

$$U(c_t) = \frac{c_t^{1-\delta} - 1}{1 - \delta}$$

We have used HARA preferences:

$$U(c_t) = \frac{(c_t - c_0)^{1-\delta}}{1 - \delta}$$

(i) take into account a subsistence consumption
(ii) richer model (two parameters instead of one)
(iii) optimal consumption as an affine transformation of GDP
(iv) time dependent risk aversion: $\text{RRA} = \frac{\delta}{c_t - c_0}$
Preferences usually belong to the CRRA family ($\delta = 1 \Rightarrow \ln c_t$):

$$U(c_t) = \frac{c_t^{1-\delta} - 1}{1 - \delta}$$

We have used HARA preferences:

$$U(c_t) = \frac{(c_t - c_0)^{1-\delta}}{1 - \delta}$$

(i) take into account a subsistence consumption
(ii) richer model (two parameters instead of one)
(iii) optimal consumption as an affine transformation of GDP
(iv) time dependent risk aversion: $RRA = \frac{\delta}{c_t - c_0}$
Our contribution – Preferences (1/2)

- Preferences usually belong to the CRRA family \((\delta = 1 \Rightarrow \ln c_t)\):

\[
U(c_t) = \frac{c_t^{1-\delta} - 1}{1 - \delta}
\]

- We have used HARA preferences:

\[
U(c_t) = \frac{(c_t - c_0)^{1-\delta}}{1 - \delta}
\]

(i) take into account a subsistence consumption
(ii) richer model (two parameters instead of one)
(iii) optimal consumption as an affine transformation of GDP
(iv) time dependent risk aversion: \(RRA = \frac{\delta}{c_t - c_0}\)
Our contribution – Preferences (2/2)

In this contribution:

\[U(c_t) = \frac{(c_t - h_t)^{1-\delta}}{1-\delta} \]

where \(h_t \) is habit:

\[h_t = h_0 e^{-\beta t} + \alpha \int_0^t c_s e^{-\beta(t-s)} ds \]

or, in differential form \(dh_t = (\alpha c_t - \beta h_t) dt \).

\(\alpha \): importance of consumption in adjusting the habit

\(\beta \): importance of the past (the higher \(\beta \) the less important the past)

time dependent risk aversion: \(RRA = \frac{\delta}{c_t - h_t} \)
In this contribution:

\[U(c_t) = \frac{(c_t - h_t)^{1-\delta}}{1 - \delta} \]

where \(h_t \) is habit:

\[h_t = h_0 e^{-\beta t} + \alpha \int_0^t c_s e^{-\beta (t-s)} ds \]

or, in differential form \(dh_t = (\alpha c_t - \beta h_t) dt \).

\(\alpha \): importance of consumption in adjusting the habit

\(\beta \): importance of the past (the higher \(\beta \) the less important the past)

time dependent risk aversion: \(RRA = \frac{\delta}{c_t - h_t} \)
In this contribution:

$$U(c_t) = \frac{(c_t - h_t)^{1-\delta}}{1-\delta}$$

where h_t is habit:

$$h_t = h_0 e^{-\beta t} + \alpha \int_0^t c_s e^{-\beta(t-s)} ds$$

or, in differential form $dh_t = (\alpha c_t - \beta h_t) dt$.

- α: importance of consumption in adjusting the habit
- β: importance of the past (the higher β the less important the past)
- time dependent risk aversion: $RRA = \frac{\delta}{c_t - h_t}$
In this contribution:

\[U(c_t) = \frac{(c_t - h_t)^{1-\delta}}{1-\delta} \]

where \(h_t \) is habit:

\[h_t = h_0 e^{-\beta t} + \alpha \int_0^t c_s e^{-\beta(t-s)} ds \]

or, in differential form \(dh_t = (\alpha c_t - \beta h_t) dt \).

\(\alpha \): importance of consumption in adjusting the habit
\(\beta \): importance of the past (the higher \(\beta \) the less important the past)

Time dependent risk aversion: \(RRA = \frac{\delta}{c_t - h_t} \)
Our contribution – Preferences (2/2)

- In this contribution:

\[
U(c_t) = \frac{(c_t - h_t)^{1-\delta}}{1-\delta}
\]

- where \(h_t \) is habit:

\[
h_t = h_0 e^{-\beta t} + \alpha \int_0^t c_s e^{-\beta(t-s)} ds
\]

- or, in differential form \(dh_t = (\alpha c_t - \beta h_t) \, dt \).

- \(\alpha \): importance of consumption in adjusting the habit
- \(\beta \): importance of the past (the higher \(\beta \) the less important the past)
- time dependent risk aversion: \(RRA = \frac{\delta}{c_t - h_t} \)
In this contribution:

\[
U(c_t) = \frac{(c_t - h_t)^{1-\delta}}{1-\delta}
\]

where \(h_t \) is habit:

\[
h_t = h_0 e^{-\beta t} + \alpha \int_0^t c_s e^{-\beta(t-s)} ds
\]

or, in differential form \(dh_t = (\alpha c_t - \beta h_t) dt \).

\(\alpha \): importance of consumption in adjusting the habit

\(\beta \): importance of the past (the higher \(\beta \) the less important the past)

time dependent risk aversion: \(RRA = \frac{\delta}{c_t-h_t} \)
The Problem

- We solve the following problem

\[
\max_{e_t, c_t} \mathbb{E} \left[\int_{0}^{\infty} \frac{(c_t - h_t)^{1-\delta}}{1-\delta} e^{-\rho t} dt \right]
\]

- Under the dynamic constraint

\[
dk_t = \left(\frac{(1 - \tau + \tau e_t) Ak_t - c_t}{\sqrt{y_t}} \right) dt - \eta(\tau) e_t Ak_t d\Pi_t
\]
We solve the following problem

\[
\max_{e_t, c_t} \mathbb{E} \left[\int_0^\infty \frac{(c_t - h_t)^{1-\delta}}{1-\delta} e^{-\rho t} dt \right]
\]

Under the dynamic constraint

\[
dk_t = \left((1 - \tau + \tau e_t) \underbrace{Ak_t - c_t}_{y_t} \right) dt - \eta(\tau) e_t \underbrace{Ak_t}_{y_t} d\Pi_t
\]
<table>
<thead>
<tr>
<th></th>
<th>Evasion e_t^*</th>
<th>Consumption c_t^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRRA</td>
<td>E</td>
<td>$k_t F$</td>
</tr>
<tr>
<td>HARA</td>
<td>$\left(1 - \frac{c_0}{k_t} \frac{1}{(1-\tau)A}\right) E$</td>
<td>$c_0 + \left(k_t - \frac{c_0}{(1-\tau)A}\right) F$</td>
</tr>
<tr>
<td>Habit</td>
<td>$\left(1 - \frac{h_t}{k_t} \frac{1}{(1-\tau)A+\beta-\alpha}\right) E$</td>
<td>$h_t + \frac{k_t((1-\tau)A+\beta-\alpha)-h_t}{(1-\tau)A+\beta} F$</td>
</tr>
</tbody>
</table>

\[
E \equiv \frac{1}{\eta A} \left(1 - \left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}\right) \quad F \equiv \frac{\rho + \frac{\lambda - \frac{\tau}{\eta} + (\delta - 1)(1-\tau)A}{\delta}}{\delta} + A \tau E
\]
Comparative statics: tax rate

- with CRRA preferences (and $\eta = \eta_0 + \eta_1 \tau$):

$$\frac{\partial e_t^*}{\partial \tau} \geq 0 \iff \frac{\eta_0}{\tau \eta_1} \geq \delta \frac{1 - \left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}{\left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}$$

- with HARA preferences

$$\frac{\partial e_t^*}{\partial \tau} \geq 0 \iff c_0 \geq \text{threshold}$$

- with habit

$$\frac{\partial e_t^*}{\partial \tau} \geq 0 \iff \frac{k_t}{h_t} \geq \text{threshold}$$
Comparative statics: tax rate

- with CRRA preferences (and \(\eta = \eta_0 + \eta_1 \tau \)):

\[
\frac{\partial e_t^*}{\partial \tau} \geq 0 \iff \frac{\eta_0}{\tau \eta_1} \geq \delta \frac{1 - \left(\frac{\lambda \eta}{\tau} \right)^{\delta}}{\left(\frac{\lambda \eta}{\tau} \right)^{\frac{1}{\delta}}}
\]

- with HARA preferences

\[
\frac{\partial e_t^*}{\partial \tau} \geq 0 \iff c_0 \geq \text{threshold}
\]

- with habit

\[
\frac{\partial e_t^*}{\partial \tau} \geq 0 \iff \frac{k_t}{h_t} \geq \text{threshold}
\]
Comparative statics: tax rate

- with CRRA preferences (and $\eta = \eta_0 + \eta_1 \tau$):

 $$\frac{\partial e_t^*}{\partial \tau} \geq 0 \iff \eta_0 \tau \eta_1 \geq \delta \left(\frac{\lambda \eta}{\tau} \right)^{\frac{1}{\delta}}$$

- with HARA preferences

 $$\frac{\partial e_t^*}{\partial \tau} \geq 0 \iff c_0 \geq \text{threshold}$$

- with habit

 $$\frac{\partial e_t^*}{\partial \tau} \geq 0 \iff \frac{k_t}{h_t} \geq \text{threshold}$$
Comparative statics: audit parameters

- w.r.t. both \(\eta_0 \) and \(\eta_1 \):
 \[
 \frac{\partial e_t^* \eta_0}{\partial \eta_0 e_t^*} > \frac{\partial e_t^* \eta_1}{\partial \eta_1 e_t^*} \iff \eta_0 > \eta_1 \tau
 \]

- w.r.t. both \(\eta_0 \) and \(\lambda \)
 \[
 \frac{\partial e_t^* \eta_0}{\partial \eta_0 e_t^*} > \frac{\partial e_t^* \lambda}{\partial \lambda e_t^*} \iff \frac{\eta_0}{\eta_1 \tau} > \frac{1}{\delta} \frac{\left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}{1 - \left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}
 \]

- w.r.t. both \(\eta_1 \) and \(\lambda \)
 \[
 \frac{\partial e_t^* \eta_1}{\partial \eta_1 e_t^*} > \frac{\partial e_t^* \lambda}{\partial \lambda e_t^*} \iff \frac{\eta_1 \tau}{\eta_0} > \frac{1}{\delta} \frac{\left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}{1 - \left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}
 \]

- When either \(\eta = \eta_0 \) or \(\eta = \eta_1 \tau \):
 \[
 \frac{\partial e_t^* \eta}{\partial \eta e_t^*} > \frac{\partial e_t^* \lambda}{\partial \lambda e_t^*}
 \]
Comparative statics: audit parameters

- w.r.t. both η_0 and η_1:
 \[
 \frac{\partial e^*_t}{\partial \eta_0} \frac{\eta_0}{e^*_t} > \frac{\partial e^*_t}{\partial \eta_1} \frac{\eta_1}{e^*_t} \iff \eta_0 > \eta_1 \tau
 \]

- w.r.t. both η_0 and λ
 \[
 \frac{\partial e^*_t}{\partial \eta_0} \frac{\eta_0}{e^*_t} > \frac{\partial e^*_t}{\partial \lambda} \frac{\lambda}{e^*_t} \iff \eta_0 > \frac{1}{\delta} \frac{(\frac{\lambda \eta}{\tau})^{\frac{1}{\delta}}}{1 - (\frac{\lambda \eta}{\tau})^{\frac{1}{\delta}}}
 \]

- w.r.t. both η_1 and λ
 \[
 \frac{\partial e^*_t}{\partial \eta_1} \frac{\eta_1}{e^*_t} > \frac{\partial e^*_t}{\partial \lambda} \frac{\lambda}{e^*_t} \iff \eta_1 \tau > \frac{1}{\delta} \frac{(\frac{\lambda \eta}{\tau})^{\frac{1}{\delta}}}{1 - (\frac{\lambda \eta}{\tau})^{\frac{1}{\delta}}}
 \]

- When either $\eta = \eta_0$ or $\eta = \eta_1 \tau$:
 \[
 \frac{\partial e^*_t}{\partial \eta} \frac{\eta}{e^*_t} > \frac{\partial e^*_t}{\partial \lambda} \frac{\lambda}{e^*_t}
 \]
Comparative statics: audit parameters

w.r.t. both η_0 and η_1:

$$\frac{\partial e_t^* \eta_0}{\partial \eta_0 e_t^*} > \frac{\partial e_t^* \eta_1}{\partial \eta_1 e_t^*} \iff \eta_0 > \eta_1 \tau$$

w.r.t. both η_0 and λ

$$\frac{\partial e_t^* \eta_0}{\partial \eta_0 e_t^*} > \frac{\partial e_t^* \lambda}{\partial \lambda e_t^*} \iff \frac{\eta_0}{\eta_1 \tau} > \frac{1}{\delta} \frac{\left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}{1 - \left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}$$

w.r.t. both η_1 and λ

$$\frac{\partial e_t^* \eta_1}{\partial \eta_1 e_t^*} > \frac{\partial e_t^* \lambda}{\partial \lambda e_t^*} \iff \frac{\eta_1 \tau}{\eta_0} > \frac{1}{\delta} \frac{\left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}{1 - \left(\frac{\lambda \eta}{\tau}\right)^{\frac{1}{\delta}}}$$

When either $\eta = \eta_0$ or $\eta = \eta_1 \tau$:

$$\frac{\partial e_t^* \eta}{\partial \eta e_t^*} > \frac{\partial e_t^* \lambda}{\partial \lambda e_t^*}$$
Comparative statics: audit parameters

- w.r.t. both η_0 and η_1:
 \[
 \frac{\partial e_t^*}{\partial \eta_0} \frac{\eta_0}{e_t^*} > \frac{\partial e_t^*}{\partial \eta_1} \frac{\eta_1}{e_t^*} \iff \eta_0 > \eta_1 \tau
 \]

- w.r.t. both η_0 and λ
 \[
 \frac{\partial e_t^*}{\partial \eta_0} \frac{\eta_0}{e_t^*} > \frac{\partial e_t^*}{\partial \lambda} \frac{\lambda}{e_t^*} \iff \frac{\eta_0}{\eta_1 \tau} > \frac{1}{\delta} \frac{\left(\frac{\lambda \eta}{\tau}\right)^\frac{1}{\delta}}{1 - \left(\frac{\lambda \eta}{\tau}\right)^\frac{1}{\delta}}
 \]

- w.r.t. both η_1 and λ
 \[
 \frac{\partial e_t^*}{\partial \eta_1} \frac{\eta_1}{e_t^*} > \frac{\partial e_t^*}{\partial \lambda} \frac{\lambda}{e_t^*} \iff \frac{\eta_1 \tau}{\eta_0} > \frac{1}{\delta} \frac{\left(\frac{\lambda \eta}{\tau}\right)^\frac{1}{\delta}}{1 - \left(\frac{\lambda \eta}{\tau}\right)^\frac{1}{\delta}}
 \]

- When either $\eta = \eta_0$ or $\eta = \eta_1 \tau$:
 \[
 \frac{\partial e_t^*}{\partial \eta} \frac{\eta}{e_t^*} > \frac{\partial e_t^*}{\partial \lambda} \frac{\lambda}{e_t^*}
 \]
Simulations: base scenario

- $A = 0.8$
- $\tau = 0.4$
- $\lambda = 0.25$
- $\rho = 0.05$
- $\alpha = \frac{1}{3}$
- $\beta = 0.05$
- $\delta = 2.5$
- $k_0 = 100$
- $h_0 = 10$
- $\eta_0 = 0.1$
- $\eta_1 = 1.2$
Simulations: base scenario

Consumption as % of yield

Habit as % of yield

Evasion

Consumption as % of habit

Dynamic Tax Evasion with Habit Formation
Simulations: higher tax ($\tau = 0.5$)
Simulations: short memory ($\alpha = 0.8$, $\beta = 1$)

- Consumption as % of yield
- Habit as % of yield
- Evasion
- Consumption as % of habit