The Depreciation of Apple iPhones: A First Look

Brian Sliker
August 2019

Society for Economic Measurement
Frankfurt am Main, Germany

Views expressed here are the author’s, not necessarily those of BEA or the U.S. Department of Commerce.
Depreciation...

Defined: Loss of *resale* value of an asset (individual/variety/vintage/net-stock) of a given type as it ages

versus “Deterioration”:

Loss of *rental* value

Taxonomy: Resale value declines because...

- Asset **wears out** (individual level)
- Asset is approaching its **retirement** (individual level)
- Asset is **obsolesc**ing (variety/vintage level)

Net Stock depreciation combines them all, even retirees.
High-Tech Depreciation...

Taxonomy: Electronic good’s resale value declines because...

- **Asset wears out** (individual level) ← “Good as new”
- Asset is approaching its **retirement** (individual level)
- Asset is **obsolescing** (variety/vintage level)

Net Stock depreciation combines them all, even retirees.

- Q: What do you call an asset that does not wear out, but then is retired?
- A: One-Hoss Shay:

 ...but with obsolescence (and inflation)
Model Individual Efficiency...

• ...of obsolescing, inflating, 1HS *individual*
• ...that was built/bought/installed in year v
• ...s years later, in year t

\[
\phi_{v,t}^{s,j} = e^{\pi(t-v)} \times e^{-b(t-v)} \times 1
\]

so... $s = t - v$ (Hall, 1968)

- **Age-Efficiency Profile** = Ratio of s-year old rent to new
- **Constant-Quality Inflation Rate**
- **Rate of “Betterment”**
- **Individual j’s service Life**

...if $s < L_j$

...else 0
Model Individual Resale Value...

- Discount and sum efficiencies through future ages \((u)\) from current age \((s)\) to service-Life \((L_j)\)
- Do same from age-0 to service-Life \((L_j)\)
- Divide

\[
\theta_{v,t}^{s,j} = \frac{\int_s^{L_j} e^{-i(u-s)} \phi \, du}{\int_0^{L_j} e^{-i(u-0)} \phi \, du}
\]

Resale-Price Profile
= Ratio of \(s\)-year old price to new

\[
= e^{(\pi-b)(t-v)} \frac{e^{(i-\pi+b)s} - e^{(i-\pi+b)L_j}}{1 - e^{(i-\pi+b)L_j}}
\]
Fit Individuals into Cohort (=vintage/variety)

Cohort resale price = weighted average of members’ resale prices:

\[e^{-(\delta+b)s} = \int_0^S 0 \times f(L) dL + \int_s^{\infty} \theta(L) \times f(L) dL \]

Cohort-Level Non-Obsolescence Depreciation Rate

Recover weights:

\[f(L) = \delta \left(1 + \frac{\delta}{r - \pi + b}\right) e^{-\delta L} (1 - e^{-(i-\pi+b)L}) \]

Resulting density “looks like” a Gamma density; has mean, variance, and mode;

And integrates up to reveal the fraction that survives to age \(s \) →
Adjust Age-Price Regression for Retirements

Fraction of cohort that survives as of age s:

$$S(L > s) = \int_{s}^{\infty} f(L) dL = e^{-\delta s} \left(1 + \left(1 - e^{-(i-\pi+b)s} \right) \frac{\delta}{i-\pi+b} \right)$$

Why care? The “idealized” regression, $P_{t}^{S} = P_{0}^{0} e^{-(\delta+b-\pi)s} + \varepsilon$, is supposed to represent the average price of the whole cohort, but only survivors make it into the data. So divide RHS by $S(L>s)$ to account for lost survivors, cancel, take logs, add variety dummies:

$$\ln P_{v,t}^{S} = \ln P_{v}^{0} + (\pi - b)t - \ln \left[1 + \left(1 - e^{-(i-\pi+b)s} \right) \frac{\delta}{i-\pi+b} \right] + \varepsilon$$

78 variety-specific intercepts absorb v from $(\pi-b)$. Timing assumption will separate π from b. i not identified, so set $= 5.265\%$ (Baa 2010-15)
Data

• 10,372 obs, from 1/15/2010 to 12/30/2015, 78 varieties

• Used Price.com ... “Orion Bluebook Online”

• “Price-Points” at specific dates (irregular weekly)

• 5 continuous (camera resolution, memory, processor speed, screen size, storage capacity) and 44 discrete characteristics

...which are locked into the particular iPhone variety

...and Apple only releases new varieties once a year

• So use Apple’s six included iPhone release-dates as perfect proxies for characteristics!!
iPhone Release Dates

Table 2: Obsolescing Events

<table>
<thead>
<tr>
<th>Release Dates: “t*”</th>
<th>What Apple Released</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 24, 2010</td>
<td>iPhone 4 (8/16/32 GB)</td>
</tr>
<tr>
<td>October 14, 2011</td>
<td>iPhone 4S (8/16/32/32/64 GB)</td>
</tr>
<tr>
<td>September 21, 2012</td>
<td>iPhone 5 (16/32/64 GB)</td>
</tr>
<tr>
<td>September 20, 2013</td>
<td>iPhone 5c (16/32 GB × AT&T/Boost/Cricket¹⁴/Sprint/ T-Mobile/Verizon/Virgin/ GSM Non-Sim Card)</td>
</tr>
<tr>
<td></td>
<td>iPhone 5s (16/32/64 GB × AT&T/Boost/Cricket¹⁴/Sprint/ T-Mobile/Verizon/ GSM Non-Sim Card)</td>
</tr>
<tr>
<td>September 19, 2014</td>
<td>iPhone 6 (16/64/128 GB × AT&T/Sprint/T-Mobile/Verizon)</td>
</tr>
<tr>
<td></td>
<td>iPhone 6 Plus (16/64/128 GB × AT&T/Sprint/T-Mobile/Verizon)</td>
</tr>
<tr>
<td>September 25, 2015</td>
<td>iPhone 6s (16/64/128 GB × AT&T/Sprint/T-Mobile/Verizon)</td>
</tr>
<tr>
<td></td>
<td>iPhone 6s Plus (16/64/128 GB × AT&T¹⁵/Sprint/T-Mobile/Verizon)</td>
</tr>
</tbody>
</table>
Final Regression Specification

\[\ln P_{v,t}^S = \ln P_{v}^0 + \pi \; t - \sum_{t \geq t^*} b_t^* D_t^* \]

- \(\ln \left[1 + \left(1 - e^{-\left(\frac{t - \pi + \sum_{t^*} b_{t^*} s}{t - t^*} \right)} \right) \right] + \delta \frac{\sum_{t^*} b_{t^*}}{t - t^*} + \varepsilon \)

Fit by NLLS

Allow clustered standard errors
Selected Regression Results

Parameters

<table>
<thead>
<tr>
<th></th>
<th>(\delta)</th>
<th>(b_{6/24/10})</th>
<th>(b_{10/14/11})</th>
<th>(b_{9/21/12})</th>
<th>(b_{9/20/13})</th>
<th>(b_{9/19/14})</th>
<th>(b_{9/25/15})</th>
<th>(\pi)</th>
<th>(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi)</td>
<td>.387</td>
<td>.292</td>
<td>.100</td>
<td>.175</td>
<td>.102</td>
<td>.142</td>
<td>.031</td>
<td>−.193</td>
<td>.051</td>
</tr>
</tbody>
</table>

Point Values

<table>
<thead>
<tr>
<th></th>
<th>.387</th>
<th>.292</th>
<th>.100</th>
<th>.175</th>
<th>.102</th>
<th>.142</th>
<th>.031</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annualized</td>
<td>.321</td>
<td>(\frac{.132}{100})</td>
<td>.053</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Std. Errs. (simple)

<table>
<thead>
<tr>
<th></th>
<th>(.017)</th>
<th>(.033)</th>
<th>(.010)</th>
<th>(.011)</th>
<th>(.011)</th>
<th>(.007)</th>
<th>(.007)</th>
<th>(.009)</th>
</tr>
</thead>
</table>

Std. Errs. (clustered by 78 varieties)

<table>
<thead>
<tr>
<th></th>
<th>(.063)</th>
<th>(.048)</th>
<th>(.022)</th>
<th>(.036)</th>
<th>(.026)</th>
<th>(.014)</th>
<th>(.010)</th>
<th>(.031)</th>
</tr>
</thead>
</table>

Std. Errs. (clustered by 7 obsolescence regimes)

| | (.035) | (.045) | (.051) | (.050) | (.049) | (.041) | (.031) | (.056) |
Service-Life Density

Figure 4
Implied iPhone Service-Life Density
(and Gamma Density with Same Moments)

Mean = 3.875 years
Mode = 1.782 years
Summary of Findings

Substantive:
• Aggregate iPhone depreciation
 \[32.1 + 13.2 = 45.3\text{ percent per year}\]
• Constant-quality inflation
 17.5 percent \textit{deflation} per year
• Distribution of individual phones’ service lives
 About 2-year mode (~contract length), 4-year mean

Methodological:
• Use working hypothesis about individual-level depreciation to infer retirement density within geometric aggregate.
• Distinguish wearing-out and retirements, which happen to individuals, from inflation and obsolescence, which happen to cohorts.
Thank you!

Brian Sliker
brian.sliker@bea.gov